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Abstract: Advances in artificial intelligence (AI) and the extension of citizen science to various
scientific areas, as well as the generation of big citizen science data, are resulting in AI and citizen
science being good partners, and their combination benefits both fields. The integration of AI and
citizen science has mostly been used in biodiversity projects, with the primary focus on using citizen
science data to train machine learning (ML) algorithms for automatic species identification. In this
article, we will look at how ML techniques can be used in citizen science and how they can influence
volunteer engagement, data collection, and data validation. We reviewed several use cases from
various domains and categorized them according to the ML technique used and the impact of ML
on citizen science in each project. Furthermore, the benefits and risks of integrating ML in citizen
science are explored, and some recommendations are provided on how to enhance the benefits while
mitigating the risks of this integration. Finally, because this integration is still in its early phases,
we have proposed some potential ideas and challenges that can be implemented in the future to
leverage the power of the combination of citizen science and AI, with the key emphasis being on
citizen science in this article.

Keywords: citizen science; machine learning; big data; artificial intelligence; task automation; en-
gagement; data validation

1. Introduction

The simulation of human intelligence in machines, known as artificial intelligence
(AI), is widely applied in various domains, and the number of scientific publications in this
area are significantly increasing [1]. AI is a term used when machines can perform tasks
which simulate the human mind such as learning, reasoning, and solving problems [2].
Thus, machine learning (ML) is a sub field of AI, defined as the study of developing
computer algorithms, which use data to learn patterns, make predictions, and improve
their performance over time by more data [3]. The majority of ML algorithms require large
amounts of labeled data, and this is resulting in a close partnership of ML with citizen
science projects [4,5]. Citizen science—public participation in scientific research—has
grown significantly in recent years as a result of technological advancements such as new
smartphone features and fast Internet access in most parts of the world [6]. This growth in
citizen science has resulted in large dataset collections in a variety of scientific domains [7],
which can be a valuable input source for ML algorithms.

Although the combination of ML and citizen science is not new [8], until recently, these
two fields have mostly been implemented separately [9]. The integration of ML and citizen
science can result in producing a new learning paradigm for citizen scientists through
human–computer interactions [10]. Moreover, it can result in increasing interdisciplinary
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collaborations among researchers as well as members of the public in various fields such
as computer science, ecology, astronomy, and medicine, to name a few [9]. This integration
has been focused primarily on object detection in images and videos with the main focus
on automatic species identification in biodiversity projects [11,12]. A well-known example
is the iNaturalist project [13], which has included automated species identification sugges-
tions since 2017 using images obtained from observers. The automatic identification has
improved over the years as more images are used to train the model, and the latest model
release was in March 2020 by the time of writing this article [14]. The automatic species
identification in iNaturalist has provided citizen scientists the opportunity to learn about
species and to minimize the contribution of erroneous observations [15].

The objective of combining citizen science and ML is not limited to providing data
for the ML algorithms and automatizing the identification tasks. The aim is to combine
human and machine intelligence to bring new adjustments to citizen science tasks, such
as automated data collection, processing, and validation, as well as to increase public
engagement. There are potential challenges and opportunities in the integration of ML
and citizen science, which are essential to discuss. In this article, we aim at discussing the
following research questions:

• What are some examples of successful citizen science projects where ML is integrated?
• What ML techniques have been used in these projects?
• What citizen science tasks have been affected by ML in such projects?
• What are the benefits and risks of integrating ML in citizen science for practitioners

and citizen scientists?
• What are the possible future challenges that might arrive as a result of the combination

of ML and citizen science?
• What are the gaps and limitations of including ML in citizen science?

To answer these research questions, we explore use cases where ML and citizen science
can be combined. We have reviewed successful citizen science projects, highlighting the
typologies of techniques used in such projects and categorizing them in light of the effect of
ML on citizen science tasks. Although the opportunities and challenges of merging ML and
citizen science have been addressed in a few recent articles [8–10], the main emphasis has
been on the transparency of using ML in citizen science in terms of how the ML algorithms
use citizen science data [10], the effects of AI on human behavior and improving insights
in citizen science [8], and the effects of this combination in ecological monitoring in terms
of having cheaper or more efficient ways for data collection and data processing [9]. While
these are key issues to explore, to the best of our knowledge, the integration of ML and CS
has received less attention in terms of how this integration can affect the usual processes in
a CS project, from volunteer involvement to influencing the quality of their contributions.
Our primary objective is to explore how some CS tasks can be automated using ML and
whether this automation is beneficial or detrimental for the project and its participants.
Rather than being overly broad, we broke down the forms of ML combinations in various
CS steps and discussed the benefits and risks of this integration in each step in this article.
We outline how ML can be integrated in each step, including what has already been applied,
what can be applied in the future, and what the current and potential risks and benefits of
this integration are for each step.

