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Abstract

Aims Reduced physical activity increases the risk of heart failure; however, non‐invasive methodologies detecting subclinical
changes in myocardial function are not available. We hypothesized that myocardial, left ventricular, systolic strain measure-
ments could capture subtle abnormalities in myocardial function secondary to physical inactivity.
Methods and results In the AGBRESA study, which assessed artificial gravity through centrifugation as potential counter-
measure for space travel, 24 healthy persons (eight women) were submitted to 60 day strict �6° head‐down‐tilt bed rest.
Participants were assigned to three groups of eight subjects: a control group, continuous artificial gravity training on a
short‐arm centrifuge (30 min/day), or intermittent centrifugation (6 × 5 min/day). We assessed cardiac morphology, function,
strain, and haemodynamics by cardiac magnetic resonance imaging (MRI) and echocardiography. We observed no differences
between groups and, therefore, conducted a pooled analysis. Consistent with deconditioning, resting heart rate (Δ8.3 ± 6.3 b.
p.m., P < 0.0001), orthostatic heart rate responses (Δ22.8 ± 19.7 b.p.m., P < 0.0001), and diastolic blood pressure
(Δ8.8 ± 6.6 mmHg, P < 0.0001) increased, whereas cardiac output (Δ�0.56 ± 0.94 L/min, P = 0.0096) decreased during bed
rest. Left ventricular mass index obtained by MRI did not change. Echocardiographic left ventricular, systolic, global longitudi-
nal strain (Δ1.8 ± 1.83%, P < 0.0001) decreased, whereas left ventricular, systolic, global MRI circumferential strain increased
not significantly (Δ�0.68 ± 1.85%, P = 0.0843). MRI values rapidly returned to baseline during recovery.
Conclusion Prolonged head‐down‐tilt bed rest provokes changes in cardiac function, particularly strain measurements, that
appear functional rather than mediated through cardiac remodelling. Thus, strain measurements are of limited utility in
assessing influences of physical deconditioning or exercise interventions on cardiac function.
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Background and aims

Reduced physical activity increases the risk of heart failure
later in life.1,2 Conversely, exercise interventions reverse
cardiac changes associated with sedentary ageing, as deter-
mined by right heart catheterization and three‐dimensional
echocardiography.3 To guide exercise interventions in
patients, less invasive methodology is required. Echocardio-
graphic left ventricular, systolic, global longitudinal strain

predicts cardiovascular morbidity and mortality.4 Left ventric-
ular, systolic, global circumferential strain analysis by
magnetic resonance imaging (MRI) may further improve risk
prediction.5 Head‐down‐tilt bed rest models cardiovascular
deconditioning in weightlessness.6 The response resembles
cardiovascular adaptation to sedentary ageing7 and provides
a highly standardized model to assess deconditioning influ-
ences on cardiac function. We tested the hypothesis that left
ventricular, systolic, myocardial strain measurements,

SHORT COMMUNICAT ION

©2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.

ESC HEART FAILURE
ESC Heart Failure (2020)
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ehf2.13103

https://orcid.org/0000-0002-3199-9924
mailto:fabian.hoffmann@uk-koeln.de
mailto:fabian.hoffmann@uk-koeln.de
mailto:fabian.hoffmann@dlr.de
http://creativecommons.org/licenses/by/4.0/


obtained through echocardiography or MRI, could detect
subclinical changes in myocardial function secondary to bed
rest deconditioning. Furthermore, we determined whether
artificial gravity through short‐arm centrifugation would ame-
liorate the response.

Methods

This study is part of the NASA/ESA/DLR 60 day �6° head‐
down‐tilt bed rest study ‘Artificial Gravity Bed Rest with Euro-
pean Space Agency’ (AGBRESA) conducted at the DLR:
envihab. The study enrolled 24 healthy persons (23–54 years,
24.3 ± 2 kg/m2, eight women). We obtained written informed
consent prior to study entry. The study was approved by the
North Rhine Medical Association Ethics Committee and pro-
spectively registered (DRKS00015677).

