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Abstract-- The paper presents a modal model to describe the 

interaction between a 4-conductor bundle and wind. A finite-
element model of the bundle is used to perform a linear analysis, 
to extract mode shapes and natural frequencies of the system. The 
motion of the expanded bundle is then described through mode 
coordinates representing the first horizontal, vertical and 
torsional modes. Wind tunnel tests were performed adding 
templates over the cables to mimic the presence of ice over the 
same conductor bundle; tests allowed to characterize the 
aerodynamic coefficients of the entire bundle and provided data 
for the model validation. The model was then applied to a case 
study to predict the maximum oscillations produced by ice 
galloping. Time-domain simulations were used for the purpose, 
together with an alternative approach named energy method; this 
last directly estimates the amplitude of limit cycles avoiding the 
integration of the equations of motion and can be much more 
useful from the engineering point of view.  

 
Index Terms—bundle conductors, galloping, oscillation 

amplitudes, modal model, energy method, wind tunnel 

I.  INTRODUCTION 
ce galloping on High Voltage (HV) Over Head  

Transmission Lines (OHTL)  is a very well-known 
phenomenon, causing a lot of problems with flash-overs 

and conductor and towers failure.  A lot of papers have been 
published on the subject [1][2][3][4]: a good reference is the 
EPRI Transmission Lines Reference Book (Orange Book) [5] 
in which chapter 4 – written by P.Van Dyke, JL Lilien and 
D.Havard – is dedicated to the description of the phenomenon 
and reports the state-of-the–art of the knowledge on it. 

Galloping occurs both in single and bundle conductors. On 
single conductors it can be mainly described as a one-degree-
of-freedom instability – as for the first time reported by Den 
Hartog in 1932 [6] due to the negative value of the slope of the 
lift aerodynamic coefficient. On bundle conductors, together 
with the one-degree-of-freedom instability, a two-degrees of-
freedom instability may occur. This paper is mainly focused on 
bundle conductors, that have become more and more important 
in the HV Transmission Lines. In any case, the approach 
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presented in the paper can be also applied to the case of the 
single conductor. 

Many different approaches can be found in literature to 
simulate ice-galloping on bundle conductors, the most of them 
using Finite Element Modelling (FEM) to reproduce the 
structural part of the system (single of multi-span sections of 
the transmission Line) and relying on the Quasi Steady Theory 
(QST) to reproduce the fluid-elastic forces [7][8].The QST uses 
the static lift, drag and moment coefficients of the bundle with 
ice formation on the conductors measured in wind tunnel as a 
function of the angle of attack of the wind. This approach can 
be very useful to define what kind of device can be used to 
control the different types of instabilities that may occur: one-
degree-of-freedom or Den Hartog instability and  two-degrees 
of freedom or flutter type instability. With this approach, it is 
possible to verify that increasing the damping of the system – 
for instance by using a Tuned Mass Damper (TMD) – the 
problem can be controlled. Unfortunately it is not easy to design 
a damper for frequencies as in the range 0.2-0.3 Hz, typical of 
ice-galloping oscillations. The problem is worsened by the 
presence of ice-formations which may also affect the damper 
performance. 

The detuning pendulum has been widely used to try to 
control ice-galloping in bundles: in this case the pendulum 
increases the torsional frequency of the bundle and increases 
the critical wind speed associated with instability onset. The 
best instrument to design the type, number and position of these 
devices is the FEM approach based on the QST [4] [9]. In any 
case the big difficulty is to know what type of ice formations 
have to be considered in the different cases and consequently 
define the lift, drag and moment coefficients for all the different 
ice shapes as a function of the wind angle of attack. 

Another problem is that numerical codes based on the FEM 
approach and the QST work in the time domain and, as a 
consequence, a lot of time is needed for the simulations to reach 
steady state amplitudes of oscillation. So these programs are not 
suitable to be used at an engineering level to assess the ice-
galloping severity and to identify the correct counter-measures 
to control the phenomenon.  

