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ABSTRACT
Mining pool hopping is a phenomenon taking place in cryptocurrency networks such that a miner
changes of pool overtime, in a regular or recurrent way, to increase its gains related to mining work
rewards by the mining pools. This phenomenon is not well understood, also because of the lack of
a precise pool-hoppers detection solution. In this paper, we propose a methodology for detecting the
pool-hopping behavior in the Bitcoin network; we propose a deterministic framework exploiting the
different time windowing phases (rounds, epochs) involved in the rewarding process. Our methodol-
ogy includes a new algorithm to identify the miners, and a new algorithm to trace the revenue stream
distribution. We assess the performance of our approach for the five mining pools with the highest
hash rates during two three-month period in 2020 and 2021: we show that the phenomenon is still
advantageous in terms of overall gains for the pool-hoppers. We also assess the fairness in stake: the
phenomenon was known to be unfair in the beginning of the Bitcoin network due to the simple re-
warding methods in place at that time, with single rewards higher for pool-hoppers than for miners; we
show that this is no longer true and that the new rewarding policies now guarantee that pool-hopping
is fair with respect to miners that do not perform pool-hopping. Nonetheless, we also show that the
cumulative gain over time of pool-hoppers can be higher by 33% on median than static miners.

1. Introduction
Bitcoin is a decentralized digital currency whose use has

been growing significantly in recent years. It is considered
the first cryptocurrency created and, despite not being a legally
recognized currency everywhere, it has triggered the launch
of hundreds of other alternative cryptocurrencies. Its adop-
tion by large companies as Tesla has recently further en-
larged its spread and adoption, as well as the development
of the whole cryptocurrency ecosystem.

Bitcoin uses cryptography to ensure the veracity of in-
formation, while being transparently accessible to everyone.
It involves resource-intensive computational activity that be-
comes increasingly difficult and is used to validate new blocks
for inclusion in the blockchain. It is performed by miners,
who support the system by providing the computing resource
they have available. To prove that they have allocated suffi-
cient computational power to the system, they must provide
a proof, i.e., the solution of a hashing problem, as a result
of which the miner receives a reward. Given the stochastic
characteristic of Bitcoin, the average reward for the single
mining is very high but the probability of winning the vali-
dation is extremely low.

In this regard, the main components that orchestrate the
computational resources of the miners are the mining pools.
They emerged to provide a more stable and predictable in-
come for miners by offering the ability to share computing
resources. Mining pools play an essential role in the se-
curity and performance aspects of the network and, nowa-
days, dominate Bitcoin mining activity as they contribute to
≈ 99% of the total hash rate [22]. Pools compete with each
other to attract more miners in order to get a higher mar-
ket share and have a better chance of getting a reward for
mining. For these reasons, since the early years of Bitcoin,
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pools have applied a process of rationalization of mining op-
erations to provide a solid foundation for the stability of the
ecosystem [23] and to build miner retention policies.

One of the phenomena that pools aim to prevent is pre-
cisely pool-hopping, i.e., strategic behavior influenced by
the attractiveness of mining in terms of expected payoffs
increased at the expense of static miners. As the name re-
call, the consist in the practice of jumping between pools
dynamically. Over the years, many attempts [3] [22] [18]
have been made to detect pool-hopping, a particularly com-
plex practice given both the anonymity of Bitcoin and the
characterization of reward patterns within pools. Early pools
implemented proportional rewardmethods in which hopping
was highly profitable for hoppers and unfair to normal min-
ers. With such a method, if every miner hopped regularly, it
would lead to the standstill of all proportional pools, thus be-
ing a dangerous practice for the system [19]. Today, almost
all pools no longer use proportional reward method in favor
of new methods created specifically to fully mitigate pool-
hopping [19]. Despite their original purpose, Meni Rosen-
feld in [19] showed that fully mitigating pool-hopping is not
possible. In fact, miners are free to leave and change pools
at will, following any system change that makes one pool
more favorable than another one. The benefit of these meth-
ods turns out to be more specifically related to making pool-
hopping not unfair and preventing pool stalling. Further-
more, since it is inconvenient for pools to undergo frequent
hash rate changes, these methods also aim to keep miners
within a pool, making hopping non-trivial to perform.

In this paper we go beyond a preliminary study described
in [3] on the detection of pool-hopping miners in the Bitcoin
system, using it as a starting playground to define a more ac-
curate algorithmic approach taking more realistic assump-
tions. Our key innovation is a deterministic sorting of the
time windowing (rounds, epochs) involved in the rewarding
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process and related transactions linkage to miners, hence al-
lowing us to spot more miners than with the lower bound set
that can be found with [3]. We propose a four-step method-
ology to empirically evaluate the hopping phenomenon [3]:

1. extraction of the revenue stream from themining pools
and assignment the author pool of each reward based
on a coin ownership methodology;

2. unique identification of theminers through the use and
adaptation of known heuristics;

3. placement of a miner in space and time accordingly
to the payoffs received, but reformulating prior work
in [3] (going beyond the distribution of payoffs at the
conclusion of each round);

4. comparison of the work intervals of each miner to de-
tect if cross-pooling is performed. To this end, we
introduce a characterization of miner work based on
epochs of multiple rounds.

We apply this 4-step method to the pools with the largest
computing power, i.e., 5 pools covering 60% of the total
power in 2020 and 2021. Our goal is to precisely measure
the extent to which pool-hopping still occurs. In addition, we
qualify which type of hopping is most common, whether it is
simple pool switching or concurrent work. In particular, we
want to ensure that there are no unbalanced gains between
traditional miners and hoppers, as opposed to what has oc-
curred with the use of the proportional method [19], so that
we can ascertain the harmlessness of the phenomenon. For
the sake of reproducibility, we open source the code in [6].

Two main empirical findings derive from our contribu-
tion. We report the experimental evidence that:

• the pool-hoppers still obtain higher rewards in the long-
run, even upon the introduction of new rewarding rules
within mining pools that were meant to discourage
pool-hopping ;

• the single rewarding transactions do not have higher
amounts than transactions of static miners, differently
than with old rewarding rules.

The paper is organized as follows. Section 2 gives the
background. Section 3 synthetically describes the four-step
pool-hopping detection framework. Section 4 presents the
revenue stream analysis (Step 1). Section 5 describes the
miners identification problem (Step 2). Section 6 presents
the approach to handle the analysis across multiple rounds
(Step 3). Section 7 presents the hoppers detection method
(Step 4). Section 8 describes the results. Section 10 con-
cludes the paper. The diagram in Figure 1 show the key steps
characterizing our detection strategy.

2. Background
Bitcoin is a digital cryptocurrency, introduced in [15]

and released in 2009. Instead of leveraging on physical enti-
ties, such as banknotes or real assets, Bitcoin relies entirely
on data. It is a P2P distributed ledger technology (DLT),

RWT
identification

Pool ownership

Revenue Stream
Analysis 

Ground-truth
homonymous

addresses

Heuristic

Miners identification

Coinjoin
transaction filter

Hoppers
identification

Miners' presence
in multiple pools

Measuring of
epoch overlaps

Precise schedule
of mining activity

Classification of
hopping behavior

Remuneration
measuring and

comparison

Epochs model

Remuneration
schedule

Statistic bound

Link between addresses
involved

in mining procedure and pools 

Figure 1: Diagram representing the keys steps of our detection
strategy.

structured as a chain of blocks, the ‘blockchain’. The blockchain
data structure [14] links each validated block to the previous
one by saving the hash identifier of the previous block in the
new one. The first block of the chain is the ‘genesis block’.
A fundamental ingredient of blockchain is cryptography, of-
fering secure data transmission and immutability. The trans-
action history is public and saved on a ‘Ledger’, that is a type
of digital registry that contains transactions between parties
specifically about business activities. The ledger allows for
append-only operations, and everything stored in the past is
immutable to protect the data from any kind of tampering
and forgery. Bitcoin is distributed because it resides on mul-
tiple computing devices in different geographical locations.
A computer node connected to Bitcoin supports the network
by maintaining a copy of the ledger. Lightweight nodes con-
nect to the system and download only the block headers, not
the entire ledger. Bitcoin is a decentralized system, as data
sharing and storage on the P2P network is allowed with-
out entrusting control to any central authority; Moreover, its
blockchain is permissionless, i.e., participation is public and
open access without identification and that there is no need
for a trusted third party as intermediary [1].

The operation of Bitcoin involves handling a large num-
ber of transactions, informing the network that the owner
of a certain number of bitcoins has authorized the transfer
of some of those to another user and ensuring the correct-
ness with the asymmetrical cryptography [16]. Each Bit-
coin transaction has one or more inputs and one or more
outputs. Inputs correspond to the outputs of the transaction
from which they derive, in the sense that the entire value
of the previous transaction must be transferred with the new
transaction and cannot be kept steady in the account. This
is because Bitcoin uses the ‘Unspent Transaction Outputs’
(UTXO) model [2]. In case a user does not want to spend the
entire value received, the system creates a transaction with
two different outputs: one that transfers the desired value and
one that transfers the difference to the sender. The transac-
tion structure is designed to keep track of all the transac-
tions financing a given one; it associates each input address
with the hash of the transaction with which that amount was
sent: this is the ‘ID’ field in the representation of a chain
of transactions in Figure 2. Keeping the link between an in-
put address and the position where it is located among the
output addresses in the previous transaction is necessary to
know what amount of bitcoins was supplied; for each input
address, the position ’n’ says where its amount is located
among the output addresses in the previous transaction.

The data on the ledger must be the same for everyone to
Cortesi et al.: Preprint submitted to Elsevier Page 2 of 35
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Figure 2: Chain of transactions.

prevent malicious actions and the process of reaching agree-
ment among network participants on its correctness is called
consensus. Bitcoin uses a ‘proof-of-work’ (PoW) consen-
sus, the security of which is guaranteed by the fact that the
majority of the hash power in the whole system will aim at
extending the legitimate chain faster than any corrupt mi-
nority aiming at double spending [9]. The idea behind PoW
is to make validation tasks difficult to perform, but easy to
verify. Block validation consists of a competition between
particular nodes, called ‘miners’, whose winner earns a re-
ward. To be winner in the validation, a miner must solve a
hashing problem. The nature of the problem relates the min-
ing procedure to a lottery competition in which the valida-
tion success is completely random and the probability (p) of
finding a valid hash within within time (t) is inversely pro-
portional to the network difficulty and proportional to the
energy spent. The ‘network difficulty’ (D) is the parameter
that Bitcoin uses to keep the average time between blocks
steady as the network’s hash power changes. The target dif-
ficulty of the problem is adjusted on the overall network dif-
ficulty every 2016 blocks and the adjustment is calculated
comparing the actual blocks number added to the chain to
the excepted one and adjust the new goal based on the vary-
ing percentage [27]. The hashing activity to solve the prob-
lem is identified as the process of finding the output of the
SHA256 function given an input (S). This is a cryptographic
hash function that maps strings S of arbitrary length to data
strings of fixed length (ℎ) [16]. S is composed of the hashed
header of the block and a value, called ‘nonce’. To validate
a block, it is necessary to find the nonce such that S in input
to the SHA256 function generates an output starting with a
fixed number of 0s (zeros). The number of initial 0s is set
by the target difficulty, so that a full solution is found every
10 minutes. This prevents more blocks to be generated be-
fore the previous one’s successful propagation in the whole
blockchain network. Eventually, when the nonce is found,
the block is validated and attached to the blockchain. Both
the nonce and the target difficulty are saved, so that the con-
tent of the block cannot be changed, otherwise the output
of the hash function with the found nonce would not satisfy
the target difficulty anymore. Bitcoin stores the nonce in the
nonce field that is part of a particular transaction at the top of
the block [26], the ‘coinbase transaction’: it is the one send-
ing the block reward (B) to the miner for the completed val-
idation and it has no input amount as it rewards with newly
generated coins. The PoW mechanism ensures consistency

on a probabilistic form [10], since forks can occur on the
chain, namely two valid chains with the same block number.
This inconsistent situation is resolved by validating a new
block, as the chain with the highest number of blocks is con-
sidered the valid one. Transactions reach the confirmation
only when are included in the longest chain.

To reduce remuneration uncertainty and variability over
time, minersmay choose to join amining pool, that is a coop-
erative scheme in which multiple miners share their efforts
to validate blocks. A pool has a hash rate variable in time,
that depends on the number of participants sharing their re-
sources on a certain moment. Rewards to miners are divided
among them based on their contribution, allowing to earn a
fraction of rewards on a regular basis. The working period
it takes to a pool to validate a block is called ‘round’. The
coinbase transaction includes a string inserted by the miner
or the pool completing the round, in order to keep record of
who is the responsible of the validation won and, therefore,
deserves to receive the block reward. To show that the min-
ers are dedicating their computing power, the pool manager
asks them to provide partial solutions that satisfy a lower tar-
get difficulty than the original one. Specifically, any partial
solution whose output begins with 32 zeros, which number
is fixed, is called ‘share’. The more computing power ded-
icated to the problem, the more shares a miner finds on av-
erage. Depending on the rewarding strategy of the pool, the
operator could retain a fee (f ), calculated as a percentage of
the reward for a single share. Mining pools set a specific dif-
ficulty (d) to set a lower bound for shares. A miner, which
has submitted a certain number of shares to contribute to the
validation process, is rewarded through what are called ‘re-
warding transactions’. Sometimes, the miner is also awarded
with the fees paid by users who submit transactions. The fee
is an incentive for theminer to include the transaction in their
block.
2.1. Miners population estimation

Some estimations guess that around 1 million miners ex-
ist [11]. Are those all active and unique miners? The answer
is no. The number comprises both miners that contributed to
validations in the past and now remain inactive nodes and the
ones that subscribed to more pools simultaneously, result-
ing in different identities that should be considered unique.
Moreover, in a given pool a miner can submit shares using
different addresses, resembling again several distinct identi-
ties. Given these aspects, the conditional tense is compul-
sory when guessing the miners population.

Another estimation poses the attention on the number of
nodes that constitute the blockchain; e.g., in May 2019 Bit-
coin reached 100K full nodes, which would lead one to say
that a realistic estimation of miners would be at least lower
than that. Roughly half of full nodes in the blockchain are
listening nodes - ordinary users - so a guess could be that half
of them are not mining. Moreover, one could assume an even
lower number knowing that almost 60% of full nodes run
vulnerable code and just 30% of the blockchain full nodes
are up to date [4].
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Actually, the number of miners can be also higher than
the number of nodes. Nowadays, the majority of pools host
a full node on their server, avoiding miners to become them-
selves a full node and making them participate in the vali-
dation remotely through it. Some pools that offer the possi-
bility to be part of the pool without downloading a complete
replica, act as aggregators and offer a service for which the
miner remains extraneous to the validation process as it joins
the pool only at the application level. These miners do not
actually become part of the network, do not own a wallet
of bitcoins and do not even have assigned public keys, as
they will be rewarded by the pool outside of the Bitcoin sys-
tem. They, therefore, remain completely invisible to those
who want to analyze the data maintained by the blockchain,
but on the other hand it would not make sense to study the
pool-hopping phenomenon for this kind of locked-in miners.
In the analysis of the blockchain, one is limited to consider
miners that we can call backbone miners, i.e., present in the
ledger and for which we see one, or many, identifiers.
2.2. Rewarding methods

Within a mining pool, the most frequently adopted re-
warding methods are the following.

Proportional: the method is the first one adopted by
miners pools, and it is known to have been used mainly in
the early stages of the Bitcoin system. Participants are re-
warded proportionally to the number of shares they submit
compared to the total amount of shares needed for a given
validation. The reward per share is calculated as the block
reward divided by the number of shares in the round, hence
a share submitted early in the round will have a higher re-
ward on average than a share submitted later, making early
mining more profitable than continuous mining.

Slush: the method is built on the proportional one, but it
assigns a score to shares. The block reward at round end is
distributed among participants in proportion to their score.
The score given for each share depends on the amount of
time that has elapsed since the round started. The more time
has passed, the higher the score.