The study comprised 14 day baseline, 60 day strict �6°
head‐down‐tilt bed rest, and 15 day recovery. Participants
were pseudorandomly distributed to a control group, daily
6 × 5 min short‐arm centrifugation with 3 min breaks, or daily
continuous 30min short‐arm centrifugation, each with 1 Gz at
the centre of mass. Participants did not exercise, were on a
controlled sodium diet, and maintained a constant body
weight.

We performed echocardiographic and Doppler imaging
(Vivid‐IQ with M5SC‐RS sector probe, GE Healthcare, Boston,

Massachusetts, USA) at baseline (supine, 6 days before bed
rest) and at the end of bed rest (�6° head‐down‐tilt, 1 day
before recovery) to assess biplane end‐diastolic and
end‐systolic volumes; mitral annulus plane systolic excursion;
left ventricular, systolic, global longitudinal peak strain by
speckle tracking; transmitral filling patterns [E wave, A wave,
E/A, and tissue Doppler of the lateral mitral annulus (e’lat)
velocities and ratio]; and stroke volume index (derived from
pulsed‐wave Doppler velocity–time integral of the left ven-
tricular outflow tract, its diameter, and body surface area).

Cardiac MRI (3‐T Biograph, PET/MR, Siemens, Munich,
Germany) was performed at baseline (5 days before bed
rest), on 56th day of bed rest, and on 4th day of recovery.
We recorded two‐chamber, three‐chamber, and 4‐chamber
cine loops (1.6 × 1.6 × 6 mm; TE 1.43 ms, TR 39.24 ms, 25
phases) and a complete short‐axis stack (1.6 × 1.6 × 7 mm;
TE 1.43 ms, TR 45.78 ms, 25 phases) with retrospective elec-
trocardiogram gating and analysed cardiac output; left ven-
tricular mass index; ejection fraction; left ventricular,
systolic, global circumferential strain and strain rate; and time
to peak (cmr42 Siemens Integration, version 5.9.3, Circle Car-
diovascular Imaging Inc.) (see Appendix 1).

During passive orthostatic testing at the last day of base-
line and on the last day of bed rest, we recorded resting heart
rate and blood pressure.

Results are reported as mean ± standard deviation. We cal-
culated group and time point effects using linear mixed‐effect

Table 1 Cohort analysis

Baseline Bed rest Recovery P

Heart rate (b.p.m.) 64 ± 9.6 72.3 ± 10.6 69.6 ± 10.5 <0.0001
Systolic blood pressure (mmHg) 125 ± 11.1 124.3 ± 8.9 122.7 ± 70.6 0.561
Diastolic blood pressure (mmHg) 69.6 ± 7.3 78.5 ± 6.9 70.3 ± 6.3 <0.0001
ΔUpright–supine heart rate (b.p.m.) 22.8 ± 10.5 45.6 ± 21.4 <0.0001
Cardiac outputc (L /min) 6.6 ± 0.9 6 ± 1 6.8 ± 1.2 0.015
Ejection fractionb,c (%) 68.3 ± 3.9 66.4 ± 4.8 63.9 ± 4.7 0.005
LV mass indexc (g/m2) 66.6 ± 11.3 64.5 ± 11.7 65.8 ± 9.8 0.792
LV stroke volume indexd (mL/2) 51.5 ± 10 44.1 ± 6.3 0.001
LV EDVd (mL) 100.1 ± 28.2 79.7 ± 17.6 <0.0001
MAPSEd (mm) 18.5 ± 2.7 16.6 ± 3.1 0.013
Global longitudinal PSd (%) �19.9 ± 2.1 �18.1 ± 2.1 <0.0001
Global circumferential PSa,c (%) �18.6 ± 1.7 �19.1 ± 1.6 �18.1 ± 1.7 0.049
Global circumferential sSRc (1/s) �0.97 ± 0.1 �1.14 ± 0.18 �1 ± 0.11 <0.0001
Global circumferential t2pc (ms) 315 ± 35.1 285.9 ± 28.6 306.9 ± 25.2 <0.0001
E‐wave velocityd (cm/s) 79.4 ± 14.1 65.3 ± 12.5 <0.0001
A‐wave velocityd (cm/s) 52.7 ± 13 53.3 ± 12.1 0.796
E/A ratiod 1.58 ± 0.39 1.25 ± 0.24 0.015
e’laterald (cm/s) 15.5 ± 2.9 12.3 ± 2.7 <0.0001
E/e’lateral ratiod 5.25 ± 1.17 5.68 ± 1.66 0.0889