Energy method to compute the maximum 
amplitudes of oscillation of bundle conductors 

due to ice galloping 
Giorgio Diana, Member, IEEE, Alessandra Manenti, and Stefano Melzi, Member, IEEE 

I 



 2 

Scope of this paper is to present a numerical approach also 
based on FEM of the bundle conductors and using the QST for 
the fluid-dynamic forces, as those previously described, but 
aiming at directly find the amplitude of a limit cycle  instead of 
identifying it from the time-domain simulations. This approach, 
named energy method (EM), allows to estimate the maximum 
amplitudes of oscillation due to ice galloping as a function of 
the wind speed. The validity of the presented method is verified 
through comparison with the results of the approach working in 
the time domain. Moreover the validity of the used in our 
approach is confirmed by two factors:  

1. the reduced velocity 
cf
UVr= is much greater than 15 where 

the QST is considered valid. In the definition of Vr, U is 
the wind speed, c a reference dimension of the body (in 
our case the bundle separation in the order of 0.5 m) and f 
is the frequency of the bundle motion generally lower than 
.5 Hz. The reduced velocity for a wind speed greater than 
6 m/s, below which the ice galloping do not occur, is 
always greater than 15.  

2. As reported in paragraph III, the QST has been also 
validated through wind tunnel test on a sectional model of 
the bundle. Free to vibrate in horizontal, vertical and 
torsional direction. 

 
The proposed method is based on an energy balance: 

amplitudes of vibration are computed equaling the energy 
introduced by wind forces and the energy dissipated by 
conductors in one limit cycle. The energy method can be 
profitably used to design and verify the effect of controlling 
devices like detuning pendulums and interphase spacers. 

It has to noted that – as reported in the EPRI Orange Book - 
some attempts to compute in an easy way the maximum 
amplitudes of ice-galloping as a function of the wind speed 
have been already made [7][8]. All of these methods are mainly 
based on very simple formulations that cannot take into account 
all the complexity of the problem, especially when the type of 
instability is due to the combination of torsional and vertical 
modes of vibration, as mainly occurs in bundle conductors. 
The paper is organized in the following sections: 1) description 
of the numerical model, 2) validation of the numerical model, 
3) application of numerical model to a case study, 4) description 
and application of the energy method. 

II.  NUMERICAL MODEL 

A.  FEM model of the bundle 
A detailed description of the numerical model of the 

conductor bundle is reported in [11]; the main details are 
hereafter presented. The numerical model of the bundle is based 
on a finite element scheme: stranded-beam elements (6 degrees 
of freedom per node) are used to reproduce the flexural, 
torsional  and tensile response of each conductor. I-type or V-
type insulators are introduced at the extremities of the bundle 
span; rigid beams connect the conductors ends to a node located 
at the center of the bundle which is then linked to the insulator. 
A lumped-parameter model is adopted to describe the effect of 
spacers that may be introduced in generic positions along the 

span. The inertia of a spacer is concentrated in a central body 
and in clamps elements; these lasts are connected to the central 
body through springs and dampers to reproduce the behavior of 
the spacer dampers generally used in bundle systems. The 
motion of the spacer is assumed to take place in a plane normal 
to the longitudinal direction of the bundle; its mass, damping 
and stiffness matrices are condensed and added to the 
corresponding matrices of the bundle structure. 

B.  Modal analysis of the bundle 
The finite element scheme generated as described in the 

previous section is used to determine the span deformation due 
to its own weight. An iterative algorithm is adopted to compute 
the equilibrium configuration where the tensile preload of finite 
elements changes along the span due to the effect of gravity. 
Tensile preload modifies the stiffness of beam elements and 
therefore the overall stiffness matrix. 

Once the static configuration is defined, the natural 
frequencies and the vibration modes of the bundle are estimated 
numerically, focusing the attention on the typical frequency 
range of galloping, i.e. below 1 Hz. The process leads to 
determine the mode shapes in terms of displacements of the 
nodes of each element of the scheme.   

The idea proposed in the paper is to describe the motion of 
the entire bundle using a modal superposition approach but 
referring the mode shapes to an equivalent super-conductor. 
When dealing with instability associated with ice formation 
over the cables of a bundle, relative displacements among them 
are in fact negligible; this means that, as first approximation, 
each section of the bundle along the span behaves like the 
cables were part of a rigid body. Following this assumption, the 
positions of the conductors of the j-th section of the bundle 
referred to the k-th mode shape can thus be expressed as a 
combination of the translation of the center of the section along 
the horizontal and vertical directions (Yj,k, Zj,k) and a rotation 
around the section center (θj,k). Minimizing the differences 
between the displacements of the cables of the k-th mode shape 
and those obtained with the rigid body model, leads to 
identification of Yj,k, Zj,k and θj,k. 

