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OPTIMAL LOW-THRUST-BASED RENDEZVOUS MANEUVERS

Juan L. Gonzalo∗, and Claudio Bombardelli†

The minimum-time, low-constant-thrust, same circular orbit rendezvous problem
is studied using a relative motion description of the system dynamics. The result-
ing Optimal Control Problem in the thrust orientation angle is formulated using
both the Direct and Indirect methods. An extensive set of test cases is numer-
ically solved with the former, while perturbation techniques applied to the later
allow to obtain several approximate solutions and provide a greater insight on the
underlying physics. These results show that the structure of the solutions under-
goes fundamental changes depending on the value of the non-dimensional thrust
parameter.

INTRODUCTION

An orbital rephasing maneuver is the modification of the angular position, typically measured
in terms of true or eccentric anomaly, of a spacecraft along its orbit while leaving all other orbital
elements unchanged at the end of the maneuver. When such modification is small the maneuver is
practically equivalent to an equal-orbit rendezvous maneuver in which a spacecraft is moved along
its own orbit to reduce the separation distance from a target. This kind of problem is very relevant
for different space technology applications and, as a particular case, for the design of future mis-
sions performing active debris removal (ADR). Irrespectively of the particular technology employed
(e.g. ion beams,1, 2 robotic docking3) an ADR mission will always involve a rendezvous phase with
a non-cooperative target debris to be removed. Moreover, such operation will most probably need
to be conducted in a fully autonomous way. The same-orbit rendezvous problem has been studied
extensively in the literature under different perspectives. Most of the literature on the subject deals
with impulsive control solutions that have been and are still widely used in practical applications
(e.g. V-bar hopping). Nevertheless, recent advances in electric propulsion have raised the interest
for minimum-time optimal control solutions entirely based on low-thrust continuous control (for
instance, see the works by Lawden4 or Marec5). The use of low-thrust methods, when compatible
with the specific spacecraft design considered, can be advantageous not only thanks to the lower
propellant consumption but also because it can provide higher maneuvering flexibility in some cir-
cumstances. From the mathematical point of view the minimum-time low-thrust control problem
is an optimal control problem (OCP) that is typically solved numerically using direct or indirect
methods and leading, in general, to a solution with a complex and highly non-intuitive structure.
Nevertheless, it has been recently pointed out that the solution can exhibit some interesting charac-
teristics, including an approximate invariance relating the dimensionless thrust and dimensionless
time-of-flight for relatively “fast” maneuvers.6 Clearly, a mathematical investigation of these kinds
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Figure 1. Schematic representation of the problem.

Figure 2. Schematic of the problem in the relative motion reference frame.

of properties using, as much as possible, analytical models would be extremely relevant for fu-
ture applications of low-thrust rendezvous techniques. One of the key points to facilitate such kind
of analysis is the employment of a convenient formulation of the system dynamics linked to the
use of perturbation theory as we propose to do in this article. Similarly to other authors,7, 8 the
constant-thrust minimum-time rendezvous problem is here formulated starting from the linearized
Clohessy-Wiltshire equations written in an orbit reference system coincident with the initial orbit of
the leader. A set of numerical solutions to the problem is obtained using a direct collocation method
to transcribe the corresponding OCP into a non-linear programing one, which is then solved using
a suitable large-scale algorithm. A wide range of non-dimensional thrust parameters is considered,
for multiple values of the required angular displacement. Next, an indirect formulation of the OCP
is also considered, and several approximate solutions are searched for using perturbation techniques
based on the smallness of the dimensionless thrust parameter. These solutions help provide greater
insight about the underlying physics of the problem, and confirm the qualitative behaviors detected
through the numerical analysis. To conclude the article a qualitative comparison between the low-
thrust optimized solution and a two-impulse V-bar rendezvous is presented.

DESCRIPTION OF THE PROBLEM

Consider two objects, a leader L and a chaser C, describing a circular orbit of radius R around
a primary with gravitational constant µ. The objective is to perform a rendezvous maneuver, mod-
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ifying the position of the chaser to reduce its distance with respect to the chaser. From now on, it
will be assumed that the propellant mass expelled from the chaser mprop is negligible compared to
its total mass mC , so the later can be assumed to be constant. Dynamics will be studied using the
relative formulation for the motion of the chaser with respect of the leader; to this end, a reference
system R{L; iR, jR,kR} is defined, with its origin fixed to the leader, the x axis oriented along
its position vector, the y axis coinciding with the velocity vector and the z axis forming a right-
handed reference system. A schematic representation of the problem can be seen in Figure 1, while
the aforementioned reference frame is depicted in Figure 2. The equations for the planar relative
motion of the chaser with respect to the target, projected in reference frameR, take the form:9

ẍ− 2Ωẏ − Ω2x = − µ (R+ x)[
(R+ x)2 + y2

]3/2
+

µ

R2
+ ax

ÿ + 2Ωẋ− Ω2y = − µy[
(R+ x)2 + y2

]3/2
+ ay

with
a =

√
a2
x + a2

y, Ω =
2π

Torb
, Torb = 2π

√
R3/µ (1)

where ax and ay are the perturbing accelerations in the radial and along-track directions respectively,
and Torb is the orbital period of the leader.