LV, left ventricular; LV EDV, left ventricular end‐diastolic volume; MAPSE, mitral annulus plane systolic excursion; PS, peak strain; sSR, sys-
tolic strain rate; t2p, time to systolic peak strain.
Absolute mean values ± standard deviation of the whole cohort for all three time points (baseline, bed rest, and recovery). P‐values for
linear mixed‐effect model analysis. P < 0.05 indicates significance. All strain measurements refer to the left ventricle in systole. All strain
values refer to the left ventricle in systole.
aIn pairwise comparison of baseline vs. bed rest and baseline vs. recovery, values do not differ significantly.
bIn pairwise comparison of baseline vs. recovery, results differ significantly (P = 0.005).
cParameters obtained by cardiac magnetic resonance imaging.
dParameters obtained by echocardiography.
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model analysis. P < 0.05 indicated statistical significance. The
data supporting the reported results are available from the
corresponding author upon reasonable request.

Results

Because baseline characteristics and cardiac responses did
not differ between groups (Appendix 1), we conducted a
pooled analysis in all 24 participants (Table 1). Compared with
baseline, supine heart rate increased 8.3 ± 6.3 b.p.m.
(P < 0.0001), systolic blood pressure did not change, and di-
astolic blood pressure increased 8.8 ± 6.6mmHg (P < 0.0001)
at the end of bed rest. On Day 4 of recovery, blood pressure
had returned to baseline, while resting heart rate remained
elevated by 5.6 ± 8.4 b.p.m. (P < 0.001). With standing, heart
rate increased 22.8 ± 10.5 b.p.m. at baseline and
45.6 ± 21.4 b.p.m. following bed rest (P < 0.0001; Figure 1).

Following bed rest, cardiac output and left ventricular
stroke volume index had decreased 8.2% (�0.54 ± 0.94
L/min, P = 0.0096) and 14.4% (�7.4 ± 8.3 mL/m2,
P = 0.0168), respectively. Left ventricular end‐diastolic
volume determined by echocardiography decreased
20.3 ± 15.4% (P = 0.0001) together with ejection fraction
(6.4 ± 5.1%). Left ventricular mass index did not change
(Figure 2). Left ventricular mass index by MRI, which was
significantly greater in men compared with women
(P = 0.0001), did not change in men (baseline: 70.4 ± 10.7;
recovery: 68.7 ± 8.6 g/m2, P = 0.69) or in women (baseline:
59 ± 8.6; recovery: 59.8 ± 9.9 g/m2, P = 0.968). Mitral annulus
plane systolic excursion and global longitudinal peak strain
were reduced following bed rest (Table 1).

Left ventricular, systolic global circumferential peak strain
by cardiac MRI did not change significantly with bed rest
(Figure 3). However, following 4 day recovery, global circum-
ferential peak strain tended to decrease compared with
bed rest (P = 0.05; Figure 4). Circumferential contraction
expressed as systolic strain rate and time to peak was signif-
icantly augmented at Day 56 of bed rest compared with
baseline with increases in strain rate and shortened time
to peak. While peak values for transmitral A wave did not
change with bed rest, E was reduced such that the E/A ratio
decreased. We observed a similar pattern for e’lat, whereas
E/e’lat remained unchanged.

Artificial gravity through intermittent or continuous centri-
fugation did not abolish cardiovascular adaptations to head‐
down‐tilt bed rest (Appendix 1).