The process is repeated for all the sections defined over the 
bundle span. The k-th mode shape of the super-conductor can 
be represented through the vector Φk defined as follows: 

 

[ ]Tkθkzkyk ΦΦΦΦ =              (1) 
 
where Φky collects the displacements along horizontal 
direction, Φkz the displacements along vertical direction and 
Φkθ, the rotations of the sections. This easily leads to the 
definition of the matrix of mode shapes:  

 
[ ] [ ]nΦΦΦΦ ...21=              (2) 

 
The motion of the bundle is assumed to be conveniently 
described through n mode coordinates corresponding to the first 
n modes of the super-conductor.  
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C.  Wind-bundle interaction 
The aerodynamic forces are modeled considering the quasi-
static theory [10] and generating space-time wind profile 
(horizontal and vertical components) starting from a Power 
Spectral Density function based of the wind characteristics in 
terms of: mean velocity U, turbulence intensity I=σu/U and 
space correlation introduced through the integral scales Luz and 
Lwz [11]. Being vj the relative speed between wind and super-
conductor in the j-th section of the finite element scheme, 
aerodynamic drag (Fd,j), lift (Fl,j) and moment (Mx,j) are 
assumed to be expressed as reported in (3), where a four-
conductor bundle was considered. In equation (3), ρ represents 
the air density, D the diameter of the single cable of the bundle 
and Lj the length j-th segment of cable; c is the bundle chord, 
defined by the span of cables along the horizontal direction. 
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The aerodynamic coefficients Cd, Cl and Cm are function of the 
angle of attack αj and are referred to the entire bundle. Tests 
were carried out in the wind tunnel to measure these coefficients 
for different bundle arrangements and different cross sections 
of the cables. For instance, Fig. 1 reports the aerodynamic 
coefficients measured on a bundle made up of four cables 
arranged on the vertexes of a 0.5 m-side square.  
 

 
Fig. 1 Aerodynamic coefficients for a 0.5m-side square bundle 

 

 
Fig. 2 conventions and cross section of a cable: D=31 mm, h=10 mm. 

 
The conventions used for the angle of attack and forces are 

shown in Fig. 2, together with the cross section of the 
conductor. Tests for measuring aerodynamic coefficients were 
carried out applying different rigid rotations θ to the entire 
bundle while it was hit by a horizontal wind with constant 
speed. In the test configuration the angle of attack α coincides 
with the rigid rotation of the bundle θ. The lower part of Fig. 2 
depicts the cross section of a cable putting into evidence the 
templates added to reproduce the presence of ice on the leading 
edges. 

 
Fig. 3 interaction between wind and super-conductor 

 
Referring to Fig. 3 the speed of the turbulent wind acting on 

the j-th section of the super-conductor is defined by the 
horizontal component wy,j and a vertical component wz,j. The 
relative speed with respect to the super-conductor is computed 
considering the speed of the point P whose position is identified 
on the basis of experimental data collected in wind tunnel tests. 
Assuming a symmetrical distribution of the cables of the bundle 
along the vertical direction, position of P can be identified by 
the distance b, as shown in Fig. 3. The speed of P can be then 
obtained summing up the motion of the center of the super-
conductor (point C) and its relative motion with respect to this 
point, that is: 
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The terms of (4) can be derived from vector the mode 
coordinates q. 

 
;;; qΦqΦqΦ jθ,jz,jy,  === jjj zy θ         (5)

  
where Φy,j is the vector of mode shapes along horizontal 
direction for the j-th section of the super-conductor. Φz,j and 
Φθ,j have an analogous meaning but are referred to vertical 
displacement and rotation of j-th section. The relative speed 
between wind and super-conductor can thus be obtained. 
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This allows determining the modulus of relative vj speed the 
inclination of the wind ψJ  with respect to the horizontal 
direction and the angle of attack αj. 
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It is now possible to compute the aerodynamic forces and 
moments acting on the j-th section of the super-conductor 
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The aerodynamic forces and moments can be conveniently 
collected in a unique vector ( )t,,qqFa  ; the virtual work of 
aerodynamic forces can thus be expressed as:

  
( )[ ] ( ) δqqqQδqΦqqF aa

TttL ,,,,  ==δ         
 (9) 
 
where the explicit dependence on time is due to the time 
histories of wind speeds acting on different sections of the 
bundle. Equation of motion of the super-conductor are 
eventually assembled as follows: 

 
[ ] [ ] [ ] ( )t,,qqQqKqRqM a  =++            (10) 

 
where [M], [R] and [K] are diagonal matrices containing mode 
mass, damping and stiffness of each eigenmode; the damping 
matrix is obtained as a linear combination of mass and stiffness 
matrices. 

III.  VALIDATION OF THE NUMERICAL MODEL 
The model described in the previous paragraphs was 

implemented in a numerical code and tested against 
experimental data collected in a series of wind tunnel tests. 