These equations can be linearized for relatively small values of x and y, leading to the well known
equations by Clohessy and Wiltshire:9

ẍ− 2Ωẏ − 3Ω2x = ax

ÿ + 2Ωẋ = ay

Is is convenient to express them in a non-dimensional form, introducing:

τ = Ωt, X =
x

R
, Y =

y

R
, Ax =

ax
Ω2R

, Ay =
ay

Ω2R
, ε =

a

Ω2R
(2)

which yields:

X ′′ − 2Y ′ − 3X = Ax

Y ′′ + 2X ′ = Ay

Since the objective of the rendezvous maneuver is to reduce the distance between the chaser and the
leader while remaining in the same circular orbit, the boundary conditions for a general scenario
can be set to be

X(0) = 0, Y (0) = Y0, X ′(0) = 0, Y ′(0) = 0

X(τf ) = 0, Y (τf ) = Yf = Y0 + ∆Y, X ′(τf ) = 0, Y ′(τf ) = 0

where a negative value of ∆Y represents an approach of the chaser with respect to the leader.

Reducing the equations to a first order system, and expressing it in matrix form:

d

dτ


U
V
X
Y

 =


0 2 3 0
−2 0 0 0
1 0 0 0
0 1 0 0



U
V
X
Y

+


Ax
Ay
0
0

 (3)
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dZ

dτ
= CZ + A = F

where U = X ′, V = Y ′ and Z is the relative state vector of the chaser.

For the purposes of this study, the only perturbing acceleration is the one introduced by the
propulsion system of the chaser. Then, it is convenient to express this perturbing acceleration in the
form:

Ax = ε sin γ, Ay = ε cos γ (4)

where ε is the non-dimensional magnitude of the thrust acceleration, and γ is its orientation with
respect to the along-track direction.

It is interesting to note that Equations (3) can be analytically solved for the unperturbed problem,
that is when A = 0. The position and velocity of the chaser with respect to the leader then take the
form:

U = −C3

2
cos τ +

C4

2
sin τ

V = C2 + C3 sin τ + C4 cos τ (5)

X = −2

3
C2 −

C3

2
sin τ − C4

2
cos τ

Y = C1 + C2τ − C3 cos τ + C4 sin τ

TWO-IMPULSE MANEUVER

For comparison purposes only, two-impulse maneuvers are briefly considered. The boundary
conditions for a two-impulse maneuver in the general case take the form:

X(τ0) = 0, Y (τ0) = Y0, U(τ0) = ∆U0, V (τ0) = ∆V0

X(τf ) = 0, Y (τf ) = ∆Yf , U(τf ) = ∆Uf , V (τf ) = ∆Vf

where the total distance to be covered in the along-track direction is ∆Y = Yf − Y0, negative if
the chaser is approaching to the target and positive otherwise. The initial impulse can be better
expressed in terms of its magnitude and its orientation angle as:

∆U0 = ∆V cos γ0 , ∆V0 = ∆V sin γ0.

Imposing the initial conditions to the general solution given by Equations (5) yields:

U = ∆U0 cos τ + 2∆V0 sin τ

V = −2∆U0 sin τ + ∆V0 (4 cos τ − 3)

X = ∆U0 sin τ − 2∆V0 (cos τ − 1)

Y = Y0 + 2∆U0 (cos τ − 1) + ∆V0 (4 sin τ − 3τ)

If the maneuver is to be performed with only two impulses, the fulfillment of the final condi-
tions yields a closed expression for the required initial impulse as a function of the along-track
displacement ∆Y and the time of flight τf :

∆U0 =
2∆Y (cos τf − 1)

8 (1− cos τf )− 3τf sin τf

∆V0 =
2∆Y sin τf

8 (1− cos τf )− 3τf sin τf
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According to these formulas, for each pair of values (∆Y, τf ) there is a single initial impulse
(∆U0,∆V0) that allows performing the two-impulse transfer maneuver successfully, though the
opposite is not true. Moreover, the solution may become singular at those values of τf for which the
denominator becomes zero. There are two of such roots per revolution: the first one is τf = 2nπ
with n ∈ N, corresponding to the along-track impulse case presented below, while the other leads
to an infinite discrete set of unfeasible solutions in τf .