Pay-Per-Share (PPS): an instant reward is assigned to
theminer for each completed share; it is fixed and pre-defined
in advance, so whether the pool successfully mines the block
or not, miners get rewarded for every share submitted any-
way [20]. This method is riskier with higher variance in the
expected duration of rounds: if the the process lasts longer,
the pool has to pay for every share submitted, so it could go
bankrupt. Transaction fees go to the pool.

Full-Pay-Per-Share (FPPS): very similar to ordinary PPS,
with the only difference that the pool also distributes trans-
action fees if the block is validated.

Pay-Per-Last-N-Share (PPLNS): theminer gets the pay-
out proportionally to the shares it submits, but only when
a certain amount of shares (N) is reached. N is set as a
function of the difficulty (D) and it can be up to double D
(rounded down to integer) [3]. It is fixed regardless of bound-
aries of rounds [5] and it does not depend on luck, so whether
the blocks end up in the chain of not, each share increasesN .

If the pool fails to mine a block, the miners do not receive
rewards for the shares submitted for that validation. Only the
shares that contributed to the validation of blocks eventually
in the chain are rewarded. The reward is calculated propor-
tionally to a coefficient applied to all submitted shares, which
varies from 0 to 1 as the number of submissions increases.
At 1 the miner is using its maximum computational power.
For example, if a pool estimates that 1000 shares are required
for the calculation, the estimated power to receive a reward
will gradually increase from 0 to a decimal of the maximum
hash rate as they submit shares. After the first 1000 shares
are received the pool starts rewarding the miner in full and
only for shares that contributed to the validation of blocks
that get in the chain.

Pay-Per-Share-Plus (PPS+): theminer’s reward is paid
out on the expected value similar to PPS. The Transaction
fees are paid out on a PPLNS method, meaning that they
are distributed to miners based on how much hash rate they
contributed.
2.3. Pool-Hopping phenomenon

The pool-hopping phenomenon is a behaviour that de-
pends on the attractiveness of mining in terms of expected
payoffs. Some pools may be more or less attractive in the
sense that they may reward miners more in some circum-
stances and less in others. Pool-hopping consists of mining
for a pool only when its attractiveness is high, and leaving
it when the attractiveness is low. In [19] it is shown that
in particular situations pool-hopping turns out to be more
profitable than continuous mining, and that at the expense of
other miners. At first it was thought that, in order to comply
with the principle of cooperation and consortium of miners,
all miners should contribute equally to the pool in both good
and bad times and their reward should average out statisti-
cally. Nonetheless, pool-hopping is not unfair in all scenar-
ios, as not always it compromises the rewarding of the work
of other miners or the whole system. Indeed, it is in the free-
dom of a miner to change pools to seek more suitable condi-
tions. This behavior is not desirable for pools that undergo
continuous changes in hashing power; in order to discour-
age pool-hopping, pools use specific rewarding mechanisms
and follow miners retention policies. The practice of pool-
hopping cannot be completely prevented, as there are several
factors external to the rewarding dynamics that encourage
miners to engage in it [19].

The proportionalmethod is the less protected against pool-
hopping and no longer used in most cases. It was particu-
larly suitable for the phenomena because, as explained in 2.2,
early mining was very profit table. Meni Rosenfeld [19]
proved that, with the proportion method, as long as the num-
ber of shares in the round is lower than 43.5% of the diffi-
culty, a submitted share has a higher reward. The negative
consequence is that honest miners that participate in the pool
continuously, could theoretically and in the worst case re-
ceive 43.5% less. It was found that if everyone hops, all pro-
portional pool will eventually come to a standstill as miners
would reach a number of shares in the current round equal
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to 43.5% of the difficulty, at which point no-one will mine
there anymore [19]. The gain that can be achieved by fol-
lowing this strategy is up to 28.1% [13], and is at the expense
of continuous miners, depending on the ratio between their
hash rate versus the hoppers’ one.

Slush’s method [19] is one of the first designed to combat
pool-hopping. It prevents the phenomenon on round length
basis, but it is an incomplete solution, as the attractiveness of
pools is ultimately affected by fluctuations in hash rate over
time.

Modern methods such as PPS, PPLNS are widely used
and were implemented with the original purpose of com-
pletely mitigate pool-hopping. Authors in [8] confirm that
PPLNS strongly decreases pool-hopping altogether, as the
more mining you do, the more shares you earn, stimulating
miners to mine continuously and over the long term. On
the contrary, as discussed in [19, 24], there are factors for
which plain PPLNS cannot be considered a definitive so-
lution and other versions need to be considered. From a
theoretical standpoint and to a lesser extent than with pro-
portional method, the phenomenon still has reasons to be
carried out when adjustments of difficulty (D) and block re-
ward (B) occur, as some pools would be more attractive, in-
fluencing the strategic actions of the miners. In addition,
with this method a miner could decide to send shares simul-
taneously to different pools because, although N would be
reached more slowly, it would smooth out the probability of
working on validating a block that eventually does not end
up in the blockchain, thus receiving no reward.

Pools implementing PPS, PPS+ and FPPS also are claimed
to be hopping-proof, as the miners’ payout is predetermined
and is a percentage of the actual hash rate they provide. Ac-
tually, the opposite is true because each pool independently
determines the fixed cost of each share based on network
complexity, network rewards, blocking time, and pool power.
In addition, because shares for blocks that do not end up in
the chain are still rewarded, the pool manager compensates
for its risk by increasing the mining fee, creating an imbal-
ance, once in favor of the miners, once in favor of the pool.
With both methods the phenomenon is not likely to occur
multiple times on a round length basis and is less likely to
be disadvantageous to counterparts, but still they leave space
to dynamically switch pools between rounds.
2.4. Related work

The phenomenon of pool-hopping has been a subject of
research almost since the beginning of Bitcoin. As we in-
troduced, over time the phenomenon has evolved, and the
assumptions surrounding it have changed. There are several
works that have theoretically studied the phenomenon as a
function of the rewarding method adopted and the resulting
gain [19]. Others have attempted to designate a strategy for
measuring it and understanding its ground-truth. The detec-
tion has also varied as some dynamics have been described
in greater depth.

Authors in [18] presented reward payout flow patterns
of 3 pools: BTC.com, AntPool, and ViaBTC over 4 weeks.

They describe the dynamics used by the pool to redistribute
rewards tominers, consecutive to receiving the block reward.
What deserves particular attention is that the distribution of
rewards to participants is not immediate. Instead, the pools
follow transaction patterns, whereby the amount of bitcoins
controlled by the pools themselves is managed in order to
succeed in reward transactions in a phased manner. The pat-
terns are similar for some pools, while changing frequently
for others.

Authors in. [22] also empirically studied the phenomenon
of pool-hopping across the ledger to identify and define pool
migrations in Bitcoin history. They focused on how miner
pools evolved to adapt to the behaviors of miners moving
between them, creating a system of competition. Their al-
gorithm for extracting payment streams from miner pools
is similar to the one we propose next, with one main dif-
ference regarding the association of pool ownership to the
transaction. Regarding the identification of miners, in con-
trast to [3], they claim that the heuristic of [17] is not accu-
rate enough, as it neglects the existence of consequences of
mixing services. Therefore, they use a mathematical model
and a known entity dataset for the association.

Our work is the follow up of the preliminary study in [3]
on empirical pool-hopping detection. They investigated pool
hopping betweenKanoPool and SlushPool duringApril 6–20,
2016; the starting point is the miners identification, solved
via a classification, sorting, and matching of all coinbase,
rewarding, and ordinary transactions. Starting from each
receiving address of a rewarding transaction, the presented
method searches for the address among all the sender ad-
dresses of ordinary transactions; when a match is found, the
link is made between the rewarding transaction of the miner
and the spending transaction. Then, a well-known heuristic
from [17] is applied, such that all inputs to a transaction be-
long to the same user. Two scenarios are identified in [3] for
pool-hopping detection a simplistic one and a realistic one.
Detection is qualified on a simplistic scenario, which con-
siders rewards distributed at the end of the round in which
they are earned; hence a reward is received in each round. A
miner is placed in the rounds corresponding to the received
reward, so the miners’ work schedule is obtained by simply
ordering the rewards. In the realistic scenario, on the other
hand, even though a rewarding method is based on rounds,
the reward is actually paid once a certain minimum threshold
is reached. A miner’s work can be placed in a time interval
called ‘epoch’. Only in the round that ends the epoch, one
can be sure of the miner’s presence since, thanks to it, it has
reached the minimum threshold for the reward.

3. Pool-hopping Detection Framework
As anticipated, our pool-hopping detection framework is

structured in four main modules, or Steps, we synthetically
describe as follows:

Step 1 : Revenue Stream Distribution.
In this module, we model the revenue stream distribu-
tion process to link the rewarding transactions to a set
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of Bitcoin addresses, such that then each address can
be assigned to one or multiple mining pools.

Step 2 : Miners Identification.
In this step, we enhance and contextualize an existing
heuristic at the state of the art to group addresses con-
trolled by the same user, i.e. the so-called backbone
miners.

Step 3 : Multiple Rounds Rewarding.
The goal of this step is to produce, for each miner and
each pool it worked for, the mining schedule, so as to
characterize its behavior.

Step 4 : Hoppers Detection.
Exploiting the outcome of Step 3, this steps determin-
ers which miners are hoppers, and classify them as ei-
ther intra-epoch hoppers or cross-epoch hoppers, sav-
ing the necessary information to further analyse their
behavior.

Each step is described in the following four sections.

4. Step 1: Revenue Stream Distribution
In order to develop a refined detection of the pool-hopping

phenomenon, it is necessary to investigate the dynamics gov-
erning pools and users within the system. Starting point of
the analysis is the identification of the users who carry out
the mining activities, namely the ones we referred to in the
background section as backbone miners. For a ledger ob-
server, an ordinary user and a miner are indistinguishable,
since both are pseudonymous and send and receive transac-
tions in the same way. Given an address, it is not possible
to directly determine which user it belongs to, nor the role
this user plays in the system. Since we want to understand
whether a miner is working and moving from one pool to
another, each address receiving a reward must identify a sin-
gle miner. Therefore, before proceeding with multiple-input
clustering heuristics, as done in [3], we need to collect all ad-
dresses that are certain to have participated in the validation
process.
4.1. Identification of rewarding transactions

Unlike ordinary users, miners receive rewards for the
work they performed. To identify miners, one must under-
stand the dynamics that, within a pool, govern the distribu-
tion of revenue to each miner, after associating a reward with
theminer. Themechanism involves the pool constituting and
transferring what we have introduced as rewarding transac-
tions. It is in the output of these that the addresses used by
the miners are certain to be found, addresses with which they
have contributed to the validation process and to which the
pool sends the reward earned.

Although the purpose of rewarding transactions is differ-
ent from ordinary transactions, they are constructed in ex-
actly the same way and there are no structural features that
distinguish them. The issue therefore concerns not only the
identification of miners, but also the identification of reward
transfers. Even though there are no specific attributes for

their identification, just by looking at the ledger it is pos-
sible to notice particular transactions that may play a role
in the distribution of rewards. Indeed, pools send rewards
to numerous miners with a single transaction, which con-
sequently results having a particularly high number of out-
going addresses. For example, Ant pool rewards its min-
ers by creating large transactions that always have 101 out-
put addresses. The amount that each address receives is in
the order of mBTC as the reward is sent immediately after
the payout threshold is reached, that is 0.001 BTC [3] [28].
Therefore, if a transaction has many output addresses, but it
sends amounts above the range of a payout, the transaction
is not a rewarding one.

Algorithm 1 is a pseudocode of this step; it receives as in-
put the ledger L listing ordinary transactions, within which
rewarding transactions are searched. Table 1 introduces the
notations for this and following algorithms.
Algorithm 1 Matching

Input: ledger L
Output: matching structure D

1: maxP ← MAXPAYOUT(L)
2: minT ← MINTRANSFERS(L)
3: for t ∈ L do
4: d[ℎasℎ] ← t[ℎasℎ]
5: d[leaf ] ← ∅
6: d[od] ← OUTGOINGDIR(t)
7: d[ISR] ← ISREWARDING(t, maxP , minT )
8: for id ∈ t[tIDs] do
9: d[pr] ← LINKTOPREVIOUS(t)
10: D[id] ← d
11: end for
12: end for

4.2. Characterization of pool revenue streams
Once a rewarding transaction is identified, the next step

is to determine which pool is distributing the reward. No
attribute of the transactions retains this information, so it is
necessary to find a strategy to trace it back to the source pool.
As studied in [18], most pools follow a distinct payment pat-
tern to distribute rewards. In contrast, the analysis performed
in [3] relies on the assumption that reward transactions are
exactly successive to the coinbase ones. Currently, this as-
sumption has to be disregarded, because although it might
have been considered true in the past, it does not complywith
what can be observed on the ledger any longer [18]. Indeed,
the transactions that follow the coinbase ones are internal to
the pool and not yet rewarding. It is likely that many of the
addresses that were considered belonging to miners are ac-
tually addresses used internally within the pool to manage
their own wallets.

Considering a coinbase transaction, i.e., the one sending
newly generated coins to a pool that has completed the val-
idation of a block, the outgoing address is the one the pool
uses to receive payments from the system, which we now
refer to as the ‘pool reward address’. The pool uses this ad-
dress to publicly receive mining revenues and, as it is pub-
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Table 1
Algorithms functions and notations

Notation Description of the function
isR Boolean value, True if the transaction is a rewarding transaction.
od ordered record of values, showing 0 if the outgoing transfer in that position is above the range of

being a payout, otherwise 1 if it is in the range.
pr the position that the income transfer holds within the previous one’s outputs. This number keeps

the elements in the lists ordered respectively to the order in which the transfers are store in the
previous transaction.

leaf holds reference to the shortest path a coin takes to fund it. This attribute is initially deactivated,
and activated when the transaction is encountered for the first time during the visit of a tree.

S - Senders set it matches each address that sends a transaction with all transactions sent from it. For each
address, S gives the list of all hashes with that address as an input. S is filled out by reading all
the transactions on the ledger, and when a CoinJoin transaction is encountered, it is ignored and
not uploaded in the structure for any of its input addresses.

T - Transactions set references all transactions t ∈ T ; for each t, its hash is used as the key, the retrieved value is the
entire transaction.

CS Coinbase transactions set.
D Matching structure that keeps the reference of all consecutive transactions from a given one, by

matching its hash with the IDs inside them.
R - Rewarding set contains all rewarding transactions, accessible by hash number.

M - Miners set contains all miners identified in the system, as unique collections of addresses.
U - round set holding the schedule of all rounds completed by each pool sorted chronologically.
E - epochs set references all hoppers’ epochs, indexed by miner and pool.

I - intra-epoch hoppers indexes all intra-epoch hoppers.
C - Cross-epoch hoppers indexes all cross-epoch hoppers, each referring to its working epochs. The reported work epochs

are only those that are found to be simultaneous with others of the same user in different pools,
shown in a 2-by-2 correspondence.

W windows set.
maxPayout(L) calculates the upper bound of the of the distribution composed by all payouts in particularly big

transactions.
The outcome is the value above which the amount of a transfer is not considered a miner payout.

minTransfers(L) calculates the median of the number of transfers in particularly big transactions. The outcome is
the minimum number of transfers, whose amount are payouts to miners, to consider a distribution
of rewards.

outgoingDir(t) checks which amounts are above the range of payouts and which not. The ordered record is filled
respectively and assigned to d.

isRewarding(t) counts the number of outgoing transfers and how many of them are payout, then it assigns isR
consequently.

linkToPrevious(t) saves the position associated with the ID corresponding to the key by which the element will be
referenced.

tobeFwed(d[od], n[pr]) checks if in the ordered record if the amount in position pr in the previous transactions is a payout
or not.

calcOwnership(r) checks which pool’s coins reached the transaction in the shortest path & assign its ownership to a
pool accordingly.

collectHashes(S[a]) adds the current reference hashes in H , with those yet to be visited, as all sent by the same user,
but only if they have not already been associated with the miner.

getSenders(T [h]) retrieves all the input addresses of the transaction corresponding to hash ℎ.
getPools(m, R) returns all the pools miner m has received rewards from.

setIntervals(m, p, R) it collects all the rewarding transactions of miner m in pool p, ordered chronologically & returns
the reward intervals.

