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SUMMARY

Numerical simulations of cardiac blood pump systems are integral to the optimization of device design,
hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises
from the wave propagation along an oscillating immersed membrane, which generates small pockets of
fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure
Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using
the Extended Finite Element Method, an unfitted numerical technique that avoids remeshing by using a fluid
fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the
first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems.
Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet
despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions
and we validated the numerical results against in-vitro experimental data. Copyright © 0000 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Heart failure is a global pandemic disease that affects more than 60 million people worldwide, a

number which will continue to increase in the next decades [1, 2]. To address this challenge, there

is an increasing interest in developing reliable mechanical circulatory support devices which take

over, totally or partially, the pumping function of the failing heart. These devices can be employed

as bridge to heart transplantation or as destination therapy, to permanently support heart function.

Ventricular Assist Devices (VADs) [3, 4], which are designed to support the heart’s ventricle

function, are becoming the standard of care for patients with end-stage heart failure. In comparison

to other devices (such as total artificial hearts [5]), VADs have proved to be less invasive, featuring

better performance in terms of hemocompatibility and risk of adverse events [4].

In Left-Ventricular Assist Devices (LVADs), blood pumps collect the blood from the left

ventricular chamber and eject it into the ascending aorta via a flexible cannula. The standard

blood pumps currently available for clinical use are rotary pumps, based on the rotation of an

internal impeller that imparts kinetic energy to the blood. Rotary pumps are divided in axial

[6, 7] and centrifugal flow pumps [8, 9, 10], depending on the direction of the imparted blood

acceleration [3]. However, rotary pumps cause damage to blood elements producing hemolysis,

thrombosis, and bleeding complications because of the elevated velocity gradients of their rotors

[11, 12]. Furthermore, since these pumps are operated at a single pump speed, their clinical use

results in a reduction of patient pulse pressure and, consequently, to possible complications related

to continuous non-physiologic blood pumping, such as gastro-intestinal bleeding, aortic valve

insufficiency or stroke [4]. Therefore, LVAD companies have developed pulsation algorithms for

rotary pumps, with the aim of improving wash-out in the pumps and reducing thrombosis. However,

the LVAD pulsation algorithms currently used clinically do not restore a physiologic pulse [13].
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With the aim to overcome the drawbacks of rotary pumps, CorWave SA (Clichy, France) is

developing a novel LVAD, referred to as wave membrane blood pump or progressive wave blood

pump, which employs an innovative pumping technology based on the gentle propelling action of

an undulating elastic membrane on the blood. Compared with current rotary VADs, wave membrane

blood pumps have two major advantages: i) the membrane generates smaller shear stresses and may

provoke less trauma on the blood cells; ii) due to the low inertia of the membrane, the oscillation

frequency can be rapidly changed to alter hydraulic performance in order to get physiologic

flow, potentially reducing the risks of complications like stroke, non-surgical bleeding and renal

dysfunction. This novel fluid propulsion approach requires a deep insight into the fluid-structure

dynamics arising within the pump.

Mathematical modeling and numerical simulations are valuable tools in the field of cardiovascular

medicine, allowing to better understand the complex processes involved in cardiovascular diseases

and to support clinical decisions in treatments and surgical procedures [14, 15, 16, 17]. Particularly,

in the case of biomedical devices, computational simulations are widely used to investigate and

optimize performance under different clinical conditions. Among others, we mention the following

fields of application: the optimization of coronary arterial bypass grafts to reduce critical factors,

like flow vorticity and wall shear stress rate [18, 19]; the study of blood dynamics in transcatheter

aortic valve, a biological prosthesis that replaces the native aortic valve in patients with high-risk

valve diseases [20, 21, 22, 23]; the performance of drug-eluting stents, which prevent restenosis

by local releasing of a specific drug [24, 25, 26, 27]; the study of optimal anastomotic angle in

arteriovenous fistula for hemodialysis [28, 29].

In the case of VADs, Computational Fluid Dynamics (CFD) has proven to be a powerful tool

to improve the pump performance and efficiency, while reducing blood trauma. Indeed, starting in

the 1990s with the first numerical studies carried out in simplified pump models [30, 31], in silico

simulations emerged to be more time- and cost-effective than in vitro or in vivo testings, overcoming

limitations in prototype fabrication and experimental setup [12]. In the last decades, there have been

plenty of numerical studies concerning the design and performance of rotary blood pumps. Among

these, we mention, for instance: parametric studies of geometric features in centrifugal [32, 33] and

axial pumps [34], to analyze the effects on hydraulic efficiency and stagnation time; CFD-based

optimization of the pump design to avoid retrograde leakage flow [35, 36]; computational study of

the effect of the impeller position in a magnetically levitated blood pump [37]. Other works focused

on the optimal implantation of the device [38, 39, 40, 41] or on the hemocompatibility requirements

of VADs, trying to understand and prevent the mechanisms that favor hemolysis [42, 43, 44],

thrombogenicity [45, 46, 47], and gastrointestinal bleeding [48].

Regarding progressive wave blood pumps, to our knowledge the only reference is the work

from Perschall et al. [49], who performed a Fluid-Structure Interaction (FSI) study, providing a

validation of their results against experimental data. FSI numerical experiments have been carried

out by considering a 2D axi-symmetric approximation of the discoidal geometry and the Arbitrary
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Lagrangian-Eulerian (ALE) formulation. Moreover, a Design Of Experiment (DOE) method is

applied to build a virtual prototype of the tubular design by the accurate tuning of geometric

parameters, like membrane diameter, membrane thickness or pump walls angle.

The objective of this paper is to provide a significant step forward with respect to [49], by means

of numerical investigation of the pump functioning in a three-dimensional realistic pump domain for

different key functional parameters. To this aim, we need to identify a numerical strategy that is able

to accurately describe the behaviour of a thin wave membrane immersed in the blood flow, which

undergoes relatively large displacements with regard to the surrounding narrow fluid region. Indeed,

the membrane may oscillate enough to approach closely to the boundaries of the fluid domain

reaching a quasi-contact configuration with the pump walls. In this context, fitted methods like

ALE-based techniques [50, 51, 52] and Space-Time Finite Elements [53, 54, 55, 56, 57] could be

used. However, due to excessive distortion of the fluid mesh due to the quasi-contact, they would

require frequent remeshing procedures. Alternatively, unfitted methods may be considered. These

techniques are specifically designed to avoid remeshing issues by using a fixed background mesh for

the fluid and an overlapping solid mesh which is free to move on the foreground, leading to split fluid

mesh elements. The most important unfitted techniques are: Immersed Boundary (IB) [58, 59, 60],

Fictitious Domain (FD) [61, 62, 63], Extended Finite Element Method (XFEM) [64, 65, 66, 67],

and polygonal Discontinuous Galerkin (PolyDG) method [68].

In the framework of XFEM, the degrees of freedom (d.o.f.) of the split elements are doubled

so that the solution can be integrated independently in the two split sub-regions, thus permitting

an internal discontinuity [69, 70, 71]. XFEM is capable of capturing the fluid-structure interface

without loss of accuracy and has already proven to be an effective, robust and versatile numerical

strategy to solve FSI problems with thin immersed membranes, both in 2D [72, 64, 67] and in 3D

[73, 74]. However, at the best of our knowledge, nowadays it has been mostly applied to academic

problems, while we are not aware of any example of 3D industrial application. Due to its accuracy

and versatility in managing FSI problems with complex immersed structure dynamics, we believe

that it could be an effective tool for the solution of problem in real and complex geometries. For

this reason, in this work we adopted an XFEM-based strategy to handle the FSI problem arising in

our progressive wave blood pump, showing that this method is in fact suitable also for industrial

problems.

