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Abstract

Prediction of waste production is an essential part of the design and planning

of waste management systems. The quality and applicability of such predictions

depend heavily on model assumptions and the structure of the collected data. Or-

dinarily, municipal waste generation data are organized in hierarchical structures

with municipal or county levels, and multilevel models can be used to generalize

linear regression by directly incorporating the structure into the model. However,

small amounts of data can limit the applicability of multilevel models and pro-

vide biased estimates. To cope with this problem, Bayesian estimation is often

recommended as an alternative to frequentist estimation, such as least squares or

maximum likelihood estimation. This paper proposes a multilevel framework un-

der a Bayesian approach to model municipal waste generation with hierarchical

data structures. Using a real-world dataset of municipal waste generation in Den-

mark, the predictive accuracy of multilevel models is compared to aggregated and

disaggregated Bayesian models using socio-economic external variables. Results

show that Bayesian multilevel models outperform the other models in prediction

accuracy, based on the leave-one-out information criterion. A comparison of the

Bayesian approach with its frequentist alternative shows that the Bayesian model

is more conservative in coefficient estimation, with estimates shrinking to the grand

mean and broader credible intervals, in contrast with narrower confidence intervals

produced by the frequentist models.

Keywords: Municipal waste generation; multilevel models; Bayesian data analysis;

prediction

3.1 Introduction

Effective prediction of waste generation rates is an essential part of the design, implemen-

tation, and improvement of waste management operations (Ramos et al., 2018). From
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a practical point of view, inaccurate predictions of the amount of generated waste can

result in inefficient decisions regarding infrastructure, equipment capacity, or collection

schemes. These decisions have a direct impact on the quality of service and the operating

costs of a waste management system (Zbib and Wøhlk, 2019). The accuracy and relevance

of predictions rely especially on the quality and structure of the underlying data used.

In the context of municipal waste, data usually present structures comprising repeated

observations over time from different municipalities or districts. Such data structures are

usually referred as hierarchical or multilevel structures (Heck and Thomas, 2020).

A large variety of studies apply various methods to predict waste generation rates,

and they differ in both methodology and sources of data. The methods used include

descriptive statistics, regression analysis, material flow models, time series analysis, and

artificial intelligence (Abbasi and El Hanandeh, 2016). These methods typically use

either aggregated data from municipal or state entities or self-reported data collected by

questionnaire (Hannan et al., 2015).

The majority of existing studies use regression analysis and model waste generation

rates at the municipal or county level, using socio-economic and other external variables

as predictors of future behavior (Abdoli et al., 2011). The main reasons this approach

is widely used are because of the availability of data and the simplicity of this type of

model. Usually, the data obtained from each municipality are analyzed by either pooling

all municipalities into a single model or analyzing them separately. The main limitations

of such approaches are their underlying assumptions. Including all municipalities in a

single model assumes that all have similar behavior, with the risk of underfitting the data,

whereas using individual models assumes that municipalities have nothing in common,

with the risk of overfitting the data. In other fields, this problem is increasingly being

dealt with by using multilevel models (Heck and Thomas, 2020). However, to the best

of our knowledge, no previous study has applied a multilevel approach in the context of

municipal waste generation.

Multilevel modeling is an extension of regression models and makes it possible to

model data that have clustered or hierarchical structures. The main advantage of using a

multilevel model is that it allows information to be pooled across clusters—municipalities

in the present case—to improve the estimates of the parameters of the model (McElreath,

2020). This pooling means that each municipality helps to improve the estimates of

the other municipalities and of the overall population. In general, traditional models

can have one of two pooling structures: aggregated pooling or disaggregated pooling.

An aggregated, or complete, pooling model assumes that there is no variability among

municipalities and therefore it fits a single model shared by all municipalities (e.g., a

simple linear regression). In contrast, the disaggregated pooling approach assumes that
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municipalities do not share any relevant characteristics with each other, and therefore

fits each one as a separate model. The selection of a model approach depends, like most

decisions in data analysis, on the underfitting/overfitting trade-off (Gelman, 2006).

In contrast to the two traditional pooling approaches (aggregated and disaggregated

pooling), a multilevel model uses a partial pooling strategy, which captures the sys-

tematic differences between municipalities by partitioning the variance into the between-

municipality variance and the within-municipality variance. This allows each municipality

to have a different average outcome, but the overall population average is also estimated

by the model. This results in less underfitting than the complete pooling approach and

less overfitting than the no-pooling approach; therefore the model produces better esti-

mates (McElreath, 2020). However, increasing the complexity of the model can result in

inaccurate estimates, particularly in the case of small sample sizes for each municipality

(Gelman et al., 2013).

