ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347867896

A Simulation-based Comparison between Industrial Autoscaling Solutions and
COCOS for Cloud Applications

Conference Paper - October 2020

DOI: 10.1109/ICWS49710.2020.00020

CITATIONS
7

2 authors:
Luciano Baresi
L Politecnico di Milano
340 PUBLICATIONS 9,217 CITATIONS

SEE PROFILE

All content following this page was uploaded by Giovanni Quattrocchi on 21 September 2023.

The user has requested enhancement of the downloaded file.

READS
45

ﬂ Giovanni Quattrocchi
2 . T
y Politecnico di Milano

56 PUBLICATIONS 369 CITATIONS

SEE PROFILE

https://www.researchgate.net/publication/347867896_A_Simulation-based_Comparison_between_Industrial_Autoscaling_Solutions_and_COCOS_for_Cloud_Applications?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347867896_A_Simulation-based_Comparison_between_Industrial_Autoscaling_Solutions_and_COCOS_for_Cloud_Applications?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano-Baresi?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano-Baresi?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luciano-Baresi?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Quattrocchi-5?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Quattrocchi-5?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Milano?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Quattrocchi-5?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni-Quattrocchi-5?enrichId=rgreq-9765b45d40efe2bf77477ad8476c448e-XXX&enrichSource=Y292ZXJQYWdlOzM0Nzg2Nzg5NjtBUzoxMTQzMTI4MTE5MDI4MDc5MEAxNjk1MjkyNzE4ODEz&el=1_x_10&_esc=publicationCoverPdf

A Simulation-based Comparison between Industrial
Autoscaling Solutions and COCOS for Cloud Applications*

Luciano Baresi, Giovanni Quattrocchi
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
{name.surname} @polimi.it

Abstract—Dynamic resource allocation is the mechanism
that allows one to change the resources associated with applica-
tions at runtime and match their actual needs. The autoscaling
solutions offered by cloud infrastructures are probably the most
widely-used incarnation of this concepts. Originally conceived
to manage virtual machines according to user-defined rules,
they are now much more sophisticated and can also allocate
containers (lighter than virtual machines).

This paper surveys the autoscaling solutions provided by the
major cloud vendors and analyzes the services they provide. It
also compares them against the solution we developed, called
COCOS autoscaling. We simulated the different proposals and
fed them with diverse workloads. Obtained results show that
COCOS autoscaling outperforms its competitors in most of the
cases: it optimizes resource allocation and keeps applications’
response times under set thresholds.

Keywords-autoscaling, elastic computing, cloud computing,
containers, control theory

I. INTRODUCTION

Software systems are becoming more and more complex,
are often required to handle very diverse workloads, and
must keep agreed qualities of service. These requirements
call for componentized architectures to both ease the repli-
cation of system parts and support their distribution [1].
Scalability is thus a prominent feature and computing re-
sources should be allocated on demand. Ideally, provisioned
resources should match the intensity of to-be-served work-
loads. Fewer allocated resources (under-provisioning) imply
a degraded quality of service since they are not enough
to cope with the actual needs. More resources than those
required (over-provisioning) would not produce any visible
effect on the quality of service with a clear waste of
money [2].

Nowadays, cloud computing probably offers the best
support to the idea of dynamic resource allocation and
provides means to easily change allocated resources up to
a theoretically infinite amount [3]. These means are called
autoscaling capabilities.

Traditionally, autoscaling solutions were only able to
resize a cluster of virtual machines (VM) by using simple
user-written rules. VMs are heavyweight, slow to boot

*This work has been partially supported by the European project SO-
DALITE (grant agreement 825480) and by the national research project
SISMA (MIUR, PRIN 2017, Contract 201752ENY B)

(since they contain a full-fledged operating system), and
their scalability is limited to the addition/removal of entire
machines (horizontal scalability). This impacts significantly
the effectiveness of autoscaling since it imposes high latency
and thus can only accommodate sub-optimal resource allo-
cations.

The success of containers [4], a lightweight virtualization
solution, offered new opportunities. Compared to VMs,
containers are faster to boot and scale since they operate
on a shared operating system. They can then be replicated
quickly (horizontal scalability), but one can also change
provisioned resources (i.e., they can be reconfigured') at
runtime (vertical scalability) in hundreds of milliseconds.
Even if containers can run on physical machines directly,
they are usually executed on top of VMs to better ex-
ploit their internal resources. Traditionally VMs hosted
single components; containers allow them to run multiple
isolated components at the same time without significant
overhead [5]. Containers then allow for a faster and finer-
grained resource allocation than VMs, they can better handle
fast changing and fluctuating workloads, but they impose
more sophisticated autoscaling solutions.

Public cloud providers offer several VM- and container-
related services that implement sophisticated autoscaling
solutions. Users can rent VMs and manually run containers
on them, or they can run containers directly without ac-
cessing the underlying VM-based infrastructure (Containers-
as-a-Service). Cloud providers also offer means to ease
the deployment, management, and autoscaling of containers
through dedicated orchestrators (such as Kubernetes?).

Given the many, diverse existing solutions, this paper
surveys the autoscaling mechanisms of three of the most
widely-used cloud providers: Google Cloud Platform, Ama-
zon Web Services, and Microsoft Azure. We describe the
infrastructural services along with their autoscaling mecha-
nisms: scaling operations, time needed, and costs.

