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A Pontryagin Neural Network Application to Tracklets Correlation of Optical Observations

Luca Ramponia∗, Andrea D’Ambrosiob, Riccardo Cipollonec, Alessia De Rizd, Roberto Furfaroe,
Vishnu Reddyf, Pierluigi Di Liziag

a Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa 34, Milan 20156, Italy,
Department of Systems & Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721,
USA, ramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.itramponiluca@outlook.it
b Department of Systems & Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721,
USA, dambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edudambrosio@arizona.edu
c Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa 34, Milan 20156,
Italy, riccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.itriccardo.cipollone@polimi.it
d Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa 34, Milan 20156,
Italy, alessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.italessia.deriz@polimi.it
e Department of Systems & Industrial Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721,
USA, robertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edurobertof@arizona.edu
f Department of Planetary Sciences - Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ
85721, USA, vishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.eduvishnureddy@arizona.edu
g Department of Aerospace Science and Technology, Politecnico di Milano, Via Giuseppe La Masa 34, Milan 20156,
Italy, pierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.itpierluigi.dilizia@polimi.it
* Corresponding author

Abstract
The increasing interest in the X-GEO region is leading towards a significant increment in its population of satellites

and debris. Consequently, there will be a demand for techniques capable of accurately identifying, correlating, and
cataloging X-GEO objects.
This paper introduces an innovative approach to solve tracklets correlation of optical observations via Pontryagin Neural
Network (PoNN), which is a Physics-Informed Neural Network (PINN) trained to solve optimal control problems via
indirect method and Pontryagin Minimum Principle. Within PoNN, the PINN framework called Extreme Theory of
Functional Connections (X-TFC) is employed. PoNN is a particular kind of single-layer feed-forward neural network
used to estimate the object’s state and costate, while solving an energy optimal control problem. Indeed, since no ma-
neuvering objects are considered, the ballistic trajectory, solution of the successfully correlated tracklets, is assumed
to be the one minimizing the control effort. The correlation is assessed through a criterion based on the Mahalanobis
distance, involving the residuals on the observations and the DeltaV associated to the computed optimal trajectory.
The proposed method is applied to angles-only observations of objects in Keplerian dynamics and tested on both sim-
ulated and real data. For the case of real data, the majority of the real topocentric right ascension and declination
measurements have been provided by the telescopes of the Space4 Center at the University of Arizona.
Keywords: Space Situational Awareness, Optical Tracklets Correlation, Pontryagin Neural Networks, Physics-Informed
Neural Networks, Uncertainty Propagation

1. Introduction

The rapid increase in satellite numbers, the growth of
the commercial space industry, and the persistent problem
of space debris present significant challenges that demand
innovative solutions. Central to these solutions is the con-
cept of Space Situational Awareness (SSA), a comprehen-
sive framework dedicated to monitoring, analyzing, and
predicting the behavior of objects and events in space ([1]).
Although current SSA efforts are largely concentrated on
the near-Earth environment, the growing interest in mis-
sions targeting the X-GEO region, such as Artemis, under-

scores the future need for techniques capable of accurately
identifying, correlating, and cataloging objects in these
remote areas of space. Unfortunately, traditional meth-
ods based on two-body dynamical features, which work
well in near-Earth scenarios, are not easily adaptable to
the more complex dynamical environments of the X-GEO
region. Therefore, the development of new techniques
based on universal principles, applicable across various
dynamical models, will be essential. The processes of de-
tecting, identifying, and determining the orbits of celestial
objects are crucial for successful SSA operations. Within
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this context, optical surveys are particularly valuable tools.
Indeed, radar systems are not feasible for remote regions
such as X-GEO due to their limited power capabilities, ren-
dering them unsuitable for such applications. Because of
these challenges, optical telescopes or space-based obser-
vation platforms are typically used to monitor objects in
the X-GEO region. During such surveys, telescopes scan
the sky to detect objects moving against a background of
stationary stars. As these objects move, they create streaks,
or tracklets, which are recorded against the field of fixed
stars (Fig. 1). However, according to the system, some
telescopes are able to target a specific object and follow its
motion. Thus, in this scenario, the observed object would
be represented by a dot in a background of streaks (i.e.
stars).

Fig. 1. Image from optical survey ([2]). The streaks repre-
sent tracklets against a fixed star background.

Once a tracklet is detected, its topocentric right ascen-
sion (α) and declination (δ) are determined through astro-
metric reduction, using the catalogued positions of stars
as a reference. Typically, surveys produce numerous ob-
servations of various celestial objects, often resulting in
only a small amount of data for each one. Additionally,
the precision of these measurements can be affected by
factors such as instrumentation error, atmospheric condi-
tions, and inaccuracies in astrometric reduction. This un-
derscores the importance of accurately identifying and cor-
relating independent observations that belong to the same
physical object. The following paper addresses the linkage
problem of optical observations, which involves arcs of
measurements, called Too Short Arcs (TSAs), that are too
short to achieve angles-only orbit determination with high
accuracy using classical methods like those of Laplace
([3]), Gauss ([4]), and their derivatives ([5]). Thus, the
preliminary step of correlation is crucial to verify the as-
sociation between two tracklets.

Several methods have been developed to tackle the

tracklet association problem. These methods generally in-
volve assuming some of the unknown free parameters to
obtain an initial orbit estimate. The candidate orbits are
then tested and either accepted or rejected based on their
accuracy.

One approach to solve the linkage problem is the Vir-
tual Debris Algorithm, introduced by Tommei et al. [6],
which is based on the Admissible Region (AR) theory first
proposed by Milani to specifically address short arcs of ob-
servations ([7]). Within this context, a tracklet is usually
represented by means of an attributable, which condenses
the series of angles-only observations into a single couple
of angles and angular velocities at a given time. Thus, the
only missing variables are the range ρ and range-rate ρ̇.
The AR is a tool to define constraints on the possible val-
ues of the unknowns in a linkage problem. By assuming
that the optical observations belong to a satellite orbiting
the Earth, physical constraints can be imposed to limit the
solution space of the pair (ρ, ρ̇) at a specific epoch ([7]-
[8]). Despite these constraints, the AR still defines an in-
finite set of possible solutions, necessitating an efficient
sampling technique to generate a series of Virtual Space
Objects (VSOs). From these, candidate solutions are gen-
erated by propagating each VSO to the epoch of the second
arc along with the associated covariance matrix. Candi-
date solutions are then either discarded or retained based
on an attribution penalty ([9]-[10]).