During the same test sessions, the aerodynamic coefficients 
reported in Fig. 1 were measured. 

The main target of the experimental tests was the 
characterization of the static aerodynamic coefficients of a four-
conductor bundle investigating the effect of ice formation. The 
base experimental set-up was made up of 4 rigid conductors 
arranged on the vertexes of a 0.5 m-side square (Fig. 4). 
Relative displacements among conductors were negligible. 
Each conductor was 0.95 meter long and had a diameter of 31 
mm. The presence of ice formation was artificially produced by 
adding templates of suitable shapes, like the one shown in Fig. 
2. 

 

 
Fig. 4 set-up for the characterization of flutter instability. 
Besides the tests performed for the identification of static 

aerodynamic coefficients referred to a section of the bundle, 
additional tests were carried out to investigate the onset of 
flutter instability associated with the coupling of vertical and 
torsional motion of the entire bundle. For the purpose, the set-
up shown in Fig. 4 was used. The bundle was suspended with 
elastic elements whose parameters were tuned to obtain 
reasonable values eigenfrequencies, as if the section tested in 
wind tunnel was part of a longer suspended bundle. Two 
accelerometers (A and B in Fig. 4) were added to characterize 
the response of the bundle in terms of vertical and torsional 
dynamics. The main features of the experimental set-up are 
collected in TABLE 1. 

TABLE 1 
Main features of the experimental set-up 

Conductor diameter 0.031 m 
Conductor length  0.95 m 
Conductor spacing  0.5 m 
Horizontal frequency 0.5 Hz 
Vertical frequency 0.88 Hz 
Torsional frequency 0.97 Hz 
Damping factor 1‰ 
Distance A-B 0.93 m 

 
Experimental data showed that flutter instability triggers for 

wind speeds above 17 m/s; an example of the build-up of the 
oscillation (rotation around the longitudinal axis) referred to a 
wind speed of 18.5 m/s is reported in Fig. 5. 
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Fig. 5 oscillation build-up of the bundle with a wind speed of 18.5 m/s. 

16
 m

/s
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 m
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Fig. 6 time histories of bundle oscillation for different wind mean speeds. 

 
The numerical model was used to reproduce the same 
conditions of experimental tests. The motion of the bundle was 
described combining three rigid modes (horizontal 
displacement, vertical displacement and rotation around the 
longitudinal axis) using the frequencies and damping factors 
reported in Table 1. Several simulations were performed for 
mean wind speeds from 16 to 20 m/s; a turbulence index of 1% 
was assumed. The output of numerical results is consistent with 
the experiments: instability appears for speeds above 17 m/s. 
Fig. 6 reports the time histories of bundle oscillation for wind 
speeds of 16 m/s and 17 m/s. The upper graph (16 m/s) does not 
reveal signs of instability, while increasing wind speed by just 
1 m/s leads to a significantly different response characterized 
by a progressive increase of bundle oscillation. 

Results of comparisons are collected in Table 2 and show 
that the model is able to reproduce the experimental behaviour 
with satisfying precision. The frequency of the instable motion 
is slightly overestimated by the model, showing a decreasing 
trend with wind speed. Damping factor are comparable: the 
numerical model displays an increase of the absolute value with 
speed which is consistent with experimental behaviour. As far 
as the dynamics of the two measuring points is concerned, the 
numerical model slightly overestimates the ratio between the 
amplitudes of acceleration of point B and A. The relative phase, 
reported in the last columns, is instead very similar. Altogether 
the agreement between experimental and numerical data 
appears satisfying; in particular the numerical model is able to 
catch the instability threshold in terms of wind speed. Both 
experimental and numerical results reveal a flutter type 
instability. The torsional frequency decreases due to the 

aerodynamic force field and becomes close to the vertical one, 
giving rise to flutter instability. 

 
TABLE 2 

Comparison between experimental and numerical results. 
  17.7 m/s 18.5 m/s 19.8 m/s 

