
Citation: Grimaccia, F.; Montini, M.;

Niccolai, A.; Taddei, S.; Trimarchi, S.

A Machine Learning-Based Method

for Modelling a Proprietary SO2

Removal System in the Oil and Gas

Sector. Energies 2022, 15, 9138.

https://doi.org/10.3390/en15239138

Academic Editor: Dino Musmarra

Received: 15 October 2022

Accepted: 15 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Machine Learning-Based Method for Modelling a Proprietary
SO2 Removal System in the Oil and Gas Sector
Francesco Grimaccia 1 , Marco Montini 2, Alessandro Niccolai 1 , Silvia Taddei 2 and Silvia Trimarchi 1,*

1 Department of Energy, Politecnico di Milano, 20156 Milan, Italy
2 Eni S.p.A., Strada Statale 9, Via Emilia 1, San Donato Milanese, 20097 Milan, Italy
* Correspondence: silvia.trimarchi@polimi.it

Abstract: The aim of this study is to develop a model for a proprietary SO2 removal technology by
using machine learning techniques and, more specifically, by exploiting the potentialities of artificial
neural networks (ANNs). This technology is employed at the Eni oil and gas treatment plant in
southern Italy. The amine circulating in this unit, that allows for a reduction in the SO2 concentration
in the flue gases and to be compliant with the required specifications, is a proprietary solvent; thus,
its composition is not publicly available. This has led to the idea of developing a machine learning
(ML) algorithm for the unit description, with the objective of becoming independent from the licensor
and more flexible in unit modelling. The model was developed in MatLab® by implementing ANNs
and the aim was to predict three targets, namely the flow rate of SO2 that goes to the Claus unit,
the emissions of SO2, and the flow rate of steam sent to the regenerator reboiler. These represent,
respectively, the two physical outputs of the unit and a proxy variable of the amine quality. Three
different models were developed, one for each target, that employed the Levenberg–Marquardt
optimization algorithm. In addition, the ANN topology was optimized case by case. From the
analysis of the results, it emerged that with a purely data-driven technique, the targets can be
predicted with good accuracy. Therefore, this model can be employed to better manage the SO2

removal system, since it allows for the definition of an optimal control strategy and the maximization
of the plant’s productivity by not exceeding the process constraints.

Keywords: machine learning; neural networks; oil and gas; SO2 removal technology

1. Introduction

In the oil and gas industry, a digitalization process is ongoing, achieved by exploiting
the potentialities of artificial intelligence (AI) and machine learning (ML). This allows for
better control of the production processes and improvements in the safety of operations,
energy efficiency, and environmental emissions [1,2]. Within this framework, this study
aims to develop a machine learning model for a description of a proprietary sulphur dioxide
removal system.

The technology, among its different applications, it is used in the flue gas treatment at
the Eni oil and gas plant in southern Italy, which is the object of this study. This system
reduces the SO2 concentration in the flue gases below the limit imposed by law [3]. This
system is crucial since sulphur dioxide is a toxic gas. It is colourless and irritating, soluble
in water, and can cause respiratory issues and damage to the environment [4].

To drastically reduce the SO2 concentration in gases, the technology employs an
amine solvent, whose composition is however unknown [5]. Therefore, it is not possible
to develop a physical simulation of the system in commercial software typically used for
process simulations. As a possible alternative, ML techniques can be applied to predict the
licensed process unit’s output values.

With this in mind, to describe the unit’s behaviour, a model was developed in MatLab
R2021b® by implementing artificial neural networks (ANNs). The aim of this work is to
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model a unit whose physical-chemical modelling is unknown. In this perspective, the scope
is to predict the values of three different variables, namely the two physical outputs of
the unit and a proxy variable of the amine quality, which allows us to determine how the
system is performing. These are, respectively, the flow rate of SO2 sent to the Claus unit,
the emissions of SO2 expressed as a concentration, and the flow rate of steam going to the
regenerator column. This surrogate model of the proprietary system allows us to better
manage the system and to find an optimal operating strategy. In particular, it allows for
the maximizaton of the productivity of a plant by always keeping the operating point of
the unit within the process constraints. This is achieved by keeping both the emissions of
sulphur dioxide and the flow rate of the product flowing to another unit under control.
In addition, since the model also provides insights into amine quality, it can be employed to
define predictive maintenance operations and to verify which working conditions ensure a
longer and higher amine quality.