Bayesian data analysis has been increasingly used in a variety of fields in recent years,

and has been recommended in preference to the traditional frequentist approach, par-

ticularly in the context of small sample sizes (Smid et al., 2020). Unlike the frequentist

approach, Bayesian estimation is not based on the asymptotic behavior of the data, and

thus results can be interpreted and validated for any sample size (Kaplan, 2014). The

Bayesian approach has several advantages: First, it allows the integration of a priori

knowledge using prior distributions in the parameters of the model. These prior distribu-

tions are then conditioned on the data, which is especially useful when expert knowledge

is available. Second, the flexibility of a Bayesian model can be used to explicitly quantify

the modeling uncertainty of the outcome. This flexibility can account for reduced sample

sizes and can also include complex structures such as multilevel modeling (Miočević et al.,

2017).

In this paper, we propose a multilevel framework using a Bayesian approach to predict

municipal waste generation rates. We show that the proposed method has two main ad-

vantages over traditional modeling approaches. First, a multilevel framework allows us to

obtain better estimations by incorporating the hierarchical structure of the data into the

model. This is done by allowing correlation of observations in the same location over time,

partitioning the variation into between-municipalities and within-municipalities compo-

nents. Second, in a Bayesian approach, uncertainty can be modeled explicitly by the use

of prior distributions for the model estimates, which produces more intuitive results.

Our approach is illustrated using a real-world dataset of annual waste generation

rates from the 98 municipalities of Denmark for the period from 2010 to 2017. Several

explanatory variables are tested to explain the variation between and within municipali-

ties, including socio-economic and demographic variables. In addition, six waste types are
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considered as response variables: general waste, burnable waste, glass, metal, cardboard,

and plastic. General waste refers to mixed domestic waste collected from households. We

separately determine the explanatory variables that influence each waste type. Then, we

compare two multilevel models, varying intercept and varying slope, with the traditional

aggregated and disaggregated models.

The remainder of this paper is structured as follows. Section 3.2 reviews the related

literature. Section 3.3 presents the proposed methodology and provides details of each

of the stages of the study, including the proposed Bayesian model. In Section 3.4, the

results of our case study, using the proposed methodology, are shown. Finally, Section

3.5 concludes the paper.

3.2 Literature review

Municipal solid waste generation has been extensively studied in the literature, and a large

variety of methods have been applied depending on the scale (e.g., household, municipal,

state) and time period (short, medium, or long term) of the research. The most common

approach used in studies of waste generation at macro-levels, such as the municipality,

district, or country level, has been multiple regression analysis with utility maximization

models.

Johnstone and Labonne (2004) use a panel dataset to analyze the determinants of

solid waste generation using municipal solid waste, demographic, and economic data at

a country level for 30 OECD countries from 1980 to 2000. Similarly, Callan and Thomas

(2006) use a utility model to examine the demand for disposal and recycling services

based on data for 351 municipalities in Massachusetts. In a multiple regression analy-

sis framework, Hage et al. (2009) analyze the factors determining the generation rates of

household plastic packaging for 252 municipalities in Sweden, focusing mainly on garbage

pricing, socio-economic and demographic factors, and environmental preferences. Sidique

et al. (2010) analyze the effects of various recycling and waste management policy vari-

ables on the recycling rate by utilizing municipality-level data from 86 municipalities in

Minnesota from 1996 to 2004. The study uses a utility maximization model and accounts

for the cumulative effect of the expenditure variable on the recycling rate. Lebersorger

and Beigl (2011) use a multiple regression model to study waste generation rates based on

socio-economic factors, including municipal tax revenue per capita, household size, and

the percentage of buildings with solid fuel heating systems, from 542 municipalities in

the Province of Styria, Austria. In the same fashion, Wei et al. (2013) use multiple linear

regression to analyze waste generation at the national level in China. Oribe-Garcia et al.

(2015) study socio-economic features relevant to waste generation for 112 municipalities
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in Biscay, Spain, using a range of factor models. In that study, the authors account for

differences in municipalities’ waste generation by proposing two separate models, one for

the overall region and a second with clustering of municipalities.