From now, only two strategies will be considered in further detail: using radial impulses or along-
track impulses. In the first case, making ∆U0 = ∆V and ∆V0 = 0:

U = ∆V cos τ

V = −2∆V sin τ

X = ∆V sin τ

Y = Y0 + 2∆V (cos τ − 1)

The conditions in the final position give the time of flight:

X(τf ) = 0
Y (τf ) 6= Y0

}
⇒ τf = π + 2nπ n ∈ N

that is, the maneuver will take place in half an orbit, plus an arbitrary number of revolutions. The
state at this final time is:

U(τf ) = −∆V , V (τf ) = 0 , X(τf ) = 0 , Yf − Y0 = ∆Y = −4∆V

Consequently, the required impulse is given by the along-track displacement to be covered, and a
final impulse of magnitude |∆V | and the same direction as the first impulse is needed to circularize
the orbit:

∆V = −∆Y

4
, ∆Vtotal = 2|∆V | , Xmax = ∆V . (6)

Performing the impulse in the along-track direction, ∆U0 = 0 and ∆V0 = ∆V , introduces a
secular behavior in Y :

U = 2∆V sin τ

V = ∆V (4 cos τ − 3)

X = −2∆V (cos τ − 1)

Y = Y0 + ∆V (4 sin τ − 3τ)

The time of flight is again determined by the final condition in the radial position, which being
periodic leads to an infinite set of possible solutions:

X(τf ) = 0 ⇒ τf = 2nπ n ∈ N (7)

so the maneuver now takes a multiple of an orbit to complete. The rest of the final state variables
are:

U(τf ) = 0 , V (τf ) = ∆V , X(τf ) = 0 , Yf − Y0 = ∆Y = −3∆V τf

so the required impulse and the maximum radial displacement take the form:

∆V = −∆Y

3τf
, ∆Vtotal = 2|∆V | , Xmax = 4∆V . (8)
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This solution shows some key differences with the radial one. First of all, the distance covered
now depends on time, which allows to reduce fuel consumption by performing the rendezvous in
multiple revolutions. Furthermore, Figure 5 shows that along-track impulses correspond to the local
minimum of ∆V for a given number of revolutions. On the other hand, this introduces some oper-
ational risks, since the spacecraft could be lost if the second impulse is not or cannot be performed
at the proper time. Also noteworthy is that the final instant does not coincide with the maximum
approach between leader and target, introducing further operational risks. Finally, regarding the
direction of the impulses, the second one must be performed in the direction opposite to the first
one, requiring the spacecraft to change attitude or to have an opposing set of thrusters.

CONTINUOUS THRUST MANEUVER

For the rest of this paper, the Optimal Control Problem (OCP) of performing a minimum-time
rendezvous maneuver using continuous, constant thrust acceleration is studied. Since the mass of
the chaser is assumed to be constant, this is also equivalent to minimizing the total impulse required
for the maneuver. A wide range of perturbing accelerations is considered, not limiting it to the low
thrust case. While this includes some results of little practical interest, it allows to reach a deeper
understanding of the problem and its characteristics.

First of all, the problem is solved numerically using the Direct Method. Then, the equations for
the Two-Point Boundary Value Problem derived from the Indirect Method are posed, and a set of
approximate solutions are reached. Both paths yield interesting information about the problem and
the qualitative changes it undergoes as the thrust acceleration varies.

Direct Method

Numerical solutions for the OCP can be obtained by performing a direct transcription10 and
solving the resulting discrete Non-Linear Programming (NLP) problem with a suitable algorithm.
To this end, the continuous functions for the state and control are represented through their values at
the points (and middle-points, depending on the scheme used) of a uniformly spaced grid between
0 and τf . The optimization variable χ is then formed by the values of the state and control at each
grid point (and middle-points for certain schemes), as well as the final time:

χ =
(
τf Z1 γ1 . . . Zk γk . . . ZM γM

)
where

Zk = Z(τk) , γk = γ(τk) , τk =
k − 1

M − 1
τf

with M being the number of nodes. The equations of dynamics are also discretized using implicit
Runge-Kutta schemes, and imposed as a set of non-linear equality constraints called defect con-
straints:

ξ(χ) = 0.

From now on, the Trapezoidal and Hermite-Simpson Separated schemes will be used; for a brief
description of said algorithms, see the Appendix. No other path constraints are needed for this
problem, only bound constraints for the values of the state at the extremal nodes of the grid. The
objective or cost function for a minimum time maneuver is also straightforward to define, being
equal to the first element of the optimization variable:

J = χ1 = τf .
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The NLP algorithm requires the Jacobian and Hessian of the objective function and the constraints
(or a suitable approximation). Since the only constraints are those coming form the discretization of
dynamics, and the corresponding equations are relatively simple, the Jacobian is built analytically,
giving raise to a sparse matrix whose size and structure depends on the transcription algorithm. On
the other hand, the Hessian will be approximated numerically from the Jacobian using the procedure
proposed by Coleman, Garbow and Moré,11 which also leverages sparsity to minimize the number
of evaluations.