Machine Learning models have a variety of applications in the oil and gas industry,
for example, to find descriptions for and optimize oil and gas separation and treatment
plants [6,7]. However, with regard to this segment, in the literature, it is only possible to
find studies where only some of the equipment of a unit has been modelled using ML
techniques and therefore, this study suggests a new method to model the proprietary units
of an oil and gas treatment plant.

One of the most common and representative examples found in the literature is the
study conducted by Tavakoli et al. Here, the authors aimed to predict the outputs of an
absorption column of a gas-sweetening plant in Iran. These are the water content, H2S,
and CO2 mole fraction, which represent the absorption capacity of the amine circulating
in the unit. This objective was achieved by implementing feed-forward ANNs, whose
architecture was optimized by exploiting genetic algorithms [8].

Similarly, Salooki et al. predicted the outputs of a sweetening regenerator column
in a refinery by implementing feed-forward ANNs. In this case, the selected method
showed high accuracy in the prediction of the desired targets [9]. The final objective of both
these studies was to determine numerically the output values of the equipment, given the
expensive and time-consuming experimental measurements otherwise required [8,9].

Another study where ANNs were implemented for predicting the behaviour of equip-
ment in an oil and gas treatment plant was the one carried out by Kwon et al. Different
ANN models were tested and the long short-term memory (LSTM) model predicted the
production stage temperature of a distillation column with the greatest accuracy. This
parameter was a proxy variable of the product composition and its control determined
the reduction in the quantity of steam that was necessary to produce to carry out the
distillation. Therefore, the energy consumed by the process was reduced and its energy
efficiency increased [10].

On the other hand, Kundu et al. developed a model for the prediction of the furnace
coil outlet temperature of a crude distillation column by employing the random forest
algorithm. This parameter, if tuned correctly, allows for a decrease in the fuel fired in the
furnace and the maximization of the distillate yield. An optimal result was achieved in the
prediction of the target, with an R2 higher than 0.9 [11].

Finally, Adib et al. implemented the support vector machine (SVM) method to predict
the outputs of a stabilization column in a sweetening plant in Iran. These were the volatility
and the H2S concentration of the condensate, whose prediction was achieved with a
coefficient higher than 0.9, and these can be used for the supervision and control of the
process [12].

Starting from the examples found in the literature, this study has a wider approach
since it models the whole unit of an oil and gas treatment plant. Therefore, it enables
not only the better management of a whole unit by predicting its outputs and crucial
parameters but also the optimization of the working operation of the entire plant.

This paper is structured as follows. Section 2 describes the working principles of the
proprietary technology and the data set employed for the development of the model, that
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is, the targets, the time period, and the data sampling are defined. Then, in Section 3, the
machine learning method employed is explained, whereas Section 4 displays the results
achieved. Each target is analyzed singularly and the performance is discussed both in
terms of accuracy and computational cost. Finally, Section 5 discloses the main conclusions
that can be drawn from the study and the possible further development of this work.

2. Unit Description and Data Analysis

The system in exam is a regenerable scrubbing technology that can reduce the SO2
content in the flue gases of a plant by up to 20 ppm by employing an aminic-based solution.
This study focuses the system located in the Eni plant in southern Italy [5].

This unit can be found right before the chimney of the plant and it is preceded by the
quench and saturation unit, which is a pre-treatment section consisting of a quench tower
and a packed column, where the acid mists and suspended solids are removed from the
flue gases [13].

The system is composed of three main units: an SO2 absorption column, an amine
regeneration column, and an absorbent purification unit (APU).