The paper also introduces COCOS autoscaling, our
autoscaling solution [6] and compares it against the

'Note that VMs cannot be reconfigured at runtime easily. To the best of
our knowledge, Google and Amazon Web Services do not offer the feature.
Microsoft Azure supports it, but it requires that given a set of VMs, changes
must be applied to all of them and at the same time.

Zhttps://kubernetes.io/

above-mentioned mechanisms. COCOS autoscaling exploits
control-theory to scale containerized applications at runtime.
It aims to optimize allocated resources and keep the re-
sponse time under a given threshold for different application
types: microservices, big-data batch applications, and GPU-
empowered machine learning applications. In addition, CO-
COS autoscaling provides a control loop that is at least one
order of magnitude faster then its industry competitors (i.e.,
control period equals to 1 second).

The paper proposes a comparison of COCOS autoscaling
against the relevant autoscaling mechanisms by means of
RAS (Resource Allocation Simulator), a new lightweight
simulation environment. Obtained results show that in most
of the cases COCOS autoscaling outperforms its competitors
both in terms of saved resources and number of violated
execution times.

The rest of the paper is organized as follows. Section II
discusses what the three aforementioned industrial frame-
works offer. Section III introduces COCOS autoscaling and
its main differences with respect to what proposed by the
main cloud providers. Section IV describes the simulator we
developed and reports on the experimentation we conducted
to assess the benefits of our solution. Section V surveys
related work, and Section VI concludes the paper.

II. PuBLIC CLOUD PROVIDERS

This section focuses on Google Cloud Platform (GCP),
Amazon Web Services (AWS), and Microsoft Azure. For
each platform, we concentrate on how they support autoscal-
ing and fluctuating workloads. Table I shows the execution
times of the different actions that manage VMs and con-
tainers; measurements are reported as averages among five
repetitions. Note that we used “similar” VMs on the different
platforms, and when we say All, obtained values were very
similar and thus a single, average, value is shown.

A. Google Cloud Platform

Google provides two main cloud infrastructural services:
Google Compute (GC) and Google Kubernetes Engine
(GKE). GC provides means to rent and manage virtual
machines; GKE focuses on containers.

We measured the time GC takes to start and terminate a
Linux nl-standard-2 VM . The machine is equipped with 2
CPU cores and 7.5GB of RAM. It was started (terminated)
in 11 (16) seconds. Among the three considered providers,
this result is by far the best one. With respect to a past
survey [7], the start-up time obtained by GC is 62% faster
than all reported solutions. After the first minute, paid
anyway, GC bills resources per second according to the type
and amount of resources provisioned. Even if predefined
machine types exist, GC allows users to create customized
VMs with different configurations. This configuration cannot
be changed at runtime (vertical scalability).

Provider Service Action T [s]
GCP Compute Start VM 16
GCP Compute Terminate VM 11
GCP GKE Start Cluster+Nodes 234
GCP GKE Scale-out Cluster 79
GCP GKE Scale-in Cluster 243
AWS EC2 Start VM 69
AWS EC2 Terminate VM 65
AWS Fargate/ECS Start Service 101
AWS Fargate/ECS Scale-out Service 53
AWS Fargate/EC2 Scale-in Service 355
AWS ECS Start Cluster 79
AWS ECS Terminate Cluster 123
AWS ECS Scale-out Cluster 101
AWS ECS Scale-in Cluster 128
AWS EKS Start Cluster 698
AWS EKS Start Node Group 145
AWS EKS Scale-out Cluster 138
AWS EKS Scale-in Cluster 108
Azure Compute Start VM 112
Azure Compute Terminate VM 87
Azure AKS Start Cluster 212
Azure AKS Terminate Cluster 320
Azure AKS Scale-out Cluster 134
Azure AKS Scale-in Cluster 251

All Kubernetes Start Pod/Service 2
All Kubernetes Terminate Pod /Service 1
All Kubernetes HPA Scale-out Service 4
All Kubernetes HPA Scale-in Service 3
All Container on VM Run container 1
All Container on VM Terminate container 0.5
All Container on VM | Vertically Scale container 0.2

Table I: Execution times of VM/container operations.

GC offers a single autoscaling mechanism (GC Au-
toscaler) whose algorithm is not fully disclosed. To use it,
one must define a metric (i.e., CPU utilization or custom
metrics) and a desired/target value. The autoscaler automat-
ically adjusts the number of VMs to meet the target value
without human intervention. After adding a VM (scale-out
action), a cool down period must elapse before executing
another scale-out action (default is 60 seconds). Moreover,
before scaling in, that is, before removing a VM, one must
wait for 10 minutes (stabilization period) to be sure the
system is ready to safely release resources.

GCP also offers a hosted version of Kubernetes, its
popular, open-source, container orchestrator that exploits a
master-slave architecture. Kubernetes manages pods, groups
of containers that are deployed and managed all together.
Table I shows that starting and terminating a pod running
an instance of NGINX?, a popular application platform for
microservices, is very fast: 2 and 1 seconds respectively.

Kubernetes runs on a cluster of VMs and offers a cluster-
level autoscaling system that scales up or down the number
of cluster slaves with respect to the resources pods need. We
measured that GKE needed 234 seconds to create a cluster*
of three VMs (one master, two slaves), and 79 and 243
seconds, respectively, to add or remove a VM. This shows
a significant overhead compared to what we obtained with

3https://www.nginx.com
4We wanted to have a small-enough system, but it also had to be
meaningful: one master and two slave VMs meet this requirement.