More recent studies have focused on the advantages of using artificial intelligence

instead of traditional regression approaches to estimate waste generation rates. Azadi

and Karimi-Jashni (2016) compare the performance of artificial neural networks (ANNs)

and multiple linear regression to predict seasonal municipal waste generation rates. The

accuracy of the two methods is compared based on a case study of 20 cities in the

province of Fars, Iran. Similarly, Perera and Fernando (2020) compare the performance

of ANNs and regression analysis using data from 15 local authorities from the districts of

Colombo and Gampaha in Sri Lanka. Finally, Araiza-Aguilar et al. (2020) use multiple

linear regression to study the effects of different social and demographic variables in 124

municipalities in Chiapas, Mexico. None of the above studies have explicitly considered

the interactions between municipalities using a multilevel approach.

Bayesian data analysis has been successfully applied in a diverse range of fields, includ-

ing behavioral sciences such as education, physiology, economics, and medicine (Kruschke

and Liddell, 2018). However, in the area of waste management, only a few studies have

considered the Bayesian approach; its application has been limited to survey data and

it has not been applied in the context of macro-level analysis. Chu et al. (2016) use a

Bayesian belief network model to determine the factors that affect the separation of waste

for collection in China, including political, economic, social, cultural, and technological

factors. Hoang et al. (2017) apply a Bayesian model average method combined with a

multivariate linear regression to identify factors influencing household waste generation in

Vietnam. Finally, Ceylan (2020) proposes a Bayesian Gaussian process regression model

tuned by Bayesian optimization to forecast municipal solid waste generation in Turkey.

3.3 Methodology

This section presents the methodology used to study waste generation rates. The method-

ology is divided into two parts. First, Section 3.3.1 introduces the concept of frequentist

data analysis. Second, Section 3.3.2 explains the basics of Bayesian data analysis, and the

main differences to the frequentist approach. Next, Section 3.3.3 explains variable selec-

tion under a Bayesian approach and Section 3.3.4 specifies the approach used to impute

missing values. Finally, Section 3.3.5 presents the metrics used to compare the prediction

accuracy of the different models and their differences to frequentist approaches. Figure

3.1 summarizes the methodology used in this paper, divided into two parts. The model

approach refers to the underlying approach, either frequentist or Bayesian. For each of
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Figure 3.1: The model selection can be divided into modeling approach (frequentist or
Bayesian) and model complexity (aggregated, disaggregated, or multilevel).

these, the model complexity corresponds to the assumptions used in the linear model:

aggregated, disaggregated, or multilevel.

3.3.1 Frequentist data analysis

Frequentist data analysis is based on frequentist inference, using the relative frequency

or proportion of events that occurs in a repeated experiment. This can be considered

the “classical” approach to data analysis, which uses hypothesis testing, significance tests

(p-values), and confidence intervals to perform statistical inference.

Frequentist linear models

The most commonly used method under the frequentist approach to predict waste gen-

eration rates using external variables is linear regression. Linear regression assumes that

the ith observation, i ∈ {1, ..., N}, of a dependent variable yi has a linear relationship

with an independent variable Xi:

yi = β0 + β1Xi + εi, (3.1)

where εi ∼ N (0, σ) is the residual error. The model parameters in this case are considered

point estimates (single, fixed values) and their estimation is performed by least squares

estimation. The extension to a multiple linear model, for example, including the effects of

age and immigration in the same model, is straightforward because it consists of including

an extra parameter with its corresponding prior distribution for each external variable.

When the data are structured hierarchically, as in the case of municipal waste, one

of three assumptions can be made. First, an aggregated model assumes that there is
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no systematic difference between municipalities and, thus, includes all observations in

a single linear model. Second, a disaggregated model assumes that municipalities do

not share relevant characteristics and specifies a separate model for each municipality.

Finally, a multilevel model explicitly incorporates the hierarchical structure of the data

into the model.

Frequentist multilevel model

The multilevel model extends the aggregated and disaggregated models by allowing the

parameters of the model to vary depending on the municipality the observation comes

from. Part of the multilevel modeling process is to decide which parameters are considered

to vary among municipalities and which are considered to be constant. In a linear model,

the intercept and the slope are the parameters to be estimated for each independent

variable, and these define the two variations of the multilevel model: the varying intercept

and the varying slope models. Assuming there are M municipalities, the varying intercept

model can be described as:

yij = β0j + β1Xij + εij (3.2)

β0j = µ0 + u0j (3.3)

β1 = µ1 (3.4)

where j is the jth municipality, j ∈ {1, ...,M}. εij ∼ N (0, σ) and u0j ∼ N (0, σ0), usually

referred to as random effects, are the residual errors. The multilevel model separates the

between-municipalities variability (σ) and the within-municipalities variability (σ0). In

the varying slope model, the term β1 in Eqs. (3.2) and (3.4) is replaced by:

β1j = µ1 + u1j (3.5)

where u1j ∼ N (0, σ1).