As depicted in Figure 1, the gases coming from the pre-treatment section enter at the
bottom of the absorption column. Here, they meet in a counter-current the lean amine,
which enters the column from the top. Two streams exit the absorber, one from the top and
one from the bottom. They are, respectively, the treated gas that is sent to the chimney and
the amine rich in SO2 that goes into the regeneration column. The latter is warmed up in a
heat exchanger in a counter-current with the poor amine and is recirculated thanks to two
pumps. The amine solution, in contact with the flue gases, absorbs up to 81% of the SO2
originally present through chemical absorption [5,13].

Contrary to the absorption process, the regeneration process is endothermic. The col-
umn is divided into two sections, a stripping and an enrichment one. The rich amine enters
at the top of the column above the stripping bed and once it has been regenerated, it exits
the column from the bottom, as shown in Figure 1. Two reboilers (one running and one
spare) are installed in the lower part of the column, through which the heat necessary for the
regeneration process is supplied. The lean amine is then sent to the storage tank after being
cooled thanks to a heat exchanger that works with the rich amine in a counter-current.
On the other hand, a stream of gases and vapours rich in SO2 leaves the column from the
top. This is then condensed and the gas rich in SO2 is separated in a reflux accumulator
and sent to the Claus unit [5,13].

Figure 1. Scheme of SO2 removal system located in the plant in southern Italy. The arrows represent
the fluxes entering and exiting the equipment. The input variables are shown in black, whereas the
targets are shown in red. Both are connected to the measurement points with dotted lines.

The Claus process aims to convert into elemental sulphur the hydrogen sulphide and
the sulphur dioxide, which are two compounds always present in crude oil and natural
gas. The process consists of two stages. In the first stage, the H2S coming from the gas
sweetening unit is converted to SO2, which together with the sulphur dioxide coming from
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the removal system, is converted into elemental sulphur in a second reactor. The overall
conversion efficiency is usually around 96–97%, a value that is however not high enough to
fulfil Italian regulations. Therefore, after the Claus unit, the unconverted gases must be
sent to a tail gas treatment unit [14].

In addition, the analyzed system is composed of a storage tank for the amine, an amine
purification unit (APU) for the solvent regeneration, and a filtration system to remove the
suspended solids [5,15].

To build the model of the unit, all the variables available regarding the SO2 removal
system were considered as inputs. These are shown in Figure 1, corresponding to their
measurement points, and mainly represent physical variables such as flow rates, pressures,
temperatures, or pressure drops. On the other hand, three different targets were identified
as dependent variables and their prediction enables a determination of how the system is
performing. The first is the flow rate of the SO2 leaving the regenerator column and going
to the Claus unit. The second represents the flow rate of the steam entering the stripping
column, which is an indicator of amine quality. The third is the concentration of SO2 in the
fumes leaving the absorber that are vented to the chimney. In this way, for the development
of the ML model, 35 inputs and 3 targets were considered.

A time span of 26 months was studied, that is, from 1 June 2019 to 31 August 2021,
and the data were sampled every 5 min, which is the minimum available sampling fre-
quency. This was limited by the variable representing the SO2 concentration at the absorber
outlet, which was a KPI defined as the average over 5 min.

3. Methods

To build the model, it was necessary to employ a machine learning method that was
able to represent and account for the complex nonlinear relationships between the input
and output variables that occur in a chemical plant. With this in mind, and also by looking
at the examples found in the literature, three different methods were identified as suitable
for modelling the SO2 removal system. These were the random forest, artificial neural
network, and support vector machine (SVM) methods [16–18]. Therefore, a first-attempt
analysis was carried out using the MatLab tool RegressionLearner in order to compare the
performances of the different algorithms for the prediction of the first target, namely the
flow rate of SO2 that goes to the Claus unit. The results achieved are summarized in Table 1
and are compared in terms of the normalized root mean square error (nRMSE) on the
validation and testing datasets. The expression of the nRMSE, which is equal to the RMSE
divided by the maximum value of the target, is shown in Equation (1) [19,20]:

nRMSE =

√
∑n

i=1
(yi−ŷi)2

n

ȳ
(1)

where yi is the actual value of the target, ŷi is the predicted value, n is the total number of
observations, and ȳ is the maximum value of the target in question.