The structure of this paper is the following: in Section 2, we describe the working mechanisms

of the wave membrane blood pump under study; in Section 3, we introduce the mathematical

formulation of the FSI model together with its numerical discretization; in Section 4, we present

the results of the numerical simulations for different pressure conditions and we validate the model

against experimental data; in Section 5, we draw the main conclusions of the current study.
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2. PUMP FUNCTIONING PRINCIPLE

In case of heart failure, the cardiac function is compromised and only a reduced volume of

oxygenated blood is ejected into circulation, leading to poor oxygenation of the tissues. Therefore,

blood pumps are implanted at the apex of the failing heart to collect part of the blood from the left

ventricle in the pump chamber and mechanically pump it into the distal aorta via a flexible outlet

cannula (Figure 1, left). In particular, progressive wave pumps differ from other LVADs for utilizing

an innovative pumping mechanism based on the mutual interaction between an elastic undulating

membrane and the blood flow, with the potential to produce physiologic flow rates with minimum

blood trauma.

Figure 1. Left: Blood path through the left heart with an implanted LVAD. The oxygenated blood coming
from the left atrium is collected into the implantable pump apparatus placed at the left ventricle apex,
and then ejected into the proximal aorta via an outlet cannula. Right: Cross sectional view of the main
components of the implantable wave membrane pump, including inlet and outlet channel, the actuator
assembly (stator, electromagnetic coils and magnet ring), the membrane assembly (silicon membrane and
membrane holder), and one (of the three) supporting posts. The diameter of the device is 5 cm long, while

its overall height is of about 4 cm.

The main components of the membrane wave pump are shown in the right panel of Figure 1 and

correspond to the inlet and the outlet cannula, the actuator assembly and the membrane assembly.

The inlet and the outlet channels are located at the opposite ends of the pump cylindrical body.

The actuator assembly is composed of a stationary part, consisting of the central stator and the

electromagnetic coils, and a mobile part, the magnet ring, that is suspended concentrically around

the stator. The membrane assembly consists of the silicon membrane and the membrane holder. The

silicon membrane is a discoidal polymer elastic body that is displaced concentrically to the pump

axis, in the pump head region, i.e. a narrow space proximal to the outlet channel delimited by rigid

walls of the pump housing, called pump head flanges. Both the gap between these flanges and the

membrane thickness gradually decrease going towards the inner circular opening. The membrane

holder is a rigid titanium ring that is enclosed in the most external part of the membrane disc and

that is connected to the magnet ring by means of three supporting posts placed equidistantly over

the actuator circumference.

The action of the blood pump is driven by the electromagnetic actuator which triggers the

undulating motion of the flexible silicon membrane. An alternating current is applied to the coils to
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generate a magnetic field that guides the periodic displacement of the magnet ring and, consequently,

of the membrane holder. Notice that the motion of the magnet ring is axially constrained because of

the presence of suspension rings which do not permit radial displacements. In this way, the actuator

exerts a periodic excitation force that is substantially normal to the membrane disc, inducing a

wavelike displacement which propagates in the membrane medium from the membrane holder

towards the center in direction of the outlet channel. Therefore, this progressive wave propagation

along the membrane transports the blood that is enclosed in the spaces between the membrane

wave and the pump head flanges radially inward towards the outlet channel. These masses of blood

transported by the membrane wave are referred to as fluid pockets. During its wave motion, the

membrane may approach to the pump flanges very closely, resulting in a quasi-contact configuration

that allows to isolate the fluid pockets and to minimize any potential backflow from the outlet

towards the inlet, thus increasing the pump efficiency. Moreover, the membrane displacement gets

damped by the effect of the surrounding viscous fluid, provoking an energy transfer to the blood that

ends up in the form of pressure buildup and addition of kinetic energy. The characteristics of the

pressure gradient and the blood flow depend on the size and the shape of the membrane, the spacing

between the pump head flanges, and the excitation parameters. Thus, the pump works as an energy

transducer, that converts electromechanical energy into hydraulic power.

This pump system has the potential to generate a wide range of physiological flow rates and, in

particular, to mimic the pulsatility induced by the native heart. Indeed, in principle, we could vary

the operating parameters of the pump during the cardiac cycle: during systole the pump outflow

rate could be increased to reproduce the natural augmentation of the cardiac output, while during

diastole the operating point of the pump can be decreased to avoid backflow and left ventricle

regurgitation. However, in this work we study the pump system at fixed operating conditions, as

done in experimental tests forpump hydraulic characterization. Notice that, given the oscillatory

nature of the wave membrane technology, the outflow signal results to be pulsatile in time even at

fixed operating conditions.

The pump model of our study is similar to the discoidal design described in Perschall et al.

[49], but there are important differences: (i) in the prototype in Perschall’s work we find two inlet

channels located 180 degrees apart, while in our case we have a unique inlet, that results in a more

homogeneous flow field; (ii) our pump actuator is magnetic, not mechanic, so that we avoid the need

of contact seals or bearings.

The pump device is coupled with an external controller, that sets the oscillation frequency and

voltage applied to the coils in the actuator, and a set of extracorporeal batteries, to power the system.

An external programmer is used to configure the working parameters of the pump. .
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Figure 2. Cross-sectional representation of the mathematical domain of interest, consisting of the fluid
domain Ωf (grey), the membrane assembly Ωs1 (yellow) and the magnet ring Ωs2 (red). Γin and Γout indicate
the inlet and the outlet boundary, respectively; while Γw refers to the wall boundary. ΓD1 and ΓD2 (blue)
indicate the surface of the membrane frame and the magnet ring, respectively, where a Dirichlet condition is

applied; the boundary Σ is the free fluid-structure interface.

3. MATHEMATICAL AND NUMERICAL METHODS

3.1. Mathematical model

In this section, we describe the mathematical approach employed to model the interaction between

the blood and the oscillating structure in the progressive wave blood pump.

Let Ω be the whole pump domain composed by the region occupied by the fluid and by the

immersed oscillating structures. The latter are composed by three main components:

- The membrane assembly Ωs1(t) (yellow region in Figures 1, right, and 2, left). It is composed

by a flexible region, referred to as the flexible membrane, and a rigid region, referred to as

the membrane frame (see zoom in Figure 2, right). The first region interacts with the fluid

through the fluid-structure interface Σ(t), where the wave displacement propagates towards

the inner orifice of the membrane disc; here no-slip and traction continuity conditions hold

true. The second region interacts with the fluid through the interface ΓD1 (t). However, here

the motion is not determined by the interaction with the fluid, rather by the movement of the

membrane holder (green sub-component in Figure 2, right). For the sake of simplicity, we

assume that the movement of the region delimited by ΓD1 is completely rigid, so that we can

apply a displacement field ϕ directly on ΓD1 as a Dirichlet condition, see right panel in Figure

2. Accordingly, for the fluid we prescribed a compatible Dirichlet data ϕ̇ on ΓD1 . Notice that,

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (0000)
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since we are prescribing two Dirichlet conditions with known data, we cannot say anything

about the interface tractions.