The following is how the article is organized. In the following section, we will go
through the ML paradigm, as well as the most popular ML applications, in greater detail.
In Section 3, we explore the potential impacts of ML on citizen science projects, and in
Section 4, we review successful use cases where ML and citizen science are combined. In
Section 5, we discuss the benefits and risks of integrating citizen science and ML. Finally,
in Section 6, we present the conclusions, with an emphasis on possible future transitions in
citizen science projects in the age of AI.
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2. Types of Machine Learning and Applications

As stated in the introduction, ML is a subset of AI, which was first introduced in
1955 by Arthur Samuel when he applied learning to his droughts (checkers) algorithm [2].
Samuel defined ML as a “field of study that gives computers the ability to learn without
being explicitly programmed” [16]. ML algorithms build models which learn using the
input data (known as training data) and are able to make predictions based on the learnt
experience. There are three main machine learning types, known as supervised learning,
unsupervised learning, and reinforcement learning [16].

• Supervised learning: In supervised learning, the training data are labeled, and the task
is to map the input (independent variables) to the output (dependent variables). The
two typical types of supervised learning are classification, where the output variable
is categorized, and regression, where the output variable is continuous [16]. The
most widely known algorithms of supervised learning are k-nearest neighbors (KNN),
linear regression, logistic regression, support vector machines (SVMs), decision trees,
random forest (RF), and neural networks (NN).

• Unsupervised learning: In unsupervised learning, the training data are not labeled,
and the goal is to identify structures and patterns in the data [16]. The typical types of
unsupervised learning include clustering (grouping similar input data), dimension
reduction (extracting meaningful features from the data), and association (exploring
the data to discover relationships between attributes) [16]. Some of the most known
algorithms of unsupervised learning are k-means, one-class SVM, hierarchical cluster
analysis (HCA), and principal component analysis (PCA).

• Reinforcement learning: In reinforcement learning, the learning algorithm, also called
the agent, observes the environment and learns through a system of rewards and
punishments. Reinforcement learning is commonly used in robotics, such as walking
robots and self-driving vehicles, as well as in real-time decision making and game
AI [16].

• Deep learning, a subset of ML (See Figure 1 for the relationship between AI, ML, and
deep learning), is concerned with algorithms known as artificial neural networks that
attempt to simulate the structure and functions of a biological brain [17]. Since there is
a significant body of literature on AI and ML algorithms, we briefly discuss some of the
common AI, ML, and deep learning techniques applied largely in scientific projects:

Figure 1. Relationship between artificial intelligence, machine learning, and deep learning.

• Computer vision (CV): CV is an interdisciplinary scientific field which aims at de-
veloping techniques so that computers can identify and understand the contents in
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digital images and videos. In other words, CV aims at enabling computers to identify
elements in images the same as humans would do. The advances in artificial neu-
ral networks and deep learning have had great impact on CV, which in some cases
outperforms the human power to identify objects [18]. Some popular applications
of CV include self-driving cars, face recognition, etc. [16]. Moreover, starting in the
year 2020 and with the COVID-19 pandemic, CV has been applied in monitoring and
detecting social distancing among people [19]. CV has also been commonly used
in species identification, with Plant@net [20] and iNaturalist being two well-known
citizen science examples. A class of deep learning which is commonly used in CV is
the convolutional neural network (CNN).

• Natural language processing (NLP): NLP is a subfield of linguistics, computer sci-
ence and AI that deals with human–computer interactions through the use of natural
language, which means that NLP aims to enable computers to read and understand
human language [21]. The mechanism involves the machine capturing the human’s
words (text or audio), processing the words and preparing a response, and returning
the produced response (in the form of audio or text) to the human. Language transla-
tion applications such as Google Translate or DeepL [22], as well as personal assistant
applications (e.g., Siri or Alexa), are common uses of NLP in people’s daily lives.

• Acoustic identification: Acoustic identification is a technique based on pattern recog-
nition and signal analysis, where the acoustic data are processed and features are
extracted and classified. Main applications of acoustic identification are in species
detection [23]. For example, BirdNet [24] is an application to identify bird species
based on the bird song.

• Automated reasoning: Automated reasoning is a branch of AI that seeks to train
machines to solve problems using logical reasoning [25]. In other words, in automated
reasoning, the computer is given knowledge and can generate new knowledge from
it, which it then uses to make rational decisions. Automated reasoning is mainly used
to assess if something is true or false or whether an event will occur or not.

