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A B S T R A C T

This paper addresses the modelling and optimal control of district heating systems connected to the electrical
grid, with the goal of maximizing their operational efficiency and enabling the participation to electricity
markets. Being these systems governed by nonlinear large-scale dynamical models, a novel procedure is
proposed, which enables to obtain suitable models for optimization, and consisting in a combination of physical
and identified piece-wise linear models. A two-phase optimization and control scheme is then designed,
including an offline scheduling problem for participating to the day-ahead energy market, and an online Model
Predictive Control system, minimizing the energy consumption of thermal generators while properly satisfying
the users thermal demand. The proposed methodology is developed considering a real district heating plant,
owned by the energy company A2A S.p.A. and supplying the city of Novate Milanese (Italy), and different
experiments on the plant have been carried out. The experimental results and achieved performances are
promising, showing a significant reduction of the operational costs and overall gas consumption.
. Introduction

District Heating Systems (DHSs) are arousing much interest in today
nergy scenario. The European Commission identified this technology
s crucial to meet the 2050 decarbonization targets given its high effi-
iency (European Commission, 2016). According to the Heat Roadmap
urope project (Paardekooper et al., 2018), DHSs should cover at least
0% of the heating demand of most European countries by 2050,
chieving additional 30% of energy savings in the heating sector with
espect to 2015. A DHS commonly comprises a heating station for the
fficient production of heat, equipped with different thermal generators
e.g. boilers, cogenerators, heat pumps etc.), and a District Heating
etwork (DHNet) of insulated water pipes, transferring the heat from

he heating station to the final users (e.g. buildings). A simple schematic
f a DHS is depicted in Fig. 1. In particular, the DHNet is commonly
onstituted of two parallel layers: a supply layer, where the hot water
low is delivered to users, and a returning layer, where the cold water
lowing out from users goes back to thermal generators. Each user is
ndowed with an internal heat exchanger to absorb the heat delivered
y the hot water pipes, which will be then internally used for space
eating and/or domestic hot water.

Despite the multiple technical advantages of DHSs, e.g., the pos-
ibility of exploiting industrial waste heat or renewable-based tech-
ologies (Lake, Rezaie, & Beyerlein, 2017), much research effort is
till required from the optimization and control perspective. Being
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Fig. 1. Schematic of a district heating system.

complex large-scale systems, most DHSs are today operated through
basic rule-based control logics, not able to fully exploit their energy
efficiency potential, implying that optimization-based control strategies
need to be designed (Buffa, Fouladfar, Franchini, Lozano Gabarre, &
Andrés Chicote, 2021). Furthermore, a growing interest is arising on the
operation of DHSs in synergy with the electrical grid, e.g., managing
cogeneration systems or heat pumps for participating to electricity
markets (Golmohamadi, Larsen, Jensen, & Hasrat, 2022). In fact, the
enhanced thermal inertia and storage capacity of DHSs can be ef-
fectively employed to support the electrical system through proper
conversion interfaces. Thus, advanced control strategies are needed not
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only to efficiently satisfy the thermal demand, but also for the optimal
participation of the DHS to electricity and flexibility markets.

Nevertheless, this is not a trivial task. A DHS is a large-scale system
governed by nonlinear thermo-hydraulics dynamics, e.g., describing
the heat propagation in DHNet pipelines, commonly requiring high
effort for its modelling and for computing the optimal operation (Sarbu,
Mirza, & Crasmareanu, 2019). In this context, this work presents a
novel data-based modelling procedure suited for optimization and the
design of an effective control strategy for DHSs, based on Model Pre-
dictive Control (MPC) methods (Rawlings, Mayne, & Diehl, 2017). The
developed control system has been implemented and tested on a real
DHS plant, owned by the energy company A2A S.p.A. and located in
Italy, enabling to increase its efficiency and to optimally participate to
electricity markets.

1.1. Literature review

The detailed modelling of DHSs is described in Machado, Cu-
cuzzella, and Scherpen (2022), in particular analysing stability and
passivity properties of nonlinear thermo-hydraulic dynamics. The op-
timization of DHSs, considering a detailed nonlinear modelling, is
formulated in Krug, Mehrmann, and Schmidt (2021), leading to a
complex large-scale problem which is solved by assuming a one-step
prediction horizon. In fact, the detailed modelling of DHSs involves
the presence of many variables and additional states, e.g., representing
the temperature gradient along pipes, leading to large-scale com-
plex models not particularly suited for optimization-based controllers
(e.g., MPC). This holds not only for the computational effort, but
also because these large-scale thermo-hydraulics models require either
plenty of measurements to initialize all states (e.g., temperature at
each pipe section) or the design of dedicated large-scale nonlinear state
estimators (Sandou et al., 2005). To overcome these issues, many MPC
regulators proposed in the literature exploit simplified DHS models,
where network temperature dynamics are neglected and DHNets are
modelled through static power balances (Farahani, Lukszo, Keviczky,
De Schutter, & Murray, 2016; Taylor, Long, Marjanovic, & Parisio,
2021; Verrilli, Parisio, & Glielmo, 2016). Relying on this method, a
mixed-integer MPC strategy is presented in Verrilli, Srinivasan et al.
(2016), enabling to optimize the operations of thermal generators
and flexible loads in DHSs. Nevertheless, district heating network
temperature dynamics are crucial to be modelled in the control design
phase for different reasons, such as: (i) they can describe the DHS
thermal inertia given by the presence of long pipelines; (ii) they must be
constrained during the operation considering both technical limitations
of thermal generators and the proper heat delivery to users substa-
tions (e.g., the supply temperature at all users must exceed proper
lower bounds to make heat exchangers operate correctly (Krug et al.,
2021; Machado, Ferguson, Cucuzzella, & Scherpen, 2023)); (iii) DHNet
temperatures can be optimized to minimize heat losses and increase
the overall system efficiency (Sandou et al., 2005). Thus, other MPC-
based approaches proposed in the literature have considered DHNets
temperatures using simplifying modelling assumptions. In Quaggiotto,
Vivian, and Zarrella (2021), an MPC system is designed and tested
in simulation for a real DHS, modelling only the DHNet returning
temperature through a simple linear system. The design of a mixed-
integer MPC regulator including average temperature models for each
DHNet layer is discussed in Wirtz, Neumaier, Remmen, and Müller
(2021), assuming that all users are fed with the same temperature
and that the difference between supply and returning temperature is
constant. An MPC strategy optimizing DHNet temperatures is presented
in Sandou et al. (2005), where the computational effort is reduced
assuming constant heat transport delays and fixed DHNet water flow.

As evident from the above-mentioned references, DHNets have been
generally modelled with complex nonlinear models (Krug et al., 2021;
Machado et al., 2022), with dynamical models relying on simplifi-
cations hardly verified in practice (Quaggiotto et al., 2021; Sandou
2

et al., 2005; Wirtz et al., 2021) or with static models relying on power
balances (Farahani et al., 2016; Taylor et al., 2021; Verrilli, Parisio,
& Glielmo, 2016; Verrilli, Srinivasan et al., 2016). These models are
not suited for the design of predictive controllers to optimize DHNet
dynamics, e.g., minimizing thermal losses while keeping water tem-
perature at each critical point of the network in prescribed bounds
(e.g., supply temperature at each user above a required minimum).
There is in fact the necessity of a control-oriented modelling methodol-
ogy for DHSs which is (i) computationally efficient and (ii) accurately
representing the DHNet temperature dynamics, as well as the ones of
thermal generators. On the other hand, the mentioned references do not
consider the efficient optimization of thermal dynamics in coordination
with the participation of DHSs to electricity markets. The latter requires
in fact a day-ahead scheduling phase, where the electrical power ex-
change is defined and communicated to system operators, and an online
control phase, where the electrical profile is tracked despite unforeseen
load variations (Vasilj, Gros, Jakus, & Zanon, 2017).

1.2. Proposed solution and main contribution

The above discussion motivated the design of a novel modelling and
control methodology for DHSs, which main contributions are synthe-
sized in the following.

• Control-oriented modelling of DHS: A novel modelling procedure
of DHSs is proposed, with the goal of obtaining computational
efficient and accurate dynamical models. In particular, the heat-
ing station is modelled using mixed-integer physical models. The
DHNet thermal dynamics, although nonlinear in nature, are mod-
elled by a piece-wise linear model obtained through a data iden-
tification procedure, where different AutoRegressive eXogenous
(ARX) systems are learned from operational data for different
water flowrate values.

• Day-ahead optimization and online MPC for DHS: The proposed
DHS dynamical model is then exploited for the design of a two-
phase optimization and control procedure. The first, necessary for
the participation to the day-ahead energy market, schedules the
DHS operations and electrical power profile for the next day con-
sidering the load forecasts and the day-ahead energy prices. Then,
a shirking horizon MPC regulator is designed for the second phase,
entitled of real-time tracking the electrical power profile and
minimizing DHS gas consumption while properly satisfying the
thermal demand. The proposed control system regulates thermal
generators operations and the DHNet supply temperature.

• Experimental setting: The proposed modelling and control frame-
work has been implemented on a real active DHS plant, located
in Novate Milanese (Milan, Italy), owned by the energy company
A2A S.p.A.. The company allowed us to perform few days of
tests on their own plant, enabling the validation of the identi-
fied data-based models and of the performances of the proposed
control system. As it will be shown, promising results have been
achieved in terms of energy savings and profit maximization, also
compared with existing DHS control logics.

A thermal load forecasting algorithm starting from available weather
data has been also designed. As it will be discussed, this has been
necessary for the day-ahead optimization phase and to perform the real
experiments on the plant. This paper extends the preliminary studies
reported in La Bella, Del Corno, and Scaburri (2021), where a simplified
modelling was considered, the thermal load forecasting and the online
MPC control design were missing, and the achieved performances were
analysed in simulation.

It is worth noting that, in data-based MPC control approaches,
operational data can be used either to learn system dynamics or to
directly design model-free controllers (Hewing, Wabersich, Menner, &

Zeilinger, 2020). The proposed solution belongs to the first category, as
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the DHNet dynamical model is derived using a data-based identification
procedure.