As an alternative to this first approach, Gronchi et al.
introduced a method based on the first integrals of Ke-
pler’s problem—the angular momentum and energy inte-
grals ([11]). They later refined this approach ([12]) by
replacing the energy integral with a component of the
Laplace-Lenz vector, thereby improving computational ef-
ficiency. Both methods rely on the principle that, un-
der Keplerian dynamics, the integrals of motion are con-
served. These algorithms address the linkage problem be-
tween sets of astrometric observations expressed through
attributables. Given two attributables assumed to belong
to the same object, polynomial expressions for the ranges
and range-rates at two epochs are derived using Keplerian
integrals. The process involves equating the integrals of
motion at the two epochs, leading to a system of nonlinear
equations in the variables (ρ0, ρf ), which is solved using
a Discrete Fourier Transform (DFT) and its inverse. Com-
patibility conditions are then applied to verify whether the
initial hypothesis that the tracklets belong to the same ob-
ject holds, discarding solutions associated with different
bodies. The IOD technique described in [13] further re-
duces computational complexity by utilizing Differential
Algebra (DA).
Additionally, a recent study ([14]) introduces a DA-
based approach that leverages Automatic Domain Split-
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ting (ADS) and the AR to handle optical attributables by
searching for the minimum energy trajectory linking them.

However, existing techniques are heavily dependent on
the two-body dynamics, either through the use of the ad-
missible region or by relying on the conservation of Ke-
plerian parameters. This paper presents an innovative
method to tackle the tracklet correlation problem, firstly in-
troduced in ([14]), less reliant on the specific problem’s dy-
namics, thus enabling future extensions of the algorithm
to X-GEO applications. The proposed framework is ap-
plied to both simulated data, for validation purposes, and
to real observations, mostly provided by the Space4 Cen-
ter at The University of Arizona. A similar formulation
of the control distance metric introduced by Holzinger et
al. ([15]) is employed for non-maneuvering geostationary
(GEO) satellites, where the solution is assumed to be the
one computed by solving the energy optimal problem be-
tween two tracklets. Thus, the linkage problem of opti-
cal observations is solved via Pontryagin Neural Network
(PoNN, [16]), a type of Physics-Informed Neural Network
(PINN) designed to solve optimal control problems via in-
direct method and Pontryagin Minimum Principle (PMP).
PINN is a framework developed by Raissi et al. ([17]) for
approximating solutions to general nonlinear PDEs, while
exploiting the prior information coming from the physi-
cal laws governing the system’s dynamics as a regulariza-
tion term that constrains the space of admissible solutions.
This methodology leverages the well-established capabil-
ity of neural networks (NNs) as universal function approx-
imators, allowing for the effective handling of nonlinear
problems without relying on predetermined assumptions
([18]-[19]). Within PoNN, the PINN framework called
Extreme Theory of Functional Connections (X-TFC, [20])
is employed. Although it is an already proven method
for orbit determination regardless of the problem’s dynam-
ics, exhibiting fast and robust convergence to highly ac-
curate results ([21]- [22]), its application to tracklets cor-
relation problems has not yet been investigated. Here,
a PoNN-based approach has proven effective for solving
track-to-track association problems for objects following
two-body dynamics. However, the dynamics does not rep-
resent a limitation as the developed framework can be eas-
ily extended to other dynamical regimes, as shown by the
cited references. The foundational theory supporting the
methodology is outlined in Section 2 and 3, along with
a detailed explanation of the developed procedure. Sec-
tion 4 presents the results obtained by applying the method
to both simulated and real data of non-maneuvering GEO
satellites. Section 5 concludes the research by drawing fi-
nal considerations and discussing potential directions for
future developments.

2. Energy Optimal Control Problem
An optimal control problem is usually based on a cost

function expressed as ([23]):

J = Φ(x0, t0, xf , tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (1)

whereΦ is the terminal cost, whileL is the Lagrangian
defining the integral cost over the trajectory. These are
function of the state vector x(t), the control vector u(t)
and the independent variable t. Assuming to have an en-
ergy optimal problem, it can be rewritten such that it aims
at finding the control acceleration u(t) that minimizes:

J =
1

2

∫ tf

t0

u(t)Tu(t)dt (2)

subjected to the problem’s dynamics and boundary
conditions at the initial and final time epochs, denoted as
t0 and tf respectively:

ẋ = f(t,x(t),u(t))

Φ(x(t0), t0) = Φ0

Φ(x(tf ), tf ) = Φf

(3)

The Hamiltonian scalar function can be defined as:

H =
1

2
u(t)Tu(t) + λTf(t,x(t),u(t)) (4)

where λ is the costate vector. Therefore, the first-order
necessary conditions for optimality, together with the op-
timal control obtained through the PMP, are written as fol-
lows: 

ẋ = Hλ

λ̇ = −Hx

0 = Hu

(5)

The set of differential equations above, whose first two
are known as the Euler-Lagrange (E-L) equations, along
with the boundary conditions, constitute the comprehen-
sive problem formulation. According to the analyzed prob-
lem, some transversality conditions on the Hamiltonian
and/or on the adjoint variables might also have to be sat-
isfied. They complement the necessary conditions for op-
timality by providing further necessary boundary condi-
tions according to whether the initial/final states and times
are free or fixed:

• Free state:

λf =
∂Φ(xf , tf )

∂xf
(6)
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• Free time:

H(xf ,uf ,λf , tf ) +
∂Φ(xf , tf )

∂tf
= 0 (7)

Upon successfully recovering the optimal control u∗

as an explicit function of state and costate by solving the
third equation in 5, the original energy optimal problem
(EOP) is effectively rewritten into a two-point boundary
value problem (TPBVP) in terms of just the state x and
costate λ.

3. Pontryagin Neural Network
Pontryagin Neural Networks (PoNNs) are PINN

specifically designed to solve optimal control problems
via indirect methods and PMP ([16]). Once the problem is
trasformed into a two-point boundary value problem by de-
riving the first-order necessary optimality conditions and
the optimal control through the PMP, the optimal control
actions are learnt from the unknown solutions of the TP-
BVP, modeled within the PoNN framework. Specifically,
the PINN approach adopted is X-TFC. The Extreme The-
ory of Functional Connections, introduced by Schiassi et
al. ([20]), combines the advantages of PINNs and the The-
ory of Functional Connections (TFC). An overview of the
PoNN framework is summarized in Fig. 2 and explained
below.