Frequency Exp. 0.92 Hz 0.92 Hz 0.90 Hz 
Num. 0.95 Hz 0.95 Hz 0.94 Hz 

Damping 
factor 

Exp. -3‰ -8‰ -25‰ 
Num. -6‰ -10‰ -16‰ 

Amplitude 
B/A 

Exp. 2.2 2.4 2.6 
Num. 3.8 3.6 2.9 

Phase B-A Exp. -30° -35° -35° 
Num. -29° -31° -28° 

IV.  A CASE STUDY 
The numerical model was used to analyze the dynamics of a 

4-conductor bundle; in particular, the goal is to identify 
maximum oscillation amplitudes associated with ice-galloping 
comparing two numerical methods: the first one based on 
solving motion equations in time domain waiting for the system 
to reach a steady state oscillation, the second one based on 
direct search for the same condition on the basis of energetic 
balance. The main characteristics of the bundle are reported in 
Table 3. 
The section of the bundle is identical to that of the experimental 
set-up of wind tunnel tests. In this case a span of 400 m is 
assumed and the bundle is modeled with a series stranded-beam 
elements allowing to reproduce the cable flexibility. 7 spacers 
are evenly distributed along the span (1 spacer each 50 m). 
Quasi-static theory previously described is adopted to describe 
the aerodynamic forces and aerodynamic coefficients reported 
in Fig. 1 are assumed; this means the response induced by ice-
formations over the cables may couple vertical and torsional 
dynamics of the cables. 

 
TABLE 3 

Main characteristics of the bundle analyzed in the case study.. 
Cable diameter 30 mm 

Mass per unit length  1.6 [kg/m] 
Pre-tensioning load 28070 N 

Number of cables 4 
Cable arrangement Square; side 0.5 m 

Span length 400 
Number of spacers 7 (one each 50 m) 

Suspension I-type (5m) 
 
As first step, the finite element model was used to determine the 
eigenfrequencies and eigenmodes of the bundle, computed 
around the static equilibrium position. Table 4 collects the 
frequencies and the description of the associated modes 
resulting from the computation. These modes range from 0.12 
to 0.5 Hz and include 2nd and 3rd vertical and torsional modes. 
 

TABLE 4 
Frequencies and description of the first 8 modes of the bundle. 

Mode Frequency Description 
1 0.125 Hz 1st horizontal 
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2 0.241 Hz 2nd horizontal 
3 0.283 Hz 2nd vertical 
4 0.337 Hz 2nd torsional 
5 0.368 Hz 3rd horizontal 
6 0.394 Hz 3rd vertical 
7 0.397 Hz 3rd torsional 
8 0.500 Hz 4th horizontal 

 
The modes reported in Table 4 were used to describe the 

motion of the bundle through the mode approach presented 
before. For the purpose, the damping matrix [R] was obtained 
as a linear combination of mass and stiffness matrix, that is: 

 
[ ] [ ] [ ]KMR βα +=                 (11) 

 
Values for α and β were chosen to have damping factors 
between 0.1÷0.3‰ over the selected modes. 

A.  Linear analysis 
A preliminary linear analysis can be performed aiming at 

computing the eigenvalues of the system for different wind 
speeds. Despite the approximations introduced by linearization, 
this last allows to get an overall picture of the onsets of 
instabilities with increasing wind speed and of the frequencies 
associated with unstable modes. After setting a value for the 
mean wind speed, a static solution qs for equation (10) is 
determined, so that:  

 
[ ] ( )0qQqK sas ,=                 (12) 

 
Equation (12) is solved numerically; equation (10) is then 
linearized around the static solution: 

 
[ ] [ ] [ ] [ ] ( ) [ ] [ ]qKqR0qQqKqKqRqM aasas −−≈+++  ,  (13) 
 
where q is defined as sqq − and 
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Elements of matrices [Ka] and [Ra] are estimated numerically 
considering ratios between variations of Qak associated with 
small variations of the mode coordinates and speeds. The 
linearized motion equation around static equilibrium thus 
becomes: 

 
[ ] [ ] [ ][ ] [ ] [ ][ ] 0qKKqRRqM aa =++++          (15) 

 
A linear analysis of the free response of the system is then 
carried out to compute the eigenvalues of the damped system. 
Eigenvalues with positive real part are identified so that the 

onset of unstable modes for different wind speeds can be 
revealed. 

  
Fig. 7: frequency of unstable modes as function of wind speed. 

 
Fig. 7 refers to the case study and shows the frequency of the 

eigenvalues with positive real part for wind speeds up to 15 m/s 
(∼55 km/h); two eigenvalues with positive real part are reveled 
in this speed range. The first instability appears for wind speeds 
above 6 m/s with a frequency of 0.336 Hz. The frequency of the 
instability gradually decreases down to 0.326 Hz for a wind 
speed of 14.3 m/s. The frequency value and its decreasing trend 
suggest that instability is related to a combination of the 2nd 
torsional and 2nd vertical modes of Table 4. This instability is 
no longer present for wind speeds above 14.3 m/s. The second 
instability appears at 13.7 m/s with an initial frequency of 0.370 
Hz that decreases to 0.366 Hz at 15m/s. Looking again at Table 
4, the instability is reasonably due to a combination of modes 6 
and 7, i.e. the 3rd vertical mode and the 3rd torsional mode.  