The main advantages of the proposed modelling and control solu-
tion with respect to the existing approaches are listed in the following.
First, the proposed control-oriented modelling enables to accurately
represent the real DHS thermal dynamics at each point of interest,
as evident from plant experiments, and, moreover, it requires few
variables to be measured to initialize the derived models, facilitating
the control implementation in a real context. On the other hand, the
proposed data-based DHNet modelling procedure, where a piece-wise
ARX model is learned instead of relying in an overall nonlinear model,
is computationally efficient. In fact, the overall DHS model eventually
results in a Mixed-Integer Linear Problem (MILP) efficiently solvable
by common solvers, as shown in Section 5. Finally, the designed MPC-
based strategy, optimizing both heating generators and DHNet supply
temperatures, enables to achieve significant energy savings and an
increased economic profit from the electricity market participation,
while respecting the temperature requirements at each DHNet critical
point, as witnessed by the experiments on the plant.

1.3. Paper outline

The paper is structured as following. The DHS modelling is pre-
sented in Section 2, precisely describing the heating station models in
Section 2.1 and the DHNnet identification in Section 2.2. The thermal
load forecasting problem is described in Section 3. The day-ahead
optimization and the MPC design are presented in Section 4. The
experimental case-study and the achieved performances are described
in Section 5. Final conclusions are given in Section 6.

2. Modelling and system identification

The DHS is modelled as a dynamical discrete-time system with
sampling time 𝜏 = 30 min = 0.5 h, a suitable choice as thermal DHNet
ransients are generally slow. The index 𝑡 is used to indicate the
iscrete time instant and, considering the overall daily operation,
∈  = {1,… ,𝑀} where 𝑀 = 24 h∕𝜏 = 48. The main variables and pa-
ameters used in the following are reported in Table 1. As a convention,
he upper and lower bounds of each variable are represented with an
pper and lower bar, respectively, e.g. 𝑃 and 𝑃 for the variable 𝑃 .

It is worth underlying that many different DHS configurations ex-
st, e.g., thermal generators can be either located in a single central
eating station or dispersed over the DHNet (Werner, 2022). Here, the
onfiguration resembling the Novate Milanese DHS plant is modelled,
onstituted of a central heating station and a radial DHNnet (a com-
on scenario for DHS, the same depicted in Fig. 1). The proposed

pproach can be also extended to other configurations, including the
orresponding models and constraints.

.1. Central heating station modelling

The heating station heats up the water coming from the DHNet
eturning pipes and pumps it through the supply pipes. It commonly
omprises several thermal generators, such as boilers, heat pumps
nd cogenerators, and, in some cases, thermal storages, which can
e connected according to several configurations (e.g. in series, in
arallel) and differently operated. A schematic of the Novate central
eating station is illustrated in Fig. 2. As evident, this is constituted
f two heating stages in series: a cogenerator stage, where a set 𝑐
f cogenerators, with |𝑐 | = 𝑛𝑐 = 2, are connected in parallel, and a
as boiler stage, where a set 𝑏 of gas boilers, with |𝑏| = 𝑛𝑏 = 4, are

connected in parallel. In the following, cogenerators and gas boilers
are modelled using static equations, as the involved time constants are
much lower than the DHNet ones and than the chosen sampling time
𝜏, as witnessed by the experiments.
3

Table 1
Main optimization variables and parameters.

Symbol Description

𝑃 𝑒
𝑐 , 𝑃

𝑡ℎ
𝑐 Cogenerator electrical and thermal power [W]

𝑃 𝑒,𝑎𝑢𝑥
𝑐 Cogenerator auxiliary systems electrical power [W]

𝛿𝑐 Cogenerator operational status
𝜂𝑒𝑐 , 𝜂

𝑡ℎ
𝑐 Cogenerator electrical and thermal efficiency

𝑞𝑔𝑐 , 𝑞𝑤𝑐 Cogenerator gas and water flows [m3/s]
𝑇 𝑜𝑢𝑡
𝑐 Cogenerator outlet water temperature [K]

𝑇 𝑖𝑛
𝑐 Cogenerator inlet water temperature [K]

𝑃 𝑒
𝑏 , 𝑃

𝑡ℎ
𝑏 Gas boiler electrical and thermal power [W]

𝑃 𝑒,𝑎𝑢𝑥
𝑏 Gas boiler auxiliary systems electrical power [W]

𝑃 𝑡ℎ
𝑏 Gas boiler thermal power threshold [W]

𝛿𝑏 Gas boiler operational status
𝜂𝑡ℎ𝑏 Gas boiler thermal efficiency
𝑞𝑔𝑏 , 𝑞

𝑤
𝑏 Gas boiler gas and water flows [m3/s]

𝑇 𝑜𝑢𝑡
𝑏 Gas boiler outlet water temperature [K]

𝑇 𝑖𝑛
𝑏 Gas boiler inlet water temperature [K]

𝐻𝑝 Pump head coefficient [m]
𝑛𝑝 Pump efficiency
𝑃 𝑡ℎ
𝑢 Thermal power absorbed by a single user [W]

𝑃 𝑡ℎ
𝑢,𝑡𝑜𝑡 Thermal power absorbed by all users [W]

𝑇 𝑠 , 𝑇 𝑟 Supply and return DHNet water temperature [K]
𝑇 𝑢 Supply water temperature at a single user [K]
𝑞𝑤 DHNet overall water flow [m3/s]
𝑃 𝑒
ℎ𝑠 Overall DHS electrical power exchange [W]

𝑃 𝑒, 𝑜𝑢𝑡
ℎ𝑠 Sold electrical power by the DHS [W]

𝑃 𝑒, 𝑖𝑛
ℎ𝑠 Bought electrical power by the DHS [W]

𝜌𝑤 , 𝜌𝑔 Water and gas density [kg/m3]
𝑐𝑤𝑠 Water specific heating coefficient [J/(kg K)]
𝑐𝑔𝑙ℎ𝑣 Gas lower heating value coefficient [J/kg]
𝜋𝑒,𝑏 Day-ahead electrical energy buying price [€/Wh]
𝜋𝑒,𝑠 Day-ahead electrical energy selling price [€/Wh]
𝜋𝑒,𝑖 Imbalance electrical energy price [€/Wh]
𝜋𝑔 Gas energy price [€/Wh]

Fig. 2. Schematic of the central heating station of the Novate Milanese plant.

Cogenerators consume gas to produce both electrical and thermal
power, consistently with their power capability limits and energy con-
version efficiencies. Concerning the electrical production of the 𝑖th
cogenerator, with 𝑖 ∈ 𝑐 , this is

𝑃 𝑒
𝑐,𝑖(𝑡) = 𝜂𝑒𝑐,𝑖 𝑐

𝑔
𝑙ℎ𝑣 𝜌

𝑔 𝑞 𝑔
𝑐,𝑖(𝑡) − 𝛿𝑐,𝑖(𝑡)𝑃

𝑒,𝑎𝑢𝑥
𝑐,𝑖 , (1)

𝑃 𝑒
𝑐,𝑖 𝛿𝑐,𝑖(𝑡) ≤ 𝑃 𝑒

𝑐,𝑖(𝑡) ≤ 𝛿𝑐,𝑖(𝑡)𝑃
𝑒
𝑐,𝑖 , (2)

where 𝛿𝑐,𝑖(𝑡) is a boolean variable indicating if cogenerator 𝑖 is ON
(𝛿𝑐,𝑖(𝑡) = 1) or OFF (𝛿𝑐,𝑖(𝑡) = 0), 𝜂𝑒𝑐,𝑖 is the electrical efficiency, 𝑞𝑔𝑐,𝑖 is
the consumed gas flow, 𝑐𝑔𝑙ℎ𝑣 is the gas lower heating value and 𝜌𝑔 is
the gas density. 𝑃 𝑒,𝑎𝑢𝑥

𝑐,𝑖 in (1) represents the electrical power absorbed
by the auxiliary systems, modelled with a fixed value estimated by
experimental data. The produced thermal power by the 𝑖th cogenerator
is modelled as

𝑡ℎ 𝑡ℎ 𝑔 𝑔 𝑔 (𝑡) , (3)
𝑃𝑐,𝑖 (𝑡) = 𝜂𝑐,𝑖 𝑐𝑙ℎ𝑣 𝜌 𝑞𝑐,𝑖
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with 𝜂𝑡ℎ𝑐,𝑖 being the thermal efficiency. The produced thermal power is
transferred to the water flowing through the 𝑖th cogenerator, implying
that

𝑃 𝑡ℎ
𝑐,𝑖 (𝑡) = 𝑐𝑤𝑠 𝜌𝑤 𝑞𝑤𝑐,𝑖(𝑡)

(

𝑇 𝑜𝑢𝑡
𝑐,𝑖 (𝑡) − 𝑇 𝑖𝑛

𝑐,𝑖 (𝑡)
)

. (4)

The heat transfer Eq. (4) is based on the steady-flow model, a valid
assumption for the chosen sampling time (Cengel, 2002). As evident
from Fig. 2, cogenerators are in parallel and their inlet temperature
coincides with the one of the DHNet returning layer, i.e.,

𝑇 𝑖𝑛
𝑐,𝑖(𝑡) = 𝑇 𝑟(𝑡) . (5)

Moreover, a fraction of the overall flowing water is not heated up
by cogenerators, due to their limited power, but it flows through a
bypass. Then, cogenerators water flows, once heated, are mixed in
an intermediate collector with the one flowing through the bypass,
reaching an overall temperature denoted as 𝑇 𝑚(𝑡) (see Fig. 2). This is
defined as

𝑇 𝑚(𝑡) =

∑𝑛𝑐
𝑖=1

(

𝑞𝑤𝑐,𝑖(𝑡) ⋅ 𝑇
𝑜𝑢𝑡
𝑐,𝑖 (𝑡)

)

+
(

𝑞𝑤(𝑡) −
∑𝑛𝑐

𝑖=1 𝑞
𝑤
𝑐,𝑖(𝑡)

)

⋅ 𝑇 𝑟(𝑡)

𝑞𝑤(𝑡)
,

which, exploiting (4) and (5), can be simplified as
𝑛𝑐
∑

𝑖=1
𝑃 𝑡ℎ
𝑐,𝑖 (𝑡) = 𝑐𝑤𝑠 𝜌𝑤 𝑞𝑤(𝑡)

(

𝑇 𝑚(𝑡) − 𝑇 𝑟(𝑡)
)

. (6)

The thermal power produced by the 𝑗th gas boiler, with 𝑗 ∈ 𝑏, is

𝑃 𝑡ℎ
𝑏,𝑗 (𝑡) = 𝑐𝑤𝑠 𝜌𝑤 𝑞𝑤𝑏,𝑗 (𝑡) ( 𝑇

𝑜𝑢𝑡
𝑏,𝑗 (𝑡) − 𝑇 𝑖𝑛

𝑏,𝑗 (𝑡) ) , (7)