PoNN exploits a functional interpolation method,
called TFC, developed by Mortari in [24]. It consists in
deriving an analytical expression, known as functional,
that represents all functions satisfying a given set of con-
straints. The resulting expression, referred to as a Con-
strained Expression (CE), is formulated as the sum of a
free function and a functional that respects the imposed
constraints ([25]):

y(t, g(t)) = g(t) +

nk∑
k=1

ϕk(t)ρk(t, g(t)) (8)

where nk is the number of constraints applied on the
unknown variable y and g(t) is the free function. The
second term of the right-hand side is composed by the
switching functions ϕk(t) and the projection functionals
ρk(t, g(t)). A projection functional quantifies the differ-
ence between the constraint value and the evaluation of
the free function at that constraint. The switching func-
tions are designed to be 1 at their respective constraints
and 0 at any others. Traditionally, the TFC approach uses
a free function that is a linear combination of orthogonal
polynomials, such as Chebyshev polynomials, due to their
approximation and convergence benefits. However, these
methods can become problematic with increasing problem
dimensionality. In the X-TFC framework, the objective

remains to approximate the DE solution through a TFC
constrained expression, but with a neural network chosen
as the free function. This approach addresses the curse of
dimensionality, enabling precise solutions for large-scale
problems with reduced computational time, while catego-
rizing X-TFC as a PINN framework. Specifically, as il-
lustrated in step 4 of Fig. 2, the method employs a Sin-
gle Layer Feed-Forward Neural Network (SLFN) trained
via the Extreme Learning Machine (ELM) algorithm. The
Extreme Learning Machine (ELM), proposed by Huang
et al. ([26]), is a training algorithm for SLFN where in-
put weights (wi) and biases (bi) are randomly initialized
and kept constant, while only the output weights (βi) are
trained. These are computed using a Least-Squares (LS)
method, which significantly reduces the computational
time ([23]). ELMs combine the approximation power of
deep neural networks with faster training and enhanced
generalization performance. Indeed, ELMs are also sup-
ported by the universal approximation theorem ([27]).

Therefore, in a X-TFC framework the free function is
expressed as:

g(z) =

L∑
i=1

βiσ(w
T
i z + bi) (9)

where z is the domain of the nonlinear activation func-
tions σ in which the independent variable t is mapped, and
L defines the number of neurons of the hidden layer. Since
the neural network training is performed with the ELM
algorithm, the only unknowns to compute are the output
weights β, while wi and bi are randomly assigned. As-
suming to have n collocation times tl(l = 1, .., n) of the
training set, it is possible to introduce the matrix H , also
called hidden layer matrix, which i− th column is associ-
ated to the i− th neuron and the l− th row for the l− th
input. Thus, the output is:

G = H(z)β = [h(z1),h(z2), ...,h(zn)]
Tβ (10)

where
h(zl) = [σ(wT

1 zl+ b1), σ(w
T
2 zl+ b2), ..., σ(w

T
Lzl+ bL)]

Consequently, in compliance with the TFC, the dif-
ferential equation’s (DE) latent solution is approximated
through a constrained expression analytically satisfying
the constraints, as described by Eq. 8. By substituting
the CE into the constrained system’s differential equations,
the problem becomes unconstrained and it is reformulated
in terms of the free function g(t) and its derivatives.

Moreover, as a physics-informed method, X-TFC in-
cludes a loss function for the problem’s dynamics (step
6). Here, the physics governing the data acts as a regular-
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Fig. 2. PoNN framework ([23]). Once the TPBVP is formulated, the X-TFC is applied through steps (3,4,5) by defining
the CEs, using as free function g(t) a NN trained via ELM. The output weights β are optimized via nonlinear solvers,
minimizing the loss vector.

ization term during the training by preventing the neural
network from violating the physics.
Finally, the output layer weights β are learnt via LS or, in
case of nonlinear problems, an iterative LS procedure is
applied. Hereafter, the MatLab function lsqnonlin, which
includes advanced algorithms such as the Levenberg-
Marquardt method, is employed to accurately compute the
optimal output weights of PoNN, especially for problems
involving significant non-linearities.

The application of the X-TFC algorithm to learn the
solution of the TPBVP, obtained by applying the indirect
method and PMP to an OCP, represents the PoNN method.
It is important to emphasize that the procedure does not re-
quire any prior orbit information since the convergence is
ensured for randomly initialized weights and biases. This
feature enables the method to function effectively even
when there is minimal prior knowledge about the object’s
orbit.

3.1 Application to correlation problem
The available data consist of collections of three op-

tical observations composed of pairs of topocentric right
ascension and declination (α, δ), which are referred to as
tracklets. In this context, PoNN is employed to determine
the solution of an energy optimal trajectory using two
tracklets as boundary conditions, hereafter named nomi-
nal trajectory. For clarity, the methodology is divided into
three distinct phases: solution of the EOP via PoNN, un-
certainty analysis and correlation assessment, as shown in
Fig. 3.

Fig. 3. Flowchart PoNN correlation method ([14]). Phase
1: solution of the energy optimal problem. Phase 2: un-
certainty analysis. Phase 3: correlation assessment.

The quantities involved are dimensionless to improve
convergence to the solution. After setting the time con-
stant TU as the time interval between the first and last
observations (ToF ), the distance constant LU is selected
so that the dimensionless gravitational parameter µadim

equals 1, as reported in Table 1.

TU (s) LU (Km) µadim

ToF 3
√
(µ TU2) 1.0

Table 1. Adimensionalizing constants (PoNN).

3.1.1 Phase I: Energy optimal trajectory
Initially, the energy optimal trajectory connecting two

tracklets, called nominal trajectory, is computed. Recall-
ing that each tracklet is composed of three optical obser-
vations (α, δ), these represent the boundary conditions of
the problem.
Fig. 4 shows the steps followed to solve the optimization
problem.
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Fig. 4. Flowchart Phase I ([14]). Overview of the proce-
dure to solve the EOP with PONN.