A.  Time-domain simulations 
Several simulations were carried out generating time 

histories of wind considering different mean wind speeds and 
assuming a turbulence index of 1%, practically corresponding 
to no turbulence. The main purpose of simulations was to put 
into evidence the role of mean wind speed in affecting the onset 
of instabilities related with ice galloping and estimating 
oscillation amplitudes associated with the phenomenon. 
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Fig. 8 bundle with nominal parameters. Vertical displacement and 
rotation of the section at 100 m for different wind speeds. 

 
Fig. 8 shows the response of a section of the bundle in terms 

of vertical displacement as function of time. Results refer to a 
section at ¼ of the span length, a location where the 2nd vertical 
mode presents an antinode. The chart on the top is obtained with 
a wind speed of 5 m/s and shows small oscillations around the 
equilibrium position in the order of ±1cm. When the wind speed 
rises to 7 m/s, the response changes significantly: oscillations 
gradually expand reveling an unstable behavior. A limit cycle 
is eventually reached after 3000 s (not reported in the graph), 
with regime amplitudes of nearly ±25cm. Increasing the wind 
speed up to 10 m/s leads to a faster transient  toward a limit 
cycle with larger oscillations (±45cm). A further increase of 
wind speed up to 14 m/s reveal an even faster transient but 
towards smaller oscillations, again around ±15cm. 

The analysis of the spectra of the regime oscillation of the 
last three simulations (Fig. 9), provides a better insight on the 
response of the bundle. For a wind speed of 7 m/s, the spectrum 
presents a clear dominant harmonic component at 0.334 Hz 
with an amplitude of 0.22 m. For a wind speed of 10 m/s the 
spectrum looks similar with a dominant harmonic at 0.332 Hz 
and an amplitude of 0.43 m. The frequency of these peaks is 
close to the one of the 2nd torsional mode; the decreasing trend 
of frequency with wind speed suggests that the aerodynamic 
coefficients due to ice formations are able to decrease the 
torsion stiffness of the super-conductor. When the wind speed 
rises at 14 m/s, the spectrum shows a smaller peak at 0.376 Hz 
while no significant contribution is evidenced around 0.33 Hz. 
The higher frequency is close to the one of the 3rd torsional 
mode; therefore, the instability around 0.33 Hz disappeared and 

oscillations are now associated with the instability of modes 6-
7 combined. 

 
Fig. 9 FFT modulus of the section at 100 m for different wind speeds. 

 
Fig. 10 limit cycle for the section at mid span; wind speed 15 m/s.  

 
Altogether, the time domain simulations confirm the results 

of the preliminary linear analysis. An instability associated with 
a combination of 2nd vertical and 2nd torsional mode appears for 
wind speeds between 5 and 7 m/s. This instability vanishes for 
speed higher than 13 m/s. At 14 m/s, a second instability 
associated with a combination of 3rd vertical and 3rd torsional 
mode is triggered.  

Time-domain simulations can conveniently be used to 
determine the maximum oscillation amplitudes of the cable for 
different mean wind speeds. For speeds below 13 m/s 
maximum oscillations are associated with 2nd torsional-2nd 
vertical modes and are in the order of 0.6 m. For higher speeds, 
instability is associated with 3rd torsional-3rd vertical modes and 
maximum oscillations are in the order of 0.9 m. 

Fig. 10 shows the limit cycle of the section at mid span for a 
wind mean speed of 15 m/s; the vertexes of the squares 
represent the positions of the four conductors (though their 
relative distance was reduced to make the picture more clear). 
It can be seen how the rotation of the super-conductor combines 
with the vertical motion allowing lift force to introduce energy 
during the descending and ascending phases 

V.  ENERGY METHOD 
Though the modal approach allows reducing the number of 

degrees of freedom of the system, time-domain simulations still 
result demanding in terms of computational time; being the 
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structural damping of the bundle very low, a significant 
oscillation amplitude has to be reached to achieve an 
equilibrium between the energy introduced by the aerodynamic 
forces and the energy dissipated by damping forces. Moreover, 
when parametric analyses are performed, for example to 
investigate the effect of positions and parameters of detuning 
pendulums or interphase spacers on ice galloping, the number 
of simulations can easily increase. Time-domain simulations 
cannot be considered a practical tool to optimize the design of 
these devices. Due to this reason, an energy method was 
developed to obtain a faster estimation of the maximum 
oscillation amplitudes of the bundle as function of the wind 
speed. The method is described in the following. 