The resulting NLP problem is numerically solved using a third party software package, par-
ticularly MATLAB’s global optimization toolbox and its interior point algorithm. The algorithm
selection is based on its support for sparse, large scale problems, which is of great importance for
problems coming from the discretization of dynamical systems.

A set of problems is now solved for a circular reference orbit around the Earth with:

R = 7000 km , Torb = 97.142 min , Ω = 1.078 10−3 rad/s

and an initial separation between the chaser and the leader of

∆y = −700 m , ∆Y =
∆y

R
= −10−4

where the minus sign indicates that the chaser is in front of the leader. For simplicity sake, it is
assumed that the final along-track distance between leader and chaser must be zero. Note that,
given the characteristic value taken for distance, the non-dimensional separation coincides with the
angular phase between chaser and leader measured in radians. A wide range of non-dimensional
thrust acceleration parameters ε ∈ [10−1, 10−9] is considered, corresponding to physical accelera-
tions between 8.1347 10−1 m/s2 and 8.1347 10−9 m/s2. To improve the numerical convergence of
the NLP solver a continuation of solutions scheme is followed, using each solution as initial guess
for the next case. A 500-nodes grid and the Hermite-Simpson Separated method are used, while the
Trapezoidal method is employed to construct the first initial guess for ε = 10−1. The use of the
HSS method not only provides a higher order discretization of dynamics, but also allows to estimate
the costate (see the following section on the Indirect formulation of the problem) from the Lagrange
multipliers in the NLP algorithm.

The evolution with ε of the time needed to perform the maneuver τf is represented in Figure 3.
It is straightforward to distinguish two different regimes, which may be called high thrust and low
thrust regimes. As it is studied in the following section using the Indirect formulation, the former
is dominated by thrust, while gravitational effects play a key role in the latter. This study also
yields approximate predictions for τf in each regime, which are represented as discontinuous lines.
The transition zone between the two regimes take place for values of τf around one orbit, which
corresponds to τf = 2π. Regarding the total impulse needed to perform the maneuver, Figure 4
shows that it decreases as the time of flight increases, with the gravity dominated regime being
more efficient that the thrust dominated one. Consequently, using a low-thrust propulsion system
allows a significant reduction of ∆V , and an even greater improvement in propellant mass if the
higher specific impulse of said engines is taken into account, at the cost of a longer mission time.

It is also interesting to compare the ∆V required to perform a given maneuver using either im-
pulsive or continuous thrust. Figure 5 shows the evolution with the time of flight of the ∆V needed
in each case to achieve a total along-track displacement of ∆Y = −10−4. It is checked that the
curve for the two-impulse maneuver varies greatly with τf , having one vertical asymptote and one
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Figure 6. In-plane trajectories with ∆Y = −10−4, for a two-radial-impulses maneu-
ver and three different continuous thrust maneuvers.

minimum per revolution, while the continuous thrust maneuver evolves in a much smoother way.
Owing to the great ∆V variability of the impulsive maneuver, it may perform better or worse than
the continuous thrust case depending on the particular value of τf , though it is clear that the min-
imum values at each revolution are reached using along-track impulses. Both this minima and the
curve for the continuous maneuver evolve with τf in a similar fashion, presenting their steepest
variations for short mission times.

The in-plane trajectories corresponding to the two-radial-impulses maneuver and three different
continuous thrust maneuvers are represented in Figure 6. The maximum radial displacement of
the continuous thrust maneuvers remains small compared to the impulsive case for values of ε in
the thrust-dominated and gravity-dominated regimes (6.4766 10−3 and 4.689 10−7 respectively),
while it becomes comparable and even slightly larger in the transition zone (6.4766 10−3). It is also
noteworthy that the trajectories for ε = 6.4766 10−3 and ε = 4.689 10−7 have a minimum along-
track distance with respect of the target slightly smaller than the final separation, and that they start
moving in the opposite direction at the beginning of the maneuver.
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To conclude this part of the study, three particular cases taken from each of the regimes and
the transition zone are considered. Figures 7 show the thrust angle, state (position and velocities)
and costate for a thrust parameter of ε = 1.0273 10−2, corresponding to a physical acceleration
of a = 8.3566 10−2 m/s2 and a maneuver time of τf = 0.1974. It is observed that the control
approaches a step function, with the switch taking place at the middle of the maneuver. During
the first half of the maneuver, thrust is orientated towards the leader, while in the second half its
direction is reversed to circularize the orbit. The profiles for X , U and V show clear symmetries,
while the short time span of the rendezvous prevents the gravity-dominated effects to fully develop.