Given that the dataset consists of observations of GEO
satellites, the analysis assumes the following unperturbed
two-body dynamics: f(t,x(t),u(t)), where u represents
the control acceleration vector, and r and v are the posi-
tion and velocity vectors, respectively:

{
ṙ = v

v̇ = − µ
r3 r + u

(11)

Recalling Eq. 5, the Euler-Lagrange equations and the
optimal control are written as:


ẋ = f(t,x(t),u(t))

λ̇ = −Aλ

0 = Hu

(12)

where x = [r,v]T and λ = [λr,λv]
T are the state

and costate vectors, respectively. The matrix A is defined
as the partial derivative of the dynamics with respect to
the state:

A =

[
∂f(t,x(t),u(t))

∂x

]T
(13)

=

[
03×3

3µ
r5 r

Tr − µ
r3 I3×3

I3×3 03×3

]
=

[
03×3 B
I3×3 03×3

]
Thus, the TPBVP is ultimately formulated as:


ẋ = f(t,x(t),u(t))

λ̇r = −Bλv

λ̇v = −λr

u = −λv

(14)

However, certain inter-dependencies among the vari-
ables can be observed. This enables further simplifica-
tions of the problem by reducing the number of indepen-
dent variables that need to be considered. Consequently,
the equations of motion are condensed to focus on the sub-
set defining the position r and the costate associated with
the velocity λv:

{
r̈ = − µ

r3 r − λv

λ̈v = Bλv

(15)

The TPBVP is considered complete once the transver-
sality conditions are specified. Given that both the initial
and final times are fixed by the measurement epochs, con-
ditions in the form of Eq. 7 are not applicable. However,
since the initial and final states are unknown, the transver-
sality conditions for the position vector are derived and
translated into constraints on λv:{

λr(t0) = 0 → λ̇v(t0) = 0

λr(tf ) = 0 → λ̇v(tf ) = 0
(16)

As detailed in Section 3, the X-TFC framework is used
to approximate the latent solutions of the problem. Ac-
cording to Eq. 15, due to the dependencies among the vari-
ables, only λv and r need to be approximated using con-
strained expressions, while the remaining variables can be
recovered afterward. Once the outer weights of the neural
network, β, are determined, all the quantities can be re-
trieved.

In order to define the constrained expressions, a linear
mapping from the time domain t to the domain z of the
activation functions in the interval [−1, 1] is introduced:

z = z0 + c(t− t0) (17)

where c = (zf − z0)/(tf − t0) is a constant allowing
to switch from one domain to the other.

Since no constraints are applied, the constrained ex-
pressions for the position r consists solely of the free func-
tion:

x(t) = H(z)βx y(t) = H(z)βy

z(t) = H(z)βz

(18)

having defined the free function g(t) and its derivatives
as:

g(t) = H(z)β(·) ġ(t) = cH ′(z)β(·)

g̈(t) = c2H ′′(z)β(·)
(19)

The hidden layer matrix H(z) has dimensions n× L,
where n denotes the number of collocation points along
the time vector and L represents the number of neurons
in the hidden layer. For a generic variable k, the outer
weights vector βk has a length equal to the chosen number
of neurons. Thus, the variable is computed by multiply-
ing the matrix H(z) by the corresponding output weights.
In contrast, the transversality conditions (Eq. 16) are im-
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posed on the variables λvi (i = x, y, z). Thus, the associ-
ated constrained expressions are expressed as:

λvi(t, g(t)) = g(t) + ϕ3(t)ρ3(t0, g0) + ϕ4(t)ρ4(tf , gf )
(20)

Therefore:

λvi(t) = Φ(z)βvi (21)

Φn×L(z) =
[
H − ϕ3H

′
0 − ϕ4H

′
f

]T (22)

where the derivatives of H are performed in the z do-
main. The terms H ′

0, H ′
f refer to the first and last rows

of the derivative of the matrix H , respectively.
Recalling that X-TFC is a physics-informed method,

the loss vector is included in the formulation. It takes
into account the observations residuals as well as a regu-
larization term which ensures that the orbital dynamics is
respected. Therefore, the relation input/output is encour-
aged to be compliant with the physics, while fitting the
observations. The following three contributions are con-
sidered:

• Physics (Lphy): the physics component serves as a
regularization term, facilitating convergence and en-
suring that the results comply with the laws of dynam-
ics.

Lr̈ = r̈ +
µ

r3
r + λv (23)

Lλ̈v
= λ̈v −Bλv (24)

• BCs (LBCs): since incorporating boundary condi-
tions that are nonlinear functions of the states ap-
proximated through the CE directly into the con-
strained expressions presents significant challenges,
these loss terms are added to ensure that the solution
matches the available optical observations. Thus, for
each couple (ᾱ, δ̄):

Lsin α = sin ᾱ− sinαNN (25)
Lcos α = cos ᾱ− cosαNN (26)
Lsin δ = sin δ̄ − sin δNN (27)

where the subscript NN defines the angles estimated
with the neural network. Here, trigonometric func-
tions of the angles are used to prevent ambiguities.

• Energy: enforcing the minimization of energy to find
the best optimal solution:

LE =
1

2

∫ tf

t0

u(t)Tu(t)dt (28)

Thus, by applying the weights (Wphy,WBCs,WE) to
scale the influence of each contribution differently, the loss
vector is given by:

L = [WphyLphy,WBCsLBCs,WELE ] (29)

The nominal solution is retrieved by computing the op-
timal parameters β̄ minimizing the loss vector, where:

β̄ =
[
β̄x, β̄y, β̄z, β̄vx

, β̄vy , β̄vz

]T (30)

The energy optimization problem is tackled by find-
ing β̄ using a nonlinear least squares method, specifically
the Levenberg-Marquardt algorithm, through the MatLab
function lsqnonlin. In this study, the β0 values are ran-
domly initialized within the range of −1 to 1.

The cost ∆Vnom associated with the nominal trajec-
tory is then calculated based on the energy and the time
distance separating the tracklets, as outlined in [15] ([28]):

∆Vnom =
√

2E × (ToF ) (31)

3.1.2 Phase II: Uncertainty analysis
Phase II focuses on evaluating the impact of the uncer-

tainties affecting the optical observations. The main objec-
tive is to understand how these uncertainties influence the
quantities of interest that are used to define the correlation
index.

This study aims to evaluate the correlation of 2 track-
lets by means of a metric based on the distance between
quantities related to the nominal trajectory and distribu-
tions of the same quantities stemming from tracklet uncer-
tainty only. For this reason, this assessment is performed
along the ballistic trajectory (i.e. zero energy) simulated
from the optimal initial state x0 determined in Phase I.
This procedure is used to exclude the influence of addi-
tional errors present in real observations.

According to the scheme outlined in Fig. 5, after ob-
taining the simulated measurements at the same epochs
as the real data, a Monte Carlo simulation is carried out
using the MatLab function mvnrnd. Therefore, multiple
samples nsamples of the simulated observations (α, δ) are
generated assuming a gaussian distribution described by
the instrumentation’s accuracy (σα, σδ):

σα = σδ = 10−6rad (32)

By applying the same procedure explained in Subsec-
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Fig. 5. Flowchart Phase II ([14]). In red are highlighted
the quantities of interest to define the correlation index.

tion 3.1.1 to each sample, the desired probability distribu-
tions (i.e. mean and covariance) of the quantities of inter-
est needed for the correlation index are retrieved:

• (µ, σ2)Lphy
: probability distribution of physics

losses.