𝑃 𝑡ℎ
𝑏,𝑗 𝛿𝑏,𝑗 (𝑡) ≤ 𝑃 𝑡ℎ

𝑏,𝑗 (𝑡) ≤ 𝛿𝑏,𝑗 (𝑡)𝑃
𝑡ℎ
𝑏,𝑗 , (8)

𝑡ℎ
𝑏,𝑗 (𝑡) = 𝜂𝑡ℎ𝑏,𝑗 𝑐

𝑔
𝑙ℎ𝑣 𝜌

𝑔 𝑞𝑔𝑏,𝑗 (𝑡) , (9)

here 𝛿𝑏,𝑗 (𝑡) is a boolean variable indicating if the 𝑗th boiler is ON
𝛿𝑏,𝑗 (𝑡) = 1) or OFF (𝛿𝑐𝑔,𝑗 (𝑡) = 0). Gas boilers consume electrical power
ue to their auxiliary systems, meaning that
𝑒
𝑏,𝑗 (𝑡) = − 𝛿𝑏,𝑗 (𝑡)𝑃

𝑒,𝑎𝑢𝑥
𝑏,𝑗 . (10)

as boilers are connected in parallel at the considered plant (see Fig. 2),
mplying that they are fed with water at the same temperature, i.e.,
𝑖𝑛
𝑏,𝑗 (𝑡) = 𝑇 𝑚(𝑡) . (11)

fter being heated by boilers, the overall water flow is mixed in a final
ollector and supplied to the DHNet at temperature 𝑇 𝑠. As done for
ogenerators, the combination of (7) and (11) can be expressed as
𝑛𝑏

𝑗=1
𝑃 𝑡ℎ
𝑏,𝑗 (𝑡) = 𝑐𝑤𝑠 𝜌𝑤 𝑞𝑤(𝑡) (𝑇 𝑠(𝑡) − 𝑇 𝑚(𝑡)) . (12)

The total DHS electrical power, positive if injected in the main
utility, is

𝑃 𝑒
ℎ𝑠(𝑡) =

𝑛𝑐
∑

𝑖=1
𝑃 𝑒
𝑐,𝑖(𝑡) +

𝑛𝑏
∑

𝑗=1
𝑃 𝑒
𝑏,𝑗 (𝑡) − 𝜌𝑤 𝑔 𝐻𝑝

1
𝜂𝑝

𝑞𝑤(𝑡) , (13a)

where the last term of Eq. (13a) corresponds to the electrical power
consumed by the pump system, where 𝐻𝑝 is the pump head coefficient,
𝜂𝑝 is the efficiency and 𝑔 the acceleration gravity. In particular, the ex-
perimental tests has shown that the adopted linear model for the pump
electrical power provides a good approximation of its real consumption.
Let us introduce the boolean variable 𝛿𝑒ℎ𝑠(𝑡), where 𝛿𝑒ℎ𝑠(𝑡) = 1 if, and only
if, 𝑃 𝑒

ℎ𝑠(𝑡) ≥ 0, and let us introduce 𝑃 𝑒,𝑜𝑢𝑡
ℎ𝑠 and 𝑃 𝑒,𝑖𝑛

ℎ𝑠 as the produced and
absorbed electrical power by the DHS, respectively. Thus, it holds that

𝑃 𝑒
ℎ𝑠(𝑡) = 𝑃 𝑒,𝑜𝑢𝑡

ℎ𝑠 (𝑡) − 𝑃 𝑒,𝑖𝑛
ℎ𝑠 (𝑡) , (13b)

0 ≤ 𝑃 𝑒,𝑜𝑢𝑡
ℎ𝑠 (𝑡) ≤ 𝛿𝑒ℎ𝑠(𝑡)𝑃

𝑒
ℎ𝑠 , (13c)

≤ 𝑃 𝑒,𝑖𝑛
ℎ𝑠 (𝑡) ≤ (1 − 𝛿𝑒ℎ𝑠(𝑡))𝑃

𝑒
ℎ𝑠 , (13d)

where 𝑃
𝑒
ℎ𝑠 > 0 and 𝑃 𝑒

ℎ𝑠 < 0 are the contractual limits for the electrical
ower exchange with the grid.
 w

4

At this stage, additional constraints are stated in the following
paragraph, specific for the Novate Milanese DHS plant. In fact, not
all variables could be externally controlled in the considered plant, as
many of them are internally regulated by the local plant controller.
This local operation must be also modelled to accurately optimize the
plant. Note that the following constraints do not affect the validity of
the proposed approach, and they could be either removed or adapted
for other DHS case studies.

2.1.1. Local operation of the Novate Milanese heating station
The cogenerators of the Novate Milanese DHS plant are power-

controlled, i.e., their electrical power can be imposed and they can
be arbitrarily turned ON or OFF. However, their water flow is not
controllable, and it is equal either to a constant value 𝑞𝑤𝑐,𝑖 (when the
𝑖th cogenerator is ON) or zero (when OFF). Thus,

𝑞𝑤𝑐,𝑖(𝑡) = 𝛿𝑐,𝑖(𝑡) 𝑞𝑤𝑐,𝑖 . (14)

On the other hand, gas boilers are temperature-controlled, i.e., their
utlet temperature can be imposed. However, the same outlet tempera-
ure must be set for all active gas boilers, which, as evident from Fig. 2,
ould coincide with the DHNet supply temperature 𝑇 𝑠. Thus, it holds

hat
𝑜𝑢𝑡
𝑏,𝑗 (𝑡) = 𝛿𝑏,𝑗 (𝑡) 𝑇 𝑠(𝑡) . (15)

as boilers cannot be arbitrarily turned ON, or OFF, since their acti-
ation is determined by an internal plant logic. This activates boilers
ccording to a precise sequence (e.g., increasing order with respect to
), so as the number of active boilers is defined by the ratio between
heir total power request (given by (12)) and a threshold 𝑃 𝑡ℎ

𝑏 > 0.
o translate this logic in mixed-integer linear constraints, an auxiliary
oolean variable 𝛿𝑀𝑏 is introduced, where 𝛿𝑀𝑏 (𝑡) = 1 if, and only if, all

𝑏 gas boilers are active at 𝑡, i.e.,
𝑛𝑏
∑

𝑗=1
𝛿𝑏,𝑗 (𝑡) ≥ 𝑛𝑏 𝛿

𝑀
𝑏 (𝑡) , (16a)

𝑛𝑏
∑

𝑗=1
𝛿𝑏,𝑗 (𝑡) ≤ 𝑛𝑏 − 1 + 𝛿𝑀𝑏 (𝑡) , (16b)

hus, the boilers’ local activation logic can be formulated as
∑𝑛𝑏

𝑗=1 𝑃
𝑡ℎ
𝑏,𝑗 (𝑡)

𝑃 𝑡ℎ
𝑏

≥
𝑛𝑏
∑

𝑗=1
𝛿𝑏,𝑗 (𝑡) − 1 , (16c)

∑𝑛𝑏
𝑗=1 𝑃

𝑡ℎ
𝑏,𝑗 (𝑡)

𝑃 𝑡ℎ
𝑏

≤
𝑛𝑏
∑

𝑗=1
𝛿𝑏,𝑗 (𝑡) + 𝛿𝑀𝑏 (𝑡)

(

∑𝑛𝑏
𝑗=1 𝑃

𝑡ℎ
𝑏,𝑗

𝑃 𝑡ℎ
𝑏

− 𝑛𝑏

)

, (16d)

and

𝛿𝑏,𝑗+1(𝑡) ≤ 𝛿𝑏,𝑗 (𝑡), ∀𝑗 ∈ {1,… , 𝑛𝑏 − 1} , (16e)

where the second term on the right-hand side of (16d) serves to
aintain feasibility in case all boilers are active.

The thermal power provided by each gas boiler is also regulated
y the local plant logic. Precisely, the total power requested to boilers
given by (12)) is automatically distributed among the active ones
roportionally to their maximum power. This can be modelled as

𝑡ℎ
𝑏,𝑗 (𝑡) =

𝛿𝑏,𝑗 (𝑡)𝑃
𝑡ℎ
𝑏,𝑗

∑𝑛𝑏
𝑗=1

(

𝛿𝑏,𝑗 (𝑡)𝑃
𝑡ℎ
𝑏,𝑗
)

( 𝑛𝑏
∑

𝑗=1
𝑃 𝑡ℎ
𝑏,𝑗 (𝑡)

)

,

hich, for the sake of convenience, is rewritten as

𝑡ℎ
𝑏,𝑗 (𝑡)

( 𝑛𝑏
∑

𝑗=1
𝛿𝑏,𝑗 (𝑡)𝑃

𝑡ℎ
𝑏,𝑗

)

= 𝛿𝑏,𝑗 (𝑡)𝑃
𝑡ℎ
𝑏,𝑗

( 𝑛𝑏
∑

𝑗=1
𝑃 𝑡ℎ
𝑏,𝑗 (𝑡)

)

. (17)

ote that the automatic distribution of power uniquely determines the
oilers water flow, given the imposed inlet temperature 𝑇 𝑚 and outlet
ater temperature 𝑇 𝑠, see (7), (11), (15). On the other hand, if a boiler
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is OFF, its water flow must be zero. Thus, the following constraint is
introduced

0 ≤ 𝑞𝑤𝑏,𝑗 (𝑡) ≤ 𝛿𝑏,𝑗 (𝑡) 𝑄 , (18)

with 𝑄 ≫ 0 chosen as very large number. In the considered plant, in
case all boilers are inactive, the overall water flow is directly supplied
to the DHNet through an additional bypass after the cogenerators
heating stage, meaning that 𝑇 𝑚 = 𝑇 𝑠 as evident from (7).

emark 2.1. The additional constraints related to the plant internal
ontrol logic significantly reduce the feasibility set of the optimiza-
ion problem, leading to sub-optimal solutions (however satisfying
erformances are still achieved in the experiments). On the other
and, their introduction may significantly reduce the dimension of
he optimization problem. Note that, being cogenerators water flow
nd inlet temperature imposed, (see (5), (14)), the requested power
o cogenerators uniquely determines their outlet water temperature
iven (4). Moreover, being boilers thermal power, operational status
nd inlet temperature dictated by the plant internal logic (see (11),
16), (17)), their water flow is uniquely determined once the outlet tem-
erature is imposed, as evident from (7). This implies that inlet/outlet
emperatures and water flows of cogenerators and gas boilers can be
xcluded from the problem formulation, as well as the constraints
here these variables appear, considering just thermal and electrical
owers. In this case, the heat transfer to the water flow is expressed
y (6) and (12), and the single units’ temperatures and water flows
re a-posteriori computed as the optimal solution is found, leading to
simpler optimization problem to be solved.

