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Abstract
The industrial development of electron beam powder bed fusion (PBF-EB) is relatively younger and much more limited in 
terms of global widespread and revenues compared to laser powder bed fusion (PBF-L). Nevertheless, PBF-EB has been 
adopted in some of the most successful industrial case studies of metal AM, as it provides specific benefits and capabilities 
that make it a key enabling technology in a variety of industrial applications. Moreover, the recent years have seen a rapid 
evolution with new actors and new systems entering the market, together with a considerable increase of research and innova-
tion programs. A field of major interest is the development and continuous improvement of in situ sensing and monitoring 
methods to anticipate the detection of defects, to predict the final quality of the part, and to rethink product qualification 
procedures. The technological features of the PBF-EB process have motivated the development of solutions that differ from 
the ones in PBF-L. Some of them have reached a good maturity level, being recently integrated into industrial machines, 
while others still deserve further research. This study explores the current state-of-the-art on in situ and in-line monitoring 
of the PBF-EB process, aiming to provide an up-to-date overview of the major differences with respect to PBF-L, currently 
available methods and their performances, as well as open issues, challenges to be tackled, and perspective for future research 
and industrial developments.
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1 Introduction

Since the development of the first Arcam machine, more 
than 20 years ago, and the first European certification of a 
biomedical implant manufactured via electron beam powder 
bed fusion (PBF-EB), few years later, the process has con-
siderably evolved, the range of materials has expanded, and 
various success cases have been achieved. Two well-known 
examples are the low-pressure titanium aluminide turbine 
blade production for the aviation industry on the one hand, 
and the manufacture of metal implants and prostheses with 
enhanced osteointegration properties in the biomedical sec-
tor, on the other hand [19, 27]. But the PBF-EB technology 
has exhibited a continuous growth over the years, addressing 

many other market needs, involving different application 
fields, and enabling novel advanced manufacturing capaci-
ties. This evolution has become even more evident at global 
level in the last 3 to 5 years, as new machine developers 
have entered the marked, opening new technology innova-
tion opportunities and fostering a wider competitiveness. For 
a general introduction to the PBF-EB process, the current 
state of technology development and its industrial applica-
tions, the reader is referred to Fu and Körner [19].

One of the great innovations enabled by additive man-
ufacturing (AM) as a pillar of the Industry 4.0 paradigm 
regards the possibility to “look” at the process in a com-
pletely new way, i.e., through a variety of measurements 
and signals gathered on a layer-by-layer basis, throughout 
the whole duration of the process, while the part is being 
built. This capability has been pointed out to be one of the 
key drivers to develop smart AM systems suitable to reduce 
wastes and defects, while meeting the stringent quality and 
repeatability requirements of the industrial sectors that pull 
the market. In situ sensing, monitoring and control method-
ologies for AM processes in general, and powder bed fusion 
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(PBF) in particular, represent a research field character-
ized by an exponential increase of the scientific literature 
in the last years, as well as massive investments from AM 
machine developers and third parties. Various authors have 
reviewed the large amount of studies in this field, focus-
ing on the state-of-the-art of methods in PBF [23, 35] or 
other processes [41, 57], while other authors reviewed the 
literature on related aspects, like machine learning applied 
to AM [36, 59] and process control methods [32, 33]. In this 
framework, the literature devoted to PBF-EB is much limited 
compared to the one devoted to PBF-L. There are different 
factors behind this gap. One regards the fact that the PBF-
EB is much less open to in situ sensing than its laser-based 
counterpart. Indeed, viewports shall be shielded from X-ray 
leakage and metallization, no co-axial measurement of the 
melt pool is available, and the very high temperature of the 
build limits the range of sensing devices that can be installed 
within the chamber. Another factor is the monopoly condi-
tion that has characterized the PBF-EB market for more than 
15 years, while the PBF-L market has benefited from intense 
competition ever since the development of the first industrial 
systems. Because of this, the widespread of PBF-EB systems 
in research laboratories has been lesser and slower than the 
one of PBF-L machines. Moreover, fully open PBF-L pro-
totypes and systems have been widely available in research 
laboratories as testbeds to develop and validate novel sens-
ing and monitoring solutions, while apart from quite few 
isolated self-developed prototypes, the first truly open PBF-
EB system has been developed only in 2017.

Despite the gap in the literature between PBF-EB and 
PBF-L, in situ sensing and monitoring plays a central role for 
both the processes, since it represents the only way to detect 
anomalies and defects at their onset stage, possibly allow-
ing anticipated part suppression and/or adaptive/correction 
actions, as well as reducing time and costs devoted to post-
process inspections. As far as PBF-EB is concerned, some 
solutions have reached a sufficient maturity to be adopted by 
machine developers as embedded or optional equipment in 
their own systems, while other methods still deserve further 
research and continuous improvements. Moreover, several 
open issues still need to be addressed and new development 
areas may be explored. The current PBF-EB market situa-
tion, characterized by a much higher competitiveness than 
few years ago, and by a strong demand for more stable and 
repeatable processes and more efficient qualification pro-
cedures, represents the playground to overcome the current 
limits and barriers of in situ sensing, monitoring, and control 
approaches presently available.

This review is aimed to present an up-to-date overview 
of the current state-of-the-art on in situ monitoring method-
ologies in PBF-EB for in-line and in situ data acquisition, 
anomaly detection and quality prediction. The term “in-line” 
refers to measurements gathered during the manufacturing 

process. They can be acquired either “ex-situ”, i.e., by 
moving the part to an external measurement station before 
going on with the process, or “in-situ”, i.e., by using on-
machine sensors. This review is devoted to the latter cat-
egory of methods. The purpose is to provide researchers and 
practitioners with a synthetic summary, classification, and 
discussion of all techniques currently available, their pros 
and cons, their limitations and potential, as well as the most 
relevant results achieved so far. The present paper is also 
conceived to highlight the major differences between PBF-L 
and PBF-EB in terms of in situ sensing and monitoring capa-
bilities, and to point out the most promising perspectives for 
future research directions.

The paper is organized as follows. Section 2 provides an 
overview of the scientific literature with an analysis by year, 
country, and topic. Section 3 briefly reviews the major dif-
ferences between PBF-L and PBF-EB processes regarding 
the development and implementation of in situ sensing and 
monitoring. Section 4 reviews the current state-of-the-art on 
in situ sensing and monitoring solutions in PBF-EB. Sec-
tion 5 summarizes the major challenges, open issues, and 
future perspectives in this field. Section 6 eventually con-
cludes the paper.

2  Overview of the scientific literature

The analysis of the scientific literature presented in this 
study was based on Scopus and Google Scholar databases. 
The search was carried out by combining a search by key-
word, author, research group, and citations (full details can 
be found in the “Appendix”). A final screening phase was 
performed by excluding individual papers that were not rel-
evant to the topic or referred to other AM processes. The 
documents that were finally identified, which are reviewed 
in the following sections, are analyzed in Fig. 1 in terms of 
publication trend over time (Fig. 1, top-left panel), coun-
try (Fig. 1, top-right panel), affiliation (Fig. 1, bottom-left 
panel), and type of sensors used for in-line data collection 
(Fig. 1, bottom-right panel).