• (µ, σ2)LBCs
: probability distribution associated to

the boundary conditions losses.

• (µ, σ2)∆Vunc
: recalling the hypothesis made at the

beginning, no maneuvering objects are considered.
Thus, ideally, the ∆V associated to the nominal tra-
jectory is sufficiently small to be attributed to uncer-
tainties, represented by this distribution.

3.1.3 Phase III: Correlation
Finally, the correlation is assessed to statistically de-

termine whether two different tracklets can be associated
with the same object. This process involves evaluating the
distances between the nominal values and the distributions
computed in the earlier phases. By comparing these dis-
tances, the method establishes a meaningful correlation
between the tracklets, thereby verifying if they pertain to
the same object. In the realm of track-to-track association,
the commonly used Figure of Merit (FoM) is the Squared
Mahalanobis Distance (SMD). This metric quantifies the

distance between a point and a multivariate probability dis-
tribution. Hence, the SMD is defined as follows:

SMD = (Vnom−µVunc)
TP−1

Vunc
(Vnom−µVunc) (33)

where V is a vector including the 5 contributions, re-
spectively for the nominal and the uncertainty cases:

Vnom = [Lphy, Lsin α, Lcos α, Lsin δ,∆Vnom]
T (34)

Vunc =
[
µLphy

, µLsin α
, µLcos α , µLsin δ

, µ∆Vunc

]T (35)

The SMD is assumed to follow a chi-squared χ2 dis-
tribution, which represents the distribution of probability
defined by the sum of the squares of nx random variables
with a standard normal distribution. Thus, the SMD is
distributed as a χ2 with nx degrees of freedom (in this
case, nx = 5), and is associated to a significance level sL,
which is set to the 3σ value (i.e., 0.9973) ([29]). This pro-
cedure, known as the χ2-test, enables the classification of
two tracklets as either correlated or uncorrelated. Accord-
ing to [30], the correlation index (PC) can be expressed
as:

PC =
SMD

χ2
(36)

Within this framework, two tracklets are assumed to
belong to the same object if the associated correlation in-
dex meets the following criterion:

PC ≤ θC (37)

where θC is the correlation threshold. While it is gen-
erally set to 1, it can be modified based on the performance
index values or to enhance a specific performance metric.

Indeed, correlation is assessed based on three main per-
formance metrics:

• Recall
It represents the percentage of identified objects rela-
tive to the total number of objects observed:

Recall =
TP

TP + FN
(38)

where TP denotes the true positives, while the
missed objects are referred to as false negatives
(FN ).

• Specificity
It measures the method’s effectiveness in identify-
ing non-correlated observations. Specifically, it is
the percentage of correctly identified non-correlated
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pairs out of the total number of negative combina-
tions tested.

Specificity =
TN

TN + FP
(39)

where TN represents the true negatives, and the in-
correctly correlated objects are referred to as false
positives (FP ).

• Accuracy
Here, balanced accuracy is used to address the is-
sues arising from imbalanced datasets. Specifically,
the datasets analyzed contain a significantly higher
number of negative associations compared to posi-
tive ones. To mitigate this issue, the accuracy is de-
fined as follows:

Accuracy =
Recall × Specificity

2
(40)

where Recall and Specificity are normalized met-
rics that account for the entire population of positive
and negative cases, respectively.

4. Numerical Results
This section presents the outcomes derived from ap-

plying the proposed approach to both simulated and real
angles-only observational data. The results are critically
analyzed, highlighting the method’s strengths and weak-
nesses to identify potential areas for improvement.

The framework’s parameters are configured to balance
efficiency and performance. The neural network is set
with n = 50 collocation points, L = 20 neurons in the
hidden layer, and utilizes a sigmoid activation function.
This specific setup has been selected through a trial-and-
error process, as it provides a good trade-off between com-
putational time and generalization capabilities, ensuring
convergence in most cases. For all applications, the outer
layer weights, β, are randomly initialized within the range
of −1 to 1. The loss weights are defined by the following
scalar values, equal for all the components of the corre-
sponding vectors:

Wphy = 10−1

WBCs = 100

WE = 100

(41)

These values, in conjunction with the network struc-
ture, enable effective convergence to the best energy-
optimal trajectory for each association. Uncertainty prop-
agation is managed using a Monte Carlo simulation with

100 samples, which provides sufficiently accurate results
while keeping the computational load contained.

The Pontryagin Neural Network algorithm consis-
tently converges to a solution. However, since the datasets
have been automatically generated using the first and last
tracklets for each object, some cross-combinations are not
feasible due to overlapping observation times. These cases
have been removed from the analysis without impacting
the study. The results are labeled as follows:

• PC → successful correlation.

• — → overlapped tracklets.

Here, PC refers to the correlation index defined in Sub-
section 3.1.3.

4.1 Validation
A preliminary validation of the approach is conducted

using a dataset simulated with the aim of faithfully re-
producing some real measurements, collected in a dataset
named D3. In this approach, only the first and last track-
lets for each object are considered. The simulation process
begins by retrieving the object’s state at the TLE epoch.
This state is then propagated to each measurement epoch,
allowing the generation of a set of observations. These ob-
servations are then adjusted to account for the instrument’s
uncertainty σ = 10−6rad (Eq. 32). Thus, the generated
dataset is composed by non-equidistant simulated obser-
vations of 9 GEO satellites with time intervals between
tracklets in the range 1− 8 hours, mostly around 7 hours.

It is important to note that the measurements have
been simulated using an unperturbed two-body dynamical
model, which is the same model employed in the method’s
algorithm. Therefore, the correlation results are expected
to be more favorable than in real applications.

Furthermore, two sensitivity analyses are carried out
on reduced datasets of five objects characterized by
equidistant measurements. Specifically, the influence of
two parameters defining the acquisition process of an op-
tical survey is evaluated:

• ∆tobs: acquisition period.
Fixing ToF = 7 h, while varying the ∆tobs across
the following values:

∆tobs = [20, 100, 500, 1000] s (42)

• ToF : time distance between tracklets belonging to
the same object.
Fixing ∆tobs = 100s, while varying the ToF across
the following values:

ToFvect = [3, 7, 24] h (43)

IAC–24–A6,9,3,x84335 Page 9 of 15



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Luca Ramponi. Published by the IAF, with permission and released to the IAF to publish in all forms.