.2. Data-based dynamic modelling of district heating networks

The DHNet is dynamical system, characterized by slow transients
or transporting heat along the water pipelines. In particular, only the
ynamics of the DHNet temperatures are here modelled, as pressure
ransients are almost instantaneous with respect to temperatures ones,
specially if incompressible fluids are considered (pressure waves travel
ith the speed of sound in the water, i.e. 1200 m/s, while temperature
aves travel with a speed close to the water flow (Benonysson, Bøhm,
Ravn, 1995)). Moreover, as common for different district heating

ystems, the pump system of the Novate Milanese plant is internally
ontrolled so as DHNet pressure losses are continuously compensated.

Heat propagation in pipes is governed by nonlinear dynamical
quations, which modelling as state-space system commonly implies
heir discretization both in time and in space, introducing different
uxiliary state variables (Krug et al., 2021). These models, although
undamental for simulation purposes, are not suited for optimization
nd control due to their significant non-linearity and the large number
f involved variables, hardly measurable in practice. To overcome this
ssue, it is here proposed to learn suitable DHNet models from the plant
perational data, accurately representing the main DHNet thermal
ynamics. Before presenting the identified models, some considerations
re given to motivate their structure.

Temperatures at different points of the DHNet can be modelled as
ynamical systems having as inputs: the supply temperature at the heat-
ng station, the total DHNet water flow, the thermal power absorbed
f the users, and the ground temperature (DHNet pipes are buried
nderground). Indicating as 𝐿 the set of thermal users distributed in
he DHNet, a generic DHNnet temperature model can be formulated as

(𝑡) = 𝑓
(

𝑥(𝑡 − 1), 𝑇 𝑠(𝑡), 𝑞𝑤(𝑡), 𝑃 𝑡ℎ
𝑢,∀𝑗 ∈𝐿

(𝑡), 𝑇 𝑔𝑟𝑑 (𝑡)
)

. (19)

The variable 𝑥 in (19) is introduced to represent a generic vector of
internal states of the dynamical temperature model. In fact, the precise
definition of the states depend on the selected model structure, that
is clarified in the following. In fact, few simplification steps are now

performed to Eq. (19) so as to obtain a suitable identification model m

5

structure. First of all, the ground temperature is 𝑇 𝑔𝑟𝑑 (𝑡) is assumed
constant parameter, and therefore it is removed from the input

ariables. Then, it is worth noting that thermal equations in water pipes
an be considered linear when the flow is fixed (Krug et al., 2021).
nspired by Rathod et al. (2019), this property is exploited to formulate
he DHNet model as a piece-wise linear model. To do that, the total
HNet water flow is modelled to take a finite number of 𝑛𝑞 values,

.e. 𝑞𝑤(𝑡) ∈
{

𝑞𝑤1 , … , 𝑞𝑤𝑛𝑞

}

. This can be modelled by stating that

𝑤(𝑡) =
𝑛𝑞
∑

𝑘=1
𝛿𝑞,𝑘(𝑡) 𝑞𝑤𝑘 ,

𝑛𝑞
∑

𝑘=1
𝛿𝑞,𝑘(𝑡) = 1 , (20)

here 𝛿𝑞,𝑘 is a boolean variable, equal to 1 if the 𝑘th flow level is
elected. This enables to formulate (19) as a piece-wise model, i.e.,

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓1(𝑥(𝑡 − 1), 𝑇 𝑠(𝑡), 𝑃 𝑡ℎ
𝑢,∀𝑗∈𝐿

(𝑡), 𝑞𝑤1 ) if 𝛿𝑞,1(𝑡) = 1,

⋮

𝑓𝑛𝑞 (𝑥(𝑡 − 1), 𝑇 𝑠(𝑡), 𝑃 𝑡ℎ
𝑢,∀𝑗∈𝐿

(𝑡), 𝑞𝑤𝑛𝑞 ) if 𝛿𝑞,𝑛𝑞 (𝑡) = 1,
(21)

here each function 𝑓𝑘 is identified with a linear model structure,
epresenting the temperature at a generic DHNet point when the water
low is 𝑞𝑤𝑘 . The water flow levels

{

𝑞𝑤1 , … , 𝑞𝑤𝑛𝑞
}

can be selected exploit-
ng real plant data, so as to comprise the whole operational range with
roper resolution, as well as typical water flow values measured at the
lant. In case this knowledge is not available, automatic procedures are
vailable, e.g., Breschi, Piga, and Bemporad (2016).

A further simplification must be introduced, due to a limitation of
ur specific case-study. Indeed, for the considered DHS plant, it was
ot possible to measure users’ thermal power absorption in real-time.
hus, model (21) is modified to take as input the total thermal demand
𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡) =

∑

∀𝑗∈𝐿
𝑃 𝑡ℎ
𝑢,𝑗 (𝑡). This, although still not measurable, can be

ccurately forecasted from weather data through a simple machine
earning algorithm, as it will be described in Section 3. Therefore,
q. (21) is reformulated as

(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑓1(𝑥(𝑡 − 1), 𝑇 𝑠(𝑡), 𝑃 𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡), 𝑞

𝑤
1 ) if 𝛿𝑞,1(𝑡) = 1,

⋮

𝑓𝑛𝑞 (𝑥(𝑡 − 1), 𝑇 𝑠(𝑡), 𝑃 𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡), 𝑞

𝑤
𝑛𝑞
) if 𝛿𝑞,𝑛𝑞 (𝑡) = 1.

mong the possible linear model structures to learn functions 𝑓𝑘 from
HS operational data, ARX models provided very good results. Fur-

hermore, ARX model outputs just depend on past outputs and inputs,
hich are always measurable, and not on auxiliary internal states,

herefore avoiding the necessity of implementing state observers on the
lant (Ljung & Glad, 1994).

It is also important to note that just temperature models for few
pecific points of the DHNet are necessary to properly optimize the
onsidered DHS. These are: (i) the supply temperatures at users’ sub-
tations, which must be always greater than a lower bound, and (ii)
he DHNet return temperature 𝑇 𝑟(𝑡), as it must be also bounded and it
s necessary to compute the thermal power transferred by the central
tation (see Section 2.1). Moreover, as it will be evident from the
xperiments, it is sufficient to model the supply temperature of just few
ritical users in the DHNet, e.g., the more distant ones from the heating
tation, being them characterized by the lowest supply temperatures.
efining with 𝐿̃ ⊆ 𝐿 the subset of identified DHNet users, the

ollowing piece-wise linear ARX model is therefore stated, with 𝑗 ∈ 𝐿̃,

𝑢
𝑗 (𝑡 + 1) =

𝑛𝑞
∑

𝑘=1
𝛿𝑞,𝑘(𝑡)

( 𝑛𝑢𝛼
∑

𝑖=0
𝛼𝑢𝑘,𝑖,𝑗 𝑇

𝑢
𝑗 (𝑡 − 𝑖) +

+
𝑛𝑢𝛽
∑

𝑖=0
𝛽𝑢𝑘,𝑖,𝑗 𝑇

𝑠(𝑡 − 𝑖) +
𝑛𝑢𝛾
∑

𝑖=0
𝛾𝑢𝑘,𝑖,𝑗 𝑃

𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡 − 𝑖)

)

,

(22)

here, if 𝑘th water flow level is selected, i.e., 𝑞𝑤(𝑡) = 𝑞𝑤𝑘 , the 𝑘th ARX
odel is activated to describe the 𝑇 𝑢 dynamics.
𝑗



A. La Bella and A. Del Corno Control Engineering Practice 132 (2023) 105429

w

w


R
w
v
r
n
2

3

n
f
t
t
a
P
t
a

m
f
t
e
h
d
t
d
d
a

c
A
m
t
l
a
m
v
t

The same model structure is used for the DHNet return temperature,
i.e.,

𝑇 𝑟(𝑡 + 1) =
𝑛𝑞
∑

𝑘=1
𝛿𝑞,𝑘(𝑡)

( 𝑛𝑟𝛼
∑

𝑖=0
𝛼𝑟𝑘,𝑖 𝑇

𝑟(𝑡 − 𝑖) +

+
𝑛𝑟𝛽
∑

𝑖=0
𝛽𝑟𝑘,𝑖 𝑇

𝑠(𝑡 − 𝑖) +
𝑛𝑟𝛾
∑

𝑖=0
𝛾𝑟𝑘,𝑖 𝑃

𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡 − 𝑖)

)

.

(23)

The terms 𝑛𝑢𝛼 , 𝑛
𝑢
𝛽 , 𝑛

𝑢
𝛾 , 𝑛

𝑟
𝛼 , 𝑛

𝑟
𝛽 , 𝑛

𝑟
𝛾 in (22), (23) are the ARX model or-

ders, while 𝛼𝑢𝑘,𝑖,𝑗 , 𝛽
𝑢
𝑘,𝑖,𝑗 , 𝛾

𝑢
𝑘,𝑖,𝑗 , 𝛼

𝑟
𝑘,𝑖 , 𝛽

𝑟
𝑘,𝑖 , 𝛾

𝑟
𝑘,𝑖 are the ARX parameters,

which have been estimated from data solving a Least Squares prob-
lem (Ljung & Glad, 1994). Note that models (22) and (23) can be for-
mulated as mixed-integer linear equations, using techniques presented
in Bemporad and Morari (1999).

Each 𝑘th ARX model in (22)–(23) has been independently identified
using a different training dataset for each water flow level 𝑞𝑤𝑘 , where
the supply temperature and the thermal demand are varied to excite
the DHNet system. Nevertheless, a real operating DHS, as the Novate
Milanese plant, cannot be arbitrarily manipulated to gather meaningful
training data as users must be always properly supplied. Therefore,
training data has been generated through simulation resembling the
real plant operation. In particular, a detailed simulator of the Novate
Milanese DHNet has been developed in TRNSYS® (Transient System
Simulation Tool), a software environment particularly suited for dy-
namical thermo-hydraulic systems (Lu et al., 2021). The simulator has
been developed using the physical data of the Novate Milanese DHNet,
provided by A2A S.p.A., and it revealed to be particularly useful for
testing the designed control strategy before the implementation on the
plant. Once developed, the simulator has been validated with the real
plant operational data, showing to accurately model the DHNet thermal
dynamics as reported in Section 5. The piece-wise linear models (22)
and (23), identified through the simulated training dataset, have been
also validated with the real plant operational data, achieving quite
satisfactory performances in representing the DHNet temperature dy-
namics despite their simple model structure, as it will be shown in
Section 5.