Overall, 61 papers have been identified and analyzed. 
First seminal studies date back to 2012–2013, 10 years after 
the first Arcam system was sold. To the best of authors’ 
knowledge, before 2012 in situ sensing in PBF-EB was used 
only in one research study to capture the powder spreading 
effect during smoking events [16]. Since then, the number 
of publications has continuously grown, with more than 50% 
of studies published in the last 4 years. Most of the research 
has been carried out by groups located in the United States, 
Germany, and United Kingdom. Figure 1 shows that less 
than ten research groups worldwide have been active so far 
in this field, with at least three papers published on the topic. 
Figure 1 also shows that most of the literature has focused 
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on two sensing methods only, namely electron optical imag-
ing, also known as ELO, and near infrared (NIR) or infra-
red (IR) video imaging. ELO consists of layerwise intensity 
maps generated by converting the detection of low-energy 
secondary electrons (SE) and high-energy back scattered 
electrons (BSE) as by-products of the interaction between 
the electron beam and the material into a current signal, then 
represented as a spatial map within the area scanned by the 
electron beam [1–5, 48]. Since the intensity of SE and BSE 
depends on the atomic number of the specimen and surface 
topography, ELO can be used to generate a spatially resolved 
map of the powder bed, which allows one to characterize the 
solidified layer in terms of surface pattern and geometry. 
NIR and IR video imaging methods have been widely used 
in PBF-EB too [6, 8, 12, 46, 47, 70], as they are suitable 
to capture thermal inhomogeneities or anomalous tempera-
ture distributions that may be drivers of defects. Moreover, 
they enable the analysis of spatio-temporal temperature (or 
irradiance) gradients as proxies of the final microstructural 
properties of the part [6] and the cited literature therein).

Additional sensing methods proposed and tested in other 
studies include optical video imaging in the visible range, 
either with high-spatial or high-temporal resolution, the use 
of log signals as sources of information for in-line detection 

of defects and anomalies, spatially integrated pyrometry 
exploiting multi-wavelength sensors for local temperature 
measurement, and fringe projection combined with cam-
eras equipped with sensors in the visible range for surface 
topography reconstruction. All these methods as well as the 
data analytics techniques proposed in the literature for pro-
cess monitoring, classification, and quality prediction are 
reviewed and discussed in the following sections.

3  On‑the difference between in situ sensing 
and monitoring in PBF‑EB and PBF‑L

Equipping PBF-EB systems with sensors for in situ moni-
toring raises various challenges related both to the use of an 
electron beam as energy source and to the temperature and 
vacuum conditions involved in the process. These challenges 
are among the reasons behind the reduced number of studies 
on in situ sensing and monitoring devoted PBF-EB com-
pared to the ones to PBF-L. One major challenge regards the 
need to protect any viewport from X-ray emissions generated 
during the beam—material interaction, and from the metal-
lisation caused by the vaporization of alloy elements under 
high vacuum conditions. One possible approach to protect 

Fig. 1  PBF-EB literature on in-situ sensing and monitoring based on 
Scopus and Google Scholar databases: trend over time of the num-
ber of papers (top-left panel), country of the authors (top-right panel), 

affiliation of the authors (bottom-left panel), and type of sensor used 
for in-situ data collection (bottom-right panel)
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viewports and sensors consists of using a mechanical shutter, 
which is kept closed during the heating and melting steps, 
and opened only when the electron beam is turned off. This 
approach is the one used by the LayerQam™ system, namely 
the NIR powder bed camera embedded in some PBF-EB sys-
tems developed by Arcam. A mechanical shutter protection 
has been used in some other studies too [52]. This approach 
limits in-line data acquisition to powder bed imaging only, 
preventing any data acquisition during the melting step.

Another common approach consists of equipping view-
ports with a leaded glass for X-ray protection and a rolling 
Kapton film to prevent metal vapour from adhering to the 
window. The main limitation of this approach consists of 
the severe attenuation of the signal. Indeed, the Kapton film 
has an IR transmission of about 79%, whereas a 10 mm thick 
leaded glass window has an IR transmission of 1.08% [14].

Moreover, depending on the specific machine configura-
tion, heat shields are used to preserve the temperature dis-
tribution within the chamber and to collect the metal vapour 
deposition on sacrificial plates. When present, they impose 
additional limitations in terms of available fields-of-view 
and view angles for in situ monitoring sensors.

Some examples of in situ sensing setups in PBF-EB are 
shown in Fig. 2.

The need to screen X-ray emissions and material metal-
lisation, together with the high temperature kept within 
the build chamber, also make sensor installation inside the 
chamber more difficult than in PBF-L. Examples of sensing 

methods that involve a device installation inside the cham-
ber include air-borne acoustic emission sensors and blade-
mounted sensors for high-resolution measurement and 
characterization of the powder bed [23] and the reviewed 
literature therein). These methods are hardly applicable in 
PBF-EB, and no attempt to adapt similar approaches from 
PBF-L to PBF-EB has been carried out so far.

Another difference between the two processes regards 
powder bed imaging in the visible range, which is the most 
commonly available sensing method currently embedded 
in industrial PBF-L machines. An example to clarify such 
difference is shown in Fig. 3 [21], where the top panels 
show two powder bed images acquired just after powder 
recoating with an off-axially mounted camera in the visible 
range in PBF-L (Fig. 3a) and in PBF-EB (Fig. 3b). Figure 3a 
depicts a typical example of a post-recoating image showing 
a homogeneous powder bed in PBF-L. Also the PBF-EB 
powder bed shown in Fig. 3b was spread homogeneously, 
but the nature of the image is quite different. Bright areas 
correspond to the hotter regions of the previously melted 
layer, which are still visible through the newly deposited 
layer of cold powder. This makes the assessment of the 
powder bed homogeneity much more challenging than in 
PBF-L. Another example is shown in Fig. 3, bottom panels. 
Figure 3c shows an example of solidified layer in PBF-L 
captured with a standard powder bed camera, while Fig. 3d 
shows an example of solidified layer in PBF-EB captured 
with a LayerQam™ on an Arcam machine. The two images 
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Fig. 2  Examples of video imaging setups in PBF-EB: a Off-axis 
pyrometer installed on the top viewport of an Arcam S12 system, 
[11], b multi-sensor setup on a customized Arcam A2 system includ-
ing an optical camera, a 2 color pyrometer and an IR camera, [29], 
c high-speed thermal camera that exploits the top viewport of an 

Arcam A2 system; d high-speed camera in the visible range that 
exploits the top viewport of an Arcam A2 system [24], e prototype 
in-situ fringe projection setup composed by a projector and a CCD 
camera, [32, 33], f high-speed video imaging from the front chamber 
viewport of a QbeamLab 200 from QuickBeam Tech. Co, Ltd., [60]
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were acquired with comparable spatial resolution, but the 
much higher temperature in PBF-EB has a detrimental effect 
on the quality of the image (blur halo around the solidified 
layer, pixel intensity variations induced by the surface tem-
perature, etc.).