To complete the correlation criterion, the correlation
threshold must be specified (Subsection 3.1.3). While θC
can be set arbitrarily in some cases, this validation phase
uses a threshold of 1 to maintain a 3σ confidence level.
Therefore, the performance index PC must satisfy the fol-
lowing condition:

χ2(nx, sL) = 18.205 → PC =
SMD

χ2
≤ 1 (44)

4.1.1 Simulated Dataset
The correlation results obtained by applying the PoNN-

based method to the simulated data are reported below.
For demonstration purposes, Table 2 shows the values
taken by the correlation index PC for the first 5 objects.
Each row represents the first tracklet (i.e. the first observed
object), while each column denotes the object associated
to the second series of measurements. Correlated and un-
correlated tracklets couples are displayed in Fig. 6.

#1 #2 #3 #4 #5

#1 0.877 107 929 85.83 1942

#2 11.95 0.0491 519 285 428

#3 395 — 0.0490 2·105 104

#4 105 6·106 2143 0.14 277

#5 107 2·106 4575 14.14 0.682

Table 2. PC simulated dataset.

Whole dataset Zoom on correlated cases

Fig. 6. Correlated (blue) and uncorrelated (red)
associations.

Correlation performance is summarized in terms of re-
call, specificity and accuracy (Fig. 7). The results high-
light the method’s ability to correctly identify all observed
objects, achieving a recall of 100%. Moreover, the method
exhibits a promising behaviour, as PoNN effectively iden-
tifies non-correlated associations, significantly reducing
the number of false positives. These considerations are

quantitatively reflected in Table 3. Additionally, it is im-
portant to consider the dataset’s imbalance when interpret-
ing these results, as there is a significant excess of nega-
tive associations compared to the potential number of de-
tectable objects.

Fig. 7. Performance validation.

P N TP TN FP FN

9 70 9 67 3 0

Table 3. Results validation.
(P=Positives, N=Negatives, TP=True Positives,

TN=True Negatives, FP=False Positives, FN=False
Negatives)

4.1.2 Sensitivity Analysis on ∆tobs
This analysis seeks to evaluate the impact of the acqui-

sition time parameter ∆tobs, defined as the time between
two successive observations of the same tracklet, on the
method’s performance. To achieve this, multiple tests are
conducted using different ∆tobs, while keeping ToF con-
stant.

∆tobs(s) Recall (%) Specificity (%) Accuracy (%)
20 60 68.4 64.2
100 100 100 100
500 100 100 100
1000 100 100 100

Table 4. Correlation for varying ∆tobs (ToF = 7 hours).

Table 4 indicates that performance improves with
longer observation acquisition intervals. The algorithm
appears to converge more quickly and efficiently to the
energy-optimal solution when measurements are spaced
farther apart, as indicated by the computational time trend
shown below (Fig. 8). However, also excessive spacing
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between observations can result in diminished computa-
tional efficiency.
This behavior resembles that of classical orbit determina-
tion techniques, such as those developed by Gauss and
Laplace, which necessitate measurements spaced at ade-
quate intervals in order for the method to be geometrically
well-posed and for the pure Keplerian dynamics assump-
tion to hold. As a result, the motion of GEO satellites is
represented with higher accuracy in this last case scenario.
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Fig. 8. Computational time for varying ∆tobs.

4.1.3 Sensitivity Analysis on ToF
By applying the same reasoning, the impact of the time

of flight on the results is evaluated by setting ∆tobs to 100
seconds and varying the time of flight to 3, 7, or 24 hours
(Table 5). It should be noted that the 24-hour case repre-
sents a worst-case scenario.

ToF (h) Recall (%) Specificity (%) Accuracy (%)
3 100 100 100
7 100 100 100
24 0 100 50

Table 5. Correlation for varying ToF (∆tobs = 100 s).

As the distance between tracklets increases, the
method’s ability to identify correlated associations de-
creases. Specifically, when ToF exceeds the duration of
a single night, no correlated tracklets are detected, caus-
ing the recall to drop to zero and the specificity to reach
100%. This indicates that the method, in its current for-
mulation and implementation, is effective for tracklets col-
lected within the same night but becomes unsuitable for
measurements separated by longer time spans.

As expected, the computational time required to ana-
lyze all potential associations increases with the tracklets
distance. While it remains manageable for data from the

same night, it grows significantly when associating mea-
surements from different nights (Fig. 9).
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Fig. 9. Computational time for varying ToF .

4.2 Real Data
The available real angles-only observations have been

divided according to the acquisition strategy.

Datasets D1,2 These observations consist of series of
tracklets from 4 GEO satellites, with each tracklet com-
prising 3 observations spaced 20 seconds apart. They have
been organized into two datasets, denoted as D1,2, based
on the specific tracklets included. D1 is composed by the
first and last tracklets of the night for each object, with sig-
nificant time intervals among the tracklets around 8 − 12
hours. On the contrary, D2 includes the first and second
tracklets for the first 3 objects, while the first tracklet of
the 4th object is paired with its third tracklet to ensure
adequate separation. Consequently, this dataset is charac-
terized by shorter times of flight (3 to 6 h).

Datasets D3,4,5,T These real topocentric right ascen-
sion and declination measurements of 34 GEO satellites
have been provided by the telescopes of the Space4 Cen-
ter at the University of Arizona. From these observations,
4 datasets have been built by considering the first and
last tracklets for each observed object, leading to times
of flight between 1 and 8 hours. However, without further
information on the acquisition strategy, it can only be re-
ported that the observation intervals, ∆tobs, vary between
70 and 800 seconds. Each dataset contains information
about nine objects, except for D5, which is composed by
observations of 7 satellites.

4.2.1 Correlation Threshold
Unlike in the validation phase, the correlation index

PC exhibits a generally higher trend. Therefore, by apply-
ing the method to a datasetDT , a suitable threshold can be
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determined through a trial-and-error process. To achieve
balanced overall performance, the correlation threshold
θC has been set at 150. Table 6 displays the normalized
values of PC for 5 satellites.

#1 #2 #3 #4 #5

#1 1.638 83.28 345 493 371

#2 — 2.335 349 369 421

#3 6218 245 0.184 17.70 0.303

#4 1172 3542 0.123 0.7 0.0371

#5 726 226 3934 0.6 0.0053

Table 6. PC normalized for dataset DT .

Therefore, the tracklets association’s criterion can be
reformulated as follows:

χ2(nx, sL) = 18.205 → PC =
SMD

χ2 · θC
≤ 1 (45)

4.2.2 Test
This section presents the tests conducted on the re-

maining five datasets. The PoNN-based framework is con-
figured as during validation (Section 4), with one excep-
tion: the number of neurons needed to solve D1. Due to
the longer flight times in this dataset, ranging from 8 to
12 hours, the number of neurons in the hidden layer have
been increased to 30. This adjustment ensured successful
convergence, producing outcomes consistent with those
observed in the other cases.