GC and plain VMs.

In Kubernetes, a service is an abstraction that connects
instances of the same pod type and adds load balancing and,
optionally, autoscaling. A Controller is a component that
allows for different types of control actions. For example,
Replica Set guarantees that the number of pod instances
is kept constant during service lifecycle, while Horizontal
Pod Autoscaler (HPA) can change the desired amount of
replicas of a Replica Set. Given a metric and a user-defined
target value (tm), the goal of HPA is to compute the new
amount of pod replicas (fr) to meet the target value. To
do that, HPA scales the current number of pod replicas
(cr) proportionally to the ratio between measured (cm) and
target metric values: tr = ceil(cr * cm/tm). The new
value (allocation) is only enacted if the ratio em/tm is
greater than set tolerance (default value is 0.1). By default,
the computation is carried out every 30 seconds (control
period) and a 5-minute stabilization period is used when
multiple scale-in actions are planned. Table I reports that
the scale-out/scale-in of a Kubernetes service requires 4 and
3 seconds, respectively.

Kubernetes also provides Vertical Pod Autoscaler (VPA):
it works on a Replica Set and changes the configuration
(CPU and memory) of the respective pod instances. At the
time of writing, VPA is still limited and does not provide real
vertical scalability because it requires that pods be restarted
to change their configurations and the scaling actions are
carried out on the whole Replica Set and not on single
pods independently. In addition, the integration with HPA
and JVM-based containers is not fully supported.

Kubernetes Engine bills a fixed amount per hour per
cluster (set of VMs) it manages, in addition to the cost of
the VMs themselves.

B. Amazon Web Services

Amazon provides diverse services for running applications
on the cloud. The most basic one is Elastic Compute Cloud
(EC2), which allows one to create different types of VMs
by starting from predefined or custom VM images. We
measured the time EC2 takes to start/terminate a Linux
VM called t3.medium: it provides 2 CPU cores and 4GB
of RAM. Table I shows EC2 takes on average 69 (65)
seconds to create (terminate) the VM. This service is billed
per second (after the first minute, paid anyway), and the cost
depends on the VM type. Containers can be run atop these
VMs by installing a container runtime such as Docker”.

EC2 offers different automated scaling types: Dynamic
Scaling, Scheduled Scaling, and Predictive Scaling. All of
them exploit CloudWatch, the AWS’ monitoring system.
CloudWatch lets users observe variations of predefined in-
frastructural metrics, such as CPU utilization or custom
ones provided by the applications themselves. Metrics are

Shttps://www.docker.com

aggregated into a single data point over a monitoring period
(usually 60 or 120 seconds). CloudWatch allows for creating
alerts when set thresholds of observed metrics are reached.

Dynamic Scaling is a reactive scaling system that automat-
ically changes the number of VMs according to monitoring
data. EC2 offers three sub-types of dynamic scaling: simple,
step, and target scaling. Simple scaling permits users to
create actions (or policies) that are executed when a certain
CloudWatch alert is triggered. For example, the number
of VMs can be increased/decreased if CPU utilization is
greater/less than 70%/30%. Each time an action is executed,
the system waits for a so-called cool down period (default
is 180 seconds) before applying any further action. Since
actions take time to execute, this period guarantees that
different operations do not overlap.

Step scaling requires that users exploit adjustment tables
to define scaling strategies. Given a CloudWatch alarm, users
must specify for each percentage difference on observed
metrics the percentage of instances to add/remove. For
example, one can say that when the CPU utilization is
greater than 70%, the number of VMs should be increased
by 10% for values between 70% — 80%, by 15% between
80% — 90%, and by 20% for values greater than 90%. The
number of added VMs is always rounded up to the nearest
integer. Step scaling does not use cool down periods but
users must specify a warm-up time for VMs. The system
can execute multiple, subsequent actions, but added/removed
VMs are only considered (not considered anymore) after the
warm-up time.

Target scaling, which is the most advanced dynamic scal-
ing functionality, is similar to what offered by GC. It allows
users to set a target value for a metric and it automatically
manages the VMs to keep that metric at the set point. AWS
does not disclose the algorithm behind this technology, but
it seems to scale instances proportionally to the change in
the metric (as, for example, the algorithm behind HPA). In
fact, AWS suggests to only use metrics that change values
proportionally to the number of VMs. Scaling actions are
activated automatically as soon as CloudWatch generates an
alert. Users must set a minimum and a maximum number
of instances to allocate and a warm up period similarly to
step scaling.

Scheduled Scaling allows users to define time triggers
for scaling actions. For example, users can decide to add
a certain number of VMs at the beginning of the weekend
and release them at the end. An evolution of this mechanism
is Predictive Scaling, a proactive scaling system that uses
machine learning to analyze the workload patterns of the
last 14 days and foresee the resource demand for the next
two days. Forecast data are updated each day with a one-
hour granularity. Predictive Scaling works in conjunction
with Scheduled Scaling: it automatically generates scheduled
scaling actions according to the forecasts. Being proactive,
Scheduled Scaling and Predictive Scaling are complemen-

tary to Dynamic Scaling and they are seen as mid/long-term
actions on the rented infrastructure to prepare for the future.