The form of the solution undergoes fundamental changes in the gravity-dominated case. Fig-
ures 9, calculated for ε = 1.0077 10−7, which means a = 8.1975 10−7 m/s2 and τf = 36.2702,
show that the thrust angle profile, while still being close to a step function, has reversed its direc-
tion. It points opposite to the leader during the first half of the maneuver, and towards it in the
second. The reason is that, since gravitational effects are of great importance in this regime, the
minimum-time maneuver is achieved using thrust to produce a radial displacement which in turn
introduces a relative velocity towards the leader. The profiles for the state are still symmetric, but
now the oscillations due to the gravitational effects in the relative motion can be clearly appreciated.

Finally, Figures 8 correspond to a rendezvous in the transition zone, with ε = 1.0194 10−4,
a = 8.2926 10−4 m/s2 and τf = 2.0253. The thrust angle profile no longer resembles a step func-
tion, showing important components in the radial direction. Nevertheless, the symmetry between
the first and second halves of the maneuver is conserved, and the curves for X and Y are similar to
those obtained for the previous examples.

Indirect Method

The OCP is now studied using the Indirect formulation. According to the classic text by Bryson
and Ho,12 a cost function corresponding to minimum maneuver time can be defined in the form:

J = φ+

∫ τf

0
Ldτ = τf , L = 1, φ = 0

where φ would represent the dependence of the cost function with the final state (in this case there
is no such dependence). The associated Hamiltonian can then be written as:

H = λ>F + L = λU (2V + 3X +Ax) + λV (−2U +Ay) + λXU + λY V + 1 (9)

where λ = (λU , λV , λX , λY ) is the costate associated to the state Z.

For the solution to be optimum, it must fulfill the first order optimality conditions given by the
Euler-Lagrange equations. From the definition given for the Hamiltonian, the adjoint equations are

λ̇ = −∂H
∂Z
⇒

λ̇U = 2λV − λX
λ̇V = −2λU − λY
λ̇X = −3λU
λ̇Y = 0

(10)

the control equation

0 =
∂H

∂γ
⇒ 0 = ελU cos γ − ελV sin γ ⇒ tan γ =

λU
λV

(11)
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Figure 8. Solutions obtained for ∆Y = −104 and ε = 1.0194 10−4.

12



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

γ
[d
eg
]

τ/τf
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6

X

τ/τf

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12
x 10

−5

Y

τ/τf
0 0.2 0.4 0.6 0.8 1

−5

0

5
x 10

−7

U

τ/τf

 

 

0 0.2 0.4 0.6 0.8 1
−1

0

1
x 10

−5

V

U

V

0 0.2 0.4 0.6 0.8 1
−6

−4

−2
x 10

5

λ
U

τ/τf

 

 

0 0.2 0.4 0.6 0.8 1
−1

0

1
x 10

7

λ
V

λU

λV

0 0.2 0.4 0.6 0.8 1
−2

0

2
x 10

7

λ
X

τ/τf

 

 

0 0.2 0.4 0.6 0.8 1
1.7949

1.795

1.7951
x 10

5

λ
Y

λX

λY

Figure 9. Solutions obtained for ∆Y = −104 and ε = 1.0077 10−7.
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and the transversality condition introduced by the minimum-time requirement(
∂φ

∂τ
+H

)
τf

= 0⇒ λ>F
∣∣∣
τf

= −1 . (12)

Together with the equations for dynamics and the boundary conditions for the state

Z(0) =
(
0 0 0 Y0

)
, Z(τf ) =

(
0 0 0 Yf

)
(13)

these equations form a differential-algebraic system of eight ODEs, Equations (3) and (10), and two
algebraic Equations (11) and (12). Note that, since the state is fully specified at both the initial and
final times, there are no boundary conditions for the costate.

Through careful manipulation of Equation (11), expressions for sin γ and cos γ which take into
account the angular determination can be reached:

sin γ = −sgn (ε)
λU√

λ2
U + λ2

V

, cos γ = −sgn (ε)
λV√

λ2
U + λ2

V

(14)

Assuming that the state constraints at the final time are fulfilled, and substituting Equations (4), the
transversality condition takes a simpler form:

λUε sin γ + λV ε cos γ + 1|τf = 0 ,

and introducing the known expressions for sin γ and cos γ:

λU (τf )2 + λV (τf )2 =
1

ε2
. (15)

The equations for the costate are linear, and can be straightforwardly integrated to yield

λU = A sin (τ + ϕ)− 2B

λV = 2A cos (τ + ϕ) + 3Bτ + C

λX = 3A cos (τ + ϕ) + 6Bτ + 2C

λY = B

Since the initial and final costates are unknowns of the problem, the solution depends on four pa-
rameters which would be determined by imposing the boundary conditions for the state. It is inter-
esting to highlight that the form of these solutions matches with the numerical examples given in
Figures 7-9.