Despite the above-mentioned limitations, PBF-EB also 
opens to some sensing opportunity that is not available in 
PBF-L. Indeed, the interaction between the electron beam 
and the material generates by-product emissions that can be 
effectively used for process monitoring purposes, namely 
X-ray, SE, and BSE emissions. In-line X-ray measurement 
has been limited so far to the beam calibration task only, 
while SE and BSE detection is at the basis of the ELO imag-
ing technique [1, 2, 4, 63], which currently represents the 
major stream of research on in situ sensing and monitor-
ing of the PBF-EB process, as shown in Sect. 2. ELO has 
the advantage of requiring no viewport and no protection 
from X-rays and metal vapour deposition (more details are 
provided in Sect. 4), and hence, it represents a well-suited 
approach for the PBF-EB process, as it exploits the intrinsic 
features of the process while avoiding the limitations that 
affect alternative methods.

One latter difference between in situ sensing and monitor-
ing methods in PBF-L and PBF-EB regards the capability to 
measure the salient properties of the melt pool. In PBF-L, 
melt pool monitoring via co-axial sensors, either spatially 

integrated (e.g., photodiodes) or spatially resolved (high-
speed cameras) is one of most investigated methods for in-
line detection of process instabilities and defects [23, 35]. 
The co-axial measurement is enabled using the same opti-
cal path of the laser. In PBF-EB, a similar co-axial sensing 
approach is not possible. Melt pool imaging and monitoring 
in PBF-EB has been explored only in a few studies using 
off-axially installed sensors [31, 53, 54], but the limitations 
in terms of both temporal and spatial resolution over the 
whole build area make this approach hardly application for 
industrial use.

An in-depth discussion of in situ sensing and monitor-
ing methods that have been proposed so far for the PBF-EB 
process is presented in the next Section.

4  In situ sensing and monitoring methods 
in PBF‑EB

In Grasso et al. [23], a classification of in situ sensing and 
monitoring methods in PBF was proposed, based on five 
different levels at which in situ data could be gathered and 
used. Level 0 refers to the use of so-called log signals, i.e., 
signals acquired through embedded machine sensors (e.g., 
chamber and column pressure, beam current and voltage, 
grid current, pulse signals, etc.) with no need for external 

Fig. 3  Examples of post-
spreading powder bed images 
in PBF-L (a) and PBF-EB 
(b) [21], examples of post-
melting powder bed images in 
PBF-L (c) [42] and PBF-EB 
(d) [69], both post-spreading 
and post-melting images in 
PBF-EB (right panels exhibit 
a pixel intensity pattern that 
is influenced by the very high 
temperature of melted areas 
and their surroundings as well 
as high temperature gradients 
within the build area
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sensors. Level 1 refers to 2D or 3D measurements of the 
powder bed, either before or after the powder deposition, 
to characterize the power bed homogeneity or the solidi-
fied layer geometry and topography. Level 2 refers to meas-
urements gathered during the melting operation, aiming to 
capture the salient dynamics of the interaction between the 
electron beam and the material, and the associated heating 
and cooling patterns. Level 3 refers to the measurement 
of the salient properties of the melt pool, in terms of size, 
shape, temperature profile and stability over time. Level 4 
finally refers to measurements that allows to determine phe-
nomena and process dynamics occurring under the currently 
processed layer. This same classification is adopted in this 
study to divide the literature into different research areas. 
The result of such classification is shown in Table 1, where 
the literature is further classified also in terms of the meas-
ured quantities, referred to as “signatures”, and the sensing 
method.

4.1  Process monitoring via log‑signals (level 0)

Log-signals were pointed out to be correlated with pro-
cess errors and undesired variations of the process condi-
tions [56]. Indeed, they are commonly used in PBF-EB for 

post-process diagnostics. However, the high number of sig-
nals imposes the use of appropriate approaches for data visu-
alization and analysis. The data visualization tool developed 
by Steed et al. [56] was used in some studies to investigate 
correlations between log signals and actual defects in parts 
[69]. Ledford et al. [30] used some log-signals like the beam 
speed, the electron gun filament current feedback, and the 
column pressure to generate 3D data maps across multiple 
layers and areas of interest. Such maps could reveal local 
discontinuities that may be the root cause of anomalies and 
defects, and hence they can be used as in-line sources of 
information for process monitoring. Chandrasekar et al. [10] 
studies the rake position and rake sensor pulse signals to 
gather information about the powder spreadability, aiding 
the detection of powder deposition errors. Grasso et al. [22] 
investigated the use of rake pulse sensor signals to develop 
a machine learning tool for the automated detection of 
defects related to incorrect powder spreading conditions. 
The proposed approach allowed the anticipated detection of 
geometrical distortions caused by powder recoating errors. 
These seminal studies open to a variety of possible uses of 
log-signals in the framework of in situ process monitoring. 
However, the wide natural variability of the these signals 
and the limited sampling frequency adopted in industrial 

Table 1  Classification of the literature on in situ sensing and monitoring depending on the monitoring level, the measured quantity (signature) of 
interest, and the sensing method

Signatures of interest Sensing method References (PBF-EB)

Level 0
 Log-signals No external sensor [10, 22, 30, 56, 69]

Level 1
 Surface pattern or height map of the powder 

bed
Off-axis imaging in visible range [23, 24]
Fringe projection (with single or multiple off-

axis cameras)
[32–34]

 Surface pattern or height map of the printed 
slice

ELO [3, 5, 7, 9, 28, 29, 30, 43, 48, 63, 66, 67, 71]
Off-axis NIR/IR imaging [12, 37, 38, 40, 50, 51, 55, 69, 70]
Fringe projection (with single or multiple off-

axis cameras)
[32, 34]

 Geometrical accuracy of the printed slice ELO [1, 2, 4, 61, 64–67]
Off-axis NIR/IR imaging [37, 38, 50]

 Solidified layer material composition ELO [63]
Level 2
 Heatmap/heating and cooling profiles Off-axis video imaging in the visible range [24, 31]

Off-axis NIR/IR video imaging [6, 8, 11, 14, 18, 20, 26, 29, 31, 39, 44–47, 52]
Off-axis spatially integrated pyrometry Terrazas-Najera et al. [58] [11, 17, 29]

 Smoking events ELO [68]
Off-axis video imaging in the visible range [16, 60, 68]

Level 3
 Melt pool size and shape Off-axis video imaging in the visible or NIR 

range
[31, 53, 54]

Level 4
 Melt pool penetration and phase transition X-ray video imaging [15]
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machines currently limit the probability to detect actual 
defects, while inflating the risk for false alarms. So far, there 
is a lack of studies that quantitatively investigate the power 
of log signal-based monitoring techniques in terms of false 
positive and false negative rates. Nevertheless, their poten-
tial for automated process monitoring has been not fully 
explored, and future research developments may be seen in 
the future.