AWS also offers different solutions to help manage con-
tainers. Elastic Container Service (ECS) provides a managed
container orchestrator that allows one to deploy, manage,
and scale containers by means of easy-to-use, and partially
automated, interfaces. Containers are organized in fasks. A
task, similarly to a Kubernetes pod, is a group of containers
that are deployed and executed all together. Tasks are associ-
ated with a user-defined static resource allocation (CPU and
memory). Tasks are run on a cluster of dedicated EC2 VMs
and deployed onto them using one of the different available
placement strategies (e.g., bin packing).

Table I shows that starting and terminating an ECS cluster
of three r3.medium instances takes respectively 79 and 123
seconds. A service is an abstraction that groups different
instances of the same tasks. Services help users set the
desired amount of task instances to execute and manage.
When an instance fails, the service immediately schedules
a new one for execution. To start a service with a container
that embeds an instance of NGINX, ECS takes 182 seconds
while to add and remove a task instance to a service it takes
53 and 355 seconds, respectively.

Services provide autoscaling and load balancing facilities
to distribute the workload among the different task instances.
In particular, ECS supports Dynamic Scaling (step and
target) and Scheduled Scaling for container services. AWS
also offers another container-centric service called Fargate.
It hides VMs to users who only manage containers, tasks,
and services. Users are billed proportionally to the resources
allocated for running their tasks, which cannot be changed
at runtime.

Finally, AWS provides Elastic Kubernetes Service (EKS),
a hosted and managed version of Kubernetes. AWS bills this
service a fixed quota per hour per cluster in addition to the
VMs rented for running the cluster. EKS can also be used
together with Fargate to remove the need for managing the
cluster. Table I shows that the initial configuration of EKS
takes longer than the GCP’s counterpart; the same applies to
scaling the cluster out, while scaling it in is faster on AWS.

C. Azure

Azure offers two main infrastructural services: Azure
Compute and Azure Kubernetes Service (AKS).

Compute provides the main functionality of a standard
IaaS. VMs of different types can be rented on demand and
billed on a per-second basis. We measured the time it takes
to start and terminate a Linux Fsv2 VM equipped with 2
CPUs and 4GB of RAM. Table I shows that the two actions
were slower compared to the times measured when using
GCP and AWS.

Compute provides different types of scaling mechanisms.
Applications can be monitored using Azure Monitor, which
supports both predefined (e.g., CPU and memory utilization)

and custom metrics. Users must specify a maximum and
a minimum number of VMs and then define rules to let
a monitoring event trigger a scaling action (add/remove a
constant number of VMs). Moreover, users can associate
scaling operations to specific time intervals (e.g., for the
next two days) or repeat the same operations on certain dates
(e.g., on weekends).

Finally, AKS provides a hosted version of Kubernetes
that offers the same functionality as the one provided by
GCP and AWS. Kubernetes is run on Azure Compute
VMs and there is no additional charge for the service.
According to our measurements, AKS is the fastest provider
for configuring Kubernetes clusters (212 seconds vs 234 with
GCP and more than 700 with AWS).

III. COCOS autoscaling

COCOS autoscaling [6] is our custom autoscaling solu-
tion. Our work started from control theory, as theoretical
enabler for fast control loops, and containers as means
for the fast enaction of computed resource allocations. As
already explained, containers are faster than VMs and easier
to manage. Note that the last three rows of Table I show
the time (in seconds) needed to start (1), terminate (0.5),
and scale vertically (0.2) an NGINX container. COCOS
autoscaling only manages container-based applications and
differs from the aforementioned industrial solutions for the
following four main reasons:

Fast and fine-grained vertical scalability: COCOS
autoscaling 1is fast because it exploits vertical scalability
applied to deployed containers that run on a given set of
VMs®. Resources are continuously changed (each second),
and can thus closely follow the workload, without restarting
containers. Scalability is based on a feature of the Linux
kernel, called cgroup, which provides means for configur-
ing memory and CPU cores. Computing resources can be
changed by means of CPU shares, reservation, and quotas.
Shares set a soft limit to the CPU cores used by each
container. This limit is only enforced in the case of resource
contention. Reservation allows for pinning a container to
a set of CPU cores, but it does not provide means for
allocating fractions of cores. COCOS autoscaling exploits
quotas since they set an hard limit on resource usage and
cores can be allocated with decimal precision. Memory can
be allocated to containers in a hard or soft way. The former
sets a strict upper bound to usable memory; the latter gives
more freedom.

Distributed model-based control: COCOS autoscaling
associates a lightweight control-theoretical planner with each
container. Used controllers depend on application types.
So far, we have developed controllers for microservices,
big-data batch applications (i.e., Spark applications [8]),

Readers interested in how VMs and containers are deployed and scaled
horizontally can refer to [6] for more details.

and GPU-empowered machine learning applications (i.e.,
TensorFlow). These controllers aim to guarantee envisioned
execution times while optimizing consumed resources. The
fact that controllers need not be synchronized and resource
allocation is computed in constant time allows for fast, one-
second control periods.

Compatibility with other scaling solutions: COCOS
autoscaling focuses on vertical scalability and it can be inte-
grated with existing or custom [9] horizontal scaling systems
for containers and virtual machines. COCOS autoscaling
produces significant indicators on required resources at both
application and system level. Other horizontal autoscaling
solutions can exploit these data and change the number of
container replicas (e.g., Kubernetes HPA) and/or the number
of VMs (e.g., AWS target scaling).