Introducing these developments, the OCP is now expressed as a Two-Point Boundary Value Prob-
lem given by the dynamics, differential Equations (3), and the transversality condition, algebraic
Equation (15), with five unknowns τf , A, B, C and ϕ. The system is non-linear due to the terms as-
sociated with the control, and cannot be solved analytically: a numerical solution could be searched
for using methods such as shooting. Nevertheless, since the problem has already been numerically
solved using the Direct method, the rest of this section is devoted to extracting more information
about the problem by examining these equations without solving them.

It is very convenient to obtain a first estimation on the value of τf to serve as an initial guess for
the iterative procedures involved in both the Direct and Indirect method. Such an estimate, as well as
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more insight on the physics of the problem, can be obtained from the equations for dynamics under
certain assumptions. The order of magnitude for each term in the linear, second order equations for
dynamics can be expressed as follows:

dX ′

dτ︸︷︷︸
∆X
∆τ2

= 2Y ′︸︷︷︸
2 ∆Y

∆τ

+ 3X︸︷︷︸
3∆X

+ ε sin γ︸ ︷︷ ︸
εux

,
dY ′

dτ︸︷︷︸
∆Y
∆τ2

= − 2X ′︸︷︷︸
2 ∆X

∆τ

+ ε cos γ︸ ︷︷ ︸
εuy

(16)

where |ux|, |uy| � 1 and, since τ0 = 0, ∆τ ' τf . Considering the second equation first, the limit
cases where movement in the along-track direction is dominated by either gravitational or thrust
effects can be distinguished. In the former case

∆X ∼ ∆Y/τf

and the orders of magnitude for the first equation read:

1 2τ2
f 3τ2

f

ε

∆Y
τ3
f ux

Taking into account that the term coming from control must be at least as important as the rest,
we can distinguish three cases. If ε � ∆Y , the terms associated to acceleration and control are
dominant yielding τf ∼ 3

√
∆Y/(εux). If ε ∼ ∆Y all terms are comparable and τf ∼ 1. For

ε� ∆Y , the term associated to acceleration is negligible compared to the rest, and τf ∼ ∆/(εux).
In all cases, it is seen that the time of flight is minimized by taking ux ∼ 1.

The case where movement in the along-track direction is dominated by the control acceleration
proves to be more interesting. From the second equation

τf ∼

√
∆Y

εuy
(17)

so minimum time requires uy ∼ 1, which also implies |ux| � 1. The orders of magnitude for the
first equation are now

∆X

∆Y
2

√
∆Y

ε

∆X

∆Y

∆Y

ε
ux

Same as before, we can consider three cases depending on the relation between ε and ∆Y . When
ε � ∆Y , the time of flight required to perform the maneuver is small, τf � 1, and the terms in
the first equation associated to the radial acceleration and the along-track velocity dominate over
the others, yielding ∆X ∼ ∆Y τf . Regarding the along-track equation, ∆Xτf ∼ ∆Y τ2

f , which
is in fact negligible versus ετ2

f , justifying the approximation of considering thrust as the dominant
term. Conversely, for ε� ∆Y the time required to perform the maneuver is greater than one orbit,
τf � 1, and the dominant terms in the radial equation are those coming from the radial position
and the along-track velocity, so ∆X ∼ ∆Y/τf . In this case the Coriolis term in the along-track
equation is not negligible but coupled with thrust, since ∆Xτf ∼ ∆Y is of the same order as ετ2

f .
In both cases considered so far, the along-track velocity term in the radial equation is at least as
important as the rest, representing the coupling with the control (which is mostly applied in the
along-track direction). Finally, when ε ∼ ∆Y the limit case of τf ∼ 1 is reached, and all terms are
of comparable order in both equations.
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From the previous estimates for τf , it is concluded that flight time for the cases where ε � ∆Y
or ε � ∆Y is minimized by orienting thrust around the along-track direction, leading to a regime
where thrust acceleration is at least as important as the rest of terms in the along-track equation. On
the other hand, in the intermediate case where ε ∼ ∆Y both strategies yield τf ∼ 1, showing that
there is no preferent orientation for thrust.

A better estimate on τf can be obtained by solving the simplified equations which arise from
neglecting the non-dominant terms in dynamics. Considering the low-thrust, or gravity-dominated,
case first, ε � ∆Y , the acceleration and thrust terms in the radial equation can be neglected, so
said equation reduces to

Y ′ = −3

2
X

This is consistent with the numerical results in Figures 9, and shows that the along-track velocity
is obtained through the radial displacement, which in turn is obtained by applying thrust in the
direction opposite to that in which we want to move. The later effect can be seen by considering the
along-track equation, which after substituting the previous result takes the form:

−3

2
X ′ + 2X ′ = Ay ⇒ X ′ = 2Ay

The order of the differential equations has been reduced by neglecting the non-dominant terms,
and so the boundary conditions for velocity cannot be imposed. Coincidentally, said conditions
are fulfilled in the along-track direction, but will never be in the radial direction. Assuming Ay is
constant, the previous equations can be solved to yield