3. The Influence of ML on Citizen Science Steps

When it comes to the combination of ML and citizen science, the role of citizen science
as a possible solution to the problem of a lack of training data in ML algorithms [7,26] has
been discussed more intensively than the role of ML in addressing challenges in citizen
science projects. Ceccaroni et al. [8] explored the AI technologies used in citizen science
projects and the opportunities and risks that are expected to be encountered due to the
increase in the use of AI in citizen science. The authors define three categories for the use
of AI in citizen science including “assisting or replacing humans for completing tasks”,
“influencing human behavior”, and “improving insights”. The first category describes
the role of AI in fully or partially automating tasks that were previously performed by
humans: for example, tasks related to automatically detecting and classifying data, such
as classifying species based on images or sounds [27–29]. The second category discusses
the aim of AI, data science, and citizen science to influence human behavior [30] and to
extend the educational and social benefits of citizen science to the general public [31]. The
third category discusses the impact of AI on identifying patterns in citizen science data
for informing research and policies or on facilitating the understanding of citizen science
concepts using ontologies. Another study by McClure et al. [9] discusses the integration
of AI and citizen science in ecological monitoring. Rather than delving into the details of
how AI and citizen science can be combined, the authors addressed the challenges and
opportunities of performing ecological monitoring using only citizen science, only AI, or
a combination of the two. The opportunities and challenges are discussed in the context
of six categories, including efficiency, accuracy, discovery, engagement, resources, and
ethics. Efficiency refers to the benefits that citizen science and ML can provide for scientific
projects, such as facilitating data collection and automating laborious tasks, as well as
the ability to perform extensive data processing when human and machine power are
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combined. Accuracy refers to the possibility of integrating human and machine intelli-
gence to produce high-quality data or the challenge of providing incorrect and misleading
information. Discovery explores the advantages of complex species identification and
serendipitous discoveries made through the partnership of citizen scientists and deep
learning. Engagement explores the impact of citizen science and AI on multidisciplinary
engagement. Resources highlights the role of citizen scientists and machines in saving
human and financial resources by, for example, freely contributing data and automating
complex tasks, but it also covers the challenges of training citizen scientists, large data
requirements, and the need for ML experts. Ethics highlights the challenges of potential
information misuse when integrating AI. Another recent study by Franzen et al. [10] also
discusses the opportunities and challenges of human–computer interaction in citizen sci-
ence with a focus on the concept of transparency when integrating ML in citizen science
projects, which means that information about data use, ML algorithms, and data processing
must be transparent and communicated to participants.

In this article, we will look at the impact of ML and citizen science integration on
citizen science steps, but first, it is important to understand the different types of citizen
science projects, as well as the main steps and tasks in a project. Bonney et al. [32] described
three types of citizen science projects: contributory projects, in which scientists design the
project and members of the public contribute primarily to data collection; collaborative
projects, in which scientists design the project and members of the public contribute not
only to data collection but also to data analysis and/or interpretation of the findings; and
finally, co-created projects are those in which the project is designed in collaboration with
scientists and members of the public, and some members of the public are involved in
most, if not all, of the project steps. Citizen science projects are comprised of five key steps,
with participants engaging in all or some of the steps depending on the project type. The
following are the primary steps for each citizen science project [33,34]:

• Defining the problem: Exploring the problem that needs to be solved by answering
questions, such as why this issue is important, who the stakeholders are, and what
will be achieved.

• Designing the project: Identifying the objectives, allocating the necessary resources
(funding, team members, equipment, etc.), and defining the project planning.

• Building a community: Encouraging the general public to participate in the project
and sustaining their engagement by establishing a trusting relationship with the
volunteers.

• Data collection, quality assurance, and analysis: Designing data collection tools,
training volunteers, determining how to store data, filtering and cleaning collected
data, analyzing data to detect trends, and sharing data with participants or other
practitioners.

• Sustain and improve the project: Maintaining project funding by searching for different
sources of funding, and sustaining participation by communicating with volunteers
and receiving/giving feedback from/to them.

Thus, our goal is to expand the existing literature on the integration of citizen science
and ML by focusing not only on the scientific outcomes of citizen science projects, but
also on the participants, who are at the heart of the projects. We therefore address the
integration of ML into various components of a citizen science project, and focus on the
impacts of ML on three categories: engaging people and sustaining their participation,
data collection, and data validation (Figure 2).
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Figure 2. A taxonomy showing the integration of machine learning and citizen science based on the three citizen science
steps of engagement, data collection, and data quality.

3.1. ML for Engaging the Public and Sustaining Participation

A key aspect in a successful citizen science project is to understand how to motivate
the public to participate in a project and how to sustain their participation [35]. Depending
on the objectives and designs of the citizen science project, various approaches have been
used to engage people [36]. We discuss two potential approaches in using ML towards
engaging participants and sustaining participation:

• Automatic community search: The traditional approaches such as word-of-mouth,
social media posts, direct emails, workshops, etc., while beneficial for building a
community, can be time consuming or require financial resources (for instance, for
organization of workshops or ads in newsletters). Antoniou et al. [37] have proposed
a guidance tool to provide information to volunteers so that they can find the VGI
(volunteered geographic information) project of their choice based on their motivations
and interests. To automate what they have proposed, ML algorithms can be used
to find and classify the potential target participants based on their interests and to
introduce a project to them accordingly. Several studies have been conducted to
apply ML algorithms to extract relevant information from social media (e.g., Twitter
or Instagram) posts, such as where the images were taken, what type of content is
contained in the image, or what topic is mostly discussed in the textual posts [38,39].
As a result, similar approaches can be adapted to citizen science projects by employing
ML techniques such as CV and NLP to identify people’s interests from social media
posts and linking them to the relevant citizen science project. Furthermore, to the
best of our knowledge, the use of ML in user profiling to create a recommendation
system [40,41] where citizen science projects are recommended to people based on
their sociodemographic details is not used as a way to engage people to contribute to
citizen science projects. Moreover, the use of chat bots in citizen science projects can be
a potential approach in engaging and sustaining participation, which has been applied
in few studies [42,43]. Chat bots may also help as a real-time guide for participants.