Control guarantees: Control-theory provides four types
of formal guarantees on the control (allocation) carried
out [10], [11]: stability, that is, the ability of the controlled
system to reach a fixed point and remain in its neighborhood,
settling time, that is, how fast the system converges to a
stable point, maximum overshooting, that is, the maximum
gap between the set-point and the measured controlled
variable during settling time, and steady-state error time, that
is, the difference between the point reached and the set-point.
To the best of our knowledge, none of the three approaches
of Section II provides such guarantees, even if not all the
algorithms are fully disclosed in the documentation.

A. Control Architecture

Figure 1 shows the control architecture COCOS autoscal-
ing exploits at container and machine (VM) levels. Each
container is equipped with a dedicated controller that is
deployed automatically given the application type. Similarly
to AWS’ target dynamic scaling, users set a target response
time (7°). During container execution, disturbances (D)
affect the actual response time (7), which is continuously
monitored along with a set of other relevant metrics (M).
The controller employs a feedback loop to compute, at each
control step (1 second), the control error € as the difference
between 7° and 7. The controller uses € together with M
to compute the current resource demand uc. Ideally, uc is
the exact quantity of CPU cores needed to achieve 7 = 7°.

Multiple containers/controllers are deployed on a single
VM and are independent of one another, that is, they do
not interact during execution. This means that the sum of
computed resource demands can be greater than the actual
number of CPU cores provided by the machine (resource
contention). COCOS autoscaling deploys a supervisor on
each VM and resource demands are not directly transferred
to containers but sent to this component. At each control
period, the supervisor aggregates all the uc and, if needed,
computes a feasible resource allocation uy, by downscaling
the demands according to a specified policy (e.g., propor-
tional, priority-based, requirement-based [8]). If the sum of

Rar, Ra
Machine Level ‘

Container Level uc U

D
y
Container

Figure 1: COCOS autoscaling’s control architecture.

Controller

resource demands is less than available ones, the supervisor
can be configured to scale up demanded resources to boost
applications’ performance at the expense of a sub-optimal
allocation (over-provisioning).

Finally, before provisioning each container with uy, CPU
cores, the supervisor calculates two indicators: Ry, and R4,
that is, the saturation level of the VM and the needs of
each application running on it. We then aggregate the data
retrieved from each VM into system-level indicators. This
information eases the allocation (horizontal scalability) of
VMs and containers (e.g., as done in [6]).

IV. EVALUATION

To enable and ease the comparison of different autoscaling
solutions, we developed a simulator called RAS (Resource
Allocation Simulator). RAS is a lightweight simulation en-
vironment’, written in Python, that allows one to mock
different autoscaling solutions. It comes with a library of
existing solutions and workloads, but developers can easily
customize them and conceive new ones. RAS is organized
around the following components:

Applications: They mimic the behavior of cloud appli-
cations. They define a function that computes the average
response time given the amount of allocated resources and
the number of requests to process. To mimic concurrent re-
quests, in this paper we wanted a function with a hyperbolic
relationship (monotonically decreasing) between response
time and the ratio between requests to serve and allocated
cores. We also wanted the function to have a horizontal
lower asymptote since once available cores are enough to
serve all requests, the addition of new cores would not
further decrease the response time. A practically acceptable
function, taken from [9] can be the following:

(01 + 02) * req + c1 * c3 x cores
*

RT = (1+rand()) (1)

req + c3 * cores

where req is the number of requests to serve, cores the
amount of CPU cores allocated to the application, and c;,
ca, c3 were obtained through profiling in previous works.

7Source code and the complete experiments we carried out are available
at https://github.com/deib-polimi/RAS

These three parameters define how the behavior (response
time) is affected by changes in core allocation and workload.
We also added a noise function rand() that returns a number
between —0.1 and 0.1 (£10% disturbance). This model also
implicitely assumes that memory be scaled proportionally to
cores and, since applications are CPU-bound, always suffi-
cient. Applications also come with a less-than requirement
on their average response time (SLA).

Workload Generators: They provide a function to bind
each time instant to a number of requests to serve. RAS
currently offers three workload types: step, ramp, and sin.
Step generates square-wave shaped workloads that associate
a number of requests with different-length time intervals.
The transitions between intervals are immediate (impulse
like). Ramp produces workloads that are constantly ascend-
ing or descending with a given slope up to a certain point
in time when the workload becomes constant. Sin produces
periodic workloads that follow a sin function.

Controllers: They implement autoscaling mechanisms,
have control periods (frequency of control), and can have
cool down/stabilization/warm-up periods (as defined in Sec-
tion II). They exploit a Monitoring component to store
the current number of requests to serve (generated by a
Workload Generator) and the Application’s response time
(computed using the proper model) at each point in time.
These data allow a Controller to compute and actuate the
resource allocation for the next control period.

RAS provides four built-in controller types. Simple con-
troller mimics the behavior of AWS’ and Azure’s rule-based
autoscaling systems, Step controller implements the step
autoscaling solution provided by AWS, Target controller
simulates Kubernetes’ HPA as well as Google’s Autoscaler
and AWS’ target autoscaling system (according to provided
details), and the solution embedded in COCOS autoscal-
ing [9]. We only selected this last type, among those we
developed, for fairness: the other autoscaling systems are
not meant to control big-data batch applications or GPU-
empowered ones.