- The magnet ring Ωs2(t) (red region in Figures 1, right, and 2). Like the membrane holder, its

movement is determined by the pump actuator and thus compatible Dirichlet conditions have

been again prescribed at the interface ΓD2 (t) (see Figure 2) both for fluid and structure. Notice

that, since the magnet ring is mechanically joined to the membrane holder, the whole complex

moves rigidly and therefore the same data ϕ and ϕ̇ have been prescribed on the magnet ring.

- The supporting posts (dark blue region in Figure 1). Unlike the magnet ring that surrounds

the actuator and thus occupies all the fluid path region, these posts are three thin columns

whose presence should not influence significantly blood flow dynamics. For this reason, we

decided here to neglect the posts in our domain. In any case, specific investigations on their

real influence will be the subject of future studies.

Then, the fluid domain Ωf (t) is determined by

Ωf (t) = Ω \ Ωs(t), (1)

with Ωs(t) = Ωs1(t) ∪ Ωs2(t).

The intertwined dynamics arising inside a wave membrane pumps can be mathematically

described in the framework of FSI modeling, where a system of partial differential equations

describes separately the behaviour of the fluid and of the structure in the respective domains, while

proper coupling conditions define their interaction at the interface Σ.

In particular, we assumed the blood to be an incompressible, viscous and Newtonian fluid,

because, apart from local (in space and time) exceptions in the quasi-contact region, the

characteristic size of the pump domain is generally much larger than the diameter of blood cells.

Denoting by ρf the fluid density and by µf the dynamic viscosity, we can then express the fluid

Cauchy stress tensor as Tf (u, p) = −pI + 2µfD(u), with D(u) = 1
2 (∇u +∇uT ), where u and p

are the fluid velocity and pressure, respectively. Therefore, we used the Navier-Stokes equations to

model the conservation of momentum and mass of blood, respectively.

Concerning the structural problem, the membrane disc domain Ωs1 and the magnet ring domain Ωs2

are both considered to be elastic bodies made of homogeneous and isotropic material, as reported

in [49], but feature different material properties. Therefore, to shorten the formulation we have

written the structural problem for the whole domain Ωs with density spatial function ρ̃s(x) = ρs1

if x ∈ Ωs1 and ρ̃s(x) = ρs2 if x ∈ Ωs2. Analogous definitions were used for Lamé parameters λ̃s(x)

and µ̃s(x). We also assumed that the structures undergo infinitesimal linear deformations, so that

we can apply Hooke’s Law in the range of small displacements and write the first Piola-Kirchhoff

tensor as T̂
s
(d̂) = λ̃s (∇̂ · d̂) I + 2µ̃s D̂(d̂), where d̂ is the structure displacement. Notice that we

use superscript ·̂ to refer to quantities defined in the Lagrangian configuration in the domain

Ω̂s = Ωs(0). We remark that the small displacement approximation is justified in our problem
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setting, because the observed normal strains are smaller than 5.5% and the tangential shears are

smaller than 3%.

For a given T > 0, the fluid-structure interaction problem reads as follows: for each time

t ∈ (0, T ], find the fluid velocity u(t) : Ωf (t)→ R3, the fluid pressure p(t) : Ωf (t)→ R, and the

structure displacement d̂(t) : Ω̂s → R3, such that:

ρf (∂tu + u · ∇u)−∇ · Tf (u, p) = 0 in Ωf (d), (2a)

∇ · u = 0 in Ωf (d), (2b)

ρ̃s∂ttd̂− ∇̂ · T̂
s
(d̂) = 0 in Ω̂s, (2c)

u = ∂td on Σ(d), (2d)

Tf (u, p) nf = −Ts(d) ns on Σ(d), (2e)

where Ts in Equation (2e) is the solid Cauchy stress tensor, that is the Eulerian counterpart of the

first Piola-Kirchhoff tensor, defined as Ts(d) = J−1 T̂
s
(d̂) FT , with F = ∇x being the gradient of

deformation and J = det F its determinant. We remark that in the small displacement regime we

could assume that T̂
s

= Ts. In the system (2), we have highlighted the dependence of the fluid

domain Ωf (and thus of the interface Σ) on the structure displacement d through its definition (1)

(geometric coupling).

In System (2), Equations (2a) and (2b) are the non-linear incompressible Navier-Stokes equations,

while Equation (2c) is the linearized elastodynamic equations. Equations (2d) and (2e) are the

coupling conditions imposed on the interface Σ guaranteeing the continuity of velocity and of

tractions, respectively, and where n = nf = −ns is the external fluid normal. We highlight that

the combination of the incompressibility of the fluid (Equation (2b)) with the no-slip kinematic

condition (2d) allows to consider a quasi-contact assumption when the membrane and the pump

walls come into contact. Indeed, previous studies [75, 76] showed that in such conditions, from

the mathematical and numerical point of view, contact - strictly speaking - cannot occur when a

moving body approaches to a wall, because the interstitial fluid cannot slip away and allow for actual

collision. Therefore, despite physical contact may occur between the membrane and the pump head

flanges under certain operating conditions of the pump, no contact models were introduced.

Referring to Figure 2, system of equations (2) has to be closed with proper initial and boundary

conditions. For the fluid problem, we considered Neumann conditions both at the inlet Γin and at

the outlet Γout to represent the pressure difference of the pump. We also applied an homogeneous

Dirichlet condition at the pump walls Γw. Finally, in order to model the effect of the actuator on the

motion of the membrane frame and the magnet ring, as anticipated we impose Dirichlet conditions

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (0000)
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on ΓD = ΓD1 ∪ ΓD2 . In summary, we have:

Tf (u, p) nf =
(
P out −∆P

)
nf on Γin, (3a)

Tf (u, p) nf = P out nf on Γout, (3b)

u = 0 on Γw, (3c)

d = ϕ on ΓD, (3d)

u = ϕ̇ on ΓD, (3e)

where P out is a given outlet pressure value and ∆P > 0 is the pump head pressure, corresponding

to the pressure difference between the pump outlet and the inlet. At time t = 0, we finally imposed

the initial conditions u(0) = u0, d(0) = d0 and ḋ(0) = w0. In our application, we considered null

initial conditions, i.e. u0 = 0, d0 = 0 and w0 = 0.

3.2. Numerical methods

3.2.1. The Extended Finite Element Method Numerical methods for FSI problems are divided into

fitted and unfitted methods, depending whether the fluid and solid meshes are fitted to each other

or not. In case of fitted methods, the meshes move together. Although they present undoubted good

properties like the easiness of implementation, for our problem we decided to consider an unfitted

method for the following reasons: i) they prevent high distortion of the fluid elements due to the

wave motion of the membrane in the limited pump head region (see Section 2) and thus frequent

remeshing; ii) the quasi-contact assumption between the membrane and the pump walls is relatively

easily to implement efficiently. Notice that remeshing does not only represent an extra burden on the

computational time of the simulation, but it may also affect the quality of the solution, depending

on the accepted tolerance on the mesh quality index (e.g., aspect ratio of the elements). Indeed, in

similar applications we observed that, if this tolerance is too large, we can have convergence issues

due to severe distortions of fluid elements; while, if it is too small, the interpolation inherent in the

remeshing process can introduce errors in the fluid solution.