• Automatic feedback to participants: As discussed in some studies, participants may
become discouraged if they do not receive feedback on their contributions [44,45].
Moreover, due to massive amounts of data, it is time-consuming to provide feedback
to all participants, or often, feedback from experts is provided after a long time
has passed [45,46]. In order to inform participants regarding the quality of their
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contributions and to update them regarding the project advancements, automatic
informative and user-based feedback can be generated using ML algorithms [47]. The
participants can be informed about the quality of their contribution and how they can
enhance it and can learn from the feedback provided (e.g., learning about biodiversity
through feedback regarding species habitat characteristics). Thus, human–computer
interaction through machine-generated feedback can be a strategy for increasing and
sustaining participation in citizen science projects.

3.2. ML for Data Collection

Data collection in citizen science projects usually can be categorized into two types.
The first category is known as crowdsourcing [48], and it involves data collection that
requires little or no cognition engagement, such as collecting biodiversity data (e.g., pho-
tographs of species), recording noise [49] or air pollution levels, or in volunteer computing
projects, in which volunteers provide their computer’s unused resources for scientists to
perform heavy computations [50]. The second type is when human cognition is employed
to collect information, which primarily consists of labeling and identifying objects in
images; in more complicated projects, training prior to data contribution is required to com-
plete tasks, such as identifying protein structures in the Foldit project [51] or georeferencing
historical images in the sMapShot project [52]. Thus, by incorporating ML techniques into
citizen science, the data collection task can be partially or fully automated. As a result,
considering the two key types of data collection, we define two possible approaches in
which ML can be integrated in this step:

• Machines as sensors (adapted from citizens as sensors): The integration of ML in the
first form of data collection, crowdsourcing, can be performed using AI-based tools,
such as AI-based cameras. A well-known example in ecological studies is the use
of camera traps to automatically capture images of species [53]. Moreover, sensors
integrated with ML techniques can automatically record measurements such as noise
recording [54] or air pollution [55].

• Machine thinking (adapted from volunteer thinking): For the second form of data
collection, where cognition is involved, ML algorithms can learn to automate certain
tasks, such as object detection in images/videos, which is the most common technique,
or more complex tasks, such as automated prediction of protein structures using deep
learning [56].

3.3. ML for Data Validation

Due to large amounts of data being contributed to citizen science projects, manual
expert validation can be very time intensive. Thus, automatic or semiautomatic data valida-
tion can be applied by filtering potential erroneous data, considering both the contributed
information and the ability and experience of participants in contributing data. Two types
of potential automatic validation approaches can be the following:

• Automatic data quality assurance: The static comparison of the contributed data with
reference datasets has been used in biodiversity citizen science projects to perform
automated filtering of unusual observations [45]. However, rather than comparing
the submitted data with the historical records, the ML algorithms could be used to
perform real-time validation and confirmation of the newly contributed data. For
example, species distribution models can be used to validate the spatial accuracy of
biodiversity observations, or a CNN algorithm can be used to validate images labeled
by the participants.

• Classification of participant’s level of expertise: The level of expertise and experience
in contribution varies among participants in citizen science projects. For example, in
biodiversity monitoring projects such as eBird [57] or iNaturalist, some participants
contribute observations casually, while others are very involved and experienced and
may even be considered as expert volunteers not only to contribute data but also to
verify others’ observations [58]. Thus, the contributors’ previous records can be used
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in ML algorithms to classify the participants (e.g., by assigning them scores based on
their level of expertise), and the newly contributed data can be validated based on the
classification of the participants’ levels of expertise.

Figure 2 illustrates a taxonomy of possible combinations of ML and citizen science,
which is classified according to the citizen science steps, including the three discussed
categories of engagement, data collection, and data validation. Some of these ML integra-
tions have already been applied in current citizen science projects, such as the automatic
species identification or the classification of observers’ levels of expertise in eBird, which
will be explored in greater detail in the section on use cases. Nevertheless, there are some
other potential impacts that, to the best of our knowledge, are not being applied in present
projects, notably in terms of the role of ML in engaging participants through user profiles
and recommendation systems. The following section presents and categorizes the use cases,
taking into account the potential impacts of ML on citizen science stated in this section.

4. Use Cases

In this section, we present some of the use cases in which ML and citizen science are
combined, with the goal of developing a typology of such projects based on the AI and ML
applications outlined in Section 2 and the impacts of ML on citizen science tasks outlined
in Section 3. We begin by categorizing the use cases based on the field of science and then
present the most commonly used approaches in each category. The categorization of the
use cases is shown in Table 1.