Discussion

Sixty days of strict head‐down‐tilt bed rest elicited cardiovas-
cular deconditioning indicated by increases in resting and
upright heart rate with reductions in left ventricular
end‐diastolic volume, cardiac output, and stroke volume.
Yet bed rest did not lead to clinical apparent heart failure.
Previous studies showed worsened cardiopulmonary fitness
and orthostatic tolerance.8 Yet we did not observe sustained
reductions in left ventricular function assessed by systolic
strain analysis in line with shorter duration bed rest studies.9

Finally, myocardial mass did not change significantly,
suggesting that cardiac atrophy is not a general feature dur-
ing physical deconditioning and cannot be seen as risk factor
for developing chronic heart failure. While we cannot exclude
modest improvements in cardiovascular deconditioning, arti-
ficial gravity failed to abolish the response.

Figure 1 Cardiac deconditioning. Supine and upright heart rate, left ventricular (LV) stroke volume index, and cardiac output at baseline and after
60 day bed rest. *P < 0.05.

Cardiac deconditioning 3

ESC Heart Failure (2020)
DOI: 10.1002/ehf2.13103



Strain can be affected by intrinsic myocardial properties,
cardiac loading conditions, and sympathetic drive.10 We and
others observed reductions in left ventricular end‐diastolic
volume with predominant long‐axis diameter shortening fol-
lowing bed rest deconditioning.11 The phenomenon may re-
sult from plasma volume reductions during bed rest.12,13

Plasma volume reductions are at least in part explained by
cephalad volume shifts promoting natriuretic peptide release
through atrial stretch.14–17 The left ventricle seems less

compliant with a smaller stroke volume independent of the
volume loss.14 The asymmetric change in left ventricular
shape likely explains differential global circumferential and
longitudinal strain responses.10 Normalization of strain and
left ventricular volumes within days of recovery is consistent
with loading‐dependent functional changes rather than car-
diac remodelling that might lead to persistent cardiac dys-
function. Left ventricular diastolic filling, which is also
preload dependent, changed as well.18,19 Similar volume

Figure 2 Left ventricular (LV) function and morphology. LV ejection fraction, LV mass index derived from cardiac magnetic resonance imaging at base-
line, after 60 day bed rest, and recovery. LV end‐diastolic volume by echocardiography at baseline and after 60 day bed rest. *P < 0.05.

Figure 3 Cardiac strain. Cardiac strain measurements at baseline and after 60 day bed rest (56 days for circumferential strain). *P < 0.05. MAPSE,
mitral annulus plane systolic excursion.
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alterations have been reported during 5 and 35 days of bed
rest.13,20 Altered loading conditions may also explain the sig-
nificant albeit small reduction in left ventricular ejection frac-
tion upon recovery.

Cardiac function measurements could be confounded by
sympathetic activation, which is an expected physiological re-
sponse to plasma volume reductions. Indeed, increases in
resting heart rate and diastolic blood pressure, which we

observed at the end of bed rest similar to others,13 often oc-
cur in conditions associated with increased sympathetic
drive.21,22 Previous findings in bed rest studies support the
idea that sympathetic activity is, indeed, increased.23–25 Fur-
thermore, after 21 day bed rest, plasma norepinephrine in-
creased more with orthostasis compared with baseline.26

We speculate that sympathetic activation may have increased
circumferential strain with bed rest.

Figure 4 Global circumferential peak strain. Circumferential peak strain measurements at baseline, end of bed rest, and end of recovery in a repre-
sentative study participant. Upper panel: end‐systolic cross‐sectional short‐axis cardiac magnetic resonance imaging images at the level just above
the papillary muscles with circumferential strain overlay. Middle panel: Bull’s eye view of the 16 American Heart Association (AHA) myocardial seg-
ments model with circumferential peak strain values and colour coding, where deeper blue resembles higher strain values. Lower panel: Circumferen-
tial peak strain time course over one heartbeat for the 16 AHA myocardial segments model.
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The main limitation of our study is the relatively small sam-
ple size limiting statistical power and detailed subgroup anal-
yses. Yet rigorous standardization including controlled
sodium intake and caloric adjustment to maintain body
weight made it possible observing small but relevant physio-
logical changes in cardiovascular function. Furthermore, par-
ticipants were relatively young with low heart failure risk.
Finally, longer periods of limited physical activity may be re-
quired to alter intrinsic myocardial properties and to promote
interstitial fibrosis.