Table 1. Comparison of the random forest, artificial neural network, and support vector machine
methods for the prediction of the SO2 flow rate. The values of the nRMSE on the validation and
testing datasets are reported.

Random Forest Neural Networks Support Vector
Machine

nRMSE validation 0.0394 0.0359 0.049
nRMSE test 0.0383 0.0353 0.0511

It emerged that the SVM method produced the worst results in terms of the nRMSE
both on the validation and testing data. On the other hand, the values achieved for the
random forest and ANN methods were closer but the latter produced lower error values
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and hence better results. In addition, ANNs are not only able to represent and account for
complex nonlinear relationships but they are also global techniques for regression problems
and are not greatly affected by the noise in the input data, which in the considered case is
not negligible [16,21]. Therefore, the model of the technology was implemented in MatLab
using artificial neural networks.

An ANN is composed of strict interconnections of artificial neurons and consists of
three main parts: an input layer, one or more hidden layers, and an output layer. Each
connection is characterized by a weight and every artificial neuron employs an activation
function, which determines the neuron’s output value [22].

The network learns by adjusting the weights during the training phase. In order to
evaluate how well the algorithm is performing, a loss function needs to be identified, which
is then minimized using the optimization algorithm during the training [16].

To train the network, it is necessary to choose and tune various hyperparameters, namely
the loss and activation functions, the optimization algorithm, and the network topology.

Firstly, the loss function was identified as the mean squared error (MSE). This is the
most suitable loss function for regression problems since it can be employed with almost
all optimization algorithms [23]. The MSE is defined as

MSE =
n

∑
i=1

(yi − ŷi)
2

n
(2)

where ŷi is the output of the network and yi is the actual value of the target.
For the activation functions in the output layer, a linear transfer function (purelin) was

employed, whereas for the inner hidden layers, the hyperbolic tangent (tansig), the sigmoid
(logsig), and the rectified linear (ReLU) transfer function (poslin) were identified as suitable
since they can account for the nonlinearity of the data [22]. In order to understand which
function is the most accurate for the problem that is being faced, their performances were
evaluated and the analysis is reported in Section 4.

With regard to the optimization algorithm, three different options were considered,
namely the Levenberg–Marquardt (LM), the Broyden–Fletcher–Goldfarb–Shanno (BFGS),
and the Adam optimization algorithms [24]. As for the transfer function, a comparison of
the results achieved with these algorithms is reported in the following section.

Finally, for the network topology, the numbers of neurons and hidden layers were
changed and the ANN layout that minimizes the envelope-weighted mean absolute error
(EMAE) was selected. The EMAE, which is a measure of the relative error of the model, is
defined as [25]

EMAE =
∑n

i=1 |yi − ŷi|
∑n

i=1 max(yi, ŷi)
∗ 100 (3)

where yi is the actual value of the target, ŷi is the predicted value and n is the total number
of observations. Since this setting was problem dependent, the optimal ANN design was
specified case by case. Initially, it was considered a single hidden layer network and the
number of hidden layers was increased only if necessary. Moreover, for each target, in order
to determine the optimal number of neurons per layer, a sensitivity analysis was carried out.

Once the hyperparameters were tuned and the model was trained, to assess its perfor-
mance, four different parameters were evaluated:

• the envelope-weighted mean absolute error (EMAE), which is a measure of the relative
error of the model and its expression is reported in Equation (3);

• the root mean square error (RMSE), which is a measure of the absolute error [19]:

RMSE =

√
n

∑
i=1

(yi − ŷi)2

n
(4)

where yi is the actual value of the target, ŷi is the predicted value, and n is the total
number of observations;



Energies 2022, 15, 9138 6 of 15

• the normalized root mean square error (nRMSE), whose expression was reported in
Equation (1), which allows us to obtain a comparable measure of the absolute error of
the model for the targets that have different scales [19,20];

• the coefficient of determination R2, which has values ranging from 0 to 1 and is a
measure of how well the model is fitting the input data [19]:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (5)

To build the ML model, feed-forward ANNs were adopted. These were implemented
in MatLab by employing the functions fitnet and train. The first fits the ANN according
to the number of hidden layers and the training algorithm specified, whereas the second
trains the ANN once the inputs and targets have been identified. In addition, the data
were split into training, testing, and validation datasets; 70% of the data were used for the
training phase, 15% for the validation phase, and 15% for the model testing. The testing
data were necessary for adjusting the values of the weights and biases of the network,
while the validation dataset was used to stop the training of the model when the validation
error started to increase so that the risk of overfitting was minimized. Finally, the testing
data were used to test the ability of the generalization of the neural network by providing
as inputs the samples that still had not been employed [16,17].