3.3.2 Bayesian data analysis

The Bayesian approach to data modeling is based on Bayesian inference, where the main

characteristic is that each parameter of a model is a random variable (Gelman et al., 2013).

This feature allows Bayesian models to explicitly model the underlying uncertainty of the

estimation of a given parameter. Under this framework, the Bayes’ theorem is used to
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model the probability of a parameter θ given a data set y as

p(θ | y) =
p(y | θ)p(θ)

p(y)
. (3.6)

Using this approach, we can estimate the probability distribution of a parameter,

p(θ | y), which represents the relative plausibility of different values of the parameter,

conditional on the data and the model (McElreath, 2020). The main result of the Bayesian

analysis is that the probability distribution of a parameter, p(θ | y), referred to as the

posterior distribution, is proportional to the product of the information contained in

the data (likelihood), p(y | θ), and the information available before observing the data

(prior), p(θ). The posterior distribution contains all the information needed to perform

the Bayesian inference. Using this approach, Bayesian modeling requires the specification

of a likelihood function for the data (e.g., yi ∼ N (µ, σ)) and a prior distribution for the

parameters in the model (e.g., µ ∼ N (0, 1)), followed by an estimation of the posterior

distribution, usually using numerical techniques (Nalborczyk et al., 2019). The numerical

techniques to fit the models are usually based on Markov Chain Monte Carlo (MCMC)

simulations, for which many methods use a Gibbs sampler approach or a Hamiltonian

sampler (Scott and Berger, 2010). For high-dimensional models such as multilevel models,

Hamiltonian Monte Carlo is usually superior, and this is the sample technique used in

this study.

Bayesian linear models

In the context of municipal waste management, we are interested in modeling waste

generation rates, which are usually measured in kilograms per person per unit of time.

Thus, the target variable y is a continuous variable with non-negative values, measuring

the amount of waste. An exponential distribution is a proper selection for the likelihood

distribution in this scenario, and this also simplifies the analysis by using a single param-

eter for the estimation. In the following models, the likelihood distribution for the waste

variable y is:

yi ∼ Exponential(λ), (3.7)

where λ is the parameter to be estimated using a link function to the external variables

available in the dataset (socio-economic, demographic, or others). In the aggregated linear

model, we obtain a single intercept and single slope for all municipalities, and the model

can be formulated as follows:

yi ∼ Exponential(λi) (3.8)
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log(λi) = β0 + β1Xi (3.9)

β0 ∼ N (µ0, σ0) (3.10)

β1 ∼ N (µ1, σ1) (3.11)

where λ is modeled as a linear function of a continuous variable X, and the intercept

β0 and slope β1 follow a—prior—normal distribution with the parameters {µ0, σ0} and

{µ1, σ1}, respectively. In general, to define a proper prior distribution of the parameters

of the model (β0 and β1), we can include a priori information about the process (expert

knowledge, for example), specify a weakly informative prior with a rather large variance,

or use prior predictive simulations to make sure that the model predictions prior to seeing

the data lie within the plausible outcome space (Stegmueller, 2013). In this study, we

tune our priors using prior predictive simulations before updating the parameters using

the data. Setting the prior of β0 to N (3, 0.5) and β1 to N (0, 0.3) makes the models treat

extreme values with skepticism in the presence of scarce data.

In a disaggregated linear model, there is no pooling of information between munici-

palities, and it is assumed that each municipality can be modeled independently. In this

approach, an individual model is fitted using Eqs. (3.8)–(3.11) for each municipality.