Q3(I) calculates the third quantile of the reward intervals distribution.
getStart(t) given a transaction t, it sets the beginning of the epoch with the timestamp of the previous

transaction.
adjCoolDown(t + 1) given a transaction t, the next rewarding transaction t + 1 is the one closing the epoch of work

between t and t + 1. The function adjust the conclusion of the epoch based on the time of
rewarding transaction t + 1, but subtracting the cool down interval. Approximation of the interval
to be subtracted is assumed constant and equal to the average validation time of 100 blocks.

createEpoch(start, end) creates the epoch interval with respect with the calculated start and ending moments.
singlePool(m, E) returns True if the miner present epoch in a single pool; performed by parsing all epoch referenced

by the miner.
consEpochs(m, E) returns all the epochs carried out by m and stored in E, sorting them chronologically according to

their completion.
getEpoch(m, n, Ē) returns the epoch at index n, between the ones referenced by miner m.

differentPool(e1, e2) returns True if the epochs currently compared, e1 and e2, are placed in different pools.
getOrdrdRWTs(i, R) collects are rewards received by intra-epoch hopper i in R and sorts them chronologically.

samePool(t, t + 1) returns True if one reward and the following, received by the hopper, are sent from the same pool.
increment(i, t[pool]) increments the number of times intra-epoch hopper i has left the pool of the reward being analysed.

The updates is done over I .
getRounds(start, end, e[pool], U ) returns all the round, sorted chronologically, that a given pool concluded in the time interval start

- end; the rounds are retrieved from the global round schedule U .
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licly known, it is used on a long-term basis. After the transfer
of bitcoins to a pool via a coinbase transaction, the distinct
payment pattern is characterized by how the pool handles
the exchange of coins in its wallets, from the receipt of newly
generated coins to the payment of rewards tominers. Wewill
refer to all transactions that occur within a pool from the first
phenomenon to the second as ‘revenue streams’, as qualified
in [18]. We refer to ‘collector addresses ’ for the addresses
that are used by the pool to manage, maintain andmove large
amounts of bitcoins via revenue streams and send payments
to pool members and external parties when necessary. When
a transaction sends funds from inside the pool to the outside,
one of the output addresses is the ‘changing address ’ which
allows the pool to retrieve the bitcoins not wanted to be sent.
The exit point of a stream are the reward transfers, identifi-
able as being within the payout range. These addresses be-
long to the miners and from them the streams outside the
pool originate, i.e., those that describe how a miner spends
its rewards. In order to keep the analysis within the stream
of a pool, it is necessary to consider only the transactions
that arise from collection addresses or changing addresses,
which transfers remain above the payout range.

Thanks to the reward distribution analysis described so
far, when a rewarding transaction is in the stream, we know
that some of the bitcoins transferred by the transaction were
generated for the pool receiving the coinbase at the begin-
ning of the stream. Therefore, given a coinbase transaction,
the pool for which the new coins were generated is known,
then by following the transactions we maintain information
about which pool sent them. However, this is still not enough
to say that the pool sent the transaction or which other pool
did. Indeed, the pool sending a transaction is unique, but
the coins financing a transaction it may have originally been
generated for different pools and then shuffled through the
system up to this transaction.

Algorithm 2, REVENUE STREAM VISITING, details this
step. It requires to start from a coinbase transaction and visit
all subsequent ones. Given the structure of a transaction,
however, it is possible to link it to previous ones in the back-
ward direction and not in the forward direction. For this pur-
pose, it became necessary to build a Matcℎing Structure
(D) that keeps the reference to all consecutive transactions
from a given one, by matching its hash with the IDs inside
them. So, given a transaction we need to collect all follow-
ing transactions, funded by it. Each ID stored within a trans-
actions uniquely identifies the transaction sending funds to
it. Even though they identify uniquely the previous transac-
tions, IDs are repeated in different transactions, namely in
all the outputs of the previous one. Each ID correspond to a
unique transaction hash, thus they can be used as keys in the
structure. Scanning the transactions, each key collects all the
transactions that holds that ID. Eventually, accessing a key
we reference a unique transaction and as value we retrieve
the list of all transactions one following it. To save memory,
the data of a transaction maintained in the structure is mini-
mized, keeping only the information that cannot be replaced
by attributes indicating which action to perform.

The attributes are assigned while reading the ledger and
filling the matching structure. ISR is set to TRUE when the
number of outgoing transfers is above a certain value, but it
only counts a transfer if the amount is in the range of being a
payout. Both the minimum number of outputs and the pay-
out threshold are set in a preliminary step, where, consider-
ing only large transactions, the average number of outgoing
transfers and the average transfer amount are calculated. The
resulting values for considering a transaction to be a reward-
ing are 97 for the minimum number of transfers and 0.045
BTC for the maximum for an amount to be a payout. When
the matching procedure is completed, algorithm 1 return in
outputMatcℎing Structure (D).

Algorithm 2, visits each tree originated by a coinbase. It
takes in input the coinbase set CS, that is the data set list-
ing all coinbase transactions, roots of the transactions trees.
Since the detection is carried out in themajor pools, the coin-
base transactions are classified as being sent to one of the
pools of interest and as being sent to minority pools. At this
stage we must also consider the second category because, in
order to avoid possible misallocations on the ownership of
the transactions, it is necessary to analyze the involvement
of the streams of the secondary pools in correspondencewith
those of the pools of interest. Algorithm 2 starts accessing
the hash of the coinbase transaction as first key generating
the tree. The tree visit only goes from one level to another
when all transactions in that level are visited. (V ) holds all
the transactions to be visited in a level. While visiting a
level, all branches of the next level are added in a support
structure (N), waiting for this level to finish being visited.
Algorithm 2 manage this procedure with the following in-
structions:

• Increment rule: when V is emptied from the transac-
tions of the current level and new branches have been
found and added in N , the level is incremented and
new transactions to be visited are added to V .

• Stopping rule: it is the rule that ends the visit of a tree
when no more transactions are added to V , meaning
that in the current level no branches has been found to
visit.

When a transaction is visited, the FOLLOW function is
called, algorithm 3. It receives as input the transaction hash,
the pool associated with the tree, and the level at which the
transaction is encountered. To visit this transaction the hash
is used as the access key in the matching structure. Not all
subsequent transactions (n) have to be considered as new
branches for the next level.

Conditions 1 and 2 in Table 2 have to be TRUE in or-
der to return a branch with the ones to visit. If condition 2
is FALSE, there is no need to continue on this branch, since
all following transactions would also be visited at a deeper
level than already done. Instead, if the condition is TRUE,
algorithm 3 updates the leaf of this transaction with the new,
now shallower, level than the one already stored, if any. At
this point, if the transaction is a rewarding one, the pool and
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depth level in the tree are associated with this transaction.
All n transactions in the key, which satisfy the conditions,
are returned to algorithm 2 as new branches to be visited
in the next level. When all transactions are visited, each re-
warding transaction is associated with the pools to which the
different funds in the transaction were originally sent. The
pool that reaches the transaction with the shortest path from
the generation of some of its coins is the one most likely to
have sent the transaction, since it owns the least spent coins
in the transaction, so it is assigned as the authoring pool for
the transaction. In case of a tie, so if two pools reached the
transaction at the same depth, which is also the minimum
level of all trees reaching it, which is unlikely, the pool own-
ership is assigned to the one that owns the majority of the
least spent coins in that transaction. Algorithm 2 returns in
output the data set listing the identified rewarding transac-
tions associated with a pool, i.e., the rewarding set R.

Appendix A gives an example of how the algorithms per-
form this step of the strategy.
Algorithm 2 Revenue Stream Visiting

Input: coinbase set C , matching structure D
Output: rewarding set R

1: Initialize V ← ∅
2: Initialize level ← 0
3: for c ∈ CS do
4: V ← c
5: level ← 0
6: while V ≠ ∅ do ⊳ Stopping rule
7: N ← FOLLOW(V1, D, c[pool], level)
8: delete V1
9: if V == ∅ then ⊳ Increment rule
10: level ← level + 1
11: V ← N
12: end if
13: end while
14: for r ∈ R do
15: CALCOWNERSHIP(r)
16: end for
17: end for

Algorithm 3 Follow
Input: d, matching structure D, pool, level
Output: next level TxsN

1: Initialize h ← d[ℎasℎ]
2: for n ∈ D[h] do
3: if TOBEFWED(d[od], n[pr]) then ⊳ Condition 1
4: if n[leaf ] ≥ level then ⊳ Condition 2
5: n[leaf ] ← level
6: if n[ISR] then
7: UPDATEREWARINGSET(n[ℎasℎ], level, pool)
8: end if
9: N ← n
10: end if
11: end if
12: end for

4.3. Pool ownership assignment
Following revenue streams, one could assume that the

bitcoins in a transaction are owned by the pool receiving
the coinbase at the beginning of the stream. As a matter of
fact, after numerous transfers, one cannot be sure that coins
still belong to the pool they were generated for, as it may
have happened that they were used for payments outside the
pool. Indeed, a coin is moved within the same pool until
it is needed for a payment, then it is sent out of the pool
to a miner or other entity. In turn, a second pool can use the
coin received from the first to pay its rewards. Although rev-
enue stream analysis is aimed at studying Bitcoin transfers
between wallets belonging to the same pool, avoiding track-
ing transfers of wallets outside of it, it may happen that a
transfer above the payout range is made outward and is thus
momentarily interpreted as an internal transfer. This even-
tuality translates into the fact that by following the revenue
streams of coins generated for two different pools, it may
happen that the same transaction is part of both streams. In
this case, it is contradictory to assign the transaction to one
pool rather than another.

To get to the point of defining which pool really sent a
rewarding transaction, we need to analyze all the streams
through it. By tracking all the coins that start from the coin-
base transaction and pass through the transaction in ques-
tion, it is possible to figure out which coins in that transaction
come from a longer path and which come from a shorter one.
Using the same procedure, it is also possible to determine
which portion of the funds funding the transactionwere orig-
inally generated for one pool and which for another. Thus,
given a transaction and several assignee pools of the bit-
coins transferred with it, it can be argued that the transaction
was actually handled by the pool with the least reused coins
among those present. This assertion is acceptable because
it is unrealistic that a coin, immediately after being gener-
ated for one pool, is sent directly to another pool. This part
of the analysis can be defined as a procedure to understand
when the ownership of certain funds, originally assigned to
a pool, can be considered valid and when it should be con-
sidered overwritten. Because of the ownership assignment
procedure, the link between a pool and a profitable transac-
tion is now known. This establishes a key relationship be-
tween miners and pools. In other words, given a rewarding
transaction, we know that the output addresses belong to the
miners, so, knowing also the pool that sends the transaction,
allows us to understand in which pool the miners are work-
ing.
4.4. Transactions trees and forests

Going deeper in the procedure of analyzing the revenue
stream of a pool, the stream can be considered as a treewhose
root is the coinbase transaction. Following a transaction in
the tree refers to the task of selecting which of the outgo-
ing transfers are payouts and which are not, starting a new
branch for each transfer that is not a payout. All the trees gen-
erated by coinbase transactions constitute a forest. A trans-
action can be the overlapping point of different trees, even
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Figure 3: Figure shows the distinction between levels in a tree.
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Figure 4: Chain of transaction with focus on the reference to
the previous transaction.

if owned by different pools. The leaves of the trees are the
payout transfers from the rewarding transactions, i.e., those
that are not chosen to be new branches. Since we must keep
track of the number of transfers that each newly generated
coin undergoes, it is necessary to use a strategy that allows us
to count as fast as possible at which level of depth the coins
arrive in the tree. Hence, our logic visits the tree by ‘levels ’,
starting from the root, towards the leaves. Only when all the
transactions of a level are visited, the successive level, com-
posed of the branches that depart from the transactions of
the current level, begins to be visited. Figure 3 aims to show
that to visit completely a level at a time is much faster than
to follow all the consecutive transactions that depart from a
fork and then to return back to that fork and to visit the other
branches.

To explain the way the tree is filled, we need to recall the
structure of a transaction, explained in the section 2. In a
transaction, there are two key attributes that allow us to bind
one transaction to the previous one. As shown in Figure 4,
for each incoming address, the transaction stores an ID that
is the hash value of the previous transaction. Given a trans-
action, the link to the previous one in the tree is created by
searching for all transactions with hashes corresponding to
the IDs stored within the transaction, thus obtaining all pre-
vious ones to the current one. The second key parameter is
the position number paired with each ID in the transaction.
This number corresponds to the position where the input ad-
dress is between the outputs of the previous transaction that
has the paired ID as a hash.

5. Step 2: Miners Identification
This section presents the miners identification task for

the pool-hopping detection algorithmic framework. Its goal
is to group addresses controlled by the same user. Starting
from the addresses identified by the revenue stream analysis,

we can identify the miners working in the pools of interest
as large entities composed of homonymous addresses. The
procedure was already presented in [3], with the application
of some simple but effective heuristics we elaborate next, in
compliance with the procedures applied so far.
5.1. Address grouping heuristic

The heuristic yields a clustering of Bitcoin nodes [17]:
if two (or more) addresses are inputs to the same transaction,
then they are set as controlled by the same user. The effects
are transitive and extend well beyond the inputs of a single
transaction; for example, if we observe one transaction with
addresses A and B as inputs, and another with addresses B
and C, then we conclude that A, B, and C all belong to the
same user. In order to identify the addresses that a single
miner uses in the system, transitivity is fundamental indeed.

Let us consider a rewarded address obtained as described
in the previous section. First we look for the transactions that
have this address in common among the senders. The miner
owning the initial address is the creator of the obtained trans-
actions, and all the sender addresses of these transactions be-
long to him. For each transaction sent by the miner, the input
addresses may be already known as homonyms of the miner,
or they may be addresses we did not know as belonging to
this miner yet. In the second case, the search continues for
all transactions that have those addresses as input. Thus, the
process iteratively populates the set of transactions that the
miner sends and that are related to it by the transitive prop-
erty. All addresses that uniquely identify the miner are col-
lected accordingly, i.e., all senders of transactions for which
the transitive property is verified.

Attention should be paid to the difference between the
group of transactions just described and a stream of earn-
ings, subject of the previous section. Here transactions are
not searched consecutively at each funding, but are united by
homonymous addresses and ordered respectively upon en-
countering a given address and associating it with a user.
For example, assume addresses A and B are the senders of a
transaction and addresses B and C are the senders of a sec-
ond transaction; even if we consider first the first one and
then, thanks to the common address B, the second one, one
cannot assume that the second one is temporally subsequent
to the first transaction.

The strategy just described allows us to be sure that we
have found all addresses linked together by the transitive
property and related to the same user. This ensures that there
are no cases in which the same user is identifiable by two dis-
tinct groups of addresses; in other words, in which there is
even one common address shared by two groups. The only
case that is overlooked is when a user is considered to be
two distinct entities, presenting no common address. This is
what would happen if two groups of transactions sent by the
same user never reuse an address of the other group. In this
case, the heuristic cannot connect the two groups of transac-
tions and two identities are assumed. Indeed, a miner could
use always different addresses independently and there is no
certainty that one sends transactions always with at least an
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addresses already used. Therefore, the heuristic cannot al-
ways collect all addresses governed by a user, but at least all
the ones linked by the transitivity property. Therefore, the
deriving measurement of miners population and hoppers is
to be considered as an upper bound.