X = X0 + 2Ayτ

Y = Y0 −
3

2
X0τ −

3

2
Ayτ

2

This approximate solution does not show the oscillatory behavior present in the numerical results,
but succeeds in capturing the evolution of the mean value of the state. The boundary condition in
X can be fulfilled by taking Ay = ε during the first half of the motion, and Ay = −ε during the
second half

X (τf/2) = ετf , X (τf ) = −ετf + ετf = 0

which yields for the along-track position

Y (τf/2) = Y0 −
3

8
ετ2
f , Y (τf ) = Yf = −3

4
ετ2
f + Y0

This gives an estimate for the time of flight of

τf =

√
−4

3

∆Y

ε
(18)

which fits very well with the numerical results. Interestingly, the minus sign inside the square root
indicates that the orientation of thrust during the first half of the maneuver must be opposite to the
desired displacement of the spacecraft. Regarding the cost of the maneuver, the total impulse can
be easily computed for the constant thrust case as

∆V = ετf =

√
−4

3
ε∆Y (19)
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Comparing this results with the two-radial-impulse reference solution previously presented, it is
straightforward to conclude that the low-thrust maneuver presents a lower ∆V requirement, at the
cost of a higher time of flight. Moreover, the ratio between both cases is ∆Vcont./∆Vimp. ∝ 1/τf imp.,
showing that the total impulse evolves with the inverse of the time of flight for a fixed displacement.
The total impulse for both cases becomes comparable for ε ∼ ∆Y , the limit case between the two
regimes observed for the constant thrust maneuver.

In the high-thrust, or thrust-dominated, regime, when ε � ∆Y , the Coriolis term in the along-
track equation is negligible. This leads to an equation which can be solved for constant Ay:

Y ′′ = Ay ⇒


Y ′ = Ayτ + Y ′0

Y =
1

2
Ayτ

2 + Y ′0τ + Y0

Regarding the radial equation, the term associated to the radial displacement is negligible, while the
perturbing acceleration can be at most of the same order of the other two for ux ∼ τf . Assuming
that ux � τf :

X ′′ = Y ′ ⇒


X ′ = Ayτ

2 + 2Y ′0τ +X ′0

X =
1

3
Ayτ

3 + Y ′0τ
2 +X ′0τ +X0

Taking once again Ay = ε during the first half of the maneuver and Ay = −ε during the second
half yields

Y ′(τf/2) =
ε

2
τf , Y (τf/2) = Y0 +

ε

8
τ2
f

X ′(τf/2) =
ε

4
τ2
f , X(τf/2) =

ε

24
τ3
f

Y ′(τf ) = 0 , Y (τf ) = Yf =
ε

4
τ2
f + Y0

X ′(τf ) =
ε

2
τ2
f , X(τf ) =

ε

4
τ3
f

Boundary conditions in the radial direction are not fulfilled, appearing errors in both the final veloc-
ity and position (with the later being smaller than the former). A control with ux ∼ τf � 1 would
have the required order of magnitude to interact with the rest of terms and, properly chosen, cancel
the errors, while still being oriented very close to the along-track direction. From the final value for
the along-track position is possible to give an estimate for the time of flight

τf = 2

√
∆Y

ε
(20)

which represents a very good approximation of the numerical results obtained in Figure 3. It is
very interesting to highlight that thrust is now initially oriented in the same direction as the desired
displacement of the spacecraft, which represents a qualitative change with respect to the solution
obtained for the gravity-dominated low-thrust regime. The total impulse required for this maneuver
is of the form

∆V = 2
√
ε∆Y (21)

so it is greater than the corresponding total impulse for the reference two-radial-impulses maneuver.
Same as for the low-thrust case, this is related with the fact that the ratio between total impulses
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evolves as the inverse of the time of flight, ∆Vcont./∆Vimp. ∝ 1/τf imp.. Once again, both total
impulses become comparable in the limit case ε ∼ ∆Y .

The previous analysis shows the existence of a transition zone between the two regimes for
ε ∼ ∆Y , that is, when τf ∼ 1, but provides little information about the behavior of the solu-
tion during said transition. From a qualitative point of view, it is no longer true that |Ay| ∼ ε and
|Ax| � 1, so the control angle γ may take any value instead of remaining close to the along-track
direction. Furthermore, fundamental qualitative changes take place when moving from one regime
to the other through the transition zone, the most notable being the reversal of the orientation of
thrust. In any case, a detailed description of this transition zone would require solving the complete
TPVBP associated to the OCP, and goes beyond the scope of this work.