Before proceeding to the next sections, the upper and lower bounds
of the modelled DHNet temperatures are hereafter presented. These
will be included in the formulation of the optimization and control
problems, together with system models above described.

2.2.1. Thermal constraints of the district heating network
The DHNet supply temperature of the water flowing out from the

central heating station is upper and lower bounded, given the physical
limits of thermal generators, i.e.,

𝑇 𝑠 ≤ 𝑇 𝑠(𝑡) ≤ 𝑇
𝑠
. (24)

Concerning final users, as mentioned, the supply water temperature
must always exceed a lower bound for the proper operation of heat ex-
changers in satisfying the thermal demand (Krug et al., 2021; Machado
et al., 2023). It follows that

𝑇 𝑢
𝑗 (𝑡) ≥ 𝑇 𝑢(𝑡) , (25)

where 𝑗 ∈ 𝐿̃, and 𝑇 𝑢(𝑡) is a time-varying bound commonly lower during
night-time, as users use less hot water and most radiators are turned off,
and higher during the day.

For the considered plant, during the day, users substations auto-
matically regulate the absorbed water flow through internal valves so
that their returning temperatures evolve around predefined references
(different among the users). During the night, being most user heat
exchangers disconnected, the DHNet return temperature shows large
variations, given the low thermal demand which typically soars early
in the morning. On the other hand, DHNet return temperature must
be always constrained between an upper and lower bound due to the
limits of thermal generators. Thus, to take into account this behaviour
6

in the proposed DHNet model, the returning temperature is therefore
by proper time-varying upper and lower bounds, i.e.,

𝑇 𝑟(𝑡) ≤ 𝑇 𝑟(𝑡) ≤ 𝑇
𝑟
(𝑡) , (26)

here the bounds are defined so as 𝑇
𝑟
(𝑡) > 𝑇 𝑟(𝑡) and their difference is

small during the day, so as to maintain the return DHNet temperature
around an average reference, and it is larger during the night-time, so
as to respect the thermal limits.

Finally, the DHNet temperatures at the end of the day should not
be lower than the one at the beginning for the correct optimization of
the DHS operation. To consider this aspect, the following constraints
are also included

𝑇 𝑟(1) ≤ 𝑇 𝑟(𝑀), 𝑇 𝑠(1) ≤ 𝑇 𝑠(𝑀), (27)

here it is recalled that 𝑀 is the last time instant in the time horizon
.

emark 2.2. During the implementation on the real plant, (24)–(27)
ere defined as soft constraints, i.e., relaxed through the use of slack
ariables, to always ensure problem feasibility. Their modelling as
elaxed soft constraints is standard and it is not here reported for
otational simplicity (the interested reader can refer to Rawlings et al.,
017).

. Thermal load forecasting

As mentioned in Section 2.2, the DHNet thermal demand could be
ot measured in real-time at the Novate Milanese plant. Moreover, its
orecasts are necessary for the day-ahead optimization phase, where
he DHS must plan its optimal operation for the next day. Thanks to
he availability of many historical weather and load data measured
t the plant, a load forecasting algorithm could be effectively trained.
recisely, the developed load forecasting system is designed to predict
he total DHNet thermal demand profile for the whole day 𝑑, denoted
s {𝑃 𝑡ℎ,𝑑

𝑢,𝑡𝑜𝑡 (1),…𝑃 𝑡ℎ,𝑑
𝑢,𝑡𝑜𝑡 (𝑁)}, using data available at the day 𝑑 − 1.

As reported in Bianchi, Castellini, Tarocco, and Farinelli (2019),
any possible inputs, or features, can be used for the thermal load

orecasting algorithm, such as the thermal demand at previous days or
he forecasted solar radiation, wind, ambient temperature, humidity,
tc. To select the best features, load and weather data in 2020 and 2021
as been collected and the correlation between the total DHNet thermal
emand and the different features has been then analysed. Eventually,
he three input variables with highest correlation with the thermal
emand on day 𝑑 have been selected: (i) the thermal load profile at
ay 𝑑−1, and (ii) the forecasted solar radiation and (iii) the forecasted
mbient temperature for day 𝑑, available on the previous day.

For the considered problem, different machine learning techniques
an be applied, as discussed in Zdravković, Ćirić, and Ignjatović (2022).
mong the available methods, the Support Vector Regression (SVR)
ethod has been implemented given its tuning simplicity and the ob-

ained satisfactory performances. More details on the adopted machine
earning approach are discussed in Al-Shammari et al. (2016). Precisely,

multi-output SVR model is designed, where 𝑀 different prediction
odels are constructed to predict the 𝑀 future values of the output

ariable based on the past input data (Bao, Xiong, & Hu, 2014). Thus,
he total thermal demand ∀𝑡 ∈  = {1,… ,𝑀} of the next day 𝑑 is

estimated as

𝑃 𝑡ℎ,𝑑
𝑢,𝑡𝑜𝑡 (𝑡) = 𝛷̂𝑡

(

𝑃 𝑡,𝑑−1
𝑢,𝑡𝑜𝑡 (1,… ,𝑀), 𝑅̂𝑑 (1,… ,𝑀), 𝑇̂ 𝑑

𝑎𝑚𝑏(1,… ,𝑀)
)

(28)

where 𝑃 𝑡,𝑑−1
𝑢,𝑡𝑜𝑡 represents the total thermal demand at the previous day

𝑑 − 1, while 𝑅̂𝑑 and 𝑇̂ 𝑑
𝑎𝑚𝑏 are the forecasted profiles of the solar

radiation and ambient temperature for day 𝑑, respectively. It is worth
noting that other features could be included, such as the current day
of the week or the month. These have been not taken into account

since satisfying performances are achieved using the selected features,
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i.e., the ones with the highest correlation with the output, considering
as test different random days over the year, both during week and the
weekend. The performances of the designed forecasting algorithm are
reported in Section 5.

4. Day-ahead optimization and online MPC formulation

Once the overall DHS model is defined, the optimization and control
problem can be formulated. This will regulate thermal generators oper-
ations maximizing the DHS efficiency and profit from the participation
to the day-ahead energy market. To accomplish these tasks, the DHS
system must be optimized in two phases:

• Day-ahead optimization: This serves to schedule the optimal power
profile exchanged by the DHS plant with the electrical grid for the
next day. This is computed considering selling and buying energy
prices, defined by the Day-Ahead Energy Market, the available
load forecasts and local production costs, meanwhile ensuring the
satisfaction of all network constraints (La Bella, Farina, Sandroni,
& Scattolini, 2019). The obtained day-ahead power profile must
be then communicated to electrical system operators.

• Online control: The communicated electrical power profile must
be tracked during the day despite unforeseen load or production
changes (Bonassi, La Bella, Lazzari, Sandroni, & Scattolini, 2021).
System operators could also request to vary the electrical power
profile for specific time-slots based on the needs of the electrical
system, requesting the so-called balancing services (La Bella, Fal-
sone, Ioli, Prandini, & Scattolini, 2021). Therefore, the DHS plant
must be controlled during the online operation to track the im-
posed electric power references.1 On the other hand, the thermal
load demand may easily vary with respect to forecasts changing
the thermal conditions of the DHNet and so the required thermal
power to the heating station. Therefore, the online control is re-
quired to operate in closed-loop, exploiting actual measurements
from plant to continuously optimize the overall DHS. For this task,
an MPC regulation strategy is proposed (Rawlings et al., 2017).

.1. Day-ahead optimization problem

The day-ahead optimization problem is solved offline (one day
efore) considering the 24 h of operation of the DHS plant of the next
ay. Introducing the vector of the main optimization variables

=
[

(𝑃 𝑒
𝑐,𝑖, 𝑃

𝑡ℎ
𝑐,𝑖 , 𝑞

𝑔
𝑐,𝑖, 𝛿𝑐,𝑖 )

∀𝑖∈𝑐
, (𝑃 𝑒

𝑏,𝑗 , 𝑃
𝑡ℎ
𝑏,𝑗 , 𝑞

𝑔
𝑏,𝑗 , 𝛿𝑏,𝑗 )∀𝑗∈𝑏

,

𝑃 𝑒,𝑖𝑛
ℎ𝑠 , 𝑃 𝑒,𝑜𝑢𝑡

ℎ𝑠 , 𝑞𝑤, 𝑇 𝑠, 𝑇 𝑟, 𝑇 𝑢
∀𝑗∈𝐿̃

]

,

the day-ahead problem is formulated as

min
𝜎(1),… , 𝜎(𝑀)

∑

∀ 𝑡∈ 

(

𝜋𝑒,𝑏(𝑡) 𝜏 𝑃 𝑒,𝑖𝑛
ℎ𝑠 (𝑡) − 𝜋𝑒,𝑠(𝑡) 𝜏 𝑃 𝑒,𝑜𝑢𝑡

ℎ𝑠 (𝑡) +

+ 𝜋𝑔(𝑡) 𝜏 𝑐𝑔𝑙ℎ𝑣

( 𝑛𝑐
∑

𝑖=1
𝑞𝑔𝑐,𝑖(𝑡) +

𝑛𝑏
∑

𝑗=1
𝑞𝑔𝑏,𝑗 (𝑡)

)

) (29a)

ubject to, ∀ 𝑡 ∈  ,

(1)–(3), ∀𝑖 ∈ 𝑐 , (cogenerators)
(8)–(10), ∀𝑗 ∈ 𝑏, (boilers)
(22), (25), ∀𝑗 ∈ 𝐿̃, (users)
(6), (12), (13), (16), (17), (heating station)
(20), (23), (24), (26), (27), (DHNet)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(29b)

1 The participation to intra-day energy markets is not here considered but
his could be included in the online control phase, redefining the electrical
ower profile based on the current energy prices.
 t
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As evident from (29a), the objective of the day-ahead problem is to
maximize electrical energy trading profit, considering buying and sell-
ing energy prices, i.e., 𝜋𝑒,𝑏 and 𝜋𝑒,𝑠, respectively, and to minimize the
cost for the local gas consumption, considering the gas price 𝜋𝑔 . Thanks
to the adopted modelling methodology, and to the considerations in
Remark 2.1, (29) can be formulated as a Mixed-Integer Linear Problem
(MILP), which can be easily optimized by common solvers (e.g. CPLEX,
GUROBI etc.). In fact, constraints (6), (12), (17), (22) and (23) can
be reformulated as linear mixed-integer ones using methods described
in Bemporad and Morari (1999).