We conclude that 60 days of �6° head‐down‐tilt bed rest
provoke changes in cardiac function that appear functional
rather than mediated through cardiac remodelling. Additional
risks such as older age or concomitant cardiovascular disease
may be required to express cardiac dysfunction and consecu-
tive chronic heart failure. Because �6° head‐down‐tilt bed
rest is a model for weightless conditions, our findings are
reassuring for human space travel. While in weightlessness,
cardiopulmonary fitness and orthostatic tolerance will deteri-
orate in the absence of sufficient countermeasures, overt car-
diac disease appears unlikely. Furthermore, our findings
might have implications for patients undergoing forced bed
rest in, for example, intensive care settings. Finally, our study
suggests that strain measurements, as preload‐dependent
analysis, may be of limited utility in prospectively guiding ex-
ercise interventions in the prevention of heart failure. While
deconditioning elicits plasma volume reductions and sympa-
thetic activation, physical exercise, particularly endurance

training, elicits the opposite response.27,28 Thus, intrinsic
changes in myocardial functional properties cannot be
discerned.
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Appendix

Baseline

Total Control Continuous AG Intermittent AG P

Weight (kg) 74 ± 10.1 79.5 ± 12.7 71.3 ± 9.9 71.3 ± 4.8 0.1709
Height (cm) 174.4 ± 8.7 176.9 ± 7.3 172.1 ± 8.1 174.1 ± 10.7 0.566
Body surface area (m2) 1.89 ± 0.169 1.96 ± 0.19 1.84 ± 0.17 1.85 ± 0.14 0.2874
Age (years) 33.3 ± 9.3 33.8 ± 8.2 31.4 ± 9.9 34.6 ± 10.6 0.7855
Heart rate (b.p.m.) 64 ± 9.6 63.8 ± 7 63.4 ± 13.2 63.4 ± 9 0.9752
Systolic blood pressure (mmHg) 125 ± 11.1 125.2 ± 8.2 127 ± 14.9 122.9 ± 10.2 0.78
Diastolic blood pressure (mmHg) 69.6 ± 7.3 71 ± 8.2 70.3 ± 6.4 67.5 ± 7.6 0.6187
Cardiac output (L/min) 6.59 ± 0.89 6.75 ± 0.85 6.57 ± 0.89 6.44 ± 1 0.7935
Ejection fraction (%) 68.3 ± 3.9 66.6 ± 3.4 70.5 ± 4 67.8 ± 3.5 0.11
LV mass index (g/m2) 66.6 ± 11.3 64.4 ± 13 69.7 ± 11.6 65.7 ± 9.9 0.643
LV stroke volume index (mL/2) 51.5 ± 10 50.5 ± 14.3 50.8 ± 9.8 53.2 ± 4.7 0.8566
LV EDV (mL) 100.1 ± 28.2 109.2 ± 34.9 98.5 ± 29.3 92.6 ± 19.5 0.5095
MAPSE (mm) 18.5 ± 2.7 17.5 ± 3 18.3 ± 2.8 19.7 ± 2.1 0.276
Global longitudinal PS (%) �19.9 ± 2.1 �19.7 ± 2.2 �19.8 ± 1.7 �20.2 ± 2.6 0.8966
Global circumferential PS (%) �18.6 ± 1.7 �18.6 ± 1.6 �18.3 ± 2 �18.8 ± 1.6 0.8181
Global circumferential sSR (1/s) �0.97 ± 0.1 �0.98 ± 0.11 �0.97 ± 0.12 �0.99 ± 0.08 0.958
Global circumferential t2p (ms) 315 ± 35.1 312.3 ± 34.7 323.3 ± 47.1 303 ± 19.6 0.5296
E‐wave velocity (cm/s) 79.4 ± 14.8 79.6 ± 17.1 80.9 ± 9.6 77.6 ± 16.4 0.9053
A‐wave velocity (cm/s) 52.7 ± 13 56.5 ± 15.1 53 ± 15.7 48.6 ± 6.2 0.4993
E to A ratio 1.58 ± 0.39 1.5 ± 0.45 1.62 ± 0.38 1.61 ± 0.39 0.8078
e’lateral (cm/s) 15.5 ± 2.9 14.8 ± 2.5 16.3 ± 3.8 15.1 ± 2.3 0.561
E to e’lateral ratio 5.25 ± 1.17 5.47 ± 1.48 5.17 ± 1.17 5.17 ± 0.97 0.8646