As first step, starting from the linear analysis, the pairs of 
vertical and torsional modes that combine generating instability 
in the frequency range below 0.5 Hz are found. Let’s identify 
these modes with ΦVm and ΦTm, i.e.: the vectors of mode shapes 
for the vertical and torsional mode respectively. The subscript 
m refers to the m-th instability resulting from the linear analysis 
where the order is determined by the speed vm that triggers the 
unstable mode. Considering the data of Table 4, the first 
instability (m=1) is associated with a combination of the 2nd 
vertical (ΦV1) and 2nd torsional (ΦT1) modes, while the second 
instability (m=2) is related with a combination of the 3rd vertical 
(ΦV2) and 3rd torsional (ΦT2) modes. The procedure can be 
obviously extended to other unstable modes if present. When 
the instability develops into a limit cycle, the motion of the 
bundle is assumed to be described with a combination of the 
mode shapes ΦVm and ΦTm. This means that the motion of the 
generic j-th section of the bundle can be written as: 

 
( ) ( ) ( )tqtqt TV jTm,jVm,j ΦΦx +≅           (16) 
 

being xj the vector collecting the horizontal displacement, the 
vertical displacement and the rotation of the j-th section of the 
bundle: 

 
( ) ( ) ( ) ( )[ ]Tjjjj ttztyt θ=x             (17) 

 
In (16) ( )tqV and ( )tqT  respectively represent the vertical and 
torsional mode coordinates corresponding to the mode shapes 
ΦVm and ΦTm. For the two mode coordinates to describe a limit 
cycle, their expression is assumed to be: 

 

( ) ( )
( ) ( )




+=
=

mmTmT

mVmV

tQtq
tQtq

ψωα
ωα

cos
cos

0

0            (18) 

In (18) ωm represents the angular frequency of the m-th unstable 
mode; QVm0 and a QTm0 are the amplitudes of the vertical and 
torsional mode coordinates resulting from the modal analysis 
for the same mode, i.e.: considering the 1st unstable mode, QVm0 
would be the amplitude of the mode coordinate associated with 
the 2nd vertical mode and QTm0 the amplitude of the mode 
coordinate associated with the 2nd torsional mode. Considering 
again (18), ψm is the relative phase between the two mode 
coordinates. 

To determine the oscillation amplitudes of the two mode 
coordinates in (18) both the values are multiplied by an 
amplification factor α. As aforementioned, amplitudes of limit 
cycles are associated with the equilibrium between energies 
introduced and removed from the system. Therefore, α can be 
identified by minimizing the difference between the energy 
introduced by the aerodynamic forces and the energy adsorbed 
with internal damping in one oscillation cycle. Being Tm the 
time period of the oscillation obtained as 2π/ωm, this means: 

 

( ) [ ] min, =−+= ∫∫ dtdtE
mm T

T

T

T qRqqqQq a         (19) 

 
In (19) the vector of mode coordinates q is obtained summing 
up the vector of the static solution qs referred to the wind speed 
vm and the vector q  whose components are null except for Vq
and Tq . Taking into account the static solution is extremely 
important: considering that the bundle presents two I-type 
suspensions at the extremity, changing mean wind speed has a 
significant impact on the static angle of attack of the bundle 
which in turn influence the level of energy introduced by 
aerodynamic forces. 

Referring to (19), the effect of aerodynamic forces on the 
mode coordinates is expressed through the term Qa, defined in 
(9), while the structural damping matrix [R] has been defined 
in (11). Equation (19) is solved iteratively through a 
minimization algorithm; the initial guess for the parameter α 
should be large enough to avoid convergence to α=0 which is a 
trivial solution of the problem.  

 
Fig. 11 Oscillation amplitudes predicted for 2nd and 3rd vertical-torsional 
unstable modes 

 
Fig. 11 shows the amplitudes of oscillation predicted with 

the energy method. The blue continuous line (appearing for 
wind speeds slightly below 6 km/h) represents the maximum 
oscillation amplitude along the span associated with the 1st 
unstable mode; this mode is a combination of modes 3 and 4 of 
Table 4 (i.e. 2nd torsional and 2nd vertical) and maximum 
oscillation is recorded at ¼ the span length. The amplitude of 
oscillation displays an increasing trend with wind speed 
reaching a maximum of 1.9 m at 14.3 m/s. The orange 
continuous line refers to the 2nd unstable mode, appearing for 
wind speeds above 13 m/s; in this case the maximum oscillation 
is recorded at the span center as the unstable mode is a 

0 5 10 15

Wind Speed [m/s]

0

0.5

1

1.5

2

2.5

3

3.5

Am
pl

itu
de

 [m
]

2nd torsional

3rd torsional

2nd torsional maximized

3rd torsional maximized



 9 

combination of modes 6 and 7 of Table 4 (i.e. 3rd torsional and 
3rd vertical); the predicted amplitude of oscillation presents a 
local maximum of 0.63 m at 14.5 m/s. It should be reminded 
that oscillation amplitudes are determined considering one 
unstable mode at a time. 