4.2  Powder bed monitoring (level 1)

Level 1 methods for powder bed imaging and monitoring 
have attracted a quite large interest in the literature. In this 
case, it is possible to distinguish between two major aims. 
The former consists of determining errors and discontinui-
ties in the powder deposition, possibly caused by a dam-
age recoater, powder dosing errors, superelevated edges, or 
surface contaminations. The latter regards the characteriza-
tion of the solidified layer, either in terms of its geometri-
cal deviations from the nominal, or in terms of its surface 
topography. A widely investigated layerwise measurement 
and monitoring approach is the one based on the ELO meth-
odology. The underlying idea consists of converting SEs and 
high-energy BSEs into a current signal. The 1D signal is 
then mapped into a 2D image by linkining its value to the 
synchronous electron beam location, analogously to what 
is done in scanning electron microscopy. The detection of 

SEs and BSEs is made possible by using simple detectors 
inside the chamber or between the chamber and the electron 
gun [a few possible experimental setups are shown in Fig. 4, 
including both single detector (a–c) and multi-detector meth-
ods (d)].

Although the ELO approach avoids most issues and 
limitations that affect standard video imaging methods, 
the natural features of the PBF-EB process introduce some 
challenges in this case too. Indeed, the working principle of 
BSE detectors is affected by high temperatures, while metal 
vapour deposition on the the detectors may interfere with 
the measurement. Wong [62] also showed that there is an 
helium gas amplification effect on the ELO image quality 
and contrast. Because of these issues, various ELO configu-
rations have been proposed in the literature, to enhance the 
quality of the data and to make the system robust to nuisance 
factors.

A primary use of this approach involved the layerwise 
reconstruction of the surface pattern of the solidified layer, 
as a proxy on non-optimal melting conditions and internal 
porosity. Arnold et al. [5] used ELO to capture post-hatching 
ELO images. In situ detected irregularities of the solidified 
surface induced by varying the beam power in the melting 
phase were shown to be well representative of part porosity 
structures observed via post-process optical microscopy and 
X-ray computed tomography (CT) (Fig. 5a). Similar results 
were obtained in PBF-EB of pure copper by Ledford et al. 

Fig. 4  Examples of in-situ sensing setups for ELO imaging: a setup 
with BSE detector under the focus and deflection coils, [5], b proto-
type setup where heat shield plates are used as detectors, [66] detail 

of the heat shield adaptation to backscattered electron detection, [67]) 
example of the multi-detector system in [48]
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[30]. Ledford et al. [29] showed that ELO images could 
capture pores generated in overhang regions during the pro-
duction of pure copper. Le Roux et al. [28] compared differ-
ent convolutional neural networks (CNN) to classify ELO 
images of parts produced with different process parameters 
into different categories, namely good, porous and bulg-
ing. Classification accuracy of about 95% was achieved 
with respect to true categories defined via manual labelling. 
Bäreis et al. [7] showed that ELO could also be used for the 
in situ detection of cracks in the soldified layer during the 
PBF-EB of a nickel-based superalloy such as CMSX-4.

As pointed out by Pobel et  al. [43], the correlation 
between the surface pattern of the solidified layer measured 
via ELO and the final part porosity may be used for in-line 
process optimization, i.e., for the identification of the printa-
bility window using in situ gathered ELO images in place of 
post-process destructive or non-destructive inspections. Bre-
uning et al. [9] leveraged on this possibility in their study of 
a process optimization approach for complex shapes based 
on the introduction of a characteristic scan length-dependent 
process parameter limit. ELO images were used to character-
ize the resulting surface morphology induced by different 
scan length-related process conditions.

Another stream of research on the use of ELO in PBF-
EB regards the in situ estimation of geometrical accuracy 
and geometrical/dimensional deviation from the nominal 
(Fig. 5b shows an example of example of geometrical devia-
tion between the in situ reconstruction based on ELO imag-
ing, the nominal geometry, and the X-ray CT-based ground 
truth). Arnold and Körner [1, 2] showed that the average 

local deviation between in situ ELO-based and post-pro-
cess X-ray CT-based geometry reconstructions was below 
100 µm, whereas the maximum local deviation was in the 
order of magnitude of the surface roughness. Arnold and 
Körner [1, 2] pointed out the relevance of post-processing 
operations on ELO images to deal with the accuracy of beam 
deflection and data registration, and to keep into account the 
thermal shrinkage of the part. Grounding on these results, 
Arnold et al. [4] showed that combining post-process X-ray 
CT measurements with in situ ELO imaging and thermody-
namic simulation could enable an in-depth characterization 
of the inherent PBF-EB accuracy and thermally induced 
distortions.

Despite benefits and potentials of the ELO methodol-
ogy, its basic implementation involves an additional step 
for image acquisition, since the electron beam scanning of 
the layer is needed for measurement purposes. This issue has 
been overcome in more recent studies that proposed a so-
called “in-operando” BSE detection, i.e., directly during the 
melting stage. This approach was first presented in Arnold 
et al. [3]. Figure 5c shows an example from Arnold et al. 
[3] where the in situ measurement is compared against two 
ground truth references, one based on laser scanning micros-
copy (LSM), and one based on confocal laser scanning 
microscopy (CLSM). The 2D signal intensity map gathered 
during the melting stage was pointed out to be well corre-
lated to the final topography of the layer measured with other 
benchmark methods. The “in-operando” ELO measurement 
was compared to co-axial spatially integrated measurements 
of the melt pool in PBF-L, where 1D photodiode signals are 

Fig. 5  Examples of ELO imaging in PBF-EB: a comparison between 
in  situ detected pores via ELO and ground-truths based on optical 
microscopy and X-ray CT [5], b example of ELO used to estimate 
the deviation from the nominal geometry and from the X-ray CT-
based ground truth, where both the presence of missing material and 

excess of material are presented, highlighting the good geometrical 
agreement with respect to the reference [1], c example of in-operando 
ELO maps compared with ground truth, where LSM stands for laser 
scanning microscopy, and CLSM stands for confocal laser scanning 
microscopy [3]
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usually represented in terms of 2D intensity maps. However, 
rather than providing information about the salient proper-
ties of the melt pool, the in-operado ELO image contrast is 
mainly dominated by the way in which the surface topog-
raphy affects the BSE emissions, and hence the resulting 
intensity map can be used as a proxy of the surface pattern 
of the scanned area.