Among the unfitted methods, we selected the Extended Finite Element Method (XFEM),

proposed in [71], which is based on the extension of the features of the classical Finite Elements

and allows to have higher geometrical flexibility without loss of accuracy. Thanks to such extension,

solutions with discontinuities are well described and complex problems with immersed interfaces

or structures could be accurately solved. XFEM has proven to be an effective strategy for many

problems, in particular for FSI with immersed structures [64, 77, 65, 67], maintaining a good

accuracy at the fluid-structure interface. For our study, we specifically refered to the 3D formulation

reported in [73], which treats the case of a 3D thin structure, by using a Discontinuous Galerkin

(DG) mortaring to weakly impose the continuity conditions (2d)-(2e) at the interface.
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Figure 3. Global mesh Th (gray) is overlapped by the structure meshes T sh,1 (membrane assembly, in yellow)
and T sh,2 (magnet ring, in red). Fluid cut mesh T fh in light blue.

Let Ωf,nh ' Ωf (tn) and Ωs,nh ' Ωs(tn) be the approximated fluid and structure domains after

space (XFEM) and time discretization, the latter being based on the timestep parameter ∆t > 0

such that tn = n∆t for n = 1, 2, . . . .

In the framework of XFEM, a global mesh Th defined in Ωh is kept fixed on the background, while

a structure mesh T s,nh defined in Ωs,nh moves on the foreground cutting the underlying elements.

Hence, these elements are overlapped (partially or totally) by the structure mesh and they are divided

in multiple sub-portions that are, in general, polyhedra. Such elements are named fluid cut elements.

Therefore, we can define the cut-mesh as the polyhedral fluid mesh T f,nh that covers the fluid domain

Ωf,nh , composed by the union of all fluid elements in Th that are not cut by the structure mesh

and all the non-overlapped parts of the cut elements. In our case, referring to Figure 3, we have

T s,nh = T s,nh,1 ∪ T
s,n
h,2 , where T s,nh,i , i = 1, 2, represent the meshes corresponding to Ωs,nh,i , i = 1, 2,

that is the membrane assembly (i = 1) and the magnet ring (i = 2).

Notice that the cut-mesh has to be updated at each time instant, computing the new intersections

generated by the motion of the structure mesh. In order to reduce the complexity of the computation

of the mesh intersections, we first need to detect which fluid elements are more likely to intersect

the overlapping structure elements, so that the intersection points can be calculated over a reduced

set of entities, using a similar approach as in [78]. In this regards, we specifically employed the

Alternating Digital Tree (ADT) algorithm [79], that is a spatial tree-based search algorithm, which

is built upon a hierarchical organization of the mesh elements according to their spatial location.

Therefore, this approach is particularly suitable for our problem, where the search can be confined

to specific sub-regions of the fluid mesh. Once the intersection points have been computed, we used

them to build an interface-fitted sub-tetrahedralization in the cut-elements, that allows for integrating

the solution using the standard quadrature rule on each sub-tetrahedron and guarantee numerical

accuracy and consistency. In case of more complex interface detection problems, it is possible to

consider alternative approaches to ADT for 3D geometric mesh search, such as the No binary search

[80] or the dynamic cell-based search algorithm [81].

If the cut elements are separated by the structure in multiple disjoint fluid sub-elements, they

are called split elements (see Figure 4). We name T Xh ⊆ Th the union of the split elements in the

background mesh. In XFEM, the classical Finite Elements Lagrangian basis functions defined on

the split element are used to build the numerical solution in all the sub-elements, thus requiring the
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12 M. MARTINOLLI, J. BIASETTI, S. ZONCA, L. POLVERELLI & C. VERGARA

duplication of the original d.o.f. for each sub-elements (see Figure 4, right). This allows to have

an accurate description of the fluid solution across the structure mesh, possibly characterized by

discontinuities [67].

For more details on the computational implementation of XFEM in our scenario, we refer the

reader to [73].

Figure 4. Left: Different fluid elements in XFEM: completely overlapped element (green), partially
overlapped cut element (blue) and split element (red). Right: D.o.f. duplication in a split element K ∈ T Xh .

The same basis functions are used for PK1 and PK2 .

Remark 1

We point out that our XFEM strategy is sligthly different to the one originally presented in

[70, 71, 82], where the discontinuity was a curve (surface) embedded in a 2D (3D) domain and it

was represented as a level-set function. In our framework, from the fluid point of view, the structure

domain acts as the “discontinuity” and it is represented with a mesh instead of a level-set function.

Despite of this, a numerical approximation uh(x) on a split element with two fluid sub-elements can

be thought as the sum of two contributions: the standard Finite Element part (i.e., the standard basis

functions ϕi(x) and d.o.f. ui) and the enrichment term, consisting in the enriched (i.e., doubled)

d.o.f. ei and in the standard basis functions ϕi(x) multiplied by the enrichment function Φi(x),

namely

uh(x) =
∑
i∈Istd

uiϕi(x) +
∑
i∈Ienr

eiϕi(x)Φi(x),

where Istd and Ienr are the sets of standard and enriched d.o.f., respectively, and Φi(x) is the sign

function restricted on the two fluid sub-elements. Notice that, this approximation can be generalized

to the case of split elements with three or more fluid sub-elements.

Remark 2

The sub-tetrahedralization of the cut-elements, that in our implementation is delegated to external

libraries, such as Triangle [83] for 2D meshing and TetGen [84] for 3D meshing, may become

particularly involved in case of complex or irregular geometries. In these cases, there exist

alternative approaches for the numerical integration in the cut-elements, that do not require sub-

domain partition. For instance, the enriched interface method [85] relies on a larger set of integration

points and the application of a high order Guassian quadrature rule. However, this technique is based
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on the assumption that the thickness of the structure can be neglected compared with the size of the

fluid domain. In our case, the membrane thickness is not negligible and varies along the radial

direction; therefore, the approach above should be extended to take into account the overlapped

portions of the split elements.

3.2.2. Full discretization As mentioned, for the spatial discretization we considered a DG method

in the XFEM framework to manage the numerical solution at the fluid-structure interface Σh.

Regarding the fluid problem, we considered standard strong continuity in the fluid domain, except

in the proximity of the fluid-structure interface, where we needed to consider again a DG approach

to ensure continuity of velocity and tractions between two adjacent fluid mesh elements. Indeed,

the presence of the split elements, i.e. general polyhedra, does not allow to easily impose strong

continuity. Therefore, we can require only weak continuity in T Xh , i.e. the union of the split elements

in the background mesh; instead, we can have strong continuity on the remaining portion of the fluid

domain Ωf,ch = Ωfh \ T Xh .

For the structure problem instead, the mesh is always composed of the original tetrahedra, thus

standard Finite Elements are considered for its approximation.

According to the previous discussion, we introduce the following discrete spaces in the fluid and

structure domains:

Xf,n
h =

{
vh ∈ L2(Ωf,nh ) : vh ∈ C0(Ωf,c,nh ), vh|K ∈ P1(K), ∀K ∈ T X,nh

}
,

Xs
h,i =

{
v̂h ∈ C0(Ω̂sh,i) : v̂h|K ∈ P1(K), ∀K ∈ T̂ sh,i

}
for i = 1, 2,

Xs
h = Xs

h,1 ⊕Xs
h,2,

and the corresponding spaces for the approximation of fluid velocity and pressure and of structure

displacement:

Vn
h,ϕ =

{
vh ∈ [Xf,n

h ]3 : vh = 0 on Γw,nh , vh = ϕ on ΓD,nh

}
,

Qnh = Xf,n
h ,

Wh,ϕ =
{

ŵh ∈ [Xs
h]3 : ŵh = ϕ̂ on Γ̂Dh

}
.