It is worth noting that the identified DHNet temperature models
(22) and (23) depend on past inputs and outputs, and their values are
set equal to the corresponding DHS plant measurements available on
the day-ahead.

4.2. Model predictive control design

An MPC regulation system is designed to periodically optimize the
DHS plant during the daily operation. This is executed at each time
instant 𝑡 ∈  and it considers a prediction horizon 𝑡 = {𝑡,… ,𝑀} of
(𝑡) = 𝑀−𝑡+1 steps, according to the shrinking horizon principle (Rawl-

ngs et al., 2017). In the following, the index 𝑘 is used to span over the
rediction horizon, i.e., 𝑘 ∈ 𝑡 = {𝑡,… ,𝑀}. The shrinking predictive
ontrol strategy is used as it enables to consider at each sampling time
a prediction horizon 𝑡 = {𝑡,… ,𝑀} which spans from the current time
nstant, i.e., 𝑘 = 𝑡, until the end of the day, i.e., 𝑘 = 𝑀 , that are the time
nstants where the day-ahead solution provided by (29) is available.

As mentioned, the online control problem serves to track, or to
roperly vary upon external requests, the DHS electrical power profile
omputed by the day-ahead problem (29), here indicated as 𝑃 𝑒,∗

ℎ𝑠 . Thus,
he following constraint is stated
𝑒
ℎ𝑠(𝑘) = 𝑃 𝑒,∗

ℎ𝑠 (𝑘) + 𝛥𝑃 𝑒
ℎ𝑠(𝑘) + 𝜖𝑒(𝑘) , (30)

here 𝑘 ∈ 𝑡, the parameter 𝛥𝑃 𝑒
ℎ𝑠 expresses possible variations on the

ay-ahead electrical power profile requested by system operators, while
𝑒 is a slack variable accounting for power imbalances, strongly mini-
ized to avoid penalties. Thus, the MPC cost function to be minimized

t each 𝑡 ∈  is
(𝑡) =

=
∑

∀𝑘∈𝑡

(

𝜋𝑒,𝑖(𝑘) 𝜏 |𝜖𝑒(𝑘)| + 𝜋𝑔(𝑘) 𝜏 𝑐𝑔𝑙ℎ𝑣

( 𝑛𝑐
∑

𝑖=1
𝑞𝑔𝑐,𝑖(𝑘) +

𝑛𝑏
∑

𝑗=1
𝑞𝑔𝑏,𝑗 (𝑘)

)

)

,
(31)

here the control objective is to minimize electrical power mismatches,
hrough the imbalance cost 𝜋𝑒,𝑖, and the cost for the local gas con-
umption. The cost function (31) is not linear due to the presence
f the absolute value on the first term. In order to keep also the
nline problem in MILP form, the epigraphic reformulation is adopted.
n particular, introducing an auxiliary variable ℎ𝑒 and the following
onstraint
𝑒(𝑘) ≥ 𝜖𝑒(𝑘) , ℎ𝑒(𝑘) ≥ −𝜖𝑒(𝑘) , (32)

he cost function (31) can be rewritten as
ℎ(𝑡) =

=
∑

∀𝑘∈𝑡

(

𝜋𝑒,𝑖(𝑘) 𝜏 ℎ𝑒(𝑘) + 𝜋𝑔(𝑘) 𝜏 𝑐𝑔𝑙ℎ𝑣

( 𝑛𝑐
∑

𝑖=1
𝑞𝑔𝑐,𝑖(𝑘) +

𝑛𝑏
∑

𝑗=1
𝑞𝑔𝑏,𝑗 (𝑘)

)

)

,

hich now is linear.
For the sake of completeness, it is explicitly stated that the closed-

oop MPC regulator initializes the DHNet models (22) and (23) at each
∈  using the real measurements from the DHS plant. Introducing the
ector 𝑧 = [ 𝑇 𝑠, 𝑇 𝑟, 𝑇 𝑢

∀𝑗∈𝐿̃
], it holds that

(𝑡 − 𝑖) = 𝑧̃ (𝑡 − 𝑖) , ∀𝑖 ∈ {0,… , 𝑛̄} , (33)

here 𝑧̃ indicates the measured variables and 𝑛̄ the maximum order of

he identified models (22) and (23). Thermal demand measurements,
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Fig. 3. Schematic of the control diagram for the online MPC regulation of DHSs.

lso necessary in (22) and (23), were not available in real-time at the
HS Novate Milanese plant and therefore the forecasted values (28)
ave been still used during the experiments. As it will be evident in Sec-
ion 5, exploiting closed-loop measurements significantly improve the
rediction performances of the identified DHNet models with respect
o the open-loop case.

Therefore, the shirking-horizon MPC problem, solved at each 𝑡 ∈  ,
is

min
𝜎(𝑡),…, 𝜎(𝑀)

𝐽ℎ(𝑡)

ubject to,∀ 𝑘 ∈ {𝑡,… ,𝑀},

29b), (DHS constraints),
30), (32), (Electrical power reference),
33), (DHNet models initialization),

(34)

hich, also in this case, is a MILP.
For the sake of clarity, the control diagram of the designed online

PC regulator is reported in Fig. 3, specifying the control inputs
DHNet supply temperature and cogenerators power), the measured
ariables (DHNet return temperature and supply temperature at critical
sers), the forecasted disturbance (total thermal demand) and the ref-
rence (day-ahead scheduled electrical profile and eventual variations
equested by system operators).

. Case study

The proposed optimization and control strategy has been tested on
he Novate Milanese DHS plant. This is constituted of a central heating
tation with 𝑛𝑐 = 2 cogenerators and 𝑛𝑏 = 4 gas boilers, and a radial
HNet. The characteristics of the devices at the central heating station
re reported in Table 2. The DHNet, depicted in Fig. 4, has an extension
f around 5 km, with 480 m3 of flowing water and 45 connected users’
ubstations (83% residential, 10% public and 7% commercial).

The designed control system has been tested firstly in simulation,
sing a DHS simulator developed in TRNSYS®, and successively with
xperiments on the real plant. The simulation environment has been
eveloped using the real characteristics of the network, such as pipes
iameters, lengths and heat transfer coefficients, which have been
rovided by the energy company A2A. As common in the simulation of
arge-scale networks, the simulation environment have been developed
y grouping few close users into equivalent districts. In particular,
n approach similar to Larsen, Bøhm, and Wigbels (2004) has been
dopted, where the corresponding pipes in each district are aggre-
ated by maintaining the same equivalent volume and surface of heat
xchange. Given the imposed DHNet supply temperature, the water
low and the thermal demand of each user, the developed simulator
eturns as output the dynamical response of the water temperature at
ach point of the DHNet, considering heat transport delays and thermal
osses. The developed simulator has been extensively validated with the
eal plant data, achieving an average Mean Absolute Percentage Error
MAPE) of 0.7%. Fig. 5 reports the dynamical response of DHNet return
emperature in a simulation of one week, precisely between March 8th
8

Fig. 4. Geographic Information System (GIS) map of the Novate Milanese district
heating network. On the right, the central heating station is located, which coordinates
are 45.53183 North, 9.14908 East. The red dashed circle indicates the position of the
selected user for the supply temperature identification, which coordinates are 45,53172
North, 9.13822 East.

Table 2
Parameters for the central heating station of the Novate Milanese plant.

Cogenerators, 𝑛𝑐 = 2
(

𝑃
𝑒
𝑐,𝑖 , 𝑃

𝑒
𝑐,𝑖

)

𝑖=1,…,𝑛𝑐
(526, 260) kW

(

𝜂𝑡ℎ𝑐,𝑖 , 𝜂
𝑒
𝑐,𝑖

)

𝑖=1,…,𝑛𝑐
(0.45, 0.38)

(

𝑃 𝑒, 𝑎𝑢𝑥
𝑐,𝑖

)

𝑖=1,…,𝑛𝑐
12 kW

(

𝑞𝑤𝑐,𝑖
)

𝑖=1,…,𝑛𝑐
30 m3/h

Gas boilers, 𝑛𝑏 = 4
(

𝑃
𝑡ℎ
𝑏,𝑗 , 𝑃

𝑡ℎ
𝑏,𝑗

)

𝑗=1,…,𝑛𝑏−1
(3300, 200) kW

𝑃
𝑡ℎ
𝑏, 𝑛𝑏

, 𝑃 𝑡ℎ
𝑏, 𝑛𝑏

(1300, 200) kW
(

𝜂 𝑡ℎ
𝑏,𝑗

)

𝑗=1,…,𝑛𝑏
0.9

(

𝑃 𝑒, 𝑎𝑢𝑥
𝑏,𝑗

)

𝑗=1,…,𝑛𝑏
17 kW

𝑃 𝑡ℎ
𝑏 3000 kW

Pump system

𝐻𝑝 30 m
𝜂𝑝 0.75

Fig. 5. DHNet return temperature 𝑇 𝑟 between March 8th and March 14th, 2021:
measured data from the plant (solid red) and simulated data (dotted blue).

and March 14th, 2021, comparing the result with the real measurement
from the plant.

Despite the high simulation performances, the results of the pro-
posed control strategy with respect to the real plant experiments will
reported in the following, being them more significant for assessing the
real achievable performances. Firstly, the validation of the proposed
data-based DHNet models and of the thermal load forecasting with
respect to real data is discussed. Then, the control experiments and
performances for different test days are presented.
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Table 3
Mean Absolute Percentage Error (MAPE) of the simulator and the identified models
with respect to real plant data for the supply temperature at the furthest user.