As defined previously, for the model developed, 3 targets were defined and 35 input
variables were available. In order to include only the samples that referred to proper
working conditions, each target was analyzed individually and sensor saturations or
instantaneous solitary peaks were disregarded. In this way, 2.2% of the data were excluded
from the analysis. In addition, the linear correlations between the different variables and, in
particular, their relationships with the identified targets were highlighted. It emerged that
the second target, namely the flow rate of steam going to the regenerator reboiler, was
the most correlated. It had a very strong positive correlation not only with the variable
representing the pressure of the same stream but also with the flow rates of the lean and rich
amine entering and exiting the absorber. In addition, it also had a strong linear correlation
with the temperature of the lean amine leaving the regenerator. Therefore, for the analysis of
the steam rate, only the variables that had a linear correlation greater than 0.1 were included
in the model. In this way, the number of inputs dropped to 26 and the computational cost
was reduced. On the other hand, the other two targets did not show any significant linear
correlations with the other variables. Thus, in these cases, all 35 inputs were included.

Finally, all the variables were normalized using a function called mapminmax, which
makes all the values fall between −1 and 1.

The methodology and workflow employed to develop the ML model are summarized
in Figure 2. The figure shows the different steps that were carried out in the data analysis,
sampling, and cleaning, after which it was possible to develop the ML model. This started
with tuning the different hyperparameters, then, the actual model was implemented, and
finally, the results were validated.
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Figure 2. Scheme of the methodology employed to develop the Calsolv® model. Firstly, the data
were analyzed, sampled, and cleaned. Then, after tuning the different hyperparameters, the model
was developed and the results were validated.

4. Results

Three different models were developed, one for each target, in order to reduce the
computational costs and increase the accuracy of the predictions.

In addition to the parameters and error values, the scatter plot of the target versus
the output variables, where the data dispersion was highlighted, was reported for each of
the analyzed cases. This plot allowed us to understand how well the dependent variable
was predicted since it showed the distance between the actual value of the target and the
corresponding output of the ANN. In addition, by also displaying the data dispersion,
the number of samples that were well predicted can be easily understood.

4.1. SO2 Flow Rate to the Claus Unit

The first analyzed target was the flow rate of SO2 leaving the regenerator column and
going to the Claus unit.

For this target, the effect of varying the activation function in the hidden layers and the
optimization algorithm were studied. Table 2 shows a comparison of the results achieved
on the testing data with three different activation functions, namely the sigmoid, hyperbolic
tangent, and ReLU transfer functions.

Table 2. Hyperparameter tuning—comparison of the results for the prediction of the SO2 flow rate
with three different transfer functions: sigmoid, hyperbolic tangent, and ReLU.

Sigmoid Hyperbolic Tangent ReLU

RMSE 2.97 2.78 2.95
R2 0.808 0.824 0.797

Computational Time 39 min 15 s 37 min 50 s 27 min 51 s

What emerged from the simulations was that there was no significant difference
in the computational time when the activation function in the hidden layers changed.
However, it was easily noticeable that the hyperbolic transfer function ensured the best
results both in terms of the RMSE and the R2. Therefore, for the other targets, in all the
ANNs implemented, the activation function employed in the hidden layers was chosen to
be the hyperbolic tangent.

The results obtained by varying the optimization algorithm are reported in Table 3.
Here, the performance achieved on the testing data is shown with regard to the LM,
BFGS, and Adam optimization algorithms. The latter, however, required the tuning of
the initial learning rate, whose optimal value was found to be equal to 0.0001 using a
sensitivity analysis.
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Table 3. Hyperparameter tuning—comparison of the results for the prediction of the SO2 flow rate
with three different optimization algorithms: Levenberg–Marquardt, BFGS quasi-Newton, and Adam.