Generally speaking, the resolution of the ELO imaging 
technique depends on the scan line distance, the beam diam-
eter, the scan speed and the sampling rate of the measuring 
device [3]. The spatial resolution achieved in most stdies 
ranges between 50 and 100 µm/pixel. As an example, Arnold 
et al. [5] obtained a pixel resolution of 60 µm/px, exploiting 
a raster scanning of the surface with a beam diameter of 
about 300 mm, an exposure time of 0.1 ms/px and a beam 
current to 7 mA. Such resolution is higher than the one com-
monly available with industrial powder bed cameras in PBF-
L, but also higher than spatial resolutions made available 
with most optical imaging methods in PBF-EB [23].

More recently, multi-detector ELO imaging has been 
proposed too. Similarily to stereo imaging, the combina-
tion of multiple BSE detectors allows one a three-dimen-
sional determination of target locations in space. When 
properly calibrated, such measurment system enables 
the reconstruction of a height map of the layer. In SEM, 

the sum of signals from opposite detectors is sensitive to 
material composition, whereas their difference is sensi-
tive to the actual height map of the sample. Levering on 
this, multi-detector ELO has been proposed by Renner 
et al. [48] and Zhao and Lin [71]. In Renner et al. [48], 
four detectors were used to gather four different viewing 
directions to compute local surface gradients, generate 
a high-resolution heigh map of the layer, and precisely 
locate ridges and grooves in bulging surfaces. As shown 
in Fig. 6, the recostructed topography of test samples was 
compared against a ground truth based on LSM. Figure 6a 
shows a rendering of the ground truth surfaces measure-
ment, while Fig. 6b shows a rendering of the in situ recon-
structed height map of the same surface. The resulting 
profiles were in good agreement, with a mean different 
of 32 µm (Fig. 6c). To the same aim, a dual detector were 
proposed in Zhao and Lin [71], who also showed the lin-
ear correlation between the electronic current and surface 
height gradient.

Renner et al. [49] presented a simulation model suitable 
to determine the effect of the detector position on the result-
ing image contrast and quality. It can be used as a predic-
tive method for the optimal design of ELO detectors and 
to compute build surface height gradients with no need for 
calibration operations.

Fig. 6  Examples of in-situ height map reconstruction of the solidified 
layer via multi-detector ELO and comparison against a ground truth 
measurement based on LSM stands for laser scanning microscopy 
(LSM): a rendering of the LSM measurement, b rendering of the in-

situ reconstructed surface, c comparison of height profiles along the y 
direction, y = 0 , d comparing of height profiles along the x direction, 
x = 0 [48]
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An alternative method for the in situ reconstruction of the 
height map of the layer was proposed by Liu et al. [32–34], 
based on fringe projection combined with optical imaging.

The use of fringe projection in PBF-EB on commercial 
machines from Weyland Precision was investigated by Liu 
et al. [32, 34]. The proposed system involved a single-view 
architecture, composed by a structured light projector and a 
camera. The fringe projection measurements were taken dur-
ing the time window between powder recoating and fusion 
and after EB melting. The measurement time was about 2 s 
during each measurement cycle, with an absolute error with 
respect to benchmark interferometer measurements between 
2 and 7 µm. The system has been fully deployed on a com-
mercial machine and it is currently implemented on PBF-EB 
systems developed by Wayland Additive.

A method for the automated detection of powder spread 
errors was proposed by Grasso [21], where a high-spatial 
resolution camera and no additional illumination source 
was used on an industrial system. Grasso [21] presented 
an automated powder bed monitoring methodology that 
allowed to combine pre- and post-recoating images to 
automatically identify regions of the powder bed where 
either an excess or a lack of powder was present. Since 
the new powder layer is colder than the underneath layer, 
an excess of powder results into a darker spot (or region) 
in the fused image, while a lack of powder results in a 
brighted spot. The method was shown to be effective in 
detecting powder bed inhomogeneities that caused inter-
nal lack-of-fusion defects as well as geometrical distor-
tions. An example is shown in Fig. 7a, where the left panel 
shows the transfer function used to isolate low-intensity 
and high-intensity regions of interest, whereas the right 

panel shows the automatically detected anomalies in the 
powder spreading (red areas). The spatial resolution was 
130 µm/pixel over a 210 × 210 mm build area.

Rather than monitoring the homogeneity of the powder 
bed, optical imaging in the NIR range is commonly used in 
PBF-EB to detect irregularities in the solidified layer. This 
approach is commercially available on Arcam machines. 
Some authors showed that local pixel intensity variations 
as well as the bright spots within the solidified area can be 
proxies of volumetric flaws and distortions in the part [40, 
69, 70]. Yoder et al. [70] showed that pores could be iden-
tified simply by setting a threshold on the pixel intensity, 
because bright spots were assumed to be caused by surface 
cavities. Depite a qualitative correspondence between pore 
concentrations in post-process X-ray CT measurements 
and in situ detected bright spots has been shown in vari-
ous studies, there is still a lack of a rigorous performance 
assessments in terms of false positive and false negative 
rates, and probability-of-detection functions. A similar 
approach was investigated in more depth in Croset et al. 
[12]. Croset et al. [12] showed that NIR layerwise imag-
ing in PBF-EB can be used to detect wrong sets of process 
parameters not only in terms of volumetric defects, but 
also in terms of geometrical deviations from the nominal. 
In particular, an over-melting condition was shown to pro-
duce a significant increase of the deviation with respect to 
normal melting. An example of NIR images of the pow-
der bed acquired in different process conditions is shown 
in Fig. 7b, together with the corresponding post-process 
optical images [12]. In this case, the spatial resolution was 
75 µm/pixel over a 210 × 210 mm build area.

Fig. 7  a Examples on the use of optical imaging for powder bed 
homogeneity monitoring: left panel shows the transfer function 
used to isolate low-intensity and high-intensity regions of interest; 
right panel shows the automatically detected anomalies in the pow-

der spreading (red areas) [21], b Example of the use of NIR imag-
ing to classify process conditions—a comparison between in situ NIR 
images of the solidified surfaces and post-process optical images of 
the same surfaces for different energy density levels [12]
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4.3  Monitoring of process dynamics during layer 
melting and cooling (level 2)

NIR and IR video imaging has been used since the first sem-
inal works on in situ monitoring in PBF-EB to capture the 
local and global heating and cooling patterns in every layer, 
either for the detection of volumetric defects or for the pre-
diction of final microstructural properties. The latter problem 
in particular, attracted an important stream of research ([13] 
and references therein). Being able to predict microstructural 
properties in-line, such as grain size and orientation, allows 
detecting deviations from a target microstructure and ena-
bles the development of functionally graded products. The 
seminal study of Raplee et al. [47] showed the feasibility of 
in situ thermography to estimate a spatial map of thermal 
gradients (G) and solid–liquid interface velocities (R), which 
were then used to distinguish regions characterized by either 
columnar grains or equiaxed grains obtained by varying the 
scan strategy from line scan to point-wise scan. Figure 8 
shows an example of in situ thermal map of a layer after IR 
image calibration, the histogram of the G/R ratios estimated 
in situ for the two scan strategies [46, 47], and a sample 
functionally graded bracket built by locally varying the scan 
strategy [6]. Following studies further demonstrated the fea-
sibility of in situ site-specific microstructure control, mainly 
for nickel-based superalloys. However, a certain amount of 
uncertainty was pointed out in the prediction of the final 
microstructural properties [6], and possible improvements 
may be envisaged in future research.