In view of the DG formulation for the fluid problem, we introduce the mean operator {·} and the

jump operator J·K, defined over an element face F as:

{q} =
1

2
(q+ + q−) JqK = q+ − q−,

where q is a function that assumes values q+ and q− on the two sides of face F .

To manage the geometric non-linearity, we considered an explicit treatment of the geometric

coupling by taking the first order extrapolation from the previous timestep, i.e. Ωf,n+1
h ' Ωf,nh =

Ωfh(dnh). To simplify the notation, we omit in what follows the current temporal index n+1 for
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variables and domains. We considered the Backward Differentiation Formula of order 1 for the

discretization of both the fluid and solid time derivatives and we used a semi-implicit approach for

the treatment of the fluid convective term. Let (·, ·)Θ be the internal product in L2 in a domain Θ.

Then, we define the following forms:

i) The fluid form

Afh(uh,u∗h, ph; vh, qh) =
ρf

∆t
(uh, vh)Ωf,n

h
+ ρf (u∗h · ∇uh, vh)Ωf,n

h

+ 2µf (D(uh),D(vh))Ωf,n
h
− (ph,∇ · vh)Ωf,n

h

+ (qh,∇ · uh)Ωf,n
h

+ ch(u∗h,uh; vh)

+ sh(uh, ph; vh, qh) + gh(uh; vh),

which collects the terms of the weak formulation of the stabilized Navier-Stokes equations

with convective velocity u∗h = unh.

In the previous form, we have considered the correction term of the convective term defined

as

ch(u∗h,uh; vh) =
ρf

2
((∇ · u∗h) uh, vh)Ωf,n

h
−

∑
F∈Fp,n

h

ρf ({u∗h} · nJuhK, {vh})F

−
∑

F∈Fp,n
h

ρf

2
(Ju∗hK · n {uh · vh})F ,

where Fp,nh is the set of the faces of the split elements in T X,nh , excluding the portions

overlapped by the structure mesh, see [86, 87].

The stabilization term sh(uh, ph; vh, qh) corresponds to the Continuous Interior Penalty (CIP)

stabilization [88], introduced to handle spurious instabilities due to equal order of Finite

Elements for velocity and pressure, and have better control on the convective term and on

the incompressibility condition. It is defined over the set Fnh of the faces of the split elements

in T X,nh (inluding the overlapped sub-portions) as

sh(uh, ph; vh, qh) = γv1

∑
F∈Fn

h

ξ (ReF )h2
F ||u∗h · n||∞,F (J∇uh · nK, J∇vh · nK)F

+ γv2

∑
F∈Fn

h

ξ (ReF )h2
F ||u∗h||∞,F (J∇ · uhK, J∇ · vhK)F

+ γp
∑
F∈Fn

h

ξ (ReF )
h2
F

||u∗h||∞,F
(J∇phK, J∇qhK)F ,

where γv1, γv2 and γp are positive penalty parameters,ReF is the local Reynolds number over

the face F , hF is a characteristic mesh size for F , and ξ(x) = min(1, x).
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The ghost-penalty stabilization gh(uh; vh) [89] is added to prevent possible instabilities

caused by the arbitrarily small dimension of the generated cut elements. It is defined over

the set of faces FΣ,n
h crossed by the interface Σnh as

gh(uh; vh) = γg
∑

F∈FΣ,n
h

µfhF
(
J∇uhKnF , J∇vhKnF

)
F
,

with γg > 0;

ii) The form related to the DG fluid terms over the faces in Fph , defined as

Dfh(uh, ph; vh, qh) =−
∑

F∈Fp,n
h

({
Tf (uh, ph)

}
nf , JvhK

)
F

−
∑

F∈Fp,n
h

(
JuhK,

{
Tf (vh,−qh)

}
nf
)
F

+
∑

F∈Fp,n
h

γdgµ
f

hF
(JuhK, JvhK)F ,

where γdg > 0 is the stability parameter [90];

iii) The structure bilinear form

Ash
(

d̂h; ŵh

)
=

1

∆t2

(
ρ̃sd̂h, ŵh

)
Ω̂s

h

+
(
λ̃s∇ · d̂h,∇ · ŵh

)
Ω̂s

h

+ 2
(
µ̃s D(d̂h),D(ŵh)

)
Ω̂s

h

;

iv) The form Ih(uh, ph,dh; vh, qh,wh) corresponding to the DG FSI coupling terms at the fluid-

structure interface Σnh [65, 73]:

Ih(uh, ph,dh; vh, qh,wh) =−
(
Tf (uh, ph)nf , vh −wh

)
Σn

h

−
(

Tf (vh, qh)nf ,uh −
dh
∆t

)
Σn

h

+
γΣµ

f

h

(
uh −

dh
∆t

, vh −wh

)
Σn

h

,

where γΣ > 0 is the penalty parameter associated with the interface Σ;
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v) The functional related to the right hand side formed by the terms arising from time integration

and Neumann boundary conditions:

Fh(vh, qh,wh) =
ρf

∆t
(unh, vh)Ωf,n

h
+
∑
F∈Γin

(
∆P nf , vh

)
F

+
1

∆t2

(
ρ̃s
(

2d̂
n

h − d̂
n−1

h

)
, ŵh

)
Ω̂s

h

+

(
Tf (vh, qh)nf ,

dnh
∆t

)
Σn

h

− γΣµ
f

h

(
dnh
∆t

, vh −wh

)
Σn

h

.

The full discretization of problem (2)-(3) reads then as follows: for n = 0, 1, . . . , find

(uh, ph,dh) ∈ Vh,ϕ̇ ×Qh ×Wh,ϕ such that u0
h = 0, d0

h = 0, d−1
h = 0 and

Afh(uh,unh, ph; vh, qh) + Ash
(

d̂h; ŵh

)
+ Dfh(uh, ph; vh, qh)

+ Ih(uh, ph,dh; vh, qh,wh) = Fh(vh, qh,wh) (4)

∀ (vh, qh,wh) ∈ Vh,0 ×Qh ×Wh,0.

3.3. Numerical settings and parameters

We studied the pump system at fixed pump operating conditions. Therefore, we applied a constant

pressure difference ∆P between outlet Γout and inlet Γin and an oscillatory motion to the membrane

frame (ΓD1 ) and the magnet ring (ΓD2 ).

Boundary conditions (3a)-(3b) define the pressure difference ∆P = P out − P in > 0 acting over

the pump, indicating the hydraulic resistance that the wave membrane has to overcome in order to

generate positive blood flow in the outlet direction against negative pressure gradients. We fixed the

outlet pressure to the standard value for systolic aortic pressure, i.e. P out = 120 mmHg. Then, we

studied the pump dynamics for different values of pressure parameter ∆P .