Environmental science: The most common approach in environmental studies is
training ML algorithms using the images/videos labeled by citizen scientists to automate
species identification and/or classification. Some of the common applied methods are
as follows:

• Camera trap projects: when it comes to the combination of ML and citizen science in
biodiversity research, one of the most common approaches is the use of camera traps,
where cameras are installed in nature to take photos of species, and the photos are then
labeled by citizen scientists to feed and train ML algorithms [11,59]. Citizen scientists
may, depending on the project, be involved in only one or all the activities of camera
placement, submission of images, and labeling and classification of images/videos
from camera traps [59]. MammalWeb [60], eMammal [61], and WildBook [62] are three
examples of projects focused on camera traps data, and depending on the projects’
goals, they invite volunteers to either collect or classify images (Table 1). The use of
contributed images to train CNN algorithms for automatic wildlife identification can
result in the implementation of software packages such as the R package MLWIC
(Machine Learning for Wildlife Image Classification) [63], which can be useful for
environmental studies, particularly for ecologists. Another approach of integrating
human and machine intelligence in camera trap projects is to invite volunteers to
observe species images and confirm machine predicted labels in each image [11].
This approach helps to balance the time required for labeling images while maintain-
ing high quality classification, and human intelligence is used for verification and
identifying more challenging species that are difficult for machines to classify.

• Species identification based on images and metadata: the majority of species identifica-
tion projects use only images to train ML algorithms [64]. However, the identification
of some species only with images and in the absence of other metadata is very complex
both for humans and machines, and only human experts are able to distinguish among
various images. Including metadata such as the spatial and temporal distribution or
the ability of observers to identify species can increase ML predictive performance and
provide more confidence in species identification. One example in this case is a study
performed by Terry et al. [5] to identify ladybirds using both images and metadata
such as location, date, and observer’s expertise (Table 1). Another example is the eBird
project [65], where a probabilistic model has been developed to classify observers
as experts and novices, taking into account their experience in making contributions
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(Table 1). Another project, BeeWatch, invites citizen scientists to identify bumblebee
species in images [66], and it employs natural language generation (NLG) to provide
volunteers with real-time feedback (Table 1). Experiments conducted by the Bee-
Watch researchers with project participants revealed that the automatically generated
feedback improved the participants’ learning and increased their engagement [66].

• Marine life identification: unlike other species, marine life identification by combining
ML and citizen science has rarely been discussed [67]. In an article by Langenkämper
et al. [67], the authors focused on combining ML and citizen science in annotation of
marine life images. Citizen scientists are requested to annotate the images (digitize a
bounding box around the species in the image); however, there is a possibility that
volunteers may miss identifying the species (false negative), annotate a species which
is not present in the image (false positive), or place the bounding box incorrectly.
Despite all of the possible annotation errors, the authors conclude that merging citizen
science with ML in marine life studies has considerable promise, providing that citizen
scientists receive sufficient training prior to image annotation (Table 1).

• Automatic wildlife counts from aerial images: estimating wildlife abundance is an
important aspect of biodiversity conservation studies. One approach is to count the
species in aerial images. However, if done entirely manually, this is an extremely time
consuming and labor-intensive process. A study focused on the counts of wildebeests
in aerial images [68] has illustrated promising results in obtaining accurate counts by
combining citizen science and deep learning (Table 1). In this study, the counting is
done by both citizen scientists and machines (a trained CNN algorithm), and while
the results indicate that the machine performance is faster and more accurate than
the human, the authors state that the citizen scientists’ contributions are essential in
providing training data to feed the algorithm.

Neuroscience: similar to environmental studies and species identification tasks, citizen
scientists’ input can be very valuable in amplifying the gold standard data generated
by neuroscience experts. In [26], an approach is proposed to amplify expert-labeled
MRI (magnetic resonance imaging) images using citizen science and deep learning. This
approach involves three main steps. First, the experts label a collection of MRI images.
Second, to amplify the labels, a web application called Braindr is implemented that presents
a 2D brain slice to citizen scientists, and they are required to pass or fail the image taking
into account its quality (check Figure 3). Finally, in the third step, a deep learning algorithm
is used to verify the quality of the citizen science labels compared to the expert-labeled MRI
images. Once the high-quality data are available, they are used to train a CNN algorithm
to automate labeling the MRI images.

Astronomy: the involvement of the general public in online astronomy projects started
in 2008 with the first release of the Galaxy Zoo project [69]. Traditionally, the classification
of galaxy images in Galaxy Zoo was done by citizen scientists, but with advances in ML,
the classification task was automated using amateurs and expert labels as input training
data [70]. The Milky Way project is another well-known project in this field, with the goal of
involving volunteers in identifying bubbles in images collected from space telescopes [71],
and to automate the identification, the volunteers’ labels were then used to train a random
forest algorithm called Brut [72]. The authors mentioned that the combination of ML
and citizen science in astrophysical image classification has opened a new path towards
obtaining large scale classified datasets, which would have been more complex to achieve
if each of these fields (citizen science and ML) were applied separately.
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Figure 3. Screenshot from Braindr application [73] where citizen scientists are required to label the
MRI images by selecting pass or fail.

Table 1. Example of use cases of combination of machine learning and citizen science.

Science Field Use Case Example Impact on Citizen
Science Task

Machine Learning
Technique Brief Objective

Environmental
science

Wildlife species
identification using

camera traps [11,59–62]

Automate data
collection:

• Automatic identification of
species in images

• Automatic photo capturing
using AI-based cameras

Automate data validation:

• Real-time validation of new
labeled images

Supervised learning:
computer vision and the

use of CNN

• The labeled images
by citizen scientists
are used to feed and
train CNN
algorithms to
automate wildlife
identification in
images.