Bayesian multilevel modeling

The most straightforward Bayesian multilevel model is the varying intercept model, in

which we allow the intercept for each municipality, j = 1...N , to be different (β0j), but

preserve the same slope (β1). The model can be defined as follows:

yij ∼ Exponential(λij) (3.12)

log(λij) = β0j + β1Xij (3.13)

β0j ∼ N (µ0, σ0) (3.14)

β1 ∼ N (µ1, σ1) (3.15)

µ0 ∼ N (3, 0.5) (3.16)
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σ0 ∼ Exponential(3) (3.17)

where β0j follows a normal distribution with parameters µ0 and σ0. The hyperparameter

µ0 represents the average intercept among municipalities, σ0 is the variability of the

intercepts, and both hyperparameters are assigned their own distributions. We assign a

N (3, 0.5) to µ0 and an Exponential(3) to σ0. Finally, Eq. (3.12) defines the likelihood

of the data, and Eq. (3.14) is the prior distribution of the parameter that describes

the population intercepts. This varying intercept model is relevant when municipalities

present a similar effect of a variable on the amount of waste, but they differ in the average

impact.

We can extend the varying intercept model to a varying slope model by allowing the

slope β1 to be different for each municipality j. This is achieved by replacing Eq. (3.15)

by:

β1j ∼ N (µ1, σ1) (3.18)

and adding the hyperparameter distributions to the model:

µ1 ∼ N (3, 0.5) (3.19)

σ1 ∼ Exponential(3) (3.20)

A varying slope model can be useful in cases where, for example, some municipalities

show an increase in waste generation with age, and some show a decrease. More general-

ized models include specification of correlation matrices’ priors or include more than one

level of hierarchy.

The selection of the adequate model complexity level depends on the amount and type

of data, the overfit/underfit trade-off, and the objective of the study. An initial assessment

to choose between a complete pooling, no pooling, or multilevel approach, can be based

on the intraclass correlation coefficient (ICC). The ICC computes the proportion of the

response variable’s variance that is due to between-level differences (Mulder and Fox,

2019). In our case, the ICC represents the amount of variance from the waste type that

is caused by differences between municipalities. Another index is the design effect index

(Deff), which measures the inflation in variability of the estimates due to clustering, and

it is often used as a rule of thumb to indicate whether multilevel structures should be

used (Lai and Kwok, 2015). It is defined as Deff = 1 + (n− 1)ICC where n is the average

number of observations per cluster. Values of this index above 2 are usually considered
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to be appropriate to model as multilevel.

3.3.3 Bayesian variable selection

Several variables have been used to explain variations in municipal solid waste. They

mainly include demographic, weather, and socio-economic variables such as income, ed-

ucation, or gender (Abbasi and El Hanandeh, 2016). In a traditional approach, variable

selection is a search problem in which the objective is to find a single optimal model from

all the possible combinations of original variables by minimizing or maximizing a certain

criterion. In contrast, the Bayesian approach is probabilistic, based on determining the

probability that a variable should or should not be included in the model. This proba-

bility, is referred to as the posterior inclusion probability (George and McCulloch, 1997)

and can be estimated as follows.

Given a response variable yi, and p explanatory variables with values xi,j, j = 1, ..., p,

the response variable can be modeled as the linear combination of p variables with pa-

rameters θj for each variable:

yi = β0 +

p∑
j=1

θjxi,j + εi, (3.21)

where β0 is the intercept, and εi ∼ N (0, σ2) is the error term. The variable selection

problem is to determine which regression parameters θj should be set to zero. To do this,

an auxiliary indicator variable Ij can be defined, with Ij = 1 if the explanatory variable

j is present in the model, and Ij = 0 if it is not. A second auxiliary variable is used to

represent the effect size of the explanatory variable when Ij = 1, which is denoted by

βj, and therefore θj = Ijβj. The variable selection part of the model estimates Ij and

θj. The variable βj can be defined in several ways, all of which result in different fitting

methods (O’Hara and Sillanpää, 2009). After the model has been defined, the posterior

inclusion probability for the variable j can be computed as the average value of Ij, and

it is usually fitted using a MCMC approach.

3.3.4 Imputation of missing data

Incomplete data is a common problem in most applications, and can limit the implemen-

tation and analysis of statistical and machine learning models (Lin and Tsai, 2020). The

problem of missing data is especially relevant in the context of waste management, in

which the lack of data can be due to several practical issues, such as errors in the mea-

surements, system failures, or lack of reporting. There are two main approaches to deal

with missing values, namely deletion and imputation (Garciarena and Santana, 2017).
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Deletion methods ignore cases or variables in which there are missing values, and due

to their simplicity these methods can be useful in cases with low rates of missing values

(Lan et al., 2020). However, when the rate of missing values is high, deletion can cause

a major loss of information and may cause bias and overfitting in the resulting models

(Purwar and Singh, 2015).