LM BFGS Adam

RMSE 2.78 3.37 2.96
R2 0.824 0.680 0.741

Computational Time 37 min 50 s 1 h 48 min 4 h 19 min

The BFGS quasi-Newton method produced the worst results, whereas the LM al-
gorithm proved to be the one that ensured the best performance of the model. Indeed,
it showed the lowest value in terms of the RMSE and the highest value in terms of the
coefficient of determination. In addition, it reached convergence faster than the other
algorithms. These results are in accordance with the studies conducted by Hagan et al. and
by Yu, which state that this algorithm ensures the fastest convergence when a regression
problem is faced with neural networks that contain up to a few hundred weights [24,26].
Therefore, given both the advantages in terms of performance and computational time,
the LM algorithm was used to train all the ANNs implemented in this study.

Finally, the topology of the ANN was optimized for each target. For an accurate
prediction of the flow rate of SO2, it was necessary to adopt a two-hidden-layer neural
network and the best results were achieved with 45 neurons per layer. Figure 3 shows the
sensitivity analysis that was carried out for this target in order to determine the optimal
number of neurons. This was changed starting from 20 neurons per hidden layer up to 55
and the evolution of the EMAE was reported both on the training and testing data.

20 25 30 35 40 45 50 55

Number of Neurons per layer

6

6.25

6.5

6.75

7

7.25

7.5

7.75

8

E
M

A
E

Best Testing EMAE

Best Training EMAE

Figure 3. Evolution of the EMAE on the training (red line) and testing (blue line) datasets as the
number of neurons in each hidden layer increased. Two identical layers were considered and the
number of neurons ranged from 20 to 55 per layer.

What emerged from the analysis was that the error reduced up to 45 neurons in each
layer. If the network complexity was increased further, the error did not decrease further
but oscillated around a constant value both on the training and testing data. Therefore,
for the target in question, a two-hidden layer ANN with 45 neurons per layer was selected.

The performance of the ML model for the prediction of the SO2 flow rate is reported in
Table 4 and Figure 4. The table shows the values of the errors evaluated on the training and
testing data and the computational time required to complete one simulation. For all the
models developed, and hence for all the targets analyzed, the same computational resources
were employed, namely a computer with a processor with the following characteristics:
Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz 3.60 GHz. Figure 4 displays the regression plot
of the output vs. target for the prediction, highlighting the data dispersion.
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Table 4. Model performance for prediction of the SO2 flow rate: values of the errors evaluated on the
training and testing data and related computational time required.

Test Performance Train Performance

EMAE 6.79% 6.44%
RMSE 2.78 2.54

nRMSE 0.031 0.029
R2 0.824 0.855

Computational Time 37 min 50 s

Figure 4. Regression plot of the output vs. the target for the prediction of the SO2 flow rate that goes
to the Claus unit, with the data dispersion highlighted.

Since the delta between the training and testing performance was not significant,
as shown in Table 4, it can be concluded that there was no overfitting of the data and that
the model had a good generalization capacity. In addition, the target was predicted with
good accuracy. Indeed, the value of the coefficient of determination was greater than 0.8.
The relative error was equal to 6.8% and the absolute error was around 2.5. This is a small
value given that, as Figure 4 displays, the majority of the samples ranged between 30 and
40 kg/h.

The values reported in Table 4 are an indication of the overall performance of the
model. In order to understand whether the prediction accuracy was good for the whole
period considered and not just for some periods, the RMSE was evaluated every 20 days
with a moving window. Its evolution is depicted in Figure 5.

Figure 5. RMSE evolution calculated with a moving window over 20 days referring to the model’s
prediction of the SO2 flow rate that goes to the Claus unit.
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The RMSE mostly ranged between 2 and 3 and only during two limited time periods,
namely June 2019 and March 2021, did it become higher than 4. During these months,
the flow rate of SO2 showed very nervous behaviour that the model developed could only
predict with lower accuracy. However, even if there was a worsening of the performance
for two months, the target mostly oscillated between 20 and 40 kg/h, which was a high
value compared to the maximum value of the RMSE. Therefore, it can be concluded that
the SO2 flow rate was well predicted for the whole period considered.