Moreover, the heuristic does not consider coinJoin trans-
actions, i.e., transactions for which two or more users can
organize to send a single transaction by sharing each other’s
funds. These addresses appear to be senders in the same
transaction, so they are joined by the heuristic in the same
group. Consequently, these transactions must be excluded
before applying the heuristic, otherwise what are actually
two distinct users would end up being considered as one sin-
gle user.

An alternative heuristic exists [12], but we cannot use
it. It joins the inputs of a transaction with the changing ad-
dress, all identifying the same miner: the changing address
is controlled by the same user as the input addresses; i.e.,
for a given transaction t, the controller of inputs(t) also con-
trols the one-time change address in outputs(t), if such an ad-
dress exists. This approach therefore could compensate for
the missing grouping above mentioned, making transitivity
to work also in the case the addresses associated to an entity
are not reused. However, we cannot adopt this logic because
our method is meant to be applied to work not on the full
ledger, but a fraction of the ledger for scalability reasons:
hence it is not possible to identify which of the addresses
in a transaction is with certainty a changing address, hence
owned by the sender.

It is worth remarking that we cannot take into account in
themining identification any attack (e.g., man-in-the-middle)
happening on the application programming interface between
the miner and the mining-pool, aiming at stealing the min-
ing rewards. Such attacks would, in any case, result as min-
ers with a single address, hence not hoppers, in the public
blockchain.
5.2. Detailed algorithm

Wedetail the algorithmwe used to implement the heuris-
tic to identify and group the addresses controlled by the same
user. It creates the registry of miners, that is composed of
sets of addresses (not repeated ones), each set representing
a single and unique user. In a preliminary stage of the pro-
cedure described hereafter, the S, T and R data structures
described in Table 1 are created to support the execution and
make it as simple and quick ad possible.

Algorithm 4 details the heuristic; it receives S, T and
R as inputs and starts iterating through all addresses in R,
recipients of a reward, each identifying a miner (m). The
construction of S is useful because, given an address from
R, the procedure retrieves directly the hashes of all trans-
actions that show it within their inputs. These transactions
are not only sent by the same user, but specifically from the
same address (a1). To keep track of all transactions sent by
m during its identification, their hashes are held be support
structure (H). Each iteration starts with an address from R
and initializes H accordingly.

In the heuristic, all sender addresses of transactions in
H are homonyms, but they are also homonyms with those of
the other transactions, since they all share a1. Then the algo-rithm gets from T the homonymous senders of each transac-
tion corresponding to H . These new addresses (a2) ownedby m are accessed on S. The procedure looks in S to see
if they have sent any transactions not among those initially
identified as being sent by m. If so, the transitive property is
verified again for these transactions, which are related from
the previous ones by at least one common address a2. Thecorresponding hashes are added toH and the inputs are col-
lected in its group of homonyms. Such hashes are kept inH
for the period of time they are already known to have been
sent by m, but whose inputs addresses have not yet been ac-
cessed. If one of the addresses collected during the identifi-
cation of a miner is further present in R, then the collection
of homonymous addresses will not be performed for such ad-
dress. Indeed, there is no need to access it again in S, since
all transactions referenced in S by that address; the address
itself, can only belong to a single miner and have already
been recognized and associated with one. Also, once a trans-
action is visited, all of its inputs are considered, so accessing
it again would result in addresses already known for m. All
addresses visited and assigned to a user are maintained in the
support structure A and are no longer accessible.

Condition 3 and 4 (Table 2) govern the algorithm in the
access to S.

Since a transaction may have several input addresses, a
hash may be encountered multiple times during the identi-
fication of m’s addresses. Therefore, if a hash was already
visited and it is known to have been sent bym, it is not added
to H . The Stopping rule simply terminates the collection
procedure for m when all transactions linked together by the
transitive property have been visited, thus when homony-
mous addresses of m have been collected.

Appendix B gives a numerical example of the algorithm
execution.

6. Step 3: multiple rounds rewarding
As described in Step 1, we can tie each reward present on

the ledger to the pool that sent it. In Step 2, we collect all the
reward-receiving addresses into user-groups, each uniquely
identifying a miner; in this way we can (i) know from which
pool the rewards of a given miner arrive and at what time,
and (ii) place it with certainty in each pool from which it has
received a reward (as it must have worked there for at least
a certain period to receive it). Nonetheless, being placed in
several pools is not enough to study the simultaneous work-
ing of miners, as the work periods are different in each pool
and pools overlaps are not directly noticeable. We need to
access the precise starting and ending moment of a miner
contribution to determine whether it has dynamically moved
between pools during ongoing work periods. The goal of
Step 3, therefore, is to present a strategy to characterize and
quantify the work done by a miner in a pool in order to allow
the identification of concurrent working for different pools.
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Table 2
Description of conditions used in the algorithms.

Condition 1 it checks if the outgoing transfer is less than or equal to the payout range, since we want to follow only those
transactions that are still handled within the pool. For this check the position of the outgoing transfer in the
transaction currently visited is given by the od attribute of n

Condition 2 Visit only if it is a shorter path. Algorithm 3 checks that the transaction is met on this tree at a shallower level
than done in the other trees.

Condition 3 it checks if the current address from R is not already associated with a miner and thus present in A. In addition,
for each address encountered as an input to a transaction, it checks if it has already been accessed in S, thus
associated with a miner and present in A.

Condition 4 it checks if an address receiving a reward is actually sending transactions. If not, that address has no homonyms
and the user is identifiable only by that single address.

Condition 5 it ensures that the length of the period resulting from the adaptation is no longer than the limit duration computed
at the beginning. Otherwise, the start is set relative to the maximum length of an epoch considered realistic

Condition 6 it checks if the miner presents epochs always in a single pool
Condition 7 it checks if the epochs were carried out in different pools. If False, they identify two phases of ordinary work in

the same pool.
Condition 8 it checks if the epochs, placed in different pools, are simultaneous. To be such, the beginning of the current must

be earlier than the end of the oldest, meaning that the oldest was not over before the second began.
Condition 9 it checks if the miner did not show any overlapping epochs; if so, it is deleted from C and added in I . Indeed, it is

an intra-epoch hopper, showing epochs in different pools, but not simultaneous.
Conditions 10, 12 it checks which epoch starts before the first finishes.
Conditions 11, 13 it checks which epoch finishes first.

Algorithm 4Miners identification
Input: rewarding set R, senders set S, transactions set T
Output: miners setM

1: Initialize A ← ∅
2: for r ∈ R do
3: if r ∉ A then ⊳ Condition 3
4: if r ∈ S then ⊳ Condition 4
5: m ← r
6: H ← COLLECTHASHES(S[r])
7: whileH ≠ ∅ do ⊳ Stopping rule
8: ℎ ← H1
9: s ← GETSENDERS(T [h])
10: for a ∈ s do
11: if a ∉ A then ⊳ Condition 3
12: H ← COLLECTHASHES(S[a])
13: A ← a
14: end if
15: end for
16: delete H1
17: end while
18: m ← A
19: else
20: m ← A
21: A ← a
22: end if
23: M ← m
24: end if
25: end for

6.1. Mining dynamics
In [3], pool-hopping is detected by considering a sim-

plistic case, in which pools reward miners with a per-round
logic. We recall that a round is the period of time that oc-
curs between two subsequent validations performed by the
same pool. After this period, the rewards are distributed to
the miners that worked during it. The per-round rewarding
logic means that it is possible to place a miner in each round

for which it worked, due to the reward resulting from it. The
simplification lies in the fact that the reward methods used
at that time, as well as those used nowadays, do not really
send rewards at the conclusion of each round or immedi-
ately after a share submission. Indeed, the system requires
pools to establish a minimum reward threshold, which for
many pools is 0.001 BTC. In reality, the reward for a single
share can be much lower than this figure [19]. For exam-
ple, let us consider a block reward (B) of 6.25 BTC, share
difficulty (D) equal to 1, network difficulty (D) 240000 and
2% fee (f ). It results that each share posted would yield on
average 26 BTC. Therefore, we can assert that, in a realistic
scenario, a miner has to send many shares before reaching
the threshold and receiving a reward. Considering PPLNS,
for example, the rewards are not sent upon the fulfillment of
N , and there is no relation betweenN and the threshold, so
the miner can still be far from reaching it even if N shares
have already been submitted. If N is large enough, the pro-
portional coefficient is toward the value of the miner’s hash
rate and the pool mostly wins in the validation of blocks the
miner worked for, then the threshold is likely exceeded with
each reward. Conversely, if N is reached, but the reward is
below the minimum threshold, more shares are required, so
the work period to get the reward will continue in the follow-
ing rounds.

The time a miner has to work until it reaches the thresh-
old and receives a reward is called ‘epoch’. Although some
pools use both immediate rewarding methods, such as PPS,
and non-immediate ones, such as PPLNS, there is no need
to distinguish which method was used to establish a reward,
since each of these methods are eventually governed by the
per-epoch payment system. At the same threshold, epochs
rewarded with PPS will last less than those rewarded with
PPLSN, since in the first case every share presented is re-
warded, while in the second only rewards for blocks in the
chain increase the threshold. For a deeper understanding,
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Figure 5: Representation of the rewarding dynamic for a single
miner, two epochs in different pools.

one can compare each rewarding method in both the sim-
plistic and realistic scenarios. For the pool which imple-
ment PPS, PPS+ and FPPS - hence instant rewarding - if
the system would not impose a minimum reward threshold,
looking at the rewards received by miners would allow to
place them exactly in the rounds they participated in. This
would fall into the simple case of [3] and per-round reward-
ing algorithm would work just fine. For PPLNS, unlike the
immediate reward case, even neglecting the existence of a
minimum reward threshold, this would not fall into the sim-
ple case, since N is not bounded by rounds. Given the ex-
istence of a minimum reward threshold, as said in the previ-
ous work, miners working in pools implementing these re-
warding methods need to be studied following a per-epoch
analysis. Understanding the epochs of each miner is key for
identifying hoppers for all types of rewarding method. If a
miner’s epochs in the different pools overlap, it means that
it was present in all at the same time, jumping from one to
another dynamically and at will. Figure 5 shows all the ele-
ments involved in the dynamic. Given a miner, one can see
the shares it sends to contribute in the validation process,
the rewards it gets and the identification of its work-epochs
in each pool.
6.2. Dealing with epochs

An epoch is an interval of time unequivocally related to
a miner and indicates a cycle of work it performed in a pool.
It is the sum of all rounds executed by the pool from the mo-
ment the miner started working for a new threshold until it
was reached. The Bitcoin blockchain does not keep infor-
mation about epochs, so, as we can see from Figure 6, the
miner might have participated in all rounds in its epoch or
just in some. Only in the last round its presence is certain,
since thanks to it, it reached the minimum reward threshold,
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Figure 6: Hopping dynamic in a minimum rewarding threshold
environment.

but beyond that nothing can be determined.
To place miners in their working rounds, we would need

to knowwhich user is sending each share and, further, which
shares helped validating which blocks. The only available
information comes from the rewards each miner receives at
the conclusion of the epochs. Since it is necessary to con-
struct an analysis based on epochs as close to reality as possi-
ble, we need to identify what a realistic epoch durationmight
be and, from there, describe the epochs in terms of their be-
ginning and ending moments. Consequently, the problem
becomes finding a way to assert, with enough confidence,
what is the initial round of the miner’s contribution and the
final one.

Based on the definition of an epoch, we know that its
conclusion coincideswith the last roundwithin it. This round
is the one in which the miner reaches the payout threshold,
so we can initially assign the time of the rewarding transac-
tion to the instant of conclusion of the epoch. As reported
in [25], there is a delay interval from the block reward, given
to a pool via coinbase transaction for the conclusion of a
round, to when it is available to be spent. This interval is
called ‘cool down’ and corresponds to the time taken by
the system to validate 100 blocks. This implies that, given
an epoch, if the rewarding transaction uses funds provided
by coinbase less distant than the interval of cool down, then
with certainty the rewarding transaction is delayed. Atworst,
if funds are used from the coinbase that rewards for the last
round of the epoch, the delay of the rewarding transaction is
equal to the time it takes for the full cool down interval. In
contrast, if the rewarding transaction uses funds previously
received from the pool, it is sent immediately at the con-
clusion of the round. Since we do not know whether the
funds used for a rewarding transaction are those that come
from rounds completed within the epoch that the transaction
is rewarding or from earlier rounds, it is not possible to tell
whether the rewarding transaction is actually delayed and es-
pecially by howmuch compared to the conclusion of the last
round. Nevertheless, even just using a small portion of the
funds received from a recent coinbase transaction are enough
to delay the rewarding transaction by part, if not all, of the
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Figure 7: The figure shows the funds that support a rewarding
transaction.

cool down interval. Moreover, it is quite likely that the pool
will use at least some of the funds obtained from the rounds
for which it is repaying the miner. Therefore, we consider
the transaction to occur 100 rounds after the round closing
that epoch. The average confirmation time of a round is 10
minutes, so we can take the time to subtract from the reward-
ing transaction as constant, thus obtaining the instant when
the epoch ended. Instead, about the beginning of epochs,
several assumptions can be integrated by our method.

The first assumption is from [3]. It considers the start of
an epoch with the first coinbase transaction providing funds
for the transaction that pays that epoch. Particular attention
must be paid to understanding the distinction between two
very different roles that a coinbase transaction can play with
respect to a reward:

• One role is played by the coinbase transactions that
provided the pool with the funds it needs at the time
of sending a rewarding transaction, i.e., those that are
inputs to the rewarding transaction and linked to it by
the hash.

• The second role is taken on by coinbase transactions
that are paid to the pool at the end of each round for
mining blocks, for which the collaboratingminers will
be remunerated later on.

Indeed, the pool can spend the bitcoins received from a coin-
base for validating a block in advance compared to paying
the miners who worked in its validation. In this case, rep-
resented in Figure 7 with case 1, the miner is payed with
two recent coinbase funds, even if it worked also in previ-
ous rounds. Conversely, the pool could also use old coinbase
funds already in its wallet to pay for a current validation (case
2).

The distinction presented above makes the first assump-
tion unusable, since a rewarding transaction pays severalmin-
ers, so this would force all of them to have the start of their
epochswith the same round. Also, considering the first trans-
action funding the reward as the starting point of an epoch is
incorrect, since it provided the funds currently used by the

pool, which are not tied to the work done by the miners re-
warded with this transaction. Ideally, the correct coinbase
to consider as the starting point of an epoch should be the
one that paid the pool for the round at the beginning of the
miner’s epoch. Unfortunately, no correlation with this coin-
base transaction is maintained by the blockchain, so this as-
sumption must be discarded.

It is worthmentioning another possible assumption, which
however we have to discard. One could set the beginning of
an epoch at the previous rewarding transaction received by
the miner, as it marks the last threshold it reached. As this
would be a rough approximation, we discard it; indeed, a
miner could have taken a break after having reached the last
threshold and, in this way, the duration of a possible pause
would be considered part of the current epoch.

Finally, the strategy to solve the approximation is under-
standing whether the time elapsed from the last rewarding
transaction is reasonable and, if not, assigning to the epoch
an average duration value. To calculate such a value, it is
possible to leverage on statistical features, as several reward
intervals have similar lengths and can be seen as a distribu-
tion. Given the distribution of intervals, the median is equal
to the average of the intervals placed in the center of the dis-
tribution. Moreover, the maximum length of the epochs in
the center of the distribution is known and it is the third quan-
tile of the distribution.

It is used as the epoch upper bound, after which a epoch
length can not be considered reasonable. Epochs with length
beyond the limit take the upper bound itself as duration, since
there is a high probability that a break was taken after the last
reward.
6.3. Detailed algorithm

Algorithm 5, EPOCHS ESTABLISHMENT, focuses on the
working schedule of each identified miner. In particular, it
calculates the upper-bound to consider an epoch realistic and
establishes the schedule accordingly. In input it receives R
and M . In output, it produces the epochs set E, which in-
dexes for each miner its work schedule in the pools in which
it is present.