IR thermography has been used in the literature for ther-
mal gradient analysis using sensors sensitive to either long 
or medium wavelength radiation. Cordero et al. [11], Rod-
riguez et al. [52], Mireles et al. [37, 38] used long wave-
length IR cameras, with a spatial resolution between 175 
and 350 µm/pixel. Raplee et al. [47] and Babu et al. [6] 
used a medium wavelength IR vision, with a higher spatial 

resolution in the order of 35 µm/pixel. Temporal resolutions 
where limited in all mentioned studies, in the order of ten 
frames per second. Despite the attenuation caused by the 
Kapton film and the leadglass protection, in situ IR video 
imaging was demonstrated to be suitable to measure local 
gradients and detect changes and variations connected with 
process anomalies.

Apart from in situ microstructure prediction, Babu et al. 
[6] showed that spatial IR maps could reveal also crack-
ing patterns across different layers during the PBF-EB of 
nickel superalloys. Boone et al. [8] instead, adopted a NIR 
vision setup equipped with a custom designed borescope 
lens system. The use of a NIR camera was motivated by the 
much higher transmission of the leadglass and Kapton film 
protections in the NIR range (about 76%) compared to the 
one in the IR range. Boone et al. [8] showed an exprimental 
study where spatial NIR intensity maps were used to detect 
geometrical distortions and swelling defects in overhange 
regions caused by an anomalous heat accumulation. Fig-
ure 9a shows the test specimen adopted in Boone et al. [8]. 
Figure 9b shows an example of the thermal map showing 
both lack of fusion defects (small localized apparent hot-
spots) and swelling defects (indicated with maker). Figure 9c 
shows the manufactured part where the actual swelling is 
highlighted.

An issue of primary importance for in  situ measure-
ment of absolute temperatures regards the thermal image 
calibration. The target emissivity shall be known to con-
vert the raw image (where pixel intensities correspond to 
the measured irradiance) into an actual temperature map. 
However, the local and instantaneous emissivity estimate 
is made difficult, or even impossible, by fast phase transi-
tions from powder to liquid and from liquid to solidified 
material, continuous changes in surface properties, and 
emissions of metal vapour. One simple approach consists 
of applying a conversion factor such that the temperature 

Fig. 8  Examples from Raplee et al. [47] and Babu et al. [6]: a in situ 
thermal map of a layer after calibration, b histogram of the G/R ratios 
estimated in-situ for the line and point (spot) scan strategies, c com-

pleted PBF-EB alloy 718 bracket built with equiaxed grain formation 
in the spot melt region and columnar grain formation in the raster 
melt region
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measured within the melt pool region corresponds to the 
known liquid–solid transition temperature of the material. 
However, this is not accurate enough for estimates of ther-
mal gradients needed for in-line microstructure prediction. 
A more rigorous approach involves a calibration procedure 
where the temperature of a test sample is measured by both 
thermal cameras and embedded thermo-couples [52].

Two-color pyrometry and IR video imaging has been pro-
posed by some authors to ease absolute temperature meas-
urements (the reader is referred to the studies reviewed in 
[23]). However, Fernandez et al. [17] showed that the emis-
sivity of the material may exhibit consistent spectral and 
temporal dependences which make accurate temperature 
measurements quite challenging. To this aim, Fernandez 
et al. [17] used an in situ measurement setup based on a 
multi-wavelength pyrometer suitable to resolve hundreds 
of wavebands of amplitude 2  nm in the spectral range 
1000–1650 nm. The pyrometer was mounted with a fixed 
measurement spot within the build area. Terrazas-Nájera 
et al. [58] used the same setup to measure the signal strength 
as proxy of the material emissivity during all PBF-EB pro-
cess stages. Terrazas-Nájera et al. [58] showed that the pro-
posed approach was sensitive enough to detect the dynamic 
thermal signal strength/emissive transitions of materials 
associated with surface temperatures, phase transitions, 
chemistry and powder morphology variations from layer to 
layer and from build to build.

Video imaging in the visible range at high temporal reso-
lution was proposed by Grasso et al. [24] as an alternative 
approach to IR vision. Indeed, thermal cameras are more dif-
ficult to install on industrial machines, especially when high 
spatial and temporal resolution is needed. Grasso et al. [24] 
presented a study on the detection of local over-heating phe-
nomena known as “hot-spots”, i.e., locally over-heated areas 
where a diminished heat exchange with the surrounding 

material may lead to micro- and macro-geometrical distor-
tions as well as volumetric defects and discontinuities. Since 
regions affected by hot-spots stay hot for a longer time with 
a slower cooling drift than in normal conditions, they can 
be detected as anomalous bright spots in the visible range 
too. Figure 10a shows an example from Grasso et al. [24] 
where hot-spots are visible as local peaks in the 3D map of 
the proposed synthetic index designed to capture anomalous 
heat accumulations.

High-speed vision in the visible range was also used by 
other authors for different purposes. Lee et al. [31] used it 
to monitor the dynamics of so-called “ghost beam” during 
the development of novel scan strategies. Wang et al. [60], 
Ye et al. [68] and Eschey et al. [16] used high-speed vision 
to study the smoking phenomenon, which is relevant to pre-
vent it or, at least, to anticipate its detection and recover the 
process after its occurrence. Both Wang et al. [60] and Ye 
et al. [68] showed that the smoke phenomenon is a multi-
stage event, characterized by a stable stage, followed by a 
meta stable powder fume development stage and finally by 
a catastrophic powder explosion (an example is shown in 
Fig. 10b). Combining high-speed video imaging with ELO 
imaging, Wang et al. [60] and Ye et al. [68] demonstrated the 
suitability of the ELO methodology to capture each develop-
ment stage. Such capability makes the ELO imaging tech-
nique suitable for early detection of smoking events.

As far as level 2 monitoring methods are concerned, one 
major difference between PBF-L and PBF-EB is the fact that 
great attention has been devoted to in situ spatter monitor-
ing and analysis in PBF-L, whereas this is an unexplored 
field in PBF-EB. The reason is that spatters are rare events 
in PBF-EB, at least under normal and stable process condi-
tions. They mainly consist of droplet spatters, i.e., molten 
material ejections from the melt pool, due to the pre-sin-
tered nature of the powder in the layer that limits hot and 

Fig. 9  a Example of in-situ NIR video imaging for the detection of 
a swelling distortion: a sample part (dimensions in mm), b thermal 
map showing lack of fusion defects (small localized apparent hot-

spots) and swelling (indicated with maker), c manufactured part 
showing evidence of swelling (indicated with marker) [8]
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cold particle ejection phenomena observed in PBF-L. The 
only seminal study where spattering was captured by in situ 
video imaging in PBF-EB is the one of Hankwitz et al. [26], 
where authors showed that process conditions that produced 
a larger number of spatters were also responsible for a lower 
process quality and stability in the PBF-EB of niobium. This 
potentially opens to the use of spatters as proxies of unsta-
ble condition in PBF-EB as well, but additional research is 
needed in this direction.