As the predicted amplitudes are not so small, it is reasonable 
to assume that the modes resulting from a linear analysis and 
might be not fully suitable for describing the dynamics of the 
bundle during the limit cycle. The relative phases and 
amplitudes between mode coordinates in the limit cycle could 
change due to non-linearities introduced by large 
displacements. Therefore it could be useful to explore the effect 
of different mode shapes by changing amplitudes or relative 
phase in equation (18). In particular, following a conservative 
approach, it could be interesting to estimate the oscillation 
amplitudes when the torsional and the vertical displacement 
combine in the worst possible way. Considering the mechanism 
of energy introduction associated with flutter instability, this 
means introducing a relative phase of –π/2 in equation (18) in 
place of ψm. The result of the procedure leads to the dotted lines 
of Fig. 11. The energy method shows that, with the proper 
relative phase between torsional and vertical mode shape, 
maximum oscillations for the 1st unstable mode would reach 3.4 
m. As far as the 2nd unstable mode is concerned, the same 
procedure leads to maximum oscillations in the order of 1.3 m. 
The differences between the continuous and dotted lines in Fig. 
11, indicate that the relative phase between vertical and 
torsional displacement obtained with the linear analysis is quite 
far from the critical one in particular for the 1st unstable mode. 

 

 
Fig. 12 comparison between oscillations amplitudes predicted through 
energy method and time domain simulations. 

 
Fig. 12 reports a comparison between the oscillation 

amplitudes predicted with energy method and time-domain 
simulations. As in Fig. 11, the continuous line refers to the 
modes derived directly from the linear analysis while the dotted 
line refers to the modes modified to maximize energy 
introduction. It can be noticed how, when relying on direct 
output of linear analysis, the energy method provides 
reasonable estimates for the oscillation amplitudes, especially 
for wind speeds up to 14 m/s. There are then over estimations 
and underestimations between 14 m/s and 15 m/s. Results can 
be considered satisfying, especially when the 1st unstable mode 
is involved: relative phase between vertical and torsional modes 

obtained in time-domain simulations are quite similar to those 
resulting from the linear analysis. The oscillation amplitudes for 
the 2nd unstable mode are better estimated when the π/2 relative 
phase is assumed in the energy method. 

VI.  CONCLUSIONS 
The paper described a modal model of the interaction 

between a 4-conductor bundle and turbulent wind, able to 
reproduce the phenomenon of galloping associated with ice 
formation. The model is based on a finite-element scheme used 
to extract the mode parameters of the entire bundle; the 
eigenmodes of the bundle are then processed to obtain the mode 
shapes of an equivalent super-conductor. The motion of this last 
is described through its first 8 mode coordinates. 

Wind tunnel tests were carried out to determine how ice 
formation affects the aerodynamic coefficients of the conductor 
bundle. These data were introduced in the modal model 
allowing to reproduce the onset of galloping instability 
associated with combination of torsional and vertical 
displacements. In addition the experimental tests were used for 
model validation. 

The model was then used to analyze a case study, aiming at 
predicting the onset speed of galloping instability and the 
maximum oscillation amplitudes of a four-conductor bundle 
with given boundary conditions. Two methods were adopted to 
obtain this goal: the first one is based on time-domain 
simulations, the second one on an energy approach. This last 
estimates oscillation amplitudes on the basis of the equilibrium 
between energy introduced in one cycle by aerodynamic forces 
and the energy dissipated by internal damping. The energy 
approach hypothesizes that the relative amplitudes and phases 
between vertical and torsional mode coordinates in a limit cycle 
can be derived from the eigenvector determined through a 
modal analysis.  

Comparisons between the results of time-domain 
simulations and energy method revealed how the energy 
method could be used to obtain a reasonable estimates of bundle 
oscillations and how the same method can be regarded as a 
useful tool to speed up the settings definition (position, mass, 
length) of controlling devices such as detuning pendulums.  
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