The first task of the algorithm 5 is to collect in I all min-
ers’ reward intervals. They result from sorting the reward
transactions in chronological order and by pool. The time
of a reward transaction is assigned as the conclusion of a re-
ward interval and the time of the previous transaction as the
beginning. The cool down delay is simplified because both
transactions are delayed equally, as we consider it constant.
The reward intervals in I are grouped firstly by miner and
secondly by pool. Next, the third quantile of the distribution
composed of all intervals in I is computed, excluding all
above values. The result is the limit l, a value used to con-
sider the length of a reward interval consistent with constant
work activity, or to adjust to represent the epoch realistically.

At this point, the procedure iterates over I , accessing one
miner at a time. For each miner iterates over the pool in
which it has reward intervals. Then, for each miner’s pool,
the procedure iterates over the reward intervals to adjust each
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one to the realistic working interval, transforming it into an
epoch. The start of the work period is assigned with the
time of the first transaction of the reward interval and the
end with the second with the newest transaction. A reward
transaction is sent along with the end of the miner’s work,
but with a delay equal to the cool down interval. Therefore,
the algorithm subtracts this interval from the time stamp of
the transaction. Then condition 5 applies (Table 2). The
only special case concerns the work interval terminated by
the first reward received by a miner. There is no previous
reward to recommend the length of the work done, so the
epoch is set by assigning the maximum length of a realistic
epoch. At this point, the beginning and end of each epoch are
established and the final schedule of epochs, for each hopper
in each pool, is written.

Appendix C gives an numerical example of the execution
of the algorithm.
Algorithm 5 Epochs establishment

Input: rewarding set R, miners set M
Output: epochs set E

1: Initialize I ← ∅
2: Initialize l ← 0
3: for m ∈ M do
4: P ← GETPOOLS(m, R)
5: for p ∈ P do
6: T ← SETINTERVALS(m, p, R)
7: I ← [m, p, T ]
8: end for
9: end for
10: l ← Q3(I)
11: for i ∈ I do
12: for p ∈ i do
13: for t ∈ p do
14: start ← GETSTART(t)
15: end ← ADJCOOLDOWN(t + 1)
16: if end − start ⪈ l then ⊳ Condition 5
17: start ← end − l
18: end if
19: e ← CREATEEPOCH(start, end)
20: E ← [m, p, e]
21: end for
22: end for
23: end for

7. Step 4: Hoppers Detection
For Step 3, we described the collaboration among min-

ers in the pools through the characterization of work epochs,
at the end of which miners get a reward. For an observer of
the reward distribution, given the set of miners in the sys-
tem, it is straightforward to identify which miners receive
rewards from different pools. Specifically, each rewarding
transaction that is consecutive to one coming from a differ-
ent pool identifies a pool change made by the miner. This
phenomenon consists of a jump from the pool of the oldest
reward, to the pool of the second reward, which occurs at
some instant between the two rewards. Some of the min-

ers with rewards from different pools may have switched the
pool of contribution without any strategic attempt. Alterna-
tively, they may have participated in multiple pools by jump-
ing from one to the other. Thus, there is a fundamental dis-
tinction to be made between two jumping behaviors.

• In one case, aminer performs occasional jumps, which
can be seen as simple pool changes after completing a
period ofwork. The epochs results in a non-overlapping
pattern, meaning that it worked in different pools, but
in uninterrupted periods, and never in both at the same
time.

• In the second case, a miner actively jumps between
two pools during concurrent rounds. This jumping be-
havior occurs when, looking at the epochs of the same
miner, there are some that are placed different pools,
overlapping each other.

The establishment of working epochs aims to resolve this
distinction. Indeed, when analyzing the epochs of a miner,
the key factor for which two epochs overlap is that the end of
one epoch is later than the beginning of a second. Calculat-
ing the length of epochs as realistically as possible gains so
much importance, as it allows us to identify overlaps more
accurately.
7.1. Intra-epoch hoppers

Although the behavior of miners who do not exhibit si-
multaneous working between pools seems to impact less on
pool hash rates, it can occur that they frequently switch the
pool. We know that ‘intra-epoch hoppers’ do not appear to
have performed simultaneous works in more than one pool,
however theymay have followed a strategic behaviourwhereby,
as the simultaneous working miners, they also hopped to ex-
ploit system changes to their advantage. If they are following
such a strategy, their work period is at least spaced apart by a
minimum interval so that no concurrent work is performed.
However, if they change pool many times, they should be
considered hoppers, since they are shifting their computing
power continuously between pools. A pool change is iden-
tified simply by two rewards sent from different pools, and
received by the same miner consecutively, meaning that the
miner has jumped from the pool of the first reward to the
pool of the second reward. The purpose of this step of the
analysis is to access the frequency of jumps of intra-epoch
hoppers in order to determine whether there is, or is not, an
opportunistic achievement of rewards in their mining activ-
ity.
7.2. Cross-epoch hoppers

We define ‘cross-epoch hoppers’ the miners that have
overlapping epochs in different pools. We can observe this
when a miner finishes an epoch in a pool and it is already
present in a second one. The overlapping of its epochs is the
consequence of the hopper starting to work for the second
epoch while it was still contributing to get the first reward.
Also, to get the reward in the first, while it was also work-
ing in the second, it must have gone back and forth between
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CASE 2 CASE 2

Figure 8: The representation shows the known jumps.

pools at will until it reached the threshold of the first. We
therefore refer to these ones as cross-epoch hoppers. When
a miner finds itself participating in two epochs at the same
time, it means that it is shifting its computing power from
one pool to the other to take advantage of changes in diffi-
culty and rewards, thus compromising the pool in which it
was working.

Given two overlapping epochs, the baseline jumps for
hopping activity can be identified with certainty. We define
‘known jumps’ the jumps that we can be certain the miner
has performed, as guaranteed by the occurrence of overlap-
ping epochs. In Figure 8 we can see that a hopper performs
at least 3 jumps in the first configuration and 2 jumps in the
second. Highlighted in red are the jumps made to continue
in another pool immediately after receiving a reward, i.e.,
the jumps that end an epoch and place the miner in a dif-
ferent pool for the next reward. In green are those that a
hopper performs to start a new epoch in a second pool, from
the pool in which it has an epoch in progress. In case 1, the
epoch abandoned to start another was also the first to end,
indicating that the hopper, in order to reach its conclusion,
returned to work from the second pool to the first one, with
the intermediate jump. This jump does not occur in case 2,
as the epoch started second is also the first to finish so the
hopper may not have left it before reaching the threshold and
returned to the first only later. In between, the hopper may
have performed an undefined number of hops, which are in
addition to those that are performed necessarily to work in
two pools simultaneously.
7.3. Windowing

Given two overlapping epochs, we call ‘window’ the pe-
riod of time in which a hopper jumps from one pool to an-
other, one or multiple times. The window starts with the be-
ginning of the second epoch and ends with the end of the first
epoch to end. In Figure 9 we can see that a window is com-
mon between two epochs, but its effect is uniquely related to
each epoch. The number of jumps a miner makes between
two overlapping epochs is not known, nor are the number of
shares it submitted and the rounds it participated in. To dis-
tinguish from the known jumps, identified by pool switching,
we call ‘non-observable jumps’ those that a miner performs
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Figure 9: Windowing representation and rounds inside it.

to submit shares to different pools, but without these shares
allowing it to receive a reward, thus remaining unreported
publicly.

The windowing feature allows us to understand three im-
portant factors of the hopping dynamics.

• First, the percentage that the window covers over the
overall length of an epoch gives an idea of how prof-
itable the jumping dynamic was for the hopper in that
epoch. In the case where the percentage is high, the
hopper earned most of the minimum reward threshold
in the jump window but working more in the current
pool. Conversely, if the percentage is low, most of the
threshold is earned by fair mining outside the window.
In this case, it is likely that the hopper paused mining
in the current pool during the window period to start a
new epoch of work in a second one. This is confirmed
by looking at the percentage that the window covers
on the second pool, since we expect that in the sec-
ond pool most of the window covers the epoch. The
threshold is reached mainly in the jump window, but
still mining there. Indeed, it is likely that the hopper
did not jump back and forth, but only took advantage
of some variations to take a break in one pool and dy-
namically work in another pool in the meantime, earn-
ing an extra reward and not wasting time.

• Second, given the start and end times of the window,
we can focus exactly on the rounds performed by the
two pools within it. The number of rounds allows us
to estimate a number of unknown jumps that the miner
could have performed. Given the rewarding methods
commonly used, it is likely that a hopper is only jump-
ing on a round length basis, so the number of jumps
ranges from a minimum of two to a maximum given
by the average number of rounds in two pools. In
this case, one could say that the number of unknown
jumps is proportional to the number of rounds within
the window.

• Third, by analyzing the number of rounds, it is possi-
ble to understand whether, relatively to the time win-
dow, the rounds were few and therefore lasted longer,
or they were many. The insight could give some hints
onwhich is themost advantageous configuration, there-
fore the one that drives the jumping dynamics. The
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notion about the duration of rounds inside the window
allows us to study the behavior of a hopper. For this
purpose we can consider the indicator:

window lengtℎ
number of rounds

(1)

In the hypothetical case in which each validation lasts
10 minutes, the number of rounds would be directly
proportional to the length of the window. The dif-
ference from the hypothetical case gives the hopper
the opportunity and motivation to jump into the sec-
ond pool accordingly to the duration on rounds. In
particular, we call smart the behavior of those min-
ers who took advantage of the dynamics, making their
windows last accordingly and directing their comput-
ing power in the right direction. Conversely, we call a
miner dumb if it shows a behavior that is inconsistent
with the situation in which it performs hopping.

7.4. Detailed algorithms
We implemented a procedure that investigates the epoch

and identifies hoppers. Specifically, the first procedure aims
to find cross-epoch hoppers, those who jump between pools
in overlapping epochs of work. The second aims to count the
number of pool changes for miners who performed distance
jumps, presenting no overlap between their work epochs. Fi-
nally, we implemented a procedure to analyze the windows
that are created between and within two overlapping epochs,
and to count how many rounds are completed by the two
pools in each window. In addition, hopping windows are re-
turned by the procedure with reference to their length over
the total duration of each epoch that identifies them.

The task of algorithm 6, HOPPERS IDENTIFICATION, is to
distinguish cross-epoch hoppers from intra-epoch hoppers.
As input it receives the epochs set E that references all hop-
pers’ epoch, indexed by miner and pool. In output it returns
the cross-epoch hoppers set C and intra-epoch hoppers set
I , resulting from the analysis of their working epochs and
collected according to their distinction. First, the procedure
discards with condition 6 (Table 2) the analysis on miners
that present epochs always in a single pool, as they are fair
miners. Second, when the condition is TRUE, being SINGLE-
POOL(m, E) FALSE, each miner is assumed cross-epoch and
added to C . The investigation of the miner’s contribution
actually begins when, for each epoch worked by the miner,
the procedure checks all previous epochs to see if there are
any that overlap, proving of simultaneous working. To do
so epochs must be sorted with respect to their conclusion.
Therefore, each of the previous epochs has the associated re-
warding transaction earlier that the previous one. Given this
configuration, to say that a pair of epochs, composed by the
current and one of the previous, are overlapped, conditions 7
and 8 (Table 2) must be met.

The resulting epochs, positive to the concurrent work,
are saved with two-by-two logic, just as they were analyzed,
to facilitate their comparison in the windowing algorithm.
The pairs of epochs are stored in C , indexed with the miner
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Figure 10: Possible configuration of overlapped epochs.

to which they refer. At the end of the procedure Condition 9
applies.

Algorithm 7, POOLS MIGRATION, receives as input I
resulting from algorithm 6. The purpose of this procedure
is to identify how many pool switches are executed by this
type of miners, thus whether there is hopping behavior that
is as active as the simultaneous mining. To do so, the pro-
cedure accesses all rewards received by each hopper in I ,
sorted chronologically. A change of pools is controlled by
the ‘Increment rule’, which returns TRUE if two consecu-
tive rewards are received from different pools. Miners in I
are associated with a counter for each pool from which each
of them receives rewards. When a miner receives a reward
from a different pool than the previous one, its counter for the
previous pool is incremented, indicating that there has been
a jump from the pool of the previous reward to the pool of
the next one. I is returned in the output of the algorithm up-
dated with the number of jumps that each intra-epoch hopper
makes from the pools.

Finally, the algorithm 8, WINDOWING, aims to repre-
sent the phenomenon of windowing between two overlap-
ping epochs, and, for each epoch that makes a window, as-
signs the rounds that the epoch pool completed in the over-
lapping interval. The algorithm receives as input U and C .
Given two simultaneous epochs, there are four configura-
tions in which they can be arranged. With conditions 10
through 13 (Table 2), the algorithm sets the start and end
of the window according to the current configuration of the
couple of epochs. In Figure 10 the possible configurations
of a pair of epochs are shown graphically.

Once the overlap interval is calculated and the start and
end of the window are set, the algorithm searches the sched-
ule of rounds for all the validated rounds in the interval. The
overlap window is fixed for both epochs of the pair, but each
is placed in a different pool, so the rounds are searched indi-
vidually for each pool. In addition to the rounds that each
pool has validated in the interval, the window is also as-
signed the percentage that it covers over the length of each of
the epochs; for each analyzed window, it is saved singularly,
once for each epoch of the pair, reporting the percentage cov-
ered over the epoch and the laps that the pool has validated
in the interval. All window references are stored in the win-
dows setW , sorted by miner, which is returned as output by
the algorithm.

Appendix D gives anumerical example of the algorithms
execution.
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Algorithm 6 Hoppers identification
Input: epochs set E
Output: cross-epoch hoppers C , intra-epoch hoppers I

1: for m ∈ E do
2: if SINGLEPOOL(m, E) is FALSE then ⊳ Condition 6
3: C ← m
4: Ē ← CONSEPOCHS(m, E)
5: for e1 ∈ Ē do
6: d ← INDEX(e1)
7: for n = 1 → d do
8: e2 ← GETEPOCH(m, n, Ē)
9: if DIFFERENTPOOL(e1, e2) then ⊳ Condition 7

10: if e1[start] ≤ e2[start] then ⊳ Condition 8
11: C[m] ← [e1, e2]
12: end if
13: end if
14: end for
15: end for
16: if C[m] == ∅ then ⊳ Condition 9
17: delete C[m]
18: I ← m
19: end if
20: end if
21: end for

Algorithm 7 Pools migration
Input: intra-epoch hoppers I , rewarding set R
Output: intra-epoch hoppers I

1: for i ∈ I do
2: T ← GETORDRDRWTS(i, R)
3: for t ∈ T do
4: if SAMEPOOL(t, t+1) is FALSE then ⊳ Increment rule
5: I ← INCREMENT(i, t[pool])
6: end if
7: end for
8: end for

8. Measurements Analysis
In this section we analyze the numerical results of our

pool-hopper detection framework. The main figures are the
composition of the miners population and the measurement
of how many among them perform hopping, and how and
with which rewarding performance. The Python code of the
implemented algorithms is made available in [6].
8.1. Bitcoin network setting

Ourmeasurement campaign covers two 3-months period:
the first starting on May 1, 2020, and the second starting
on May 1, 2021. The bitcoin network has largely increased
in size over the last few years. In August 2020, it reached
555 million transactions, and in Nov. 2021, 692 millions.
With respect to the period analyzed in 2017 [3], during the
2020 period 28 million Bitcoin transactions were counted, 4
million more than 2017.