LV, left ventricular; LV EDV, left ventricular end‐diastolic volume; MAPSE, mitral annulus plane systolic excursion; PS, peak strain; sSR, sys-
tolic strain rate; t2p, time to systolic peak strain.
Baseline characteristics: Absolute mean values ± standard deviation of the whole cohort and three subgroups [control, continuous arti-
ficial gravity (AG) and intermittent AG] at baseline. P‐values for linear mixed‐effect model analysis. P < 0.05 indicates significance. All
strain measurements refer to the left ventricle in systole.
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Cardiac magnetic resonance imaging
acquisition parameters

Two‐chamber, three‐chamber, and four‐chamber views and right ventricular long‐axis view—cine

CINE_3CV_4CV_RV_2CV

TA: 3.2 s PM: REF voxel size: 1.6 × 1.6 × 6.0 mm PAT: 2 Rel. SNR: 1.00: tfi
Properties

Prio recon Off
Load images to viewer On
Inline movie On
Auto store images On
Load images to stamp segments On
Load images to graphic segments On
Auto open inline display Off
Auto close inline display Off
Start measurement without further preparation Off
Wait for user to start Off
Start measurements Single measurement

Routine
Slice group 1
AutoAlign —

Phase oversampling 50%
FoV read 340 mm
FoV phase 83.7%
Slice thickness 6.0 mm
TR 39.24 ms
TE 1.43 ms
Averages 1
Concatenations 1
Filter Distortion corr. (2D)

Prescan normalize
Image filter

Coil elements BP1, 2; SP1–3
Slices 1
Dist. factor 20%
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir. A >> P

Contrast—Common
TR 39.24 ms
TE 1.43 ms
Magn. preparation None
Flip angle 40°
Fat suppr. None
Wrap‐up magn. Restore

Contrast—Dynamic
Averages 1
Averaging mode Short term
Reconstruction Magnitude
Measurements 1
Multiple series Each slice

Resolution—Common
FoV read 340 mm
FoV phase 83.70%
Slice thickness 6.0 mm
Base resolution 208
Phase resolution 80%
Phase partial Fourier Off
Trajectory Cartesian
View sharing Off
Interpolation Off

Resolution—iPAT
PAT mode GRAPPA
Accel. factor PE 2
Ref. lines PE 24

(Continues)
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CINE_3CV_4CV_RV_2CV

Matrix coil mode Auto (triple)
Reference scan mode Integrated

Resolution—Filter image
Image filter On
! Intensity Medium
Edge enhancement 1
Smoothing 3
Unfiltered images Off
Distortion corr. On
Mode 2D
Unfiltered images Off
Prescan normalize On
Unfiltered images Off
Normalize Off
B1 filter Off

Resolution—Filter raw data
Raw filter Off
Elliptical filter Off
POCS Off

Geometry—Common
Slice group 1
FoV read 340 mm
FoV phase 83.7%
Slice thickness 6.0 mm
TR 39.24 ms
Multi‐slice mode Sequential
Series Descending
Concatenations 1
Slices 1
Dist. factor 20%
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir. A >> P

Geometry—AutoAlign
Slice group 1
AutoAlign —

Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir. A >> P
Initial position Isocentre
L 0.0 mm
P 0.0 mm
H 0.0 mm

Initial rotation 0.00°
Initial orientation Transversal

Geometry—Saturation
Fat suppr. None
Wrap‐up magn. Restore
Special sat. None

Geometry—Navigator
Geometry—Tim planning suite

Set‐n‐Go protocol Off
Table position H
Table position 0 mm
Inline composing Off

System—Miscellaneous
Positioning mode REF
Table position H
Table position 0 mm
MSMA S‐C‐T
Sagittal R >> L
Coronal A >> P
Transversal F >> H
Coil combine mode sum of squares
Save uncombined off
Matrix coil mode auto (triple)
AutoAlign—
Coil select mode off—AutoCoilSelect