4.4  Other monitoring levels

One major stream of research in PBF-L regards in situ meas-
urement and monitoring of salient melt pool properties, as 
their stability over time is strictly correlated to the final qual-
ity of the product [23, 35]. The lack of any optical path for 
co-axial monitoring avoids the applicability of similar meth-
ods in PBF-EB. Nevertheless, a few authors explored the 
possibility to measure melt pool properties in restricted build 
locations by combining off-axis high-speed video imaging 
with a narrow and fixed field of view. Scharowsky et al. [53, 
54] investigated the melt pool dynamics with a high-speed 
camera equipped with a 810 nm band-pass filter and a pulsed 
light source in the same wavelength. The observation area 
was limited to less than 10 mm × 10 mm. Frame rates of 
4000 fps and 6000 fps were tested with a spatial resolution in 
the order of 5 µm/pixel. Scharowsky et al. [54] showed that 
the proposed imaging setup allows determining the aspect 
ratio of the melt pool in the X–Y plane. It also allows one 
to capture oscillations that can be attributed to the powder 
particle size. Examples of high-speed video image frames 
from Scharowsky et al. [54] are shown in Fig. 11a. In a 
similar way, Lee et al. [31] used high-speed video imaging 

to determine the melt pool geometry and intensity along 
scanned tracks, with an acquisition rate of 12,000 fps, show-
ing the effect of ghost beam scan strategies on the melt pool 
elongation and oscillations.

One stream of research that attracted a relevant number 
of studies in PBF-L regards the use of ad hoc prototype 
machines for in situ X-ray video imaging of the melt pool 
penetration and its dynamics under the processed layer [23, 
35]. To the best of the authors’ knowledge, the only similar 
attempt in PBF-EB was carried out by Escano et al. [15]. 
An open architecture PBF-EB system was developed and 
tested for in situ synchrotron X-ray monitoring. High-speed 
video imaging in the visible range as well as high-speed 
IR imaging were added, too. Escano et al. [15] showed the 
sub-surface transient phenomena occurring during the EB 
melting of a Ti6Al4V powder bed. An example of in situ 
measurements performed in Escano et al. [15] is shown in 
Fig. 11b, where vapor cavities, the solidification front and 
sub-surface pore formations are visible. Escano et al. [15] 
highlighted the suitability of the proposed architecture to 
reveal vapor cavity and pore formation dynamics, and to 
capture the phase evolution thanks to in situ X-ray diffrac-
tion patterns.

The methods described in this sub-section for melt pool 
measurement in PBF-EB are particularly helpful to char-
acterize the melt pool dynamics and the beam–material 
interactions under different processing conditions, and to 
investigate defect origination mechanisms. Despite not being 
applicable to in-line monitoring of the PBF-EB process dur-
ing actual production, they are valuable research tools for 
process and material development and tuning. Ioannidou 
et al. [25] pointed out the need for more research efforts 
devoted to the characterization and study of the PBF-EB 
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3D map of the proposed index for automated
in-situ detection of hot-spot events
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Fig. 10  a Example of hot-spot detection via high-speed video imag-
ing—the peaks in the 3-D map of the proposed synthetic index indi-
cate the presence of hot-spot events [24], b example of high-speed 

video imaging of the smoke phenomenon under the condition of 
fixed-position irradiation [60]
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process via in situ synchrotron X-ray measurements. This is 
expected to be a field of research that may open a new com-
prehension of the underlying process dynamics in PBF-EB.

5  Open problems, challenges, and future 
perspectives

The industrial relevance of in  situ monitoring of the 
PBF-EB process is testified by the fact that all PBF-EB 
machine developers have invested in equipping their sys-
tems with a variety of sensors and toolkits to this aim 
[19]. More specifically, Arcam provides an optical camera 
that captures layer images in the NIR range. Jeol provides 
an optical camera too, whereas ELO imaging is available 
on Freemelt, QuickBeam and ProBeam systems. Wayland 
machines, instead, are equipped with a high-speed cam-
era and a fringe projection system for surface topography 
reconstruction. This variety of sensing and monitoring 
equipment also demonstrates that most solutions inves-
tigated in the literature are valuable for a real industrial 
implementation and adoption. However, there is a major 

gap in the literature that still needs to be filled, namely 
the lack of automated defect detection and/or classifica-
tion algorithms. In other terms, the PBF-EB literature 
has focused more on the sensing problem, i.e., on meas-
uring quantities and process signatures that correlate to 
anomalies and phenomena of interest, rather than on the 
development of monitoring solutions. Referring to the ter-
minology defined in Grasso et al. [23], the term “in situ 
monitoring” refers to the capability of making sense of 
measured quantities to signal an alarm in the presence of 
an undesired process state, or to automatically classify 
observed patterns into normal and defective categories. 
Machine learning techniques have been widely investi-
gated in PBF-L to this aim, whereas in PBF-EB they have 
been explored by only a few authors. Le Roux et al. [28] 
investigated the used of CNNs for the automated classi-
fication of ELO images into different categories, namely 
good, porous and bulging. A multi-class training set was 
used to this aim. Different CNN architectures were com-
pares, demonstrating the capability of classifying the 
correct process condition simply using the ELO image 
of the layer. Grasso et al. [22] presented a method based 

Fig. 11  a Example of high-speed video imaging for melt pool analy-
sis in Scharowsky et  al. [54]—the images highlight the challenging 
distinction between clustered reflections and the actual melt pool, b 

example of in-situ synchrotron X-ray video imaging in Escano et al. 
[15]—it shows the vapor cavity, the solidification front and the for-
mation of pores on a temporal scale of few milliseconds
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on a one-class-classification variant of Support Vector 
Machines (SVMs) for the automated identification of geo-
metrical distortions caused by a wrong powder deposition 
in multiple layers. The method was applied to a subset 
of log signals, using a few copies of the monitored com-
ponent as training samples. Grasso et al. [24] presented 
an automated hot-spot detection method based on an 
extension to the PBF-EB process of a method previously 
developed in PBF-L. The method consists of an automated 
pixel-wise classifier suitable to distinguish the hot-spot 
signature in the time series of the pixel intensity from the 
natural pattern.