We perform the detection on themost active pools, specif-
ically considering the five ones with the highest hash rate in
2020 indicated in Table 3. The table also reports the pools
rewarding strategy, fee, number of blocks and hashrate. In

Algorithm 8Windowing
Input: rounds set U , cross-epoch hoppers C
Output: windows set W

1: for c ∈ C do
2: for couple ∈ c do
3: e1 ← couple1
4: e2 ← couple2
5: if e1[start] ⪇ e2[start] then ⊳ Condition 10
6: if e1[end] ⪇ e2[end] then ⊳ Condition 11
7: start ← e2[start]
8: end ← e1[end]
9: else

10: start ← e2[start]
11: end ← e2[end]
12: end if
13: else if e1[start] ⪈ e2[start] then ⊳ Condition 12
14: if e1[end] ⪈ e2[end] then ⊳ Condition 13
15: start ← e1[start]
16: end ← e2[end]
17: else
18: start ← e1[start]
19: end ← e1[end]
20: end if
21: end if
22: for e ∈ couple do
23: u ← GETROUNDS(strat, end, e[pool], U )
24: l ← e[end] − e[start]
25: percentage ← (100∕l)(end − start)
26: w ← (start, end, e[pool], percentage, u)
27: W ← w
28: end for
29: end for
30: end for

Mining
pools

Rewarding
methods

Fee Blocks Hash
rate

Ant PPS, PPS+,
PPLNS

0% 2.130 10.5%

BTC PPS, FPPS 1.5% 10.704 10.5%
F2 PPS+ 2.5% 19.616 12.9%
Huobi FPPS 0.8% 7.566 11.4%
Poolin PPS, FPPS 2%-4% 3.192 13.6%

Table 3
Information on the selected mining pools (May 1, 2020).

particular, the pools use PPS and its variants as rewarding
methods, except theAnt Pool which also implements PPLNS.
All fees are under 5%, attracting new miners and hopping
miners.
8.2. Step 1 (revenue stream)

In the first step, the flow of revenues is analyzed looking
at rewarding transaction (RWTs). The procedure associates
the ownership of each RWT to a pool, tracking the paths of
the coins generated by each coinbase transaction.

Following the reading of the ledger, and considering the
theoretical intervals related to the characteristics of a RWT,
the procedure identifies the number of transactions indicated
in the first column of Table 6: comparing 2020 to 2021,
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RWTs
Association 2020 2021
To pools of interest 5.123 21.410
To other pools 2.180 18.595
Not associated to pools 4.105 20.070

Table 4
Result from the RWTs association procedure.

while for some pools (Ant, Huobi), this number stayed rather
stable, for others it underwent major increase (F2, BTC) or
decrease (Poolin). While for the former the increase of RWTs
is correlated with the increase of the number of miners, it is
not for Poolin, which suggests the change of policy in setting
the RWT recipient set.

Note that the RWT-to-pool association process results in
high spatial complexity; the stream originated in each coin-
base transaction is constructed by searching for subsequent
transactions in a limited-size set of transactions, in the 7 days
(approximately) following the day of the coinbase transac-
tion. Because of live memory limitation, we limited the size
of the set of transactions to 2 million transactions; with this
limit, 30% of the RWTs identified as such are not associated
with a pool, as reported in Table 4. This limits the char-
acterization of remunerations that are far in time from the
generation of the coins that fund them.

Figure 11 and Figure 12 show, respectively, the distribu-
tion of the amount of BTC sent for RWTs, and of the num-
ber of transfers of RWTs1. Looking at the median values
of the distributions for each pool, we can see that the pay-
ment dynamics significantly differ among pools in 2020, and
are similar in 2021. While in 2020 in many pools the prof-
itable transactions contain many payouts, in 2021 this does
not seem to happen. One reason can be the larger scale of
the dataset for 2021 than for 2020 with therefore a thinner
distribution around the average, or an important alignment
of pools to each other in the year elapsed from 2020 to 2021.

In 2020, the range of each payout is also different from
one pool to another. We can see that pools that send trans-
actions more frequently tend to send smaller transactions as
a general trend, while it is the opposite for pools that send
transactions less frequently. For example, one can notice
from Figure 12 that Ant Pool almost always sends around
100 payouts, of smaller amounts than other pools. Poolin
Pool also has a near constant number of payments, around
500, but sends far fewer transactions, hence increasing the
amount of each payment. This specific behavior for Poolin
Pool can also be observed in 2021 (yet with a higher vari-
ance on the number of transfers), but with a lower payment
amount gap with respect to the other pools.
8.3. Results from miners identification

Let us present the results from the miners identification
procedure. As explained in the section 2.1, it is not possible
to get an exact miners identification; indeed, a miner may

1for these and following plots, a boxplot format is used, showing the
minimum, first quartile, median, third quartile, maximum and outliers

Mining addresses 2020 2021
All 261.191 2.302.434
Used in many transactions 204.172 1.915.519
Used in one single transaction 57.019 386.915

Non-singleton miner address
clusters (candidate hoppers)

75.292 430.392

Table 5
Result of the miners identification procedure. The number of
unique miners belong or do not belong to a pool.

choose not to reuse the same addresses, to never be identi-
fied as the author of two distinct mining actions. To tackle
this problem we use a heuristic to estimate a number of min-
ers that is as close as possible to reality. Given this estimate,
we can evaluate what aspects of uncertainty it results from,
so that we can tell whether our result is an approximation by
excess or by default. Recalling Section 5, the result obtained
by the adopted heuristic is an upper bound since it could hap-
pen that two groups of addresses are controlled by the same
miner but do not have any address in common, so they are
not joined (transitive property). On the contrary, in the case
there is some transactions resulting from the mixing of ser-
vices that is not recognized by the procedure as coinJoin, it
would result in the joining in the same group of addresses
of two different miners. This would increase the number of
miners, so the effect of the coinJoin filtering strategy is a
lower bound.

Our miners identification lies in between the two approx-
imations, one upward, given by the limits of the heuristic,
and one downward, given by the limits of the coinJoin filter.
Following this approximation, we obtain the figures in Ta-
ble 5; we can see that the system, in the measured periods of
2020 and 2021, has roughly 75 and 430 thousand active min-
ers that are candidate hoppers, respectively, i.e; those corre-
sponding to non-singleton clusters of the heuristic (those in
the singleton clusters can still be considered as miners, but
the likelihood that they are also hoppers is reasonably null2.
Empirical results from Table 5 show that between 15% and
20% of the addresses receiving a reward are used only once
to receive a RWT: they could belong to already identified
miners (using the heuristic), or to other miners who did not
send transactions in the period. The last line of Table 5 indi-
cates the clusters of addresses with more than one address:
these are candidate hoppers (remembering that those that fall
in singleton clusters are likely not to be hoppers).

In the Table 6 (Miners columns) one can see the num-
ber of miners populating each pool. As we recall, a miner
can actually be present in multiple pools. It is worth noting
that the average number of addresses per candidate-hopper
miner, estimated as the ratio between the number of miners
(non-singleton clusters, in Table ??) to the number of RWTs
(Table 6) is rather constant in time and around 20.

2Indeed, as hoppers do not want to be identified as such by the pools
the mine for, they would certainly use different addresses and not the same
one.
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(a) 2020 (b) 2021

Figure 11: Distributions composed of the average amount sent by a single transfer of a rewarding transaction.

(a) 2020 (b) 2021

Figure 12: Distribution composed of the number of outgoing transfers of a rewarding transactions.

8.4. Results from epoch establishment
The procedure for defining epochs reveals that the me-

dian epoch length (period between two consecutive rewards)
has decreased by roughly a factor 3 from 2020 and 2021.
Figure 13 shows it was approximately 25 hours in 2020 and
30 minutes in 2021, with however an important number of
high value outliers.

We also apply an adjustment, marked as ‘after’ in Fig-

ure 13: we consider continuous work intervals to be those
that reside within the 2020 third quantile (e.g. 75 h and 25h,
respectively, in 2020 and 2021); that is, we use it as the limit
for determining the duration of an epoch as realistic or not.
Indeed, beyond this limit, a common policy is that the miner
stops for a while upon reward reception, changing mining
pool in case of a hopper. Looking at the per-pool epoch
length after adjustment in Figure 14, we see that on some
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pools paid in 2020 miners less frequently, hence with longer
epochs, which can reduce the accuracy of placing miners in
their epochs: our approximation places them with certainty
in the closest pay period, although they may have worked
even longer than the limit; other pools, however, straddle
the limit epoch, so we consider their approximation accu-
rate. No relevant differences can, however, be spot for 2021;
a behavioral alignment seems to have happened among pools
over the observed years.
8.5. Results on hoppers detection

From Table 6 (General Hoppers column) the actual hop-
pers among the candidate hoppers (miners with multiple ad-
dresses) are close to the half of the miners population, with
a range from 13% to 74% depending on the pool and the year.
The phenomenon is, in our opinion, surprisingly spread among
miners.
8.5.1. General migrations

To understand the level of dynamism that is possible to
pursue in each pool, we considered the ‘desertation rate ’,
computed as the ratio between the number of outward jumps
and the number of pool hoppers.

Figure 26 shows the at which extent pool is left upon a
reward, to chase a second reward in another pool; a strong
increase happens between 2020 and 2021, which may corre-
spond with the usage of more sophisticated hopping strate-
gies. Ant pool is particularly impacted by desertation, in
both years, even if the percentage of hoppers strongly dif-
fers from 2020 to 2021; one reason may be the null fee for
Antpool. This shows the level of dynamism of users be-
tween completing rounds, but not during rounds. There-
fore, the pool configuration is allowing hoppers to carry a
very active dynamic-and-receive intertwined rewards. Con-
versely, in pools where the rate is lower it means that fewer
hoppers were able to implement a jumping strategy between
rounds. Another possibility is that changes in pool configu-
ration have made it attractive to jump only at certain times.
BTCPool and Poolin Pool, for example, have a similar length
of working epochs in 2020, so there is no disparity in the
frequency of rewards, but at the same time the latter is much
more dynamic than the former.

Before discussing the division of hoppers into the two
types of behavior, it is pertinent to look at the most common
migrations across pools. A pairing is measured based on the
number of consecutive rewards from different pools. Migra-
tions are compared in relation to the overall population of
hoppers and not the one in each pool; the precise reason is
that each pool has a different percentage of hoppers. What
we are interested in is, going beyond the number of hop-
pers in each pool, understanding which is the most traveled
pool combination. From Figure 16 one can see that migra-
tions standing out the most occur with the BTC Pool, in both
years. A particular pairing exist between BTC and F2; the
reasons are not clear, but the phenomenon accentuated sig-
nificantly, both in absolute and relative values, in 2021.

8.5.2. Hoppers categories
Let us know look at the differences between ‘intra-epoch’

hoppers - which change pools but conclude their work epochs
before jumping - and ‘cross-epoch’ ones - that instead exhibit
simultaneous work.

Table 6 (right side) shows how the behavior distribution
differs for different pools over the two considered. We see
that, in both years, roughly half of the hoppers are cross-
epoch hoppers and half are intra-epoch hoppers. For some
pools the difference ismore pronounced in 2020 than in 2021,
when an close-to-even share is observed.

The same distinction is also reported in the epoch du-
ration measurement - see Figure 14 for 2020 only. In fact,
cross-epoch hopping behavior is likely to be slightly better
executed in pools with faster reward distribution. The pecu-
liar dynamics of Ant Pool, for example, disfavors static work,
inducing miners to jump between epochs. In contrast, while
mining in F2 Pool and Huobi pools, simultaneous work in
the other three pools is feasible but not trivial.

For the specific case of 2020 showing more differences
among pools, in Figure 17, we can see the pools that have
the highest percentage of epochs performed simultaneously
with epochs in other pools. Ant Pool appears as the most
suitable for doing simultaneous working, as 50% of the work
epochs performed in it are overlapped to epochs in other
pools. What is interesting to note is that miners actively
jump into both pools that allow them to reach rewards faster
and pools that force them to work longer to finish an epoch.
For example, Huobi Pool imposes a longer time to reach re-
wards, but similarly a high percentage of epochs are over-
lapped with epochs in other pools. Although not the pre-
ferred behavior of most miners in this pool, it makes us re-
alizing that it is strategically advantageous for a hopper to
jump into pools where epochs are concluded more dynam-
ically while in the middle of a pooled epoch where reward
attainment is slower.

Another aspect to consider is the percentage of overlap-
ping windows over the total length of epochs, shown in Fig-
ure 18. We have already presented in which pool dynamic
mining is preferred, so here we can understand where it actu-
ally helps to achieve the reward and, instead, where jumping
elsewhere involves the interruption of the validation in the
current pool.

For 2020, in Ant Pool, the percentage of dynamic work
during an epoch is 80%, meaning that the rewards are al-
most entirely in epochs overlapping with others; in contrast,
the percentage of overlaps in Poolin Pool epochs is notably
smaller than the total length of the epoch: the epochs in
this pool, which is one with the prevalence of jumps be-
tween epochs, are often paused to mine elsewhere and then
restarted. A realistic case, for example, might see a hopper
mine in Poolin Pool, then pause the current epoch to jump
into Pool Ant, where it completes a few epochs, and then go
back at will to continue validation in Poolin Pool. By do-
ing so, the miner efficiently shifts its resources to get a few
small rewards from Ant Pool and a larger one from Poolin
Pool, instead of just one large one from Poolin Pool a little
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(a) 2020 (b) 2021

Figure 13: Distribution of epochs lengths before and after adjustment.

(a) 2020 (b) 2021

Figure 14: Distribution of epochs lengths in each pool.

RWTs Miners General hoppers Cross-epoch hoppers Intra-epoch hoppers
Total %-miners Total %-general Total %-general

Pools: 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
Ant 3.622 3.485 8.091 84.847 1.045 34.575 13% 41% 778 16.477 74% 48% 267 18.098 26% 52%
BTC 702 5.911 29.066 147.188 11.129 48.857 38% 33% 3.594 22.985 32% 47% 7.535 25.872 68% 53%
F2 458 11.469 33.555 268.678 11.488 58.711 34% 22% 3.532 27.078 31% 46% 7.956 31.633 69% 54%
Huobi 423 458 23.688 16.353 10.881 9.555 46% 58% 3.805 5.005 35% 52% 7.076 4.550 65% 48%
Poolin 288 87 3.970 3763 1.610 2.772 41% 74% 983 1.080 61% 39% 627 1.692 39% 51%

Table 6
Characterization of the RWTs, miners and hoppers for five selected pools.
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(a) 2020 (b) 2021

Figure 15: Desertation rate in each pool.

(a) 2020 (b) 2021

Figure 16: Preferred pool migrations.

faster. This general trend can be also observed in 2021.
The Figure 19 shows the percentages of a round’s du-

ration over the entire simultaneous work period (resulting
from (1)). In other words, it reveals inwhich pools the rounds
are validated the fastest while the miners are actively jump-
ing. I For the Huobi Pool, for both 2020 and 2021, when
hoppers are working in simultaneous epochs: the validations
are won much more slowly than in other pools. Hopping in
a pool to contribute to slower rounds does not seem very ef-
ficient, which might explain why in Huobi Pool intra-epoch
hopping is preferred. In this respect, the situation changes
for the Poolin pool from 2020 to 2021. In contrast, in the

other pools the validations are quicker, even though miners
jump, allowing for faster rewards. It is certainly efficient to
participate in these pools and be part of a quick validation,
in case a miner is willing to interval their work in a pool with
longer time frames to achieve the rewards.
8.5.3. Remuneration performance

To conclude, we analyse the extent to which the phe-
nomenon is more profitable for hoppers than for stable min-
ers, looking at Figures 20 and 22. We note that:

• as shown in Figure 20 (we add to the boxplot the av-
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(a) 2020 (b) 2021

Figure 17: Percentage of epoch carried out by cross-epoch hoppers.