• Volunteers can
contribute other
types of information
besides images, such
as species habitat, or
they can focus on
more challenging
tasks, such as rare
species identification

Ladybird identification
based on images and

metadata [5]

Automate data
validation:

• Auto-filtering of new
observations

• Auto-identification of species
based on images and metadata

Supervised learning: NN
for metadata only, CNN
(use of transfer learning)

for image only and a
combined model for
metadata and image

Train ML algorithms to
automatically identify
ladybird species using
images along with the

structured metadata (date,
location, and citizen

scientists’ experiences)

eBird, use observers’
expertise to verify the
contribution [65,74]

Automating data validation:

• Screening of new observations
based on observer’s ability

Using probabilistic models
and automated reasoning

based on observers’
previous contributions

Classification of citizen
scientists to experts and

novices to improve
identification of new

species, and pass the rare
species detection task to

the expert observers

BeeWatch, identification of
bumblebees [66]

Generate automatic feedback to:

• Improve participants’ learning
to identify bumblebees

• Increase participants’
engagement

Natural Language
Generation (NLG)

Automatically generate
feedback with the aim of
improving participants’

ability to identify
bumblebees and
increasing their

engagement
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Table 1. Cont.

Science Field Use Case Example Impact on Citizen
Science Task

Machine Learning
Technique Brief Objective

Marine life identification
[67]

Automatic data collection and
validation:

• Identification of marine life in
images

• Auto-detection of location
(ROI) of marine species in the
images

Supervised learning:
computer vision and CNN
(use of transfer learning)

Improving marine species
identification by

combining citizen
scientists and deep

learning

Automatic species count
from aerial images [68]

Automatic data validation:

• Auto-filtering erroneous
contributions caused by
volunteer miscount

• Automatic validation of
species reports based on the
expected density

Supervised learning:
computer vision and use

of CNN

Combination of citizen
scientists and deep
learning to improve

wildlife counting in aerial
images for conservation

purposes

Neuroscience Braindr [26]

Automatic data collection:

• Automatic labeling of MRI
images

Automatic data validation:

• Validation of new added labels
by citizen scientists

Supervised learning:
computer vision and use

of CNN

Amplification of
expert-labeled MRI

images with the help of
citizen scientists, followed
by the use of the amplified

labels to train an
algorithm to automatically
replicate the labeling task

of experts

Astronomy

Galaxy Zoo [70]

Automatic data collection:

• Automatic classification of
galaxy images

Supervised learning:
computer vision and use

of CNN

Classify galaxy images by
training an ML algorithm
based on citizen scientists’

input

Milky Way [72]

Automatic data collection:

• Auto-detection of bubbles in
space telescope images

Automatic data validation:

• Auto-filtering of amateurs’
contributions

Supervised
learning:Random Forest
algorithm

• Detect bubbles in
space telescope
images by feeding
an ML algorithm
using labels
provided by citizen
scientists and
experts

• Let the participants
spend time on
labeling more
challenging images

Table 1 illustrates that the majority of projects that combine citizen science and ML
are in environmental science, which is also true for citizen science projects in general,
where the number of biodiversity citizen science projects far outnumbers projects in other
domains [75]. Furthermore, the table shows that, regardless of the area of science, the
integration of citizen science and ML comprises primarily the use of labeled data from
citizen scientists to feed ML algorithms. Typically, trained models are used to automate
data collection (mostly labeling and object detection tasks in online citizen science projects)
and data validation (automatic filtering and flagging the erroneous contributions). In
contrast, the use of ML in citizen science to increase and sustain participation has received
far less attention, with the BeeWatch project being the only one (among the studied use
cases) that has directly evaluated the effects of automatic feedback on engagement.

Furthermore, while in most projects, once the model is trained, the identification/
labeling tasks can be completely automated, the majority of authors argue that the role of
citizen scientists does not fade away and that human cognition can be used to perform
more challenging tasks, such as verifying machine predictions or identifying rare species.
Given these current projects and the prospect of further possible ML and citizen science
integrations, the next section discusses the benefits and risks that may arise as a result of
this combination.
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5. Benefits and Risks

Although it is discussed that the combination of ML and citizen science offers more
benefits than when they are implemented in isolation [9], there are several points that need
to be considered prior to the integration of ML and citizen science. In this section, we
discuss the benefits of combining citizen science and ML, as well as the potential risks that
can arise if ML is not used cautiously in citizen science projects. The benefits and risks of
ML and citizen science integration are discussed in the scope of engagement, data quality
assurance, and ethics (check Figure 4). Data collection is not listed as a separate category in
the section of benefits and risks since the impacts of ML on this step are integrated into the
categories of engagement and data quality.

Figure 4. Benefits and risks of combining citizen science and machine learning.