A. Assessment

The experiments presented here reused c; 0.007,
co = 1.8 and c3 = 565.8 as reported in [9]. We also set RT
(response time) to always be less than 0.6 seconds (SLA),
tha is, a reasonable value for an interactive application [12].
We ran experiments (simulations) for 1000 seconds (longer
experiments produced similar results). The experiments ex-
ploited the six workloads described in Table II, where ¢ is
measured in seconds.

Since surveyed industrial solutions allow one to use sim-
ple, step and target controllers on both VMs and containers
(CR in the next tables and figures), we simulated their be-
havior when controlling both resource types: six controllers
in addition to COCOS autoscaling, which we only used
with containers. This means that, for example, SimpleVM

Name Type Description

SN1 Sin req(t) = 500 * sin(t155) + 700

SN2 | Sin req(t) = 1000 * sin(2) + 1000

SP1 Step req(t) = 1000 * (1 + floor(t/100))

SP2 Step req(t) = 30000 if 50 < t < 800 else req(t) = 50
RP2 Ramp req(t) = 10t if ¢ < 800 else req(t) = 8000
RP2 Ramp req(t) = 20t if t < 800 else req(t) = 16000

Table II: Used workloads (req(t) means requests at time t).

refers a simple controller used on VMs and SimpleCR on
containers. With VMs we set a control period of 180 seconds
to accommodate all the delays reported in Table I to start and
terminate VMs, and of 30 seconds for containers (as in the
HPA). Moreover, we set cool down, stabilization, and warm-
up periods to 0. We used smaller values than the default ones
to speed up the decision process. For COCOS autoscaling,
we set a control period of 1 second.

We configured simple controllers with the following rule:
add 1 core if RT > 0.9 % SLA, remove 1 core if RT <
0.5 %« SLA, and step controllers with the following policy:
increase core allocation by 10% if 0.9 x SLA < RT <
SLA, by 20% if SLA < RT < 1.1 SLA, and by 30%
if RT > 1.1 % SLA, decrease core allocation by 10% if
RT < 0.8«SLA. Target and COCOS autoscaling controllers
were set to keep RT = 0.8 x SLA.

Table III shows obtained results. Columns Approach and
W report used controller and workload, respectively. The
minimum (m), maximum (M), and mean (x) response times,
along with standard deviation (o) are shown in dedicated
columns. Columns V' shows the number of SLA violations
and column A,, gives the average number of allocated cores.

These data show that the intrinsic speed enabled by
containers allows container-based approaches to outperform
(i.e., lower SLA violations) VM ones in all cases but with
the exception of TargetVM with workload SN2: appar-
ently target controllers have problems with sin workloads.
StepVM and SimpleVM show similar performance in all
cases (similar V'), while StepCR obtained better results than
SimpleCR. Target controllers obtained fewer violations and
smaller RTs than step and simple controllers in all cases
with the exception of sin workloads.

COCOS autoscaling outperformed all competitor ap-
proaches except for the experiment with workload SP2.
Compared to simple, step, and target controllers, COCOS
autoscaling reduced the number of violations from 1 to 3
orders of magnitude. COCOS autoscaling also outperformed
TargetCR in all the experiments except for workload SN2
where results are similar (shorter response time for COCOS
autoscaling, fewer violations for TargetCR, similar alloca-
tions). Note that the standard deviation of COCOS autoscal-
ing is always lower than that of the other approaches, thus
witnessing a more stable autoscaling system.

Since Table III shows that target controllers are the best
competitor of COCOS autoscaling, we tried to set its control
period to 1 second. Obtained results, not presented here for

RT
Approach W o o m M \ 4 A,
SimpleVM | SNI | 0.69 | 0.30 | 0.16 | 1.30 619 2
SimpleCR SN1 0.45 0.24 0.13 1.25 186 4
StepVM | SNI | 0.69 | 0.30 | 0.16 | 1.30 617 2
StepCR | SNI | 0.39 | 0.24 | 0.11 | 1.24 115 5
TargetVM | SNI | 0.69 | 0.30 | 0.16 | 1.29 623 2
TargetCR SN1 0.47 0.20 0.20 1.24 210 3
COCOS | SNI | 0.48 | 0.04 | 0.38 | 1.05 10 3
SimpleVM | SN2 | 0.77 | 0.46 | 0.02 | 1.50 627 2
SimpleCR SN2 0.50 0.35 0.02 1.49 414 4
StepVM | SN2 | 0.77 | 0.46 | 0.02 | 1.50 626 2
StepCR SN2 0.38 0.31 0.01 1.48 141 7
TargetVM SN2 0.65 0.48 0.01 1.50 458 4
TargetCR | SN2 | 0.59 | 0.40 | 0.02 | 1.49 504 4
COCOS | SN2 | 0.43 | 0.15 | 0.06 | 1.21 82 5
SimpleVM | SPI | 1.40 | 0.08 | 1.20 | 1.51 | 1000 3
SimpleCR | SPI | 0.72 | 0.11 | 0.61 | 1.26 | 1000 17
StepVM | SP1 | 1.37 | 0.08 | 1.20 | 1.50 | 1000 3
StepCR | SPI | 0.59 | 0.15 | 0.50 | 1.23 219 24
TargetVM | SPI | 0.87 | 0.30 | 0.50 | 1.51 816 17
TargetCR SP1 0.53 0.14 0.45 1.24 92 27
COCOS | SPI | 0.50 | 0.06 | 0.37 | 1.26 18 27
SimpleVM | SP2 | 1.37 | 0.75 | 0.04 | 1.90 754 3
SimpleCR SP2 1.16 0.65 0.01 1.87 753 14
StepVM SP2 1.37 0.75 0.03 1.91 754 3
StepCR | SP2 | 0.77 | 0.61 | 0.01 | 1.90 434 79
TargetVM | SP2 | 1.08 | 0.68 | 0.01 | 1.90 748 30
TargetCR | SP2 | 0.50 | 0.36 | 0.01 | 1.87 133 105
CoCcoS | SP2 | 0.47 | 0.25 | 0.01 | 1.72 146 104
SimpleVM | RPI | 1.31 | 0.22 | 0.01 | 1.47 970 3
SimpleCR | RPI | 0.62 | 0.07 | 0.01 | 0.67 828 17
StepVM RP1 1.28 0.22 0.01 1.47 969 3
StepCR | RPI | 0.54 | 0.06 | 0.01 | 0.65 100 21
TargetVM RPI 0.84 0.28 0.01 1.43 744 15
TargetCR RPI 0.50 0.06 0.01 0.65 19 24
COCOS | RPI | 0.48 | 0.05 | 0.01 | 0.54 0 24
SimpleVM RP2 1.53 0.22 0.01 1.67 982 3
SimpleCR | RP2 | 0.93 | 0.10 | 0.01 | 1.00 982 17
StepVM | RP2 | 1.52 | 0.22 | 0.01 | 1.66 982 3
StepCR | RP2 | 0.59 | 0.13 | 0.01 | 0.95 243 43
TargetVM | RP2 | 0.97 | 0.34 | 0.01 | 1.64 887 26
TargetCR RP2 0.53 0.10 0.01 0.94 115 48
COCOS | RP2 | 0.50 | 0.04 | 0.01 [0.56 0 48