4.2. Steam Flow Rate to the Regenerator

The second analyzed target was the flow rate of steam sent to the reboiler. To predict
this target, a single-hidden-layer neural network was employed with 60 neurons in the
hidden layer. In addition, given that the target was highly linearly correlated with various
inputs, only the variables that had a correlation greater than 0.1 were included in the model.
In this way, it was possible to disregard the less important features and include only 26 out
of 35 input variables in the analysis.

The results obtained with the ANN model are reported in Table 5 and Figure 6.

Table 5. Model performance for prediction of the steam flow rate: values of the errors evaluated on
the training and testing data and related computational time required.

Test Performance Train Performance

EMAE 0.663% 0.651%
RMSE 34.9 34.3

nRMSE 0.0084 0.0085
R2 0.981 0.981

Computational Time 5 min 13 s

Figure 6. Regression plot of the output vs. the target for the prediction of the steam flow rate that
goes to the regenerator, with the data dispersion highlighted.

The accuracy of the prediction was very high. Indeed, the value of the R2 was higher
than 0.95 and the nRMSE was four times lower than the previously analyzed target. More-
over, as shown in Figure 6, the great majority of the data fell on the diagonal. When
analyzing the RMSE values, however, the scale of the target must be taken into consid-
eration. Figure 6 shows that the target mostly oscillated between 3500 and 4000 kg/h.
Therefore, even if in absolute terms, the value of 35 for the RMSE was high, in relative
terms, it was not. Indeed, the EMAE, which is a measure of the relative error, was very low
and close to 1%.
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Moreover, the computational time was strongly reduced compared to the previously
analyzed target. This was caused by both the adoption of a simpler ANN with only one
hidden layer and the reduction of the input variables.

In addition, in this case, the RMSE value was evaluated with a moving window
every 20 days in order to assess the model performance over the whole period analyzed.
The RMSE evolution is reported in Figure 7.

Figure 7. RMSE evolution calculated with a moving window over 20 days in terms of the model’s
prediction of the steam flow rate going to the regenerator.

The prediction was accurate for the whole time span considered. The RMSE was
mostly lower than 40, except for February 2021, where it had a peak equal to 80. During this
period, the target indeed had very high oscillations between 2000 and 4000 kg/h, which
were more difficult to be reproduced by the model. However, even in this case given the
scale of thousands of the target, this value indicated a relative error of about 1%, which
was not a sign of the bad performance of the model.

4.3. SO2 Concentration at the Absorber Outlet

The last target analyzed was the concentration of SO2 in the fumes exiting from the top
of the absorber and vented to the chimney. In this case, the best results were obtained with
a 60-neuron single-hidden-layer ANN. The performance achieved is reported in Table 6
and Figure 8.

Table 6. Model performance for prediction of the SO2 emissions: values of the errors evaluated on
the training and testing data and related computational time required.

Test Performance Train Performance

EMAE 8.62% 8.03%
RMSE 2.06 1.69
RMSE 0.031 0.026

R2 0.981 0.988

Computational Time 38 min 3 s

The prediction accuracy was very high. Indeed, the value of the coefficient of determi-
nation was greater than 0.98 both on the training and testing data. In addition, the values
of the errors, as reported in Table 6, were very close to the ones depicted in Table 4 in
terms of the SO2 flow rate. These targets had very similar scales, as seen in Figure 8, which
shows that the majority of the samples of the SO2 concentrations ranged between 0 and 40.
Moreover, Figure 8 shows that there was no strong under- or overestimation of the data
and that for almost all the samples, the actual value of the target and the value predicted
by the ANN model coincided.

By looking at the R2 values of the nRMSE and the EMAE, it is possible to conclude
that the flow rate of steam was the target best described by the model. On the other hand,
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the SO2 flow rate that goes to the Claus unit was the target that the model predicted
the worst. Even if the scale and the error values were very similar to those of the SO2
concentration in the fumes, the R2 value was significantly lower and there was a stronger
over/underestimation of the data.