5.1. Engagement

• Benefits: As mentioned earlier, one of the benefits of AI for community building in
citizen science projects is to encourage engagement by targeting the potential volun-
teers through social media. Another important factor in citizen science is the impact
of the interaction with and feedback to the participants on the basis of their contribu-
tions [76,77]. Thus, the use of ML in citizen science in providing automated feedback
to the participants might promote engagement through human–computer interac-
tion and result in sustaining participation. Furthermore, the intelligently generated
feedback can provide participants with useful knowledge about the research subject,
allowing them to learn while contributing, which can be another factor in increasing
participation (e.g., BeeWatch project). Another potential benefit of combining ML and
citizen science is that it encourages interdisciplinary engagement among volunteers
and researchers, which can lead to collaborations from several scientific fields [9].
Finally, automating certain simple tasks allows volunteers to concentrate on more
complicated ones, such as identifying common species from camera trap images using
CNN and leaving the identification of the unusual species to volunteers. However,
there is another side to the task automation, which is discussed in the risk section.

• Risks: The use of ML in citizen science could result in the automation of most tasks,
which may demotivate participants because they are fully or partially being replaced
by machines. As previously mentioned in the use cases, in most projects, citizen science
data is used to train ML algorithms, and then the tasks can be performed entirely by
machines, effectively replacing humans. While it has been mentioned that in the case
of task automation, citizen scientists would then concentrate on more challenging
tasks, some participants would like to contribute to citizen science projects to fill
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their spare time with activities that make them feel good, such as helping science or
spending time in nature (see [36]), which are not inherently challenging. For example,
in the sMapShot project [52] (a citizen science project for georeferencing historical
images), there is strong competition among participants of higher age groups, and
the incentive system plays an important role in motivating them; therefore, if the
computer performs the task more efficiently, motivation is expected to drop, and thus
participation will decline. One solution is that, considering all activity levels among
participants, participants are allowed to contribute with their task of interest even if
the task can be fully automated by machines, and thus the contributions can be helpful
in retraining the algorithms to have a better performance. Another recommendation
is to incorporate new forms of contributions to fill in the gap caused by automated
tasks. Furthermore, another potential risk is the overestimation of AI power in citizen
science projects, such as trusting model predictions over expert volunteers, which
could result in disengaging the participants [8].

5.2. Data Quality

• Benefits: The use of ML in citizen science will speed up the process of big data
validation, reducing the workload of manual data quality assurance for experts [46,47].
Prescreening and filtering data (for example, removing empty images or low-quality
images in camera trap projects), flagging erroneous observations, and submitting
only flagged observations for expert verification will save a lot of time and allow the
experts to concentrate on the scientific aspects of the project rather than the manual
filtering of all data. Furthermore, the generation of real-time informative and user-
centered feedback for participants with information about their contributions will
improve the participants’ knowledge on the subject, their proficiency, and, as a result,
the quality of data they contribute over time. Another finding from the BeeWatch
project concerning the impact of feedback on volunteers was that NLG feedback
resulted in increased learning, and the identification accuracy was higher for those
who received informative feedback than for those who only received confirmation of
correct identification [66].

• Risks: Although the benefits of automatic filtering and validation have been discussed,
the efficiency and reliability of automated validation and feedback are highly depen-
dent on the data used to train the ML algorithms. For example, if the training data are
biased in some way, such as spatially or temporally, the automated data validation
based on the trained model is also biased and could provide participants and experts
with misleading information [9]. In addition to bias in the data, it is critical that the
data used to train the model are of a gold standard and validated by experts, since the
trained model will be used to verify new data, and if the input data are uncertain, the
model will predict false detections [9], such as failing to identify a species, in the case
of a false negative, or incorrectly detecting an abnormal shape in an MRI image, in the
case of a false positive. It is important to keep in mind that machine intelligence should
not be overestimated in comparison to human intelligence. In other words, when
participants receive machine-generated feedback on their contribution, the decision
to either modify or retain the contribution should be made by the participants, and
human experts will make the final confirmation in such cases. It is also necessary
to note that when a model is trained on data from a specific region, it cannot neces-
sarily be applicable in other areas, and doing so can result in misevaluation and the
generation of misleading information. Furthermore, training algorithms for small
datasets (such as rare species, see [12]) or multitype datasets (such as a mix of images
and metadata, see [5]) and learning how to tune the parameters of the algorithms to
achieve the desired performance are hard challenges that must be considered prior to
performing automated data validation in citizen science projects.
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5.3. Ethics

• Benefits: The use of machine learning (ML) can be advantageous in filtering sensitive
information from citizen science data, such as human faces or license plates in images.
Furthermore, ML can be used to detect illegal actions, such as illegal animal trades,
by sentiment analysis using information posted on social media platforms such as
Twitter [78].

• Risks: One major concern of integrating ML in citizen science is the use of data
collected from participants for other commercial reasons, which may go against the
participants wishes and result in their disengagement from the project. Thus, it is
critical to be transparent and communicate effectively with participants on how their
inputs are being used in the algorithms, rather than simply creating a black box
project in which the participants function is limited to producing data and feeding the
algorithms [8–10]. As discussed in [8], technology giants like Google and Facebook
offer target-oriented advertisement services by selling personal information, which
can be a danger for the future of AI-based services used in citizen science projects,
as it may lead to a lack of confidence on the part of participants to freely share their
contributions and personal information. Another ethical issue that may emerge from
ML-based citizen science projects is the sharing of sensitive data that may be deceptive
or result in geoprivacy violations, such as predicting the position of endangered
species or predicting participant activity based on the history of their contributions.