CONCLUSION

The minimum time constant thrust rendezvous problem in circular orbit has been analyzed in
great detail with the aid of a relative motion formulation and using both a direct and an indi-
rect approach. Results show that the structure of the solution undergoes a fundamental qualita-
tive change as the thrust parameter varies, being possible to distinguish two different regimes, a
thrust-dominated and a gravity-dominated one, with a transition zone between them. Far from this
transition zone, the thrust orientation control law follows a nearly bang-bang structure, with the
direction of the jumps being reversed between the two limit regimes. A clear relation between the
required maneuver time and the thrust parameter is also observed for both regimes. Finally, an
analytical approximation of the relation between required maneuver time and thrust parameter is
proposed which may be very useful to quickly assess the main characteristics of a low-thrust ren-
dezvous maneuver even before performing any optimization and to perform trade-off analyses with
impulsive techniques.
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APPENDIX: TRANSCRIPTION ALGORITHMS FOR DYNAMICS

The direct transcription of an OCP implies expressing dynamics as a set of non-linear constraints
using a suitable integration scheme, normally from the implicit Runge-Kutta family. Implicit algo-
rithms are preferred over explicit ones because of their greater order for the same number of stages
and better stability, both being very desirable properties for a NLP formulation. On the other hand,
while they normally require a higher computational cost, this is not relevant in this context due to
the iterative nature of the NLP algorithms.

The first algorithm used in this study is the Trapezoidal Method, a 2-stages, 3rd order, Implicit
Runge-Kutta scheme given by the equation

Zk+1 = Zk+1 +
τk+1 − τk

2

(
Fk+1 + Fk

)
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where
Fk = F

(
Zk, γk, τk

)
The resulting defect constraint is then

ξk (χ) ≡ Zk+1 − Zk+1 − τk+1 − τk

2

(
Fk+1 + Fk

)
= 0. (22)

There is a set of defect constraints for each grid node except the last one, and since the state vector
Z has dimension 4 the total number of defect constraints is 4(M − 1), where M is the number of
nodes in the grid.

The Hermite-Simpson Separated Method employs a 3-stages, 4th order Implicit Runge-Kutta
scheme. It shows the peculiarity of introducing the values of the state and control at the middle-
points of the grid as part of the optimization variable χ, being this its main difference with the
Hermite-Simpson Compressed Method (which only adds the control). The main equations for this
method are

0 = Z
k+1 − 1

2

(
Zk+1 + Zk+1

)
− τk+1 − τk

8

(
Fk+1 − Fk

)
Hermite interpolant

0 = Zk+1 − Zk+1 − τk+1 − τk

6

(
Fk+1 + 4F

k+1
+ Fk

)
Simpson quadrature

where the line denotes values evaluated at the middle-point between τk and τk+1. These equations
give raise to eight defect constraints at each node except the last one

ξk(χ) =

Zk+1 − 1
2

(
Zk+1 + Zk+1

)
− τk+1−τk

8

(
Fk+1 − Fk

)
Zk+1 − Zk+1 − τk+1−τk

6

(
Fk+1 + 4F

k+1
+ Fk

)
 = 0

for a total of 8(M − 1) equations.
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[2] C. Bombardelli and J. Peláez, “Ion beam shepherd for contactless space debris removal,” Journal of
Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 916–920.

[3] T. Rupp, T. Boge, R. Kiehling, and F. Sellmaier, “Flight dynamics challenges of the german on-orbit
servicing mission DEOS,” 21st International Symposium on Space Flight Dynamics, 2009.

[4] D. F. Lawden, Optimal trajectories for space navigation. Butterworths, 1963.
[5] J.-P. Marec, Optimal space trajectories, Vol. 1. Elsevier, 2012.
[6] C. D. Hall and V. Collazo-Perez, “Minimum-time orbital phasing maneuvers,” Journal of guidance,

control, and dynamics, Vol. 26, No. 6, 2003, pp. 934–941.
[7] P. Palmer, “Reachability and optimal phasing for reconfiguration in near-circular orbit formations,”

Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, p. 15421546.
[8] R. Bevilacqua, “Analytical guidance solutions for spacecraft planar rephasing via input shaping,” Jour-

nal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, p. 10421047.
[9] W. Clohessy and R. Wiltshire, “Terminal guidance system for satellite rendezvous,” Journal of the

Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. DOI: 10.2514/8.8704.
[10] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,

Second Edition. SIAM, 2010.
[11] T. F. Coleman, B. S. Garbow, and J. J. Moré, “Software for Estimating Sparse Hessian Matrices,” ACM

Transactions on Mathematical Software, No. 11, 1985, pp. 363–377.
[12] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Optimization, Estimation and Control. Taylor &

Francis, 1975.

19


	Introduction
	Description of the problem
	Two-Impulse Maneuver
	Continuous Thrust Maneuver
	Direct Method
	Indirect Method

	Conclusion
	Acknowledgment