The results are displayed in Fig. 10 and summarized
below in Table 7.

D1 D2 D3 D4 D5

R (%) 100 75 88.9 66.7 71.4

S (%) 66.7 91.7 82.9 71.8 85.4

A (%) 83.3 83.3 85.9 69.2 78.4

t (min) 554.78 51.62 65.17 104.5 67.9

Table 7. Summary results.
(R=Recall, S=Specificity, A=Accuracy, t=CPU Time)

Given that the simulated data used for validation have
been designed to replicate the dataset D3, a direct compar-
ison can be made. This reveals a decrease in performance
when applying the method to collections of real data. In

the simulated case, the algorithm easily solves the prob-
lem since the measurements have been generated using a
simple two-body dynamical model, which aligns with the
dynamics on which the algorithm is based. However, in
a real-world scenario, the observations are produced by
satellites following perturbed two-body dynamics, where
several factors influence the motion, such as the gravita-
tional perturbations related to J2 and J22, the third body
perturbation of the Sun and the Moon, and the solar radia-
tion pressure. Consequently, this introduces a significant
discrepancy between the dynamical models employed by
the algorithm and the actual conditions governing the real
observations. As expected, real measurements are more
challenging to correlate. However, the results highlight
that, despite the increased difficulty in object detection,
the number of false positives remains low. Therefore, the
detected satellites are associated with a higher confidence
level, indicating that successful correlations are likely to
represent actual physical objects.

Additionally, it is observed that the correlation perfor-
mance for D1 slightly differs from the other datasets. This
variation can be attributed to the longer time intervals be-
tween the tracklets characterizing this dataset. As associa-
tions involving more distant tracklets are tested, the likeli-
hood of detecting objects increases, yet at the expense of
a higher number of false positives.

The primary drawback of this method is its significant
computational burden limiting the method’s applicability
when analyzing a large number of associations. Dataset
D1 particularly suffers from prolonged solution times due
to the higher number of neurons used. However, inter-
estingly, the dataset D3, which consists of 9 satellites, is
solved in less time than D1, which contains only 4 objects.
This may suggest that computational time is more influ-
enced by the type of measurements and the observed ob-
jects than by the size of the dataset itself.

5. Conclusions
The importance of this work is highlighted by its poten-

tial to enhance space situational awareness (SSA) and im-
prove the safety of space operations. SSA is a crucial field
that involves understanding the space environment, includ-
ing the positions and trajectories of both natural and arti-
ficial objects orbiting Earth. By properly correlating opti-
cal observations, the proposed method contributes to more
effective monitoring of the orbital environment. This ca-
pability is becoming crucial as the space industry expands
into the X-GEO region, where new techniques for correlat-
ing and identifying space objects under diverse dynamical
conditions will be essential.

In this context, the proposed PoNN-based method is
shown to be promising. It operates effectively even with-
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Fig. 10. Results real datasets.

out providing any initial orbit estimates or admissible re-
gions, proving robustness even when satellite orbit infor-
mation is unavailable. This is achieved by directly approx-
imating the state and costate variables using constrained
expressions within the PoNN framework. Indeed, the de-
veloped approach is already prone to be applied to other
dynamical regimes, and will definitely be part of future
works. The obtained results are quite consistent across the
several analyzed datasets, with a tendency to minimize the
number of false positive cases, thus leading to a more re-
liable objects detection. Nevertheless, there is room for
improvement mainly to reduce the computational time re-
quired by this method. Enhancements could include re-
fining PoNN’s uncertainty propagation or utilizing a more
efficient computational environment.

Acknowledgements
The authors would like to acknowledge the Space4

Center at The University of Arizona for providing the tele-
scope observations of the GEO objects used in this study.

References
[1] EUSPA. (Apr. 29, 2024), [Online]. Available:

https://www.euspa.europa.eu/eu-space-
programme/ssa.

[2] CelesTrak. “Recent debris event.” (2007), [Online].
Available: https://celestrak.org/events/
debris-events.php.

[3] P. Laplace, “Mém. acad. r. sci. paris,” in Laplace’s
collected works, 1780.

[4] C. F. Gauss, “Theoria motus corporum coelestium
in sectionibus conicis solem ambientium: Frontmat-
ter,” 2011.

[5] D. A. Vallado, “Fundamentals of astrodynamics
and applications,” 1997.

[6] G. Tommei, A. Milani, and A. Rossi, “Orbit de-
termination of space debris: Admissible regions,”
Celestial Mechanics and Dynamical Astronomy,
vol. 97, Apr. 2007. DOI: 10.1007/s10569-007-
9065-x.

[7] A. Milani, G. F. Gronchi, M. De’ Michieli Vitturi,
and Z. Knezevic, “Orbit determination with very
short arcs. i - admissible regions,” Celestial Me-
chanics and Dynamical Astronomy, vol. 90, pp. 57–
85, Jul. 2004. DOI: 10.1007/s10569-004-6593-
5.

[8] K. DeMars and M. Jah, “Probabilistic initial or-
bit determination using gaussian mixture models,”
Journal of Guidance Control Dynamics, vol. 36,
pp. 1324–1335, Sep. 2013. DOI: 10 . 2514 / 1 .
59844.

[9] D. Farnocchia, G. Tommei, A. Milani, and A. Rossi,
“Innovative methods of correlation and orbit deter-
mination for space debris,” Nov. 2009.

IAC–24–A6,9,3,x84335 Page 13 of 15

https://www.euspa.europa.eu/eu-space-programme/ssa
https://www.euspa.europa.eu/eu-space-programme/ssa
https://celestrak.org/events/debris-events.php
https://celestrak.org/events/debris-events.php
https://doi.org/10.1007/s10569-007-9065-x
https://doi.org/10.1007/s10569-007-9065-x
https://doi.org/10.1007/s10569-004-6593-5
https://doi.org/10.1007/s10569-004-6593-5
https://doi.org/10.2514/1.59844
https://doi.org/10.2514/1.59844


75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Luca Ramponi. Published by the IAF, with permission and released to the IAF to publish in all forms.

[10] G. Tommei, A. Milani, D. Farnocchia, and A. Rossi,
“Correlation of space debris observations by the vir-
tual debris algorithm,” in Proc. ’5th European Con-
ference on Space Debris’, ESA SP-672, 2009.

[11] G. F. Gronchi, L. Dimare, and A. Milani, “Orbit
determination with the two-body integrals,” Celes-
tial Mechanics and Dynamical Astronomy, vol. 107,
Nov. 2009. DOI: 10.1007/s10569-010-9271-9.