Table III: Obtained results.

lack of space, showed these controllers significantly oscillate
as for resource allocation without even reaching a stable
point with most of the workloads (TargetCR performed
better than this fast version).

Figure 2 helps better visualize obtained results. It presents
eight charts that show the results we obtained with con-
trollers SimpleCR, StepCR, TargetCR, and COCOS autoscal-
ing, respectively, on workload SN1. For each controller,
the first chart (called W+A) shows the workload (dashed
line, left axis) and allocated cores (solid line, right axis);
the second chart presents the obtained response time (solid
line) and SLA (dashed horizontal line). The charts show how
COCOS autoscaling is able to better follow the evolution
of the workload with a faster and more precise allocation;
it also keeps the response time almost constant during the
experiments.

Finally, we highlight some threats that may affect the
validity of our results [13]. As for internal threats, we
used a simulator and synthetic workloads for testing the

1200

o

12 1.2

@

1.0

10007 i} 1.0

FS

> 0.8 0875

3 0.6 0.6E

workload
cores

w

0.4 0.4

0.2 0.2

0 250 500 750 1000 0 250 500 750 1000
time [s] time [s]

(a) SimpleCR - W+A

1200

(b) SimpleCR - RT

6 12 12

o

10009 |4 1.0 1.0

8001 | f

FS

cores

—0.8 0.8—
L2 £

L o6 0.6k

workload
W

0.4 0.4

N

0.2 0.2

[250 500 750 1000 0 250 500 750 1000
time [s] time [s]

(c) StepCR - W+A

1200

(d) StepCR - RT

10001 | |
800{ ! [}

600

workload

[V
v v

[N R]
cores

0 250 500 750 1000 0 250 500 750 1000
time [s] time [s]

(e) TargetCR - W+A

1200

(f) TargetCR - RT

1.0
1000

800 0.8

RT [s]

600

workload

0.6
400

NIV SR
cores

0.4

0 250 500 750 1000 0 250 500 750 1000
time [s] time [s]

200

(g) COCOS - W+A (h) COCOS - RT

Figure 2: CR-based autoscaling systems on SN1 workload.

autoscaling systems. The use of real systems would have
been much more expensive and time-consuming. We are
confident that the actual measures summarized in Table I
are enough to guide our experiments and feed our simulator
properly. RAS also aims to offer a simple and cheap tool
to test and compare diverse autoscaling solutions. Proposed
workloads are designed to be a suite of stress fests for
the different approaches and highlight major drawbacks or
positive features.

For external threats, we cannot generalize the results to
applications that are not interactive and/or not CPU-bound.
This is a first assessment and we will extend the evaluation
with more application types in the future.

V. RELATED WORK

The problem of allocating resources to cloud applications
at runtime has been widely studied [14], [15]. Existing
solutions cover both horizontal [16], [17] and vertical scaling
systems [12], [18]. In general these works either: 1) provide
slower controllers than COCOS autoscaling, or ii) only

support a specific application type or iii) are not designed
to control multiple applications cooperatively as COCOS
autoscaling does.

As an example, Yu et al. [19] recently present Microscaler,
a tool devoted to the runtime management of microservices
constrained by SLAs. As COCOS autoscaling, it focuses on
response times and its goal is to produce close-to-optimal
allocations when multiple inter-dependent microservices are
controlled. Microscaler is based on Machine Learning and
heuristics and provides a horizontal autoscaling solution on
top of Kubernetes. Its decision process lasts 2 minutes,
and thus it 2 orders of magnitude slower than COCOS
autoscaling. It does not provide formal guarantees on the
control and it does not support vertical scalability as COCOS
autoscaling.