(Continues)
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CINE_3CV_4CV_RV_2CV

System—Adjustments
B0 Shim mode Cardiac
B1 Shim mode TrueForm
Adjust with body coil Off
Confirm freq. adjustment Off
Assume dominant fat Off
Assume silicone Off
Adjustment tolerance Auto

System—Adjust volume
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Rotation 7.56°
A >> P 285 mm
R >> L 340 mm
F >> H 6 mm
Reset Off

System—Tx/Rx
Frequency 1H 123.197081 MHz
Correction factor 1
Gain High
Img. scale cor. 1.000
Reset Off
? Ref. amplitude 1H 0.000 V

Physio—Signal1
1st signal/mode ECG/retro
Average cycle 290 ± 23 ms
Average cycle No signal ms
Calculated phases 25
TR 39.24 ms
Concatenations 1
Segments 12
Arrhythmia detection None

Physio—Cardiac
Tagging None
Magn. preparation None
Fat suppr. None
Dark blood Off
FoV read 340 mm
FoV phase 83.70%
Phase resolution 80%
Cine On

Physio—Cardiac
Trajectory Cartesian
View sharing Off
Dummy heartbeats 1

Physio—PACE
Resp. control Breath‐hold
Concatenations 1

Inline—Common
Subtract Off
Measurements 1
StdDev Off
Save original images On

Inline—Cardiac
Inline evaluation Ventricular function
Magn. preparation None
Contrasts 1
TE 1.43 ms
TR 39.24 ms
Save original images On

Inline—MIP
MIP‐Sag Off
MIP‐Cor Off
MIP‐Tra Off
MIP‐Time Off
Save original images On

Inline—Composing
Inline composing Off

(Continues)
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CINE_3CV_4CV_RV_2CV

Distortion corr. On
Mode 2D
Unfiltered images Off

Sequence—Part 1
Introduction Off
Dimension 2D
Reordering Linear
Asymmetric echo Weak
Contrasts 1
Optimization Min. TE TR
Multi‐slice mode Sequential
Echo spacing 3.3 ms
Sequence type Trufi
Bandwidth 962 Hz/Px

Sequence—Part 2
Define Segments
Segments 12
Trufi delta freq. 0 Hz
RF pulse type Normal
Gradient mode Fast
Excitation Slice‐sel.
Flip angle mode Constant
Cine On

Sequence—Assistant
Mode Min flip angle
Min flip angle 45°
Allowed delay 5 s

Left ventricular short‐axis stack—cine

CINE_segmented_SAX*

TA: 2.0 s PM: REF voxel size: 1.6 × 1.6 × 7.0 mm PAT: 3 Rel. SNR: 1.00: tfi
Properties

Prio recon Off
Load images to viewer On
Inline movie On
Auto store images On
Load images to stamp segments On
Load images to graphic segments On
Auto open inline display Off
Auto close inline display Off
Start measurement without further preparation Off
Wait for user to start Off
Start measurements Single measurement

Routine
Slice group 1
AutoAlign —

Phase oversampling 50%
FoV read 340 mm
FoV phase 80.8%
Slice thickness 7.0 mm
TR 45.78 ms
TE 1.43 ms
Averages 1
Concatenations 1
Filter Distortion corr. (2D)

Prescan normalize
Image filter

Coil elements BP1, 2; SP1–3
Slices 1
Dist. factor 20%
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir A >> P

(Continues)
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CINE_segmented_SAX*
Contrast—Common

TR 45.78 ms
TE 1.43 ms
Magn. preparation None
Flip angle 40°
Fat suppr. None
Wrap‐up magn. Restore

Contrast—Dynamic
Averages 1
Averaging mode Short term
Reconstruction Magnitude
Measurements 1
Multiple series Each slice

Resolution—Common
FoV read 340 mm
FoV phase 80.80%
Slice thickness 7.0 mm
Base resolution 208
Phase resolution 70%
Phase partial Fourier Off
Trajectory Cartesian
View sharing Off
Interpolation Off