Moreover, we modeled the motion imposed on the magnet ring and on the membrane frame by the

electromagnetic actuator by means of the Dirichlet condition (3d). Although in the real pump system

the control on the oscillations may not be optimal due to instabilities in the electro-mechanical

dynamics or manufacturing tolerances, its motion can be approximated with a sinusoid in time in

the vertical direction. Therefore, in our simulation the displacement function ϕ has been defined as

ϕ(t) =
Φ

2
sin(2πft) ez t ∈ (0, T ), (5)

where f is the excitation frequency of the structure and Φ is the so-called stroke parameter. Thus,

the pair (f,Φ) defines the operating point of the wave membrane. In all our simulations, we have

set f = 120 Hz, and Φ = 1.06 mm, which are values of interest for real applications of the pump

device [91].
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Figure 5. Prospective visualization and section of the fluid mesh T fh (gray), the membrane T s,1h (yellow)
and magnet mesh T s,2h (red).

The unfitted fluid and solid meshes used for the simulations have been shown in Figure 5. The

background mesh Th has 1.2M elements, while the membrane mesh T sh,1 and the magnet ring mesh

T sh,2 have 280k and 50k elements, respectively. The size of the fluid and the membrane meshes have

been set on the basis of a convergence study, that for sake of simplicity has been carried out in a

restricted geometry limited to the pump head region (i.e. part below the magnet ring). Specifically,

we checked the that blood flow rate and membrane displacement have reached convergence, in the

sense that no significant changes have been observed by further refining the mesh. Notice that, we

have removed from the membrane computational domain the step before the membrane frame (i.e.,

we take s = 0 with respect to Figure 2, right) in order to obtain a smooth membrane surface. In

addition, we observe that there is a very small gap between the magnet mesh and the side wall of

the actuator (Figure 5, right panel); in such region, the use of the unfitted XFEM allowed us to avoid

high distortion of the interstitial fluid elements during the vertical oscillation of the magnet.

Concerning the temporal discretization of the simulation interval (0, T ), we need to choose a

timestep that is sufficiently small to capture the effect of membrane wave propagation on the

flow dynamics. Therefore, given the high frequency of membrane vibration, we took ∆t = 0.2 ms,

corresponding to less than 1/40 of the period of oscillation, which is τ = 8.33 ms. The values of the

physical parameters of the pump system have been reported in Table I. We remind that the Lamé’s

parameters used in Section 3 can be derived as λsi = Es
i ν

s
i/(1+νs

i )(1−2νs
i ) and µsi = Es

i/2(1+νs
i ), for

i = 1, 2.

The linear system obtained at each timestep after the XFEM-based discretization has been

solved with a monolythic approach with a GMRES solver preconditioned by a block Gauss-Seidel

preconditioner. The problem has been solved in the C++ finite element LIFEV library [92] in a

multi-thread parallel environment. In particular, we employed 10 cores (Intel processor Xeon E5-

4610 v2) with 2.3 GHz frequency and a RAM of 252 GB. The overall simulation time, including

calibration of penalty parameters, amounts to approximately 2 weeks.
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Physical parameter Value Unit
ρf : Blood mass density 1 [g/cm3]
µf : Blood dynamic viscosity 0.035 [(dyne/cm2) · s]
ρs1 : Membrane mass density 1.125 [g/cm3]
Es1 : Membrane Young’s modulus 1.686 · 107 [dyne/cm2]
νs1 : Membrane Poisson’s ratio 0.49
ρs2 : Magnet mass density 7.85 [g/cm3]
Es2 : Magnet Young’s modulus 2.05 · 1012 [dyne/cm2]
νs2 : Magnet Poisson’s ratio 0.28

Table I. Values of the physical parameters of the main components of the pump system used in the numerical
experiments.

4. NUMERICAL RESULTS

In this section, we report 3D numerical results obtained by solving problem (4) for different

working conditions of the pump system, using the numerical settings and the physical parameters

detailed in Section 3.3. Specifically, we analyzed the fluid dynamics induced by the membrane

wave deformation in Section 4.1 and the blood shear rate in Section 4.2. Then, in Section 4.3,

we compared the simulation results for different pressure conditions and finally in Section 4.4 we

validated the model against experimental data.

4.1. Flow analysis and membrane deformation

We simulated the pump system in continuous conditions with T = 25 ms (that is equivalent to

3 complete oscillations of magnet ring and membrane frame) with pressure gradient ∆P = 50

mmHg. The penalty parameters used for this simulation were: γΣ = 106, γdg = 103, γv1 = 5 · 10−2,

γv2 = 5 · 10−1, γp = 5 · 10−2 and γg = 1.

A view of the simulation results is reported in Figure 6, where the vertical displacement of the

flexible membrane, the fluid velocity (left panel) and pressure (right panel) fields are shown in a

cross-sectional view of the pump domain at time t = 18.8 ms, when the membrane frame reaches

its top dead center during the third oscillation. Such results confirm that the propelling action of

the wave membrane succeeds in generating positive outflow, despite the adverse pressure difference

existing between the endings of the pump domain. In particular, referring to the right panel of

Figure 6, we can identify three sub-regions in the pressure field: i) a low-pressure area (region

A), extending from the inlet down to the membrane frame; ii) a high-pressure area (region B), in

proximity to the outlet channel; and the so-called fluid pocket (region C), consisting of the fluid

portion enclosed between the wave membrane and the pump head flange. The propagation of the

fluid pockets in the pump head is at the core of wave pumping mechanism: indeed, by means of

the progressive wave, the membrane actively transports the fluid pocket from region A to region B,

going against the pressure gradient. In addition, by looking at the pressure field in the remaining

part of the pump domain, outside the pump head region, we can see that the pressure gradient favors

blood propulsion through the pump: specifically, in region A, blood flows from the inlet (green)
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down to the membrane frame (blue); while, in region B, it is propelled from the membrane tip (red)

to the outlet channel (orange).

Figure 6. Vertical slice visualization of the three-dimensional flexible membrane vertical displacement, fluid
velocity (left) and pressure (right) fields in the full pump domain at time t = 18.8 ms.

The success of the wave membrane pumping technology is also confirmed by the analysis of

the volume balance reported in Figure 7, left, where we showed the evolution in time of the

incoming and outcoming blood volumes Vin and Vout, representing the volumes of blood entering

in and exiting from the pump domain, respectively. These volume quantities were computed

integrating the corresponding volumetric flow rate using the trapezoidal rule. Hence, we have V nβ =

∆t
2 (Qnβ +Qn−1

β ), β = {in, out}, where Qin and Qout are the computed pump inflow and outflow

rates, respectively. Notice that, after a short interval of adaptation, the two curves Vin and Vout start

oscillating with the same period of the membrane vibrations. Since the values of the divergence

of the velocity are very small (‖∇ · u‖ < 3 · 10−4 1/s), the small discrepancy between Vin and

Vout is due to the slight incremental variation of the membrane volume ∆V ns = |Ωs,nh,1| − |Ω
s,n−1
h,1 |,

with Ωsh,1 the discretized membrane domain. Indeed, we have V nout − V nin ' ∆V ns for all n. Since

the magnet ring is a rigid structure, it was not considered in the volume balance. Notice that the

observed variation of the membrane volume corresponds to a relative change of less than 2‰ of

the membrane volume. This small variation is explained by the not completely incompressibility of

the membrane (νs1 = 0.49) and by the numerical approximation. Nevertheless, we verified that such

volume variation decreases when the mesh size h is reduced.