(a) 2020 (b) 2021

Figure 18: Distribution showing the coverage values of windows over the epochs.

erage as a red asterisk for 2020 as they do visibly dif-
fer, likely because of the smaller population), for all
three categories, non-hopper miners (counting only
those miners with more than one address), intra-epoch
hoppers and cross-epoch hoppers, the average gain per
transaction over the period is statistically the same in
both years. Indeed, this is a direct result of the reward

methods implemented by the pools to prevent the phe-
nomenon from being unfair to other miners.
Unlikewhen proportional rewardingmethodswere used
(whereby the distribution of rewards rewarded hop-
pers doing early mining to a greater extent), now ev-
eryminer is rewarded at a roughly same amount for the
work it does, regardless of when it is done andwhether
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(a) 2020 (b) 2021

Figure 19: Distribution showing the length of rounds in each window.

it is a hopper or not. The current rewarding methods
therefore prevent that there is a higher average gain for
hoppers for equal work. Specifically, rewards range
from 0.002 BTC, for rewards generated as a result of
PPS while they are higher up to 0.006 BTC in cases
where a minimum number of shares must be submit-
ted to achieve the reward. Therefore, the phenomenon
can no longer be referred to as unfair towards anyone.

• looking at the Figure 22, no major difference can be
observed between cross-epoch hoppers and intra-epoch
ones. That is, pool-hoppers can exploit the hopping
behaviour to gain more across pools over time. In fact,
we notice that hoppers get rewards roughly 10% more
rapidly than single pool miners. Furthermore, as can
be seen from Figure 21, in 2020 for instance, cross-
epoch hoppers receive a average reward 33% higher
on median than other miners, due to the increased fre-
quency of rewards over the period, so somehow denot-
ing a more efficient mining strategy by obtaining more
rewards. Note that this is not to be considered as an
unfair increase, in our opinion, but rather an increase
driven by a more effective strategy that allows miners
to hop and make the most out of their resources.

9. Positioning with respect to related works
Our algorithmic framework can be qualitatively compared

to two empirical detection papers, already briefly presented
in the background section. The first one implements a differ-
ent algorithmic and evaluation strategy in [22]. The second

one does not consider important and more newly born hy-
potheses [3].
9.1. Tovanich et al. [22]

Although the purpose is the same across the board and
falls into the detection category of pool hopping, there are
differences in the level of detection we want to achieve with
the approach in [22]. In fact, their aim to measure miner mi-
grations covering different years, resulting in a broad data
statistic that characterizes cross-pooling as a function of the
fee applied and the rewarding method used by pools in each
year. In contrast, because fee variation has now stabilized
and most pools primarily use the same rewarding method,
or variations of it, we aim to estimate a precise number of
active miners in a given time period and given the current
conditions. Only in relation to this number we are interested
in understanding what percentage of miners performs hop-
ping, with what pool characteristics it is most performed and
if indeed it is fair today.

Methodologically, an important difference is the detec-
tion strategy. In [22], it relies in the association of pool
ownership. In our framework, we assign the ownership of
a transaction to the pool that has the least used coins within
the transaction’s funds. Instead, they assign ownership to the
pool with the largest amount of funds, even if generated long
before the transaction. With their strategy, the pool of own-
ership would be assigned as the one with the highest percent-
age of the funds funding the transaction. As we mentioned,
the uncertainty of assigning a certain coin to the pool arises
when the coins are the result of numerous transfers. Thus,
even if a transaction has a higher percentage of funds from
one pool and a lower percentage from another, but we do
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(a) 2020 (b) 2021

Figure 20: Boxplot distribution of per-transaction rewards miners of static miners, cross-epoch hoppers and intra-epoch hoppers.

(a) 2020 (b) 2021

Figure 21: Boxplot distributions of cumulative gain earned in the period by static miners, cross-epoch hoppers and intra-epoch
hoppers.

not know how far back in time those coins were generated,
we still cannot be certain that the transaction was sent from
one pool instead of the other. In fact, it could be that, af-
ter several transfers, a pool receives coins from outside and
uses them all to pay a reward, but then does not turn out to be
the owner, since the coins were generated for another one. In

contrast, by focusing on the journey of a coin, a coin that has
gone through fewer transactions is very likely to still belong
to the pool for which it was generated.

Anothermain difference lies inminers identification. Be-
cause their intent is on measuring cross-pooling traffic, they
focus on individualminer addresses, without knowingwhether
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(a) 2020 (b) 2021

Figure 22: Boxplot distribution of the time between earnings of every static miner, cross-epoch hopper and intra-epoch hopper.

actions from different addresses are associated with the same
user. Furthermore, the authors argue that the heuristic [17]
cannot be used because it is inaccurate and induces false pos-
itives, since, in the case where miners use mixed trades or
services, the heuristic would group them in the same cluster.
With respect to our measurement goal, considering individ-
ual addresses does not allow us to place miners in pools and
characterize their work. In addition, they say there is a 25%
in addition to the hopping rate by considering miners with
groups of addresses, instead of addresses of individual min-
ers. Our work takes a completely different direction on the
issue of miner identification, since we are interested in plac-
ing a miner in each epoch despite using different addresses.
In fact, we use the heuristic [17] and at the same time han-
dle the imprecision resulting from the phenomenon of mixed
services. by preventing as much as possible the association
of addresses controlled by different entities to the same one.
Removing all CoinJoin transactions before applying heuris-
tics is crucial since it prevents as much as possible the as-
sociation of addresses controlled by different entities to the
same.

Unfortunately, the code in [22] is not open-sourced, which
prevented us to do a fair quantitative comparison against newer
data. Authors published only the dataset with their results,
but given these differences in strategy and the different scope
of their detection, it is not directly possible to do a quantita-
tive comparison on recent data.
9.2. Belotti et al. [3]

Our work is a continuation of Belotti et al. [3], reflect-
ing the dismissal of some assumptions and the application
of new ones. Firstly, the identification of rewarding transac-

tions in [3] is imprecise: it was considered that all and only
coinbase funded transactions as such. In fact, a pool can
manage bitcoins internally with several transactions and pay
rewards only later, without the founds being derived directly
from a coinbase [18].

Moreover, we consider the distribution of rewards in ac-
cordance with the existence of the minimum reward thresh-
old. This implies that a detection based only on consecutive
rewards is not sufficient to characterize the work of miners
and place them in each pool at different times. As a result,
many hopping cases are neglected by the previous strategy
in [3]: detected hoppers are in the final rounds of epochs,
without considering other rounds within them. As a quick
numerical comparison with respect to this aspect, let us con-
sider the hoppers e could detect in our method, looking at
Table 6 (right side):

• method in [3] does not allow to detect the cross-epoch
hoppers;

• method in [3] would not have marked as hoppers all
the intra-epoch hoppers, but only to this hoppers ob-
servable in the final rounds of each epoch;

• overall, across the different pools, about half of the
hoppers could not be detected with the method in [3].

Finally, when more than two pools are considered, hop-
pers may be rewarded in two non-adjacent reward transac-
tions.

The result of the analysis determines that only five thou-
sandminers are present and active over a total period of three
months in 2017. Furthermore, over a two-week sample, hop-
ping was clearly smaller: 43 pool-hoppers were detected in
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a population of 69 active miners with the two pools. In addi-
tion to being smaller because far fewer users are identified, it
is also certainly smaller because many miners are not placed
in the rounds in which they work. Measurements also show
that hopper rewards significantly exceed those of static min-
ers, as the median of rewards is 3 times higher for hopping
miners than for static miners. The pools they analyzed used
different reward methods than those used today, which ex-
plains such a difference in payoffs among categories. Con-
sequently, their results regarding the fairness of the rewards
are not comparable with ours, which on the contrary prove
the fairness of the distribution of rewards thanks to the (rel-
atively, recently adopted) current methods.

10. Summary
Wepresented in this article a framework for pool-hoppers

detection and characterization for the Bitcoin blockchain.
Our work goes beyond and improves the previous work [3]
toward a scenario closer to the current reality of Bitcoin min-
ing, considering pools payout streams and the existence of
minimum reward thresholds. Indeed, since few years, new
rewarding methods, PPS, PPLNS and variants, have been in-
vented precisely to mitigate the pool-hopping phenomenon
and are now widely used in the system. This study therefore
assesses the actual efficiency of the new rules.

The proposed framework and related numerical analysis
of empirical measurements, against five major mining pools
during 3 months of 2020, allow us to determine that:

• the percentage of hoppers over the population of min-
ers ranges from 34% to 91%, depending on the mining
pools. Some pools are better for getting faster rewards,
in fact they count a lot of miner migrations. In three
out of five pools, cross-epoch behavior is preferred to
intra-epoch behavior. This difference does not depend
on the length of the epochs, as the dynamics of active
jumping are best performed by moving between pools
with long epochs and pools with shorter epochs.

• there is no diversity in the per-transaction rewards of
static miners versus hoppers any longer, hence differ-
ently than what happened in the past with proportional
rewardingmethods, thanks to the new rewardmethods
we described.

• Cross-epoch hoppers earn more over time, 33% more
onmedian in the observed period. Indeed, they are the
ones who are able to receive rewards the fastest. The
frequency of their rewards is higher than that of static
miners, showing a more efficient strategy, and thus the
overall gain over the long run is higher. Thus, in the
long run, active hopping is more efficient than staying
in a single pool or moving only between completed
epochs.

About the last two findings, it is worth noting that the
mining of cross-epoch hoppers is automatically prevented

from harming static miners, as the single reward remains eq-
uitable to the time and resources involved. As a result, the
higher frequency of rewards is not at the expense of static
miners, but is merited for more dynamic work as the ex-
ploitation of the hopper’s resources is maximized. Hoppers
are miners who strive to earn rewards as efficiently as pos-
sible, even if that means moving dynamically through the
system and not standing still in a pool. The pool-hopping
phenomenon is therefore to be interpreted as a strategic deci-
sion just like the one that led to the creation of mining pools.
Mining pools were created to allow miners to share their re-
sources in order to get more stable and closer rewards over
time. This is exactly the goal of those who move from one
pool to another: to maximize the use of their resources and
get rewards faster.

For the sake of reproducibility, we open source the code
in [6]. Future work can consists in applying the analysis can
be applied to another cryptocurrencywith a comparable con-
sensus method, such as Ethereum.

The adoption of novel techniques to further control, ide-
ally avoiding pool-hopping is possible in the coming years,
as for instance the frameworks proposed in [21, 7]. Our
study is therefore susceptible to be repeated against possi-
ble future new settings of the Bitcoin rewarding strategies.

A. Revenue Stream Association Example
Hereafter is an example of the functioning of the first

phase of our detection. Algorithms 1, 2 and 3 are consid-
ered.

Suppose we are reading the ledger and at a certain mo-
ment are shown transactions in the Table 7. Starting with
TX1, to access the subsequent transactions it is not enough
to know that ADD2, ADD3 and ADD4 are receiving it, be-
cause these addresses may have also sent transactions that
are not consecutive to it. To find which transaction follows
the current one, we need to access the ID field of all trans-
actions by looking for IDs that match this transaction hash.
What we know so far is that there are 3 transactions follow-
ing TX1, so we can build up to 3 branches from here. Recall
that when accessing a transaction, the ID field refers to the
previous transaction, so looking at transaction 2, its back-
ward funding shows transaction 1. Transaction 3, on the
other hand, is funded by transactions 1 and 2 while trans-
action 4 is funded by transactions 1, 2, 3.

Matching structure D, Table 3, is constructed so that
we can follow transactions onwards, since it is the result of
searching for all transactions that have an ID matching the
hash of a given transaction. Transaction 1 is followed by
transaction 2, 3, and 4. Transaction 2 is followed by trans-
action 3 and 4, and so on.

Supposewe start with a coinbase transactionC1, received
from ADD1 and with whose funds ADD1 sends transaction
TX1. To follow up on subsequent transactions, D holds el-
ements referencing those transactions consecutive to TX1.
Table 9 shows that the referencing elements are ETX2, ETX3
and ETX4. Note that transaction 1 sends a transfer to ADD2
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in adds hash (IDs,
pos)

out
adds

CX1 - HC1 - ADD1
TX1 ADD1 HTX1 (HC1, - ) ADD2

ADD3
ADD4

TX2 ADD2 HTX2 (HTX1,1) ADD3
ADD4

TX3 ADD3 HTX3 (HTX1,2)
(HTX2,1)

ADD4

TX4 ADD4 HTX4 (HTX1,3)
(HTX2,3)
(HTX3,1)

ADD70

Table 7
Example of some transactions in the ledger.

Keys Subsequent Transaction Elements

HC1 ETX1
HTX1 ETX2 - ETX3 - ETX4
HTX2 ETX3 - ETX4
HTX3 ETX4
HTX4 ETX70

Table 8
Example of Matcℎing Structure D, linking each transaction
to the next ones.

ETX2 Att.
ℎasℎ HTX2
leaf 1
od [0, 1]
isR False
pr 1

ETX3 Att.
ℎasℎ HTX3
leaf 1
od [1]
isR False
pr 2

ETX4 Att.
ℎasℎ HTX4
leaf 1
od [0]
isR False
pr 3

Table 9
Content of the elements referenced by each key in D.

in position 1, to ADD3 in position 2, and to ADD4 in po-
sition 3. In D, under HTX1, ETX2 has the pr attribute re-
porting that the funds in the previous transaction (TX1) are
in position 1. The same for ETX3 to transaction 3, whose pr
shows position two, and for ETX4 to transaction 4, whose pr
in turn shows position 3.

When visiting TX1, the procedure will check which out-
going transfers are to be followed and which are not. The
od attribute in ETX1, Table 10, indicates that the first and
third outgoing transfers are to be followed, while the second
is not. This means that transaction two and transaction four
received an amount of bitcoin from transaction one that is
above the payout threshold. They are considered transfers
made within the pool and not to external users, which in-
stead is the case for the second transfer to transaction three.
When HTX1 is accessed in D, the elements that refer to the
next transaction are unordered, so to know which of them
corresponds to the second transfer out of TX1, we need to
access the pr attribute. The element showing position 2 in
pr is ETX3, so the transaction referenced by this element is
not to be followed. Elements that in pr show a position that

ETX1 Attributes
ℎasℎ HTX1
leaf 0
od [0, 1, 0]
isR False
pr 1

Table 10
Content of the elements referencing the transaction currently
visited.

ETX3 Attributes
ℎasℎ HTX3
leaf 2
od [1]
isR False
pr 1

ETX4 Attributes
ℎasℎ HTX4
leaf 2
od [0]
isR False
pr 2

Table 11
Content of the elements referenced by each key in D.

ETX2 Attributes
ℎasℎ HTX2
leaf 1
od [0, 1]
isR False
pr 1

Table 12
Content of the elements referencing the transaction currently
visited.

ETX4 Attributes
ℎasℎ HTX4
leaf 2
od [0]
isR False
pr 1

Table 13
Content of the elements referenced by each key in D.

in od has zero, instead reference transactions to be followed.
ETX2 and ETX4 identify as the next transactions to be

follow, that are transaction 2 and 4. In D HTX2 refers to
ETX3 and ETX4, Table 11.

Going down one level in the stream visit, ETX3 shows
position 1 in pr of ETX2, Table 12. At that position od indi-
cates a 0, so a branch to transaction 3 is created from trans-
action 2. Instead, ETX4 takes position 2 in pr of ETX2. At
that position od has indicated a 1, so no branch to transaction
4 is created from transaction 2.

The process continues by doing the same forHTX3, which
refers only to ETX4 since transaction 3 has a single output.
Table 13 shows that the pr attribute of transaction 4 is 1,
but at that location the od attribute of transaction 3 indicates
that a branch from there will not be created, Table 14. The
algorithm proceeds consistently until the end of the ledger.
Figure 23 shows the final flow for our example.
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ETX3 Attributes
ℎasℎ HTX3
leaf 2
od [1]
isR False
pr 1

Table 14
Content of the elements referencing the transaction currently
visited.

Figure 23: Figure shows the stream of transactions in subject.

visits
TX20 (Pool P,10) (Pool R,3)

Table 15
Table shows an output example of the second algorithm, which
returns all the visits of transactions.