MAPE Simulation Data-based piece-wise model

𝑇 𝑢 (open-loop) (open-loop) (closed-loop)

08.03.2021 0.63% 1.59% 0.79%
09.03.2021 0.89% 1.6% 0.81%
1.12.2021 1.27% 1.91% 0.85%
2.12.2021 1.48% 1.2% 0.81%

5.1. Data-based model validation

The data-based piece-wise models describing the main DHNet tem-
peratures, i.e., (22)–(23), have been identified using 30 days of training
data for each water flow level. In fact, given the impossibility of arbi-
trary stress the real DHS plant, training data has been generated using
the simulator developed in TRNSYS®, applying persistence exciting
signals to the supply DHNet temperature and to the thermal demand for
each water flow level. Based on the knowledge of real plant data, the
following water flow levels have been selected, considering the whole
plant operational range and the typical measured flow values at the
plant,

𝑞𝑤(𝑡) ∈ {100, 125, 150, 175, 200, 225, 250, 300, 350, 400} m3∕h . (35)

Note that the number of water flow levels in (35) has been chosen
as a trade-off between modelling accuracy and the complexity of the
formulated optimization problem. As previously described, a different
ARX model is identified for each water flow level, leading to a piece-
wise linear modelling. In particular, two piece-wise ARX models have
been identified for the experimental tests: one for the supply tem-
perature at the furthest user from the central heating station along
DHNet pipelines, which position is reported in Fig. 4, and one for the
DHNet return temperature. The identified piece-wise models have been
validated with the real plant data, using the measured DHNet supply
temperature and thermal demand as inputs, while the measured DHNet
water flow has been approximated, at each time instant, to the closest
water flow level in (35).

The model prediction performances with respect to four days are
hereafter presented, being these days related to the test experiments
that will be described in Section 5.3. Tables 3 and 4 report the MAPE
for the identified DHNet temperatures, i.e., the supply temperature at
the furthest user and the return DHNet temperature, respectively, with
respect to the real plant data.

In particular, the open-loop simulation performances are reported,
meaning that 24 h simulations are performed using the measured
supply temperature, thermal demand and water flow as inputs. The
piece-wise ARX models are tested both in open-loop and in closed-
loop, the latter meaning that the measurements of the identified tem-
peratures are used to initialize models at each sampling time. The
closed-loop test is reported to resemble the performances of prediction
model used by the online MPC regulator, where the system state is
measured at each control iteration. As evident from Tables 3 and 4, the
identified piece-wise models achieve quite satisfactory performances.
Their MAPE prediction error in open-loop is often higher with respect
to the simulation one, being the latter a more detailed model, but it
remains considerably small, reaching a maximum of 2.16%. On the
other hand, if the measured state is fed to the model at each time step,
much better performances are achieved, with an average MAPE of 0.8%
for the supply temperature to the furthest user, and an average MAPE of
1.2% for the return DHNet temperature. Fig. 6 reports the temperatures
predicted by the identified piece-wise ARX models in open-loop and in
closed-loop when compared with real plant data on a specific day.
9

Table 4
Mean Absolute Percentage Error (MAPE) of the simulator and the identified models
with respect to real plant data for the return DHNet temperature.

MAPE Simulation Data-based piece-wise model

𝑇 𝑟 (open-loop) (open-loop) (closed-loop)

08.03.2021 1.36% 1.74% 1.13%
09.03.2021 1.59% 1.46% 1.16%
1.12.2021 1.83% 2.16% 1.43%
2.12.2021 1.71% 1.52% 1.20%

Fig. 6. (a) DHNet return temperature 𝑇 𝑟, and (b) supply temperature at the furthest
user 𝑇 𝑢 on March 9th, 2021: closed-loop model prediction (dashed blue), open-loop
model prediction (dotted black), real plant data (solid red).

Fig. 7. Forecasting results for the total thermal demand 𝑃 𝑡ℎ
𝑢,𝑡𝑜𝑡 on March 9th (a) and

on December 2nd (b), 2021: 24 h forecasted profile (dotted red) and real data (solid
blue).

5.2. Thermal load forecasting

As previously discussed, a tool to forecast the DHS thermal de-
mand has been developed. The company A2A S.p.A. provided thermal
demand data for the whole 2020/2021 heating season, i.e., between
October 2020 to March 2021, while the corresponding solar radiation
and environment temperature data period, necessary to predict the
thermal demand (see (28)), have been measured and provided by ARPA
Lombardia, i.e., an Italian regional agency for the environment pro-
tection (ARPA Lombardia, 0000). The whole dataset has been divided
in training and validation data, the latter comprising a random day
for each month in the 2020/2021 heating season. The SVR forecasting
model in (28) has been trained using the scikit–learn Python library,
setting the radial-basis function as kernel (Pedregosa et al., 2011).
Considering the validation set, the identified SVR forecasting model
achieves an average MAPE of 7.3%. Fig. 7 reports the forecasted and
the real thermal demand for two test days.

5.3. Experimental results

The Novate Milanese DHS plant is managed and monitored through
a control room located in the central heating station. The proposed
optimization and control strategy has been implemented on a personal
laptop using the software environment IBM ILOG CPLEX Optimization
Studio®, writing/reading proper files with measurements and control
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inputs at the plant control room. The overall system has been tested for
few days, compatibly with the availability of A2A S.p.A., considering
that the Novate DHS plant is always on service (also during summer
for the hot domestic water delivery).

The considered plant is normally regulated by a rule-based control
logic defined by A2A S.p.A.. This can be synthesized in the following
points: (i) the reference for the output temperature of gas boilers
is fixed for the whole day, and it is monthly varied by A2A plant
operators based on the expected thermal demand; (ii) gas boilers are
deactivated during the night, i.e., between 22:00 and 5:00, while during
the day are operated according to the local internal logic (described in
Section 2.1.1); (iii) among the two cogenerators, one is always active
at maximum power, while the other is always kept off. This last choice
is considered a good compromise, since selling electrical energy to the
grid implies an economical gain but cogenerators are less efficient then
gas boilers for thermal energy production.

In the following, the test days where the proposed optimization and
control strategy is applied are compared with other days where a sim-
ilar thermal demand was recorded and the local rule-based logic was
operating the plant. For a proper comparison between the performances
of two strategies, specific Key Performance Indexes (KPI) are analysed.
These are:

• Produced electrical energy, i.e.,

𝐸𝑒𝑙
DHS =

𝑀
∑

𝑡=1
𝜏 𝑃 𝑒

ℎ𝑠(𝑡).

• Consumed gas volume, i.e.,

𝑄𝑔
DHS =

𝑀
∑

𝑡=1
𝜏
(

𝑛𝑐
∑

𝑖=1
𝑞𝑔𝑐,𝑖(𝑡) +

𝑛𝑏
∑

𝑗=1
𝑞𝑔𝑏,𝑗 (𝑡)

)

.

• Operational cost, i.e.

𝐽DHS =
𝑀
∑

𝑡=1

(

𝜋𝑒,𝑏(𝑡) 𝜏 𝑃 𝑒,𝑖𝑛
ℎ𝑠 (𝑡) − 𝜋𝑒,𝑠(𝑡) 𝜏 𝑃 𝑒,𝑜𝑢𝑡

ℎ𝑠 (𝑡) +

+𝜋𝑔(𝑡) 𝜏 𝑐𝑔𝑙ℎ𝑣

( 𝑛𝑐
∑

𝑖=1
𝑞𝑔𝑐,𝑖(𝑡) +

𝑛𝑏
∑

𝑗=1
𝑞𝑔𝑏,𝑗 (𝑡)

)

)

.

• Primary Energy Factor (PEF), that is a standardized index to assess
DHS efficiency (Noussan, 2018). This is the ratio between the DHS
consumed primary energy, discounted by the produced electrical
energy, and the one delivered to final users. Precisely, the PEF is
defined as

PEFDHS =
𝑓𝑔 𝑄

𝑔
DHS 𝑐

𝑔
𝑙ℎ𝑣 − 𝑓𝑒 𝐸𝑒𝑙

DHS
∑𝑀

𝑡=1 𝜏 𝑃
𝑡ℎ
𝑢,𝑡𝑜𝑡(𝑡)

, (36)

where the weights 𝑓𝑔 and 𝑓𝑒 are the PEF of the single energy
sources, i.e., the gas fuel and the electricity, in this case. These
weights take into account also other factors (e.g., transportation
costs) and they are set as 𝑓𝑔 = 1.04 and 𝑓𝑒 = 2.42 in the
following, representing the Italian scenario (Latõšov, Volkova,
Siirde, Kurnitski, & Thalfeldt, 2017).

• Effective gas consumption, considering the whole energy system.
In fact, the higher is the electrical energy produced by the DHS
cogenerators, the lower is the energy that the overall electrical
system has to produce to satisfy the electricity demand. Therefore,
the following index is introduced

𝑄𝑔
eff = 𝑄𝑔

DHS − 𝑐𝑔𝑙ℎ𝑣
𝐸𝑒𝑙

DHS
𝜂𝑒𝑠

,

where the gas consumed by the DHS is discounted by the gas
saved by the electrical system for not producing 𝐸𝑒𝑙

DHS, with 𝜂𝑒𝑠
representing the conversion efficiency. Here, 𝜂𝑒𝑠 = 0.55 is con-
sidered, being the efficiency of a typical combined-cycle power
plant, a system that can potentially reduce its production in the
face of the DHS cogenerators one.
10
• Effective CO2 emission, considering the effective gas consumption
related to the whole energy system. This is defined as

𝐺𝑒
eff = 𝑄𝑔

eff 𝑐
𝑔
𝑙ℎ𝑣 𝑒𝑔 ,

where 𝑒𝑔 = 0.2 𝑘𝑔
𝑘𝑊 ℎ is the CO2 emission factor of natural

gas (Latõšov et al., 2017).

In the following, two test days are reported where the proposed con-
trol strategy was applied, i.e, March 9th and December 2nd, 2021. The
two test days are different not only with respect to the thermal demand,
generally higher in December, but also because it was not possible to
arbitrary control cogenerators in March 2021 due to technical reasons.
Although being a limitation for the energy market participation, this
gives the opportunity to analyse the cost minimization achieved just
with respect to the gas consumption reduction. The additional gain
derived from the participation to the day-ahead energy market is evi-
dent in the tests on December 2nd, where cogenerators were optimally
managed.

The electrical energy and gas prices used for tests were given
by the day-ahead Italian Energy Market, and they are available in
the online database (GME, 0000). For both test days, the identified
DHNet temperatures are bounded as follows. The lower bound of the
supply temperature at the selected user (i.e. the furthest one) is set as
𝑇 𝑢(𝑡) =75 ◦C between 7:00 and 21:00, and 𝑇 𝑢(𝑡) =70 ◦C during the
ight. The upper and lower bounds of the DHNet return temperature
re imposed as 𝑇

𝑟
(𝑡) = 67 ◦C and 𝑇 𝑟(𝑡) = 63 ◦C between 7:00 and 21:00,

and as 𝑇
𝑟
(𝑡) = 75 ◦C and 𝑇 𝑟(𝑡) = 55 ◦C during the night.