We also studied the displacement in time of three key points of the membrane section (see Figure

7, middle): the leading edge (blue), extracted from the membrane frame, the trailing edge (red), in

correspondence to the membrane tip, and a third point in-between in the membrane section (green),

see Figure 7, right. Since the motion of the membrane frame is governed by (5), the leading edge

oscillates between −0.53 mm and 0.53 mm with an excitation frequency equal to 120 Hz. The

displacement curves of the midpoint and the trailing edge also become periodic, with the same

frequency of the leading edge. In particular, we can notice that the midpoint shows an oscillation

amplitude that is smaller than the one of the leading edge, that is likely due to the damping effect
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Figure 7. Left: Volume conservation through time. Middle: Vertical displacement of three points of the
membrane through time. Right: The three points of the membrane section: the leading edge (blue), the

trailing edge (red) and a midpoint in between (green).

of the surrounding viscous fluid on the membrane motion. However, the trailing edge actually is the

point that undergoes to the highest displacement, because the most internal portion of the membrane

is thinner and therefore it offers less inertial resistance to the wave elastic motion. In fact, the cross-

section of the membrane is designed to make the membrane tip reach the quasi-contact configuration

with the pump head flanges, allowing for the isolation of the fluid pockets and for the blockage of

possible backflows. Nonetheless, the trailing edge never reaches the collision point with the pump

flanges in our simulations, in agreement with the theoretical results reported in [75, 76].

Next, we studied more in detail the effect of the wave propagation on the flow dynamics during

the whole cycle of membrane oscillation. To this aim, in Figure 8, we analyzed the dynamics in the

pump head region for four different time instants in the third period of oscillation of the membrane

frame, showing for each time point the radial velocity of the flexible membrane, the blood velocity

(left) and pressure (right) fields.

i) In Figure 8a, the membrane frame has returned back to its initial position coming from below.

During this upwards vertical displacement, part of the blood coming from the inlet flows

above the membrane wave, leading to the formation of an upper fluid pocket (Pocket A),

while the remaining part is gathered in the low pressure area below the membrane frame.

Meanwhile, in the most internal part of the pump head, another fluid pocket (Pocket B) below

the membrane is transported towards the outlet channel thanks to the progressive propagation

of the membrane wave. Notice that the simultaneous propagation of two fluid pockets is made

possible by the high frequency of oscillation that introduces a second mode of deformation

in the elastic membrane. We can also notice some recirculation areas nearby the membrane

frame and in proximity to the membrane tip, caused by the flapping motion of the membrane

[93].

ii) When the membrane frame reaches the top dead center (time t = 18.8 ms), the formation

of the upper fluid pocket (Pocket A) is completed and the blood below the membrane frame

reaches its point of maximum accumulation (see Figure 8b). While the membrane tip is raising

to reduce potential backflows, we can observe a local increase of the pressure in that area

that contributes to the blood propulsion towards the outlet. Nonetheless, the ongoing vortex
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Figure 8. Visualization of the velocity field (left) and of the pressure field (right) in a vertical section of the
pump head region for four different time istants: a) t = 16.6 ms, b) t = 18.8 ms, c) t = 20.8 ms, and d)
t = 22.8 ms. Capital letters A, B and C indicate the fluid pockets, getting formed and transported by wave

propagation.

dynamics below the trailing edge of the membrane seems to hamper the full release of the

lower fluid pocket (Pocket B) in the outlet channel, penalizing the overall outflow.

iii) As the membrane frame moves downwards (Figure 8c), it compresses the fluid accumulated

in the area below during the ascending phase. This causes a drastic increase of the pressure
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below the membrane, that strongly propels the blood in the outlet direction, contributing to

the formation of a new lower fluid pocket (Pocket C). Above the flexible membrane, the

upper fluid pocket (Pocket A) proceeds in its radial propagation and the tip of the membrane

has reached its quasi-contact configuration with the superior pump flange. We can observe

that the velocity values around the quasi-contact region are very low, indicating that potential

backflows are blocked or minimized. Moreover, the upper quasi-contact configuration allows

to achieve the point of maximum delivery of the fluid pocket below (Pocket B). The

combination of these phenomena results in successful pumping dynamics and in rapid

increase of the blood outflow.

iv) Then, the membrane frame reaches the bottom dead center, completing the formation of the

new fluid pocket (Pocket C) below the flexible membrane, see Figure 8d. Furthermore, blood

from the upper pocket (Pocket A) is delivered into the outlet channel, and the cycle can restart.

We conclude our analysis of the flow patterns in the blood pump by noticing recirculation regions

around the magnet ring (see Figure 6, left) and nearby the outlet section (see Figure 8b, left). In view

of a clinical analysis of the pump, the effect of recirculation regions needs to be closely investigated,

because it may lead to local thrombus formation, especially if it comes with flow stagnation [94, 95].

However, in this case, the flow in the recirculation areas is continuously disturbed, making the risk

of thrombogenesis very low. Nonetheless, we remark that alternative designs of the CorWave LVAD

are in development with the aim to reduce the risk of recirculations and improve hemocompatibility.

4.2. Blood shear rate analysis

In this section, we want to provide very preliminary results about the blood shear rate generated by

the pump and its implications. This is motivated by the knowledge that high hydrodynamic shear

stress conditions in LVADs are strictly linked to blood adverse events, because they may cause

blood cells damage and consequent leak of hemoglobin (hemolysis), or trigger von Willebrand

factor (VWF) adhesion, leading to platelet aggregation and thrombogenesis [96].

In Figure 9, we report the values of the shear rate in the fluid domain and at the interfaces with the

wave membrane and the magnet ring at time t = 20.8 ms, when the pump outflow rate is maximum

and the magnet ring and the membrane frame return to their initial position with maximum velocity

(see Figure 8c). We can observe that the areas with higher shear rate (shear > 1500 s−1) are

located in the pump head region (Point 1), where the fluid pockets are transported by the membrane

progressive wave with high velocity, and in the upper part of the pump domain (Point 2), where

blood flows in a narrow channel. In particular, peak values of shear rate around 3500− 4500 s−1

are reached under the flexible membrane, where the blood velocity is higher than 1 m/s, and, in

particular, at the periphery of the membrane disc (Point 3). However, the observed shear values

are still inferior than 5000 s−1, that is the threshold value for the start of VWF-mediated platelet

adhesion process [97]. Moreover, since the flow is very disturbed in that area, the exposure time is

very short, furtherly reducing the risk of hemolysis or thrombosis. In particular, in the right-bottom

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (0000)
Prepared using cnmauth.cls DOI: 10.1002/cnm



XFEM FOR FLUID-STRUCTURE INTERACTION IN WAVE MEMBRANE BLOOD PUMP 23

Figure 9. Study of the blood shear rate in the fluid domain. Visualization of the shear rate at time t = 20.8 ms
on the cross section (left panel) and on the superior and inferior external pump surfaces (right superior panel).
The points of interest are: 1) pump head region, 2) superior pump housing surface, 3) side of membrane
frame, and 4) magnet ring gap. In particular for Point 3, we show the trend in time of the maximum and the

mean values of shear rate in the control volume highlighted by the red box (right inferior panel).

panel of Figure 9, we checked the evolution in time of the shear rate at the side of the membrane

frame, by looking at the maximum and the mean values achieved in this area (see red box in Point 3)

during the third period of membrane oscillation. The plot highlights that the trend of the shear rate

is periodic and that the maximum value in this region, i.e. 5640 s−1, is reached during the upward

displacement of the membrane frame at time t = 16.6 ms (see Figure 8a). Nevertheless, this value is

still one order of magnitude smaller than the reference critical value of 42000 s−1, that corresponds

to the areal strain limit for red blood cells [98].