6. Future Challenges and Conclusions

Despite the existing projects and articles on the integration of ML and citizen science,
this topic is still at its initial steps and requires further research discussing other benefits
and risks and even proposing other use cases that are different from those that have been
applied. In addition to this, there are potential challenges to and ideas about this subject
that can be seen as future extensions of this integration, some of which can be performed
in the near future of citizen science, and others requiring more time and investigation
before being implemented in practice. The following are some potential challenges and
future ideas:

(1) One potential challenge is to explore the integration of ML in biodiversity citizen
science projects for rare species identification, for instance, by using approaches
such as few-shot learning [79]. In contrast to common ML algorithms, few-shot
learning requires a very minimal amount of data to train the model, and it is primarily
utilized in computer vision [80], of which a particular case is one-shot learning for
face recognition [81].

(2) The focus of the use of ML in citizen science is currently more on automatic identi-
fication and less on user engagement; thus, exploring the use of ML in increasing
engagement and sustaining participation remains an area for future investigation. For
instance, one potential approach to be explored is the use of gamified AI in citizen
science towards attracting more volunteers as well as sustaining participation [10,82].

(3) While the impact of machine-generated feedback on sustaining participation is dis-
cussed, one possible future challenge is to determine whether the generation of
feedback that simulates more human responses, rather than repetitive generated
feedback, can have an impact on increasing engagement.

(4) Training participants has been shown in studies to improve data quality; however,
providing training is not always simple and requires both human and financial
resources. A possible suggestion will be to use AI to provide training prior to data
collection; although this has been achieved in the case of feedback (for example, in
the BeeWatch project [66]), AI can be used to provide training in a variety of ways,
such as through interactive courses entirely managed by AI.

(5) Participants are more motivated to contribute to a project if there have been prior
contributions or if there are other participants for the sake of competition; however,
large numbers of contributions will make participants feel less motivated and assume
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they have little to contribute to the project. One theory is that people in older age
groups can become demotivated if there are too many contributions. One role of AI
may be to consider user demographics and, as a result, balance how much data each
user can visualize.

Furthermore, citizen science data are primarily based on the collection of images/videos
or textual data, as seen in the use cases, but with emerging technology, the types of data
collected can be extended. For example, some of the most recent smartphones support
sensors that acquire LiDAR (light detection and ranging) data, and while this is currently
a device-specific feature, given the rapid pace of technological development, we would
expect it to be included in many future smartphones. Thus, LiDAR data can be a potential
data type obtained in citizen science projects, and although some studies have been per-
formed to identify objects from point clouds using deep learning [83,84], applying such
techniques to LiDAR data collected by citizen scientists is a very interesting challenge
towards the combination of ML and citizen science.

This review and other recent articles on the integration of AI and citizen science
indicate that this combination demonstrates considerable potential for both fields. However,
there are some consequences to this as well, as advancements in AI and the superior
power of computers, in some cases better than humans, raise the possibility of completely
replacing humans in citizen science projects. Nevertheless, there are certain tasks that
cannot be performed without human input, such as activities that involve imagination,
critical thinking, and communication skills. Furthermore, when combining ML and citizen
science, it is critical that the primary goal of citizen science, engaging the general public in
scientific projects and knowledge sharing with the public, does not fade away as a result of
giving machines too much control. Furthermore, it is critical to apply transparency to the
project and effectively communicate with volunteers about how the ML is being integrated
and how the ML algorithms are using participants’ input. Finally, prior to integrating
ML in citizen science, the possible risks and benefits must be thoroughly investigated to
determine which one has more weight, as well as to understand how to mitigate risks and
maximize benefits from ML integration in the project at all levels, from user engagement
to data quality assurance. Aside from the aforementioned concerns, a general aspect to
consider is that, while incorporating AI into scientific research can be highly beneficial, it is
essential to consider the context in which it is employed. For example, if AI is integrated
into education, it is important to keep in mind that it does not prevent students from
thinking by providing auto-responses to questions, such as the automatic identification of a
vegetation type for an environmental student, which may result in preventing the student
from learning the various landcover characteristics.

A potential extension of this review article will be to look for future AI-based citizen
science projects and investigate their effect on each step of citizen science, as well as to
elaborate on how the above listed challenges can be successfully implemented. Another
potential extension would be to conduct analyses to quantify the risks and benefits dis-
cussed here. For example, one approach could be to evaluate the impact of real-time
validation and feedback to participants by using indices to measure their engagement with
the project, as well as by evaluating the quality of their contribution as a result of learning
from the real-time feedback. We have developed a biodiversity citizen science project with
the goal of collecting bird observations and using ML techniques to perform automatic
data validation based on the location and time of observations. In this project, we provide
real-time feedback to volunteers, for example, on bird species habitat characteristics [47].
As a follow-up to this review, we intend to analyze volunteers’ behavior and explain the
findings in the context of the risks and benefits addressed in this article.
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