.3.1. Experiments in March without cogeneration control
The control experiments performed on March 9th, 2021 are com-

ared with another day where the standard rule-based logic was ap-
lied and a similar thermal demand was measured, that is March 8th,
021. The thermal demand profiles of the two days are shown in
ig. 8(c). For both days, it was not possible to optimize cogenerators
or technical reasons. Thus, one cogenerator was constantly operated
t maximum power, the other was kept off, and only gas boilers’
utlet temperature could be operated by the proposed control strategy.
he DHnet supply water temperature measured on the two days is

llustrated in Fig. 8(a), together with the imposed lower and upper
ound, i.e., 𝑇 𝑠 = 70 ◦C and 𝑇

𝑠
= 83 ◦C. According to the rule-based

logic, the outlet temperature of gas boilers is normally fixed at 83 ◦C
in March. Therefore, the DHNet supply temperature was maintained at
that value between 5:00 and 22:00 on March 8th, while it decreased
during the night as boilers were turned off and just one cogenerator
was active (see dotted red line in Fig. 8(a)). On the other hand, the
developed MPC control system, applied on March 9th, continuously
varied the outlet temperature of gas boilers, so as to increase it in
correspondence of the thermal load peaks. This modulation has a
direct impact on the supply temperature of users. Fig. 8(e) reports the
measured supply temperature at the furthest user on March 8th and
9th, showing a lower temperature profile on the day when the MPC
control was applied, but always respecting the imposed lower bound.
The supply temperatures measured at different users on March 9th are
depicted in Fig. 8(f), showing that imposing the lower bound to few
critical points (e.g., the to the furthest user) enables the satisfaction
of lower bound for the whole DHNet. Fig. 8(b) depicts the measured
DHNet return temperature, showing also in this case a slightly lower
temperature profile for the day when the MPC control was applied.
Finally, the DHNet water flow is shown in 8(d), higher when the
supply temperature was decreased by the MPC control system, so as
to properly satisfy the thermal demand.

The achieved KPI by the rule-based operation and by the MPC
regulation on March 8th and 9th, respectively, are reported in Table 5.
For the sake of completeness, also the average performances achieved
on few days around tests are reported. In particular, the supplied

electrical energy did non vary, as cogenerators could not be differently
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(

Fig. 8. Measured plant data on March 8th, 2021 (rule-based logic, dotted red) and
on March 9th, 2021 (MPC strategy, solid blue): (a) DHNet supply temperature 𝑇 𝑠,
b) DHNet return temperature 𝑇 𝑟, (c) users total thermal demand 𝑃 𝑡ℎ

𝑢,𝑡𝑜𝑡, (d) DHNet
water flow 𝑞𝑤, (e) supply temperature at the identified user 𝑇 𝑢, (f) measured supply
temperatures at different users on March 9th, 2021 (MPC strategy).

Table 5
Key Performance Indexes achieved by the proposed control strategy in comparison
to the rule-based operation for the tests in March 2021. The percentage values are
computed comparing March 8th and 9th, 2021.

KPI
Rule-based operation MPC control

6.03–11.03.21 8.03.21 9.03.21(average)

𝐸𝑒𝑙
DHS [MWh] 11.5 11.5 11.5 (+0%)

𝑄𝑔
DHS [Smc] 7645 7790 7430 (−4.6%)

𝐽DHS [€] 618 645 582 (−9.7%)
PEFDHS 0.95 0.96 0.91 (−5.2%)
𝑄𝑔

eff [Smc] 5532 5682 5323 (−6.3%)
𝐺𝑒

eff [tCO2] 11 11.29 10.58 (−6.3%)

modulated during the tests. On the other hand, the MPC regulation
enabled to save a significant amount of consumed gas (i.e., 360 Smc)
through the optimal modulation of the DHNet supply temperature,
which directly resulted in lower operational costs. Considering the PEF
index, this also decreased when the MPC regulation was applied, imply-
ing that less primary energy was consumed for satisfying the thermal
demand (see (36)). Finally, the effective consumed gas and CO2 emis-
sions considering the whole energy system showed also a consistent
reduction, despite cogenerator production could not be optimized.

5.3.2. Experiments in december with cogeneration control
The designed optimization and control strategy was tested on De-

cember 2nd, 2021, with the participation to the day ahead energy
market. Also in this case, a similar day is considered to properly
11
Fig. 9. Measured plant data on December 1st, 2021 (rule-based logic, dotted red) and
on December 2nd, 2021 (MPC strategy, solid blue): (a) DHNet supply temperature 𝑇 𝑠,
(b) DHNet return temperature 𝑇 𝑟, (c) users total thermal demand 𝑃 𝑡ℎ

𝑢,𝑡𝑜𝑡, (d) DHNet
water flow 𝑞𝑤, (e) supply temperature at the identified user 𝑇 𝑢, (f) measured supply
temperatures at different users on December 2nd, 2021 (MPC strategy).

compare the obtained performances, i.e., December 1st, 2021. The
thermal demand profiles of the two days are reported in Fig. 9(c).

Given the high convenience of selling electrical energy to the grid,
the solution of the day-ahead optimization problem for December
2nd consisted in maintaining a cogenerator at maximum power for
the whole day, while the other is operated at maximum power be-
tween 5:00 and 23:00, and kept off during the night given the low
thermal demand. The implemented MPC control system operated the
overall DHS to track the pre-defined electrical power profile, as re-
ported in Fig. 10(a), coordinating cogenerators electrical production as
pre-scheduled, as shown in Fig. 10(b).

Fig. 9(a) reports the DHNet supply temperature profile for the two
considered days, together with the imposed lower and upper bound,
i.e., 𝑇 𝑠 = 70 ◦C and 𝑇

𝑠
= 85 ◦C. According to the rule-based logic,

the outlet temperature of gas boilers is normally set to 85 ◦C in
December. As evident, also in this case the MPC action consisted in
frequent variations of the DHNet supply temperature, without violating
the lower bound of the furthest user supply temperature, as illustrated
in Fig. 9(e). The supply temperatures at different users of the DHNet
are depicted in Fig. 9(f), still respecting the requested lower bound.
Also in this case, the DHNet return temperature is lower when the
proposed control strategy was applied, but it is still maintained within
the imposed operational range. Finally, Fig. 9(d) shows the DHNet
water flow, generally higher when the DHNet supply temperature is
decreased so as to satisfy the thermal demand.

The recorded KPI for the test days are reported in Table 6, together
with the average values for few days around the tests. The proposed
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Fig. 10. (a) Day-ahead (dashed red) and real measured (solid blue) DHS electrical
power profile 𝑃 𝑒

ℎ𝑠 for December 2nd, 2021. (b) Electrical power production 𝑃 𝑒
𝑐 of

cogenerator 1 (dashed blue) and cogenerator 2 (solid red) measured on December 2nd,
2021.

Table 6
Key Performance Indexes achieved by the proposed control strategy in comparison to
the rule-based operation for the tests in December 2021. The percentage values are
computed comparing December 1st and 2nd, 2021.

KPI
Rule-based operation MPC Control

29.11–04.12.21 1.12.21 2.12.21(average)

𝐸𝑒𝑙
DHS [MWh] 11.44 11.41 20.9 (+83%)

𝑄𝑔
DHS [Smc] 9098 9200 10290 (+11.8%)

𝐽DHS [€] 5780 5891 4233 (−26.8%)
PEFDHS 0.99 0.99 0.85 (−14.4%)
𝑄𝑔

eff [Smc] 7006 7114 6466 (−9.1%)
𝐺𝑒

eff [tCO2] 13.93 14.15 12.85 (−9.1%)

optimization and control strategy has a direct impact on the produced
electrical energy, which is doubled, but it also implied a higher gas con-
sumption. This is due to the lower thermal efficiency of cogenerators
with respect to gas boilers.

On the other hand, the optimal use of cogenerators results in a
consistent reduction of operational costs with respect to the standard
operation, as more electrical energy is sold to the energy markets.2

Considering the PEF index, it is evident that a significant reduction
s achieved, since the benefits given by the additional produced electri-
al energy overcome the increase of primary energy consumption due
o cogenerators operation. This is also highlighted by the effective con-
umed gas and CO2 emissions considering the overall energy system,
ecording significant reductions when the MPC strategy is applied.

.4. Computational performance

The described experimental tests have been performed using a
ersonal laptop located in the plant control room, with an Intel i7-
1850H processor, and solving the optimization and control problems
ith the software environment IBM ILOG CPLEX Optimization Studio®.

Considering the computational performances, the day-ahead optimiza-
tion problem (29) has been solved with an average computing time
of 2 min and 19 s (it is recalled that this problem is solved offline).
The online MPC control problem is characterized by a computational
time depending on the prediction horizon length, which varies over
the day due to the adopted shrinking horizon approach. In particu-
lar, it has been derived from the experimental tests that the average
computational time for solving (34) is 39.2 + 0.46𝑁(𝑡) seconds, where
𝑁(𝑡) = (𝑀 − 𝑡 + 1) is the prediction horizon length at the generic time
instant 𝑡 ∈  . In particular, the maximum average computational time
is 61.3 s, largely lower than the control sampling time.

2 Note that the recorded costs are much higher with respect to the ones in
arch due to the energy crisis affecting that period, implying higher energy

nd gas prices.
12
6. Conclusions

This paper addressed the design of an optimization and predictive
control strategy for district heating systems, enabling the reduction
of energy consumption to satisfy the thermal demand and the cost-
effective participation to day-ahead electricity markets. The designed
system exploits a combination of mathematical and identified data-
based models, able to accurately represent the DHS system. The devel-
oped control system has been tested for few days on a real plant, owned
by the energy company A2A S.p.A. and located in Novate Milanese
(Italy). The measured control performances are compared with the ones
of the standard rule-based operation, showing that operational costs
and the effective gas consumption are significantly reduced when the
designed control system is applied.

Future developments regard the design of learning-based predictive
control systems, exploiting online measured data to improve accuracy
of the identified models, e.g., using techniques proposed in Breschi
et al. (2016), with tests on real plant case-studies. Moreover, the in-
vestigation of multi-objective optimization strategies can be of interest,
defining a methodology to optimally coordinate different objectives
in DHSs, such as the electricity market participation and the thermal
efficiency maximization.
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