Another region of interest for shear analysis is the gap between the magnet ring and the pump

walls (Point 4). In this area, shear rate is actually smaller than 1000 s−1, in accordance with the

lower magnitude of fluid velocity, and it decreases to less than 300 s−1 when the magnet reaches the

top or the bottom dead center (zero velocity). The size of the gap as well as the shape of the magnet

ring are currently under study to minimize any hemolitic impact.

4.3. Parametric analysis

In this section we compare the pump performance for different pressure conditions, varying the

value of ∆P . In particular we considered ∆P ∈ {50, 55, 60}mmHg, being these values taken from

the range of standard head pressure conditions used for in-vitro and in-vivo tests, as in [99, 100].

For this set of simulations, we used T = 20 ms. Table II reports the values of the penalty parameters

used for this set of simulations to ensure stability for each flow regime.

As the pressure difference ∆P acting over the pump between outlet and inlet increases, the

hydraulic resistance inside the pump gets higher and as a consequence, for a fixed operating point

of the membrane, the pump outflow gets smaller. This is confirmed by the results reported in the left

plot of Figure 10, where we see that the amplitude of the outflow volume rate curves is lower when

the pressure difference ∆P is larger. Notice that, although in all the cases there are time intervals
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∆P = 50 mmHg ∆P = 55 mmHg ∆P = 60 mmHg
γΣ 106 106 106

γdg 103 103 103

γg 1 1 1
γv1 0.05 0.05 0.5
γv2 0.5 0.5 5
γp 0.05 0.1 0.1

Table II. Penalty stability parameters for different pressure conditions.

Figure 10. Left: Time profile of the outflow volume rate for three different pressure head conditions ∆P .
Right: Vertical displacement of the trailing edge (solid line) for each ∆P value, in relation with the outflow

volume rate (dashed line).

with negative outflow, the average in time of the outflow rate is always positive, as required by the

correct functioning of the pump.

Furthermore, in the right panel of Figure 10, we displayed in the same figure the pump outflow

rate and the vertical displacement of the trailing edge (corresponding to the membrane tip, as in

Figure 7, right). Even though the displacement curve is not significantly affected by the different

pressure conditions, we can notice that the trailing edge precedes the outflow curve in all the three

cases. Indeed, as discussed in Section 4.1, the trailing edge is strictly related to the isolation and

the release of the fluid pockets into the outlet channel. Therefore, its displacement drives the time

evolution of the outflow volume rate with a small delay due to the time needed for the propagation

of the blood from the fluid pocket throughout the outlet channel.

4.4. Validation against experimental measures

As a conclusion, we report results about the validation of the proposed numerical model. To this

aim, we compared our simulation results with experimental measurements obtained when testings

the blood pump in the same operating conditions. In particular, the hydraulic performance of the

blood pump is assessed by means of in vitro testings perfomed in a pump characterization bench,

consisting of a reservoir and tubing in which the hydraulic resistance can be set by adding centrifugal

pumps in a series circuit with the CorWave LVAD. This system is equipped with a polycarbonate

hose-barb pressure sensor (PendoTECH), to measure the head pressure arisen between the outlet
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and the inlet of the pump, and with an ultrasonic flowmeter clamped adjacent to the LVAD

outlet, to measure the pump outflow volume rate. Therefore, for any given operating point of

the wave membrane, we can combine such measurements in pressure-flow data curves, called HQ

curves, which describe the hydraulic performance of the pump when exposed to different pressure

conditions.

Specifically, we have at our disposal the HQ curve of the pump when the operating point of the

membrane is fixed to f = 120 Hz and Φ = 1.06 mm (Figure 11). Each data point is given by the

average in time of the head pressure P data and the corresponding ouflow rate Qdata. The slope of

the curve is similar to the one of other reference HQ curves of centrifrugal LVADs found in literature

(see Figure 3B and 3C in [100]), indicating that, for this operating point, the sensitivity of the pump

is in line with the standards in the LVAD community. In Figure 11 we show also the numerical

outflow flow rate Qsim corresponding to the pressure differences ∆P ∈ {50, 55, 60} mmHg. Here,

we observe a very good agreement between numerical results and experimental findings.

Figure 11. Validation of the model results (red crosses) against the experimental data (black dots).

To quantify the discrepancy, in Table III we reported the comparison between the estimated

flow rate Qsim with the experimental data Qdata, where the latter corresponds to the measurement

associated to the data point that minimizes |P data −∆P |.

∆P = 50 mmHg ∆P = 55 mmHg ∆P = 60 mmHg

Qdata 1.834 l
min 1.091 l

min 0.352 l
min

Qsim 1.792 l
min 1.039 l

min 0.400 l
min

|Qdata −Qsim| 0.042 l
min 0.052 l

min 0.048 l
min

Table III. Experimental and simulation data for the model validation against experimental mesures.

These results highlight a very good quantitative agreement with the experimental findings,

meaning that the numerical model is able to quantitatively reproduce the pump dynamics with good
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confidentiality for the analyzed pressure conditions. Indeed, the prediction errors are small for all

considered ∆P ; in particular, the relative error is lower than 5% for ∆P = {50, 55} mmHg, that

are the working conditions corresponding to higher pump flow support. However, we note that the

operating conditions of the pump considered for the model validation do not correspond with those

required for the final application of the pump.

5. CONCLUSIONS

In this work we numerically studied the novel wave membrane technology employed in progressive

wave blood pumps, in view of the optimization of the device performance. To this aim, we simulated

the fluid-structure interaction between the membrane and the blood flow in a realistic 3D pump

domain using the XFEM-DG technique. This unfitted technique allowed us to simply handle the

quasi-contact configuration between the membrane and the pump walls thanks to a fixed fluid mesh,

with no need of remeshing. Then, we discussed the effect of the progressive propagation of the

membrane on the blood dynamics, highlighting the mechanisms that allow the pump to propel blood

against a negative pressure gradient. We also validated our numerical model against experimental

measures at different pressure conditions.

We can conclude that our computational model is able to capture with excellent accuracy the

behavior of the pump, despite the simplifications underneath its modeling. This showed, for the first

time, that XFEM is a reliable method to handle real-life industrial problems. Therefore, we believe

that this work together with future computational studies represent reliable tools for the prediction

of the hydraulic performance of the pump under different working conditions and to support the

device design.

The design of the pump and of the membrane has recently undergone significant revisions and

improvements, in order to increase the hydraulic power and optimize the flow field. We plan, for

future studies, to use our numerical model to evaluate and optimize the new pump design, examining

the performance across a wider range of clinical conditions, including generation of physiologic

pulse hemodynamics, and simulating operating points with higher amplitudes of oscillation of

the membrane frame. To achieve this, we are working to further develop the numerical model,

in particular to include a contact model to study further the interaction between the oscillating

membrane and the pump housing.
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