Figure 8. Regression plot of the output vs. the target for the prediction of the SO2 concentration at
the absorber outlet, with the data dispersion highlighted.

With regard to the computational time, in this case, more than 30 min was needed
to train and test one ANN. This was very close to the time required for the first target
analyzed. Therefore, the model built for the flow rate of steam for which about 5 min was
necessary, was both the fastest to be trained and the one that produced the best results.
This is because, as explained in Section 3, this target had a strong linear correlation with
more than one variable.

Finally, for the concentration of SO2 at the absorber outlet, the RMSE was analyzed
for the whole period with a moving window over 20 days. As displayed in Figure 9, its
magnitude was always below 2, except for May and July 2020, where two peaks with
values higher than 3 were observed. During these two months, the target showed very
stable behaviour and its value remained frozen, even for several days in a row. This
evolution caused a worsening of the performance since the model developed was not able
to accurately describe a very constant variable. However, even though during May and
July 2020 the RMSE value increased, its magnitude was still low considering that the target
during these months mostly oscillated between 15 and 40 mg/Nm3. Therefore, it is possible
to conclude that the target could be accurately described for the whole period analyzed.

Figure 9. RMSE evolution calculated with a moving window over 20 days in terms of the model’s
prediction of the SO2 emissions at the absorber outlet (concentration).
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5. Conclusions

Given the results achieved and analyzed, it is possible to state that a model for the
SO2 removal system can be developed using purely data-driven techniques.

Three different models were implemented, one for each target, and all showed high
accuracy in the results obtained. Particularly, for the second target analyzed, namely
the flow rate of steam to the reboiler, excellent prediction accuracy was reached. Indeed,
the value of the R2 was always greater than 0.98 and the relative error was very low.
The same conclusion can be drawn for the prediction of the SO2 emissions for which a
value of the R2 parameter higher than 0.98 was achieved. In addition, the absolute error had
very low values both on the training and testing datasets. These facts can also be observed
in Figures 6 and 8, which show that nearly all the data were located on the diagonal. On the
other hand, a slight under- and overestimation of the data occurred in the prediction of the
SO2 flow rate going to the Claus unit, as shown in Figure 4. However, even in this case,
the R2 was higher than 0.8 and the EMAE was about 6%, which are indications of good
performance. Moreover, in all cases, there was no strong overfitting of the data and it can
be said that the generalization capacity of the models built was excellent.

It can be concluded that ANNs are able to capture and describe the highly nonlinear
relationships that occur between the variables of a chemical unit. In addition, the behaviour
of a licensed process unit can be described properly using ML techniques and its outputs
can be predicted with high accuracy. Therefore, with such a model, an optimal operating
strategy for this unit can be defined. Moreover, this model completed the already existing
physical simulation of the whole Eni plant. In this way, not only can the system be optimized
but also the units placed upstream and downstream. This would result in an optimization
of the entire plant, leading to an increase in its overall productivity by keeping the crucial
parameters of the SO2 removal technology under control and within the process limits.

A further development that would certainly complete this study would be to verify
the models developed and the results obtained with the Eni system. In addition, it would
be interesting to employ a dimensionality reduction technique such as principal component
analysis (PCA). This would lead to a decrease in the computational time required to train
one ANN since the number of input variables is shrunk. This has already been observed for
the second target analyzed when the number of inputs was reduced from 35 to 26. Moreover,
given the large number of variables of which the dataset is composed, a dimensionality
reduction will also lead to the development of a more interpretable model [16].
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Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
ANN artificial neural network
APU amine purification unit
BFGS Broyden–Fletcher–Goldfarb–Shanno
EMAE envelope-weighted mean absolute error
EOR enhanced oil recovery
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GPR Gaussian process regression
LM Levenberg–Marquardt
LSTM long short-term memory
ML machine learning
MSE mean squared error
PCA principal component analysis
nRMSE normalized root mean square error
ReLU rectified linear unit
RMSE root mean square error
SVM support vector machine
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