When a transaction is accessed the leaf is updated. Trans-
actions are only visited during a shorter path than the one in
which they have already been encountered. The information
about the pool that received the coinbase transaction gener-
ating the stream currently visited is also stored. At the end
of visiting all streams, the rewarding transactions report all
the times they were visited. As described in the previous
section, the transaction property is assigned to the pool that
presents it in one of its streams that is the shortest for the
transaction.

Now assume that transaction TX20 is visited by track-
ing the stream of a pool P as a result of 10 other transfers;
TX20 is then visited by tracking the revenue stream of an-
other pool R as a result of 3 previous transfers, Table 15. To
figure out which pool to assign ownership to, notice that it is
more likely that the coins generated for R are still in R’s wal-
let after 3 transactions, as opposed to P’s coins, which may
have left P’s wallet before the 10th transaction, case 1 in Fig-
ure 24. The procedure assigns transaction TX20 to pool R
because there is a higher probability that it owns some coins
in that transaction. Instead, the coins originally created for
P are likely to have become part of another pool’s stream be-
cause they are at a more advanced level of use than the other
coins in the same transaction.

B. Miners Identification Example
Hereafter is an example of the functioning of the first

phase of our detection. Algorithms 4 is considered.

P

TX20

input k BTC

input h BTC

CASE 2: POOL P SENT TX20

CASE 1: POOL R SENT TX20

Exit from
Pool P

            Exit / entrance
            from R to P

TX20

input k BTC

input h BTCEntrance in
Pool R

P

R

R

Figure 24: Figure shows the ownership of a transaction funds
resulting from the revenue chain.

Address Transactions Sent

ADD1 HTX1 HTX2 HTX4
ADD2 HTX3
ADD3 HTX4 HTX5
ADD4 HTX5
ADD5 HTX6
ADD6 HTX3

Table 16
Example of Senders Set S.

TX1 Senders
ADD1
ADD3

TX2 Senders
ADD1
ADD2

TX3 Senders
ADD2
ADD6

TX4 Senders
ADD1
ADD2

Assume to pull address ADD1 from R at the beginning
of the miners identification. The address is not owned by any
miner already identified, therefore the procedure can start
collecting all its homonymous addresses. Accessing ADD1
in S, Table 16, we can see that it is referencing the list of
hashes composed by: HTX1, HTX2, HTX4. The miner at
this stage is identified only by ADD1 and it is known to have
sent transaction 1, transaction 2 and transaction 4. As shown
in Table 17 ADD1 is strikethrough as already visited on S
and already associated to this miner, so it will not be consid-
ered anymore..

Given the three hashes, we can retrieve the correspond-
ing transactions from T , Table 18. ADD3 is homonymous
with ADD1, as they are both senders of TX1. Also ADD2 is
homonymous with ADD1, as they are both senders of TX2.
Therefore, even if ADD2 and ADD3 are not used in the same
transaction, we can already say that they are homonymous
with each others, as they have ADD1 in common.

Now that we know that also ADD2 and ADD3 are ad-
dresses controlled by the miner, let’s see in S which trans-
actions were sent with those addresses. The process gets re-
peated as before. From S, Table 19, we can see that ADD2
is referencing HTX3, so the miner sent transaction 3 with
ADD2. Also it sent transaction 4 and transaction 5 with
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TX5 Senders
ADD3
ADD4

TX6 Senders
ADD5
ADD -

Table 17
Senders addresses of the transactions in example.

TX1 Senders
ADD1
ADD3

TX2 Senders
ADD1
ADD2

TX3 Senders
ADD2
ADD6

TX4 Senders
ADD1
ADD2

TX5 Senders
ADD3
ADD4

TX6 Senders
ADD5
ADD -

Table 18
Senders addresses of the transactions in example.

ADD3. Transaction 4 is strikethrough, as it has already been
accessed visiting the transaction sent by ADD1. It will not
be visited again, since its sender addresses have already been
associated to the miner.

The procedure, then, access again T to retrieve the sender
addresses of transaction 3 and transaction 5, Table 20. Among
the addresses strikethrough, already associated to the miner,
transaction 3 shows ADD6 as homonym with ADD2, hence
alsowith the otherminer’s addresses. In the sameway, trans-
action 5 shows ADD4.

Again ADD4 and ADD6 are accessed in R, Table 21.
Both reference already seen transactions, so we can conclude
that the collection of all the homonymous addresses linked
by the transitive property and controlled by theminer is com-
pleted. No transaction showed ADD5 within the inputs, so
the procedure is not brought to visit transaction 6. In our ex-
ample ADD5 is the only one in input to transaction 6 and,
since it is not visited, ADD5 is not controlled by the miner.
Table 22 shows all the addresses detected by our algorithm
as controlled the by the same miner.

C. Epochs Establishment Example
Hereafter is an example of the functioning of the first

phase of our detection. Algorithms 5 is considered.
Suppose we want to investigate the work performed by

the miner m, so as to characterize its epochs and know its
presence in the pools at any given time. The first step is to
access all remunerative transactions it has received. Sort-
ing them by time, each transaction identifies with the next
a time interval by which it has reached a threshold and its
work has been rewarded. As we know, it may have partici-
pated in several pools, so the pool of one remuneration may
be different from the pool of the next. Figure 25 shows this
situation. Accordingly, the procedure looks for all pools that

Address Transactions Sent

ADD1 HTX1 HTX2 HTX4
ADD2 HTX3
ADD3 HTX4 HTX5
ADD4 HTX5
ADD5 HTX6
ADD6 HTX3

Table 19
Example of Senders Set S.

TX1 Senders
ADD1
ADD3

TX2 Senders
ADD1
ADD2

TX3 Senders
ADD2
ADD6

TX4 Senders
ADD1
ADD2

TX5 Senders
ADD3
ADD4

TX6 Senders
ADD5
ADD -

Table 20
Senders addresses of the transactions in example.

paid miner m, in this case Pool A and Pool B, then proceeds
to compute the work intervals in one pool at a time.

The Table 23 reports the work intervals of miner m. We
can see that TX1 and TX2 are sent from the same Pool A and
are quite close to each other. They identify two work inter-
vals, one ending with TX1 and the other with TX2. Of the
one ending with TX1 we do not know maximally how long
it lasts because it is the first one, while we know that TX2
creates with TX1 an interval of only 3 hours.TX2 and TX4
are also consecutive, again from Pool A, but they identify a
rather long work interval, since TX4 is 56 hours after TX2.
In this case, we need to understand whether the interval be-
tween rewards is consistent with a continuous work scenario
or not. In fact, it is likely that m took a break between reach-
ing the threshold for TX2 and TX4.

To resolve the uncertainty about the work scenario, the
procedure studies the distribution composed of the lengths of
all time intervals between two consecutive rewards in each
pool. As explained in the description of the procedure, the
limit for considering a work interval as continuous is the
third quantile of such distribution. Suppose this value is 35
hours.

Having computed the upper bound characterizing thework
to obtain a reward with a maximum of 35 hours, the epochs
ofmwork in the pool are established, modifying all intervals
that do not fall within the bound. Consequently, we can say
that the time theminer worked to receive TX4 is less than the
entire interval between the two transactions. Since the end of
the epoch corresponds to receiving a rewarding transaction,
the epoch E3 is set as shown in Table 24. Adjustments to
intervals that cannot be considered realistic epochs are high-
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Address Transactions Sent

ADD1 HTX1 HTX2 HTX4
ADD2 HTX3
ADD3 HTX4 HTX5
ADD4 HTX5
ADD5 HTX6
ADD6 HTX3

Table 21
Example of Senders Set S.

Miner
ADD1
ADD2
ADD3
ADD4
ADD6

Table 22
Miner’s addresses.

R
O

U
N

D
 

R
O

U
N

D
 

R
O

U
N

D
 

RWT TO 
OTHER MINERS

RWT TO 
OTHER MINERS

COINBASE

COINBASE

COINBASE

COINBASE
RWT TO 
MINER M

RWT TO 
MINER M

POOL A

EPOCH MINER M POOL A

EPOCH MINER M POOL A
C
H
R
O
N
O
L
O
G
I
C
A
L

O
R
D
E
R 

RWT TO 
OTHER MINERS

RWT TO 
OTHER MINERS

RWT TO 
OTHER MINERS

RWT TO 
OTHER MINERS

R
O

U
N

D
 

R
O

U
N

D
 

COINBASE

R
O

U
N

D
 

COINBASE

COINBASE

COINBASE

REALISTIC LENGTH
ADJUSTMENT

R
O

U
N

D
 

COINBASE
RWT TO 
MINER M

3 H

56 H 35 H

R
O

U
N

D
 

RWT TO 
OTHER MINERS

RWT TO 
OTHER MINERS

COINBASE
RWT TO 
MINER M

RWT TO 
MINER M

POOL B

EPOCH MINER M POOL B

R
O

U
N

D
 

COINBASE
R

O
U

N
D

 

COINBASE

COINBASE

9 H

C
H
R
O
N
O
L
O
G
I
C
A
L

O
R
D
E
R 

Figure 25: Hopping dynamic in a minimum rewarding thresh-
old environment, with length adjustment.

lighted in red. The same reasoning is applied for epoch E1.
It ends with reward TX1, but we do not know how long the
miner worked, so we assume the maximum duration of a re-
alistic epoch. This is not the case for the interval between
TX1 and TX2, which can be considered a realistic epoch
without modification, since the miner worked continuously
during the interval. Having concluded the transactions from
Pool A, we proceed to analyze those from Pool B to the same
miner. There are only two transactions, TX3 and TX5, so
there are two intervals of work for the miner in that pool,
one ending with TX3 and one with TX5. For the first inter-
val, we don’t knowwhen it started so the maximum time of a

miner M
Date Time Pool

TX1 2020/05/01 01:00:00 Pool A
TX2 2020/05/01 03:00:00 Pool A
TX3 2020/05/02 23:00:00 Pool B
TX4 2020/05/03 12:00:00 Pool A
TX3 2020/05/03 08:00:00 Pool B

Table 23
Rewarding transactions received by miner m

Limit 35 h

miner M
Start End

Pool A
E1 2020/04/29 - 14:00:00 2020/05/01 - 01:00:00
E2 2020/05/01 - 01:00:00 2020/05/01 - 03:00:00
E3 2020/05/02 - 01:00:00 2020/05/03 - 12:00:00

Pool B
E1 2020/05/01 - 12:00:00 2020/05/02 - 23:00:00
E2 2020/05/02 - 23:00:00 2020/05/03 - 08:00:00

Table 24
Working epochs of miner m

Start End Pool

miner L
E1 2020/05/01 10:00:00 2020/05/01 16:00:00 Pool A
E2 2020/05/03 03:00:00 2020/05/03 20:00:00 Pool A

miner M
E1 2020/04/29 14:00:00 2020/05/01 01:00:00 Pool A
E2 2020/05/01 01:00:00 2020/05/01 03:00:00 Pool A
E3 2020/05/01 12:00:00 2020/05/02 23:00:00 Pool B
E4 2020/05/02 23:00:00 2020/05/03 08:00:00 Pool B
E5 2020/05/02 01:00:00 2020/05/03 12:00:00 Pool A

miner N
E1 2020/05/02 07:00:00 2020/05/02 22:00:00 Pool C
E2 2020/05/03 10:00:00 2020/05/04 01:00:00 Pool A
E3 2020/05/05 20:00:00 2020/05/06 09:00:00 Pool C
E4 2020/05/06 17:00:00 2020/05/07 01:00:00 Pool B
E5 2020/05/07 14:00:00 2020/05/07 23:00:00 Pool C

Table 25
Working epochs of miner L, M, N

realistic epoch applies. For the second, it is below the limit,
so epoch E2 corresponds precisely to the reward interval.

D. Hopping Detection Example
Hereafter is an example of the functioning of the first

phase of our detection. Algorithms 6, 7 and 8 is considered.
Assume that Table 25 is showing the schedule of epochs

for miner L, M and N.
For miner L, algorithm 6 would stop at Condition 6,

since is unique the pool in which it worked. For miner M,
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2020/05/03
03:00:00

2020/05/03
12:00:00

2020/05/01
12:00:00

2020/05/02
11:00:00

Pool A

Pool B

Figure 26: Overlapped epoch of a cross-epoch hopper that
performed hopping between two pools.

instead, Condition 6 is verified, so it proceed combining all
epochs with the previous ones:

• E2 with E1: Condition 7 not verified as they are in the
same pool

• E3 with E1: Condition 7 verified, but Condition 8 is
not, as E1 ends before E3

• E3 with E2: Condition 7 verified, but Condition 8 is
not, as E2 ends before E3

• E4 with E1: Condition 7 verified, but Condition 8 is
not, as E1 ends before E4

• E4 with E2: Condition 7 verified, but Condition 8 is
not, as E2 ends before E4

• E4 with E3: Condition 7 verified, but Condition 8 is
not, as E3 ends before E4

• E5 with E1: Condition 7 not verified, same pool
• E5 with E2: Condition 7 not verified, same pool
• E5 with E3: both Condition 7 and Condition 8 veri-

fied, as E5 start before E3 ends
• E5 with E4: both Condition 7 and Condition 8 veri-

fied, as E5 start before E4 ends
Lastly,Condition 9 is not verified, asminerM presents some
epoch overlapped. It is an cross-epoch hopper and therefore
it is not added to the set of intra-epoch hoppers. The Fig-
ure 26 shows the placement and overlap of its work epochs in
the different pools. On the opposite, for miner N, Condition
8 is never verified as all epochs begin after all the previous
are finished. Therefore, at Condition 9, miner N doesn’t
present overlapped epochs, even though it presents epochs
in different pools. It is considered an intra-epoch hopper and
added to intra − epocℎ ℎoppers I .

For miner N, algorithm 7 investigates the jumping be-
haviours and counts how many time a pool is been left. In
particular:

• from E1 to E2: the Increment rule is applied, as from
Pool C the miner goes to Pool A

• from E2 to E3: the Increment rule is applied, as from
Pool A the miner goes to Pool C

Intra-epoch hopper N
Switches

Pool A 1
Pool B 1
Pool C 3

Table 26
Jumps of intra-epoch hopper N.
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Figure 27: Windowing between miner M epochs.

• from E3 to E4: the Increment rule is applied, as from
Pool C the miner goes to Pool B

• from E4 to E5: the Increment rule is applied, as from
Pool B the miner goes to Pool C

Miner N is associated with three pools and with a jumps mi-
gration as displayed in Table 26. Given the time period in the
example, the behavior of miner N can be considered strate-
gic, since it changes pools back and forth quite a few times.

Given the overlaps presented by miner M, algorithm 8
analyzes the overlapping period between each couple of epochs
and build the windows accordingly. looking at Figure 27,
one can see that epoch E3 and E5 satisfy Condition 10, as
E3 starts before E5, and Condition 11, as E3 also ends be-
fore E5. Instead, E4 and E5 satisfy Condition 12, as E4
starts after E5, but not Condition 13, as E4 ends before E5.

Also the respective coverage percentages are calculates,
as shown in Table 27 and the rounds carried out by the pools
in those intervals are stored individually to each epoch.
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Cross-epoch hopper M
Pool Coverage Rounds

Window
E3-E5 Pool B 63%

2020/05/02 07:00:00
2020/05/02 11:00:00
2020/05/02-15:00:00
2020/05/02-19:00:00

Window
E3-E5 Pool A 63%

2020/05/02 08:00:00
2020/05/02 14:00:00
2020/05/02 20:00:00

Window
E4-E5 Pool B 100%
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Window
E4-E5 Pool A 23%

2020/05/03 00:00:00
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• Complete algorithmic framework and related open-source code to detect pool-hopping miners in the Bitcoin network.
• Experimental evidence that, on the one hand, the pool-hoppers still obtain higher rewards in the long-run, even upon

the introduction of new rewarding rules within mining pools that were meant to discourage pool-hopping.
• Experimental evidence that, on the other hand, the single rewarding transactions do not have higher amounts than static

miners, differently than with old rewarding rules.