[12] G. F. Gronchi, D. Farnocchia, and L. Dimare, “Or-
bit determination with the two-body integrals. ii,”
Celestial Mechanics and Dynamical Astronomy,
vol. 110, pp. 257–270, Jul. 2011. DOI: 10.1007/
s10569-011-9357-z.

[13] A. De Riz, R. Cipollone, and P. Di Lizia, “An
automatic domain splitting initial orbit determina-
tion technique for short-arc optical measurements,”
M.S. thesis, Politecnico di Milano, 2022.

[14] L. Ramponi, R. Cipollone, A. De Riz, A.
D’Ambrosio, R. Furfaro, and P. Di Lizia, “Optical
track-to-track correlation with differential algebra
and pontryagin neural networks,” M.S. thesis,
Politecnico di Milano, 2024.

[15] M. J. Holzinger, D. J. Scheeres, and K. T. Alfriend,
“Object correlation, maneuver detection, and char-
acterization using control distance metrics,” Jour-
nal of Guidance, Control, and Dynamics, vol. 35,
no. 4, pp. 1312–1325, 2012. DOI: 10 . 2514 / 1 .
53245.

[16] A. D’ambrosio, E. Schiassi, F. Curti, and R.
Furfaro, “Pontryagin neural networks with func-
tional interpolation for optimal intercept prob-
lems,” Mathematics, vol. 9, no. 9, p. 996, 2021.

[17] M. Raissi, P. Perdikaris, and G. Karniadakis,
“Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse
problems involving nonlinear partial differential
equations,” Journal of Computational Physics,
vol. 378, Nov. 2018. DOI: 10.1016/j.jcp.2018.
10.045.

[18] G. V. Cybenko, “Approximation by superpositions
of a sigmoidal function,” Mathematics of Control,
Signals and Systems, vol. 2, pp. 303–314, 1989.

[19] K. Hornik, M. Stinchcombe, and H. White, “Mul-
tilayer feedforward networks are universal approx-
imators,” Neural Networks, vol. 2, no. 5, pp. 359–
366, 1989, ISSN: 0893-6080. DOI: https://doi.
org/10.1016/0893-6080(89)90020-8.

[20] E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H.
Johnston, and D. Mortari, “Extreme theory of func-
tional connections: A fast physics-informed neural
network method for solving ordinary and partial
differential equations,” Neurocomputing, vol. 457,
pp. 334–356, 2021, ISSN: 0925-2312. DOI: https:
//doi.org/10.1016/j.neucom.2021.06.015.

[21] A. Scorsoglio, A. D’Ambrosio, L. Ghilardi, R. Fur-
faro, and V. Reddy, “Physics-informed orbit de-
termination for cislunar space applications,” in In
Proceedings of the Advanced Maui Optical and
Space Surveillance (AMOS) Technologies Confer-
ence, Wailea, HI (p. 10)., 2023.

[22] A. Scorsoglio, A. D’Ambrosio, T. Campbell, R.
Furfaro, and V. Reddy, “Orbit determination
pipeline for geostationary objects using physics-
informed neural networks,” in AIAA SCITECH
2024 Forum, 2024, p. 1862.

[23] A. D’Ambrosio, “Optimal guidance and control for
space missions on asteroids and planetary bodies,”
Ph.D. dissertation, Sapienza Università di Roma,
Dec. 2021.

[24] D. Mortari, “The theory of connections: Connect-
ing points,” Mathematics, vol. 5, no. 4, 2017, ISSN:
2227-7390. DOI: 10.3390/math5040057.

[25] H. R. Johnston, “The theory of functional connec-
tions: A journey from theory to application,” Ph.D.
dissertation, Texas A&M University, 2021.

[26] G.-B. Huang, L. Chen, and C. Siew, “Univer-
sal approximation using incremental constructive
feedforward networks with random hidden nodes,”
IEEE transactions on neural networks / a publica-
tion of the IEEE Neural Networks Council, vol. 17,
pp. 879–92, Jul. 2006. DOI: 10.1109/TNN.2006.
875977.

[27] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme
learning machine: Theory and applications,” Neu-
rocomputing, vol. 70, no. 1, pp. 489–501, 2006,
Neural Networks, ISSN: 0925-2312. DOI: https://
doi.org/10.1016/j.neucom.2005.12.126.

[28] E. D. Gustafson and D. J. Scheeres, “Optimal tim-
ing of control-law updates for unstable systems
with continuous control,” Journal of Guidance,
Control, and Dynamics, vol. 32, no. 3, pp. 878–887,
2009. DOI: 10.2514/1.38570.

IAC–24–A6,9,3,x84335 Page 14 of 15

https://doi.org/10.1007/s10569-010-9271-9
https://doi.org/10.1007/s10569-011-9357-z
https://doi.org/10.1007/s10569-011-9357-z
https://doi.org/10.2514/1.53245
https://doi.org/10.2514/1.53245
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/j.neucom.2021.06.015
https://doi.org/https://doi.org/10.1016/j.neucom.2021.06.015
https://doi.org/10.3390/math5040057
https://doi.org/10.1109/TNN.2006.875977
https://doi.org/10.1109/TNN.2006.875977
https://doi.org/https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.2514/1.38570


75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Luca Ramponi. Published by the IAF, with permission and released to the IAF to publish in all forms.

[29] L. Pirovano, R. Armellin, J. Siminski, and T.
Flohrer, “Differential algebra enabled multi-target
tracking for too-short arcs,” Acta Astronautica,
vol. 182, Feb. 2021. DOI: 10.1016/j.actaastro.
2021.02.023.

[30] M. F. Montaruli et al., “An orbit determination soft-
ware suite for space surveillance and tracking appli-
cations,” CEAS Space Journal, vol. 16, Mar. 2024.
DOI: 10.1007/s12567-024-00535-1.

IAC–24–A6,9,3,x84335 Page 15 of 15

https://doi.org/10.1016/j.actaastro.2021.02.023
https://doi.org/10.1016/j.actaastro.2021.02.023
https://doi.org/10.1007/s12567-024-00535-1

	Introduction
	Energy Optimal Control Problem
	Pontryagin Neural Network
	Application to correlation problem
	Phase i: Energy optimal trajectory
	Phase ii: Uncertainty analysis
	Phase iii: Correlation


	Numerical Results
	Validation
	Simulated Dataset
	Sensitivity Analysis on tobs
	Sensitivity Analysis on ToF

	Real Data
	Correlation Threshold
	Test


	Conclusions