Since only a few authors proposed automated ways to 
detect defects and anomalies, there is also a lack of quan-
titative studies on actual detectability performances with 
different sensing methods and for different defect types and 
severities. Qualitative correlations (commonly based on 
visual analysis) between process signatures measured in situ 
and actual defects (e.g., pores and geometrical distortions) 
were presented and discussed by several authors, show-
ing in some cases a good visual agreement with respect to 
ground truth data. Nevertheless, this is not sufficient to infer 
a probability-of-detection function, estimate false positive 
and false negative rates, or assess classification accuracies. 
Thus, further research in PBF-EB is needed to (1) combine 
proposed sensing methods with automated defect detection 
techniques, (2) characterize in situ monitoring performances 
in a quantitative way, and (3) investigate their suitability 
for actual in-line adoption with respect to computational 
efficiency, data storage needs, robustness in real production 
settings, etc.

Another aspect that deserves further attention and devel-
opments, as pointed out by various authors, regards in situ 
sensor calibration and data quality improvement. The spe-
cific nature of the PBF-EB imposes several challenges. 
Some sensing methods, like ELO imaging, are more robust 
than others to nuisance factors, but they allow capturing 
just a portion of the wide range of relevant information for 
process monitoring purposes. Optical imaging and NIR/IR 
video imaging open to complementary opportunities, but 
their implementation in PBF-EB suffers from many more 
limitations than in PBF-L. A variety of sensor installation 
setups have been proposed so far, but they can be further 
tuned and improved to achieve desired defect detection per-
formances at different levels.

Various authors pointed out the potential of various in situ 
sensing and monitoring techniques not only for fast detection 
of defects, but also to support material development stages, 
reducing the experimental effort and costs. Indeed, in situ 
gathered data can be used as response variables to determine 
the printability window for a given material by screening 
out sets of process parameters that yield undesired patterns 
while samples are being produced, reducing the need for 

post-process inspections. However, no actual validation of 
in situ process optimization procedure has been presented 
so far. This is an additional and interesting application that 
deserves additional research and validation.

Eventually, an industrially relevant problem regards the 
capability of producing parts first-time-right and defect-
free. Closed loop control has been investigated in PBF-L, 
where seminal and more recent studies showed the feasibil-
ity of preventing and/or mitigating unstable process states 
by adapting process parameters based on in-line measured 
quantities. Various methods reviewed in this study are poten-
tially suitable to feed adaptive control loops in PBF-EB, but 
such potential has not been explored yet. Open architecture 
machines are needed to implement and validate this capabil-
ity, and this still represents a limitation with respect to PBF-
L. Indeed, several self-developed and open PBF-L prototype 
machines have spread in research laboratories, and they have 
been widely used as testbeds so far. Fully open PBF-EB 
systems, instead, are currently commercialized by only one 
company, and very few efforts have been made to develop 
open machines for research purposes.

In summary, despite various successful solutions that 
have been recently adopted by newcomer system developers, 
the literature devoted to in situ sensing and monitoring in 
PBF-EB is still less mature than the corresponding literature 
in PBF-L. Most promising sensing methods must still be 
combined with advanced data mining and machine learn-
ing solutions to make an impact on industrial production 
and qualification practices. In-line process optimization and 
closed-loop control represent two additional opportunities 
to leverage on in situ gathered data, either to aid material 
development or to achieve zero-defect capacities, but they 
represent fields where additional research and innovation 
efforts are required. The higher competitiveness expected 
in the PBF-EB market in the next years may give additional 
momentum to innovative solutions. Among them, in situ 
sensing, monitoring, and control may play a relevant role in 
fostering and consolidating the PBF-EB industrial adoption 
as well as to open and upscale new applications.

6  Conclusions

The layerwise production paradigm enables an unprece-
dented range of opportunities for in-line process monitoring, 
defect detection and control. Despite still far from the enor-
mous number of studies devoted to the PBF-L process, the 
literature in PBF-EB is characterized by a variety of solu-
tions characterized by different technology readiness levels. 
Some in situ sensing methods have reached a sufficient matu-
rity to be installed by machine developers as embedded or 
optional equipment in their systems, while others still need 
additional development to enhance the quality of gathered 
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data and their suitability for industrial implementation. ELO 
imaging exhibits a high potential for the characterization of 
the surface pattern of solidified layers, which can be used to 
distinguish among different process conditions and detect 
deviations from a normal and stable process state. Good 
visual correlation between ELO maps and internal porosity 
structures have been presented too, which further highlight 
the potential of this technique for both process monitoring 
and in-line process optimization. NIR/IR video imaging has 
the complementary capability to capture spatial and tempo-
ral thermal gradients during the melting and cooling stages. 
This capability may allow one to predict the microstructural 
properties of the part, to detect anomalies in the heating and 
cooling profiles, to identify swelling phenomena and surface 
crack formations. Optical video imaging is also suitable to 
detect hot-spots, to analyse powder bed homogeneity, or to 
characterize the surface topography of the solidified layer 
when combined with a structured light source. The continu-
ous growth of the literature on such in situ sensing methods 
still deserves additional research developments in the field 
of bid data analytics and machine learning for automated 
defect detection or process classification. Only few seminal 
works have been presented so far, and new developments 
are expected in the next years. In addition to in situ sensing 
and monitoring, adaptive and closed-loop control basically 
represents an unexplored field in PBF-EB, but the increased 
competitiveness in the sector together with new industrial 
adopters may pull novel solutions in this area too, aiming 
to meet rapidly changing market needs and to foster a new 
generation of smart PBF-EB systems.

Appendix

The procedure adopted in this study to collect the literature 
on in situ sensing and monitoring in PBF-EB was based on 
the following search methods:

• Search by keyword: Google Scholar and Scopus data-
bases where searched using several different combi-
nations of salient keywords including the following: 
“electron beam melting”, “electron beam”, “powder 
bed fusion”, “selective electron beam melting”, “addi-
tive manufacturing”, “monitoring”, “sensing”, “meas-
urement”, “in situ”, “in-line”, “online”, “in-process”, 
“in-operando”, “defect detection”, “anomaly detection”, 
“error detection”, “process classification”, “machine 
learning”, “quality prediction”, “data analytics”, “statis-
tical learning”, “statistical process monitoring”, “process 
control”.

• Search by author and research group: starting from 
(1) previously published reviews, (2) the results of our 
search by keywords, and (3) the authors’ knowledge of 

the research area, any additional or more recent papers 
from individual authors and the research groups they 
belong to were searched through direct links to research 
groups’ web-pages, Google Scholar personal pages, 
institutional websites.

• Search by references: for each found paper, a further 
search was performed by going through all cited papers 
therein and identifying the relevant ones.

• Search by citation: for each found paper, a further 
search was performed by going through all papers that 
cited it and identifying the relevant ones.

• Iteration of steps 1 to 4: once new papers and new authors 
were identified, the list of keywords was refined, more 
recent papers were searched, and all citations were 
explored to identify additionally relevant studies.

• Final screening phase: all papers selected through steps 
1 to 5 were screened out based on their actual relevance 
to the topics included in this review.
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