Resolution—iPAT
PAT mode GRAPPA
Accel. factor PE 3
Ref. lines PE 24
Matrix coil mode Auto (triple)
Reference scan mode Integrated

Resolution—Filter image
Image filter On
! Intensity Medium
Edge enhancement 1
Smoothing 3
Unfiltered images Off
Distortion corr. On
Mode 2D
Unfiltered images Off

Prescan Normalize On
Unfiltered images Off
Normalize Off
B1 filter Off

Resolution—Filter raw data
Raw filter Off
Elliptical filter Off
POCS Off

Geometry—Common
Slice group 1
FoV read 340 mm
FoV phase 80.8%
Slice thickness 7.0 mm
TR 45.78 ms
Multi‐slice mode Sequential
Series base To apex
Concatenations 1
Slices 1
Dist. factor 20%
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir. A >> P

Geometry—AutoAlign
Slice group 1
AutoAlign —

Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Phase enc. dir. A >> P
Initial position Isocentre
L 0.0 mm

(Continues)
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CINE_segmented_SAX*

P 0.0 mm
H 0.0 mm

Initial rotation 0.00°
Initial orientation Transversal

Geometry—Saturation
Fat suppr. None
Wrap‐up magn. Restore
Special sat. None

Geometry—Navigator
Geometry—Tim planning suite

Set‐n‐Go protocol Off
Table position H
Table position 0 mm
Inline composing Off

System—Miscellaneous
Positioning mode REF
Table position H
Table position 0 mm
MSMA S‐C‐T
Sagittal R >> L
Coronal A >> P
Transversal F >> H
Coil combine mode Sum of squares
Save uncombined Off
Matrix coil mode Auto (triple)
AutoAlign —

Coil select mode Off—AutoCoilSelect
System—Adjustments

B0 Shim mode Cardiac
B1 Shim mode TrueForm
Adjust with body coil Off
Confirm freq. adjustment Off
Assume dominant fat Off
Assume silicone Off
Adjustment tolerance Auto

System—Adjust volume
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S‐12.2
Rotation 7.56°
A >> P 275 mm
R >> L 340 mm
F >> H 7 mm
Reset Off

System—Tx/Rx
Frequency 1H 123.197081 MHz
Correction factor 1
Gain High
Img. scale cor. 1.000
Reset Off
? Ref. amplitude 1H 0.000 V

Physio—Signal1
1st signal/mode ECG/retro
Average cycle 290 ± 23 ms
Average cycle No signal ms
Calculated phases 25
TR 45.78 ms
Concatenations 1
Segments 14
Arrhythmia detection None

Physio—Cardiac
Tagging None
Magn. preparation None
Fat suppr. None
Dark blood Off
FoV read 340 mm
FoV phase 80.80%
Phase resolution 70%
Cine On

(Continues)
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CINE_segmented_SAX*

Physio—Cardiac
Trajectory Cartesian
View sharing Off
Dummy heartbeats 1

Physio—PACE
Resp. control Breath‐hold
Concatenations 1

Inline—Common
Subtract Off
Measurements 1
StdDev Off
Save original images On

Inline—Cardiac
Inline evaluation Ventricular function
Magn. preparation None
Contrasts 1
TE 1.43 ms
TR 45.78 ms
Save original images On

Inline—MIP
MIP‐Sag Off
MIP‐Cor Off
MIP‐Tra Off
MIP‐Time Off
Save original images On

Inline—Composing
Inline composing Off
Distortion corr. On
Mode 2D
Unfiltered images Off

Sequence—Part 1
Introduction Off
Dimension 2D
Reordering Linear
Asymmetric echo Weak
Contrasts 1
Optimization Min. TE TR
Multi‐slice mode Sequential
Echo spacing 3.3 ms
Sequence type Trufi
Bandwidth 962 Hz/Px

Sequence—Part 2
Define Segments
Segments 14
Trufi delta freq. 0 Hz
RF pulse type Normal
Gradient mode Fast
Excitation Slice‐sel.
Flip angle mode Constant
Cine On

Sequence—Assistant
Mode Min flip angle
Min flip angle 45°
Allowed delay 5 s
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