Besides this work, other surveys and comparisons of
autoscaling techniques for cloud applications exist. Podol-
skiy et al. [20] propose a comparison among different
autoscaling approaches. They deployed Kubernetes on AWS,
GCP, and Azure and tested their rule-based (simple, in our
experiments) autoscaling of VMs in combination with an
old version of HPA that was also rule-based. They show
that scaling actions took between 6 to 155 seconds, and thus
confirm both our detailed evaluation of the delays (Table I)
and that COCOS autoscaling is able to scale faster then the
others. They also only compare rule-based approaches, while
we tested different solutions with both VMs and containers.

Netto et al. [21] introduce Auto-scaling Demand Index
(ADI), an indicator to evaluate autoscaling actions. They
evaluate different types of autoscaling strategies using ADI.
Their results show that predictive allocations do not perform
well with highly dynamic workloads and that policies that
use fixed addition/removal of resources are generally worse
than adaptive ones (as COCOS autoscaling).

VI. CONCLUSIONS

This paper surveys the main industrial autoscaling solu-
tions, for VMs and containers, and uses RAS, a dedicated
simulator, to compare them against our solution COCOS
autoscaling. Obtained results show that COCOS autoscaling
outperforms all the other approaches.

REFERENCES

[1] I. Gorton and J. Klein, “Distribution, Data, Deployment:
Software Architecture Convergence in Big Data Systems,”
IEEE Software, vol. 32, no. 3, pp. 78-85, 2015.

[2] N. Sfondrini, G. Motta, and L. You, “Service level agreement
(sla) in public cloud environments: A survey on the current
enterprises adoption,” in 2015 5th Int. Conf. on Information
Science and Technology. 1EEE, 2015, pp. 181-185.

[3] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles
of Elastic Processes,” IEEE Internet Computing, vol. 15,
no. 5, pp. 66-71, 2011.

[4] D. Bernstein, “Containers and Cloud: From LXC to Docker
to Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp.
81-84, 2014.

[5] D. Merkel, “Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment,” Linux Journal, vol.
2014, no. 239, 2014.

[6] L. Baresi and G. Quattrocchi, “Cocos: A scalable architecture
for containerized heterogeneous systems,” in 2020 IEEE Int.
Conf. on Software Architecture (ICSA), 2020, pp. 103-113.

[7] M. Mao and M. Humphrey, “A Performance Study on the
VM Startup Time in the Cloud,” in Proc.of the IEEE Fifth
Int. Conf. on Cloud Computing. 1EEE, 2012, pp. 423-430.

[8] L. Baresi, A. Leva, and G. Quattrocchi, “Fine-Grained Dy-
namic Resource Allocation for Big-Data Applications,” IEEE
Transactions on Software Engineering, Early Access 2019.

[9] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A
Discrete-Time Feedback Controller for Containerized Cloud
Applications,” in Proc. of the 24th Int. Sym. on Foundations
of Software Engineering (FSE). ACM, 2016, pp. 217-228.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback control of computing systems. John Wiley & Sons,
2004.

[11] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio,
“Control-theoretical software adaptation: A systematic liter-
ature review,” IEEE Transactions on Software Engineering,
vol. 44, no. 8, pp. 784-810, 2017.

[12] E. Lakew, A. Papadopoulos, M. Maggio, C. Klein, and
E. Elmroth, “Kpi-agnostic control for fine-grained vertical
elasticity,” in Proc.of the 17th IEEE/ACM Int. Sym. on Cluster,
Cloud and Grid Computing. 1EEE, 2017, pp. 589-598.

[13] C. Wohlin et al., “Empirical research methods in web and
software engineering,” Web Engineering, 2006.

[14] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A
review of auto-scaling techniques for elastic applications in
cloud environments,” Journal of grid computing, vol. 12,
no. 4, pp. 559-592, 2014.

[15] W. Delnat, E. Truyen, A. Rafique, D. Van Landuyt, and
W. Joosen, “K8-scalar: A workbench to compare autoscalers
for container-orchestrated database clusters,” in Proc.of the
13th Int. Conf. on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2018, p. 33-39.

[16] C. Guerrero, 1. Lera, and C. Juiz, “Genetic Algorithm for
Multi-Objective Optimization of Container Allocation in
Cloud Architecture,” Journal of Grid Computing, vol. 16,
no. 1, pp. 113-135, 2018.

[17] P.Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive Control of Virtualized
Resources in Utility Computing Environments,” in Proc. of
the 2nd EuroSys Conf. ACM, 2007, pp. 289-302.

[18] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler,
and R. Griffith, “Runtime vertical scaling of virtualized
applications via online model estimation,” vol. 2014, 09 2014.

[19] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic
scaling for microservices with an online learning approach,”
in 2019 IEEE Int. Conf. on Web Services, 2019, pp. 68-75.

[20] V. Podolskiy, A. Jindal, and M. Gerndt, “laas reactive au-
toscaling performance challenges,” in 2018 IEEE 11th Int.
Conf. on Cloud Computing (CLOUD), 2018, pp. 954-957.

[21] M. A. S. Netto, C. Cardonha, R. L. F. Cunha, and M. D.
Assuncao, “Evaluating auto-scaling strategies for cloud com-
puting environments,” in 2014 IEEE 22nd Int. Sym. on
Modelling, Analysis Simulation of Computer and Telecom-
munication Systems, 2014, pp. 187-196.

https://www.researchgate.net/publication/347867896