Imputation for missing data with multilevel structures is usually performed before

the modeling stage, using either a joint modeling approach or a fully conditional spec-

ification model (Grund et al., 2018). In the joint modeling approach, a single model is

specified for all variables with missing data, whereas in the fully conditional specifica-

tion model, the missing data are imputed separately for each variable (Carpenter and

Kenward, 2012). In our application, because the explanatory variables are complete, we

use a fully conditional specification model, which basically iterates univariate multilevel

imputation of the variables. Specifications of the model and its implementation in the R

software environment can be found in van Buuren and Groothuis-Oudshoorn (2010).

3.3.5 Model evaluation

After the Bayesian model has been fitted, its predictive accuracy is usually measured using

cross-validation and information criteria approaches. The evaluation metrics can be used

to select a single—best—model for the given data or to improve estimations by averaging

different models, assigning weights to their posterior probabilities (Congdon, 2007). The

most common methods for model comparison are the Bayesian information criterion

(BIC), the deviance information criterion (DIC), the Akaike information criterion (AIC),

and the leave-one-out information criterion (LOOIC) (Vehtari et al., 2017). In this study,

we focus on the prediction accuracy of the fitted models, thus using on the LOOIC

method. LOOIC estimates pointwise out-of-sample prediction accuracy using the log-

likelihood evaluated at the posterior simulations of the parameter values. The Bayesian

LOOIC predictive fit estimate is:

LOOIC =
n∑
i=1

p(yi | y−i), (3.22)

where p(yi | y−i) is the leave-one-out predictive density obtained by fitting the data

without the ith data point. Lower LOOIC values denote better out of sample predictive

accuracy performance.
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3.4 Case study

In this section, the proposed methodology is applied to a real-world dataset from Den-

mark. Section 3.4.1 describes the data set and summarizes its main statistics and the

structure of its missing values. Section 3.4.2 presents the results of the model selection

process, measuring predictive accuracy in terms of the LOOIC of the multilevel, aggre-

gated, and disaggregated Bayesian models. Finally, Section 3.4.3 presents a comparison

of the coefficient estimation of the multilevel Bayesian model with the alternative fre-

quentist approach. The analysis was conducted using R 3.6.3 software and run on a 3

GHz Intel X5450 processor with 24 GB RAM. The multilevel frequentist models were run

using the lme4 R package (Bates et al., 2012) and the Bayesian analysis was conducted

using the brms R package (Bürkner, 2017).

3.4.1 Data description

The dataset consists of yearly observations of municipal waste generation from all of the

98 municipalities in Denmark between 2010 and 2017. We use six waste types, which

are: general waste, burnable waste, glass, metal, cardboard, and plastic. The data are

reported by each municipality, and were provided for this study by the Ministry of the

Environment and Food of Denmark. The dataset was combined with socio-economic

variables obtained from Statistics Denmark (Statistics Denmark, 2019). The external

variables include average taxable income, average age, gender (% of men), marital status

(% of divorced individuals), immigration (% of immigrants), and educational attainment

(% of individuals that graduated from a bachelors program). The last three variables were

reported as the percentage of the total population of the municipality in the observation

year. The selection of the external variables is based on both data availability and the

previous studies that have found socio-economic variables to be relevant in the prediction

of waste generation (Vu et al., 2019b; Kannangara et al., 2018; Kumar and Samadder,

2017). Other variables were also tested, including the number of farmhouses and number

of households, but were not found to have a statistically significant correlation with waste

generation. For details on the socio-economic variables used in this study see .

Municipalities in Denmark have high variability in the reported values of variables

such as population, area, density, type of households, and waste generation. The average

annual waste generation, as the total of the six waste types, was 331 kg per person,

and most of this weight is general waste and burnable waste. Figure 3.2 shows the

average waste generation by type for each of the 98 municipalities. As can be seen,

there is large variation in the total waste amount. The proportion represented by each
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Figure 3.2: Average waste generation (kgs.) per person from 2010 to 2017 by municipality
and by waste fraction.

waste type also varies among municipalities. Most notably, the proportions of general

waste and burnable waste show much higher variation than the other waste types. For

example, whereas general waste is the largest waste type in most municipalities, in some

municipalities (such as Nyborg or Hedensted) burnable waste accounts for more than half

of the average waste generation.

The minimum and maximum waste generation rates also differ immensely, from 113

kg per person to 1,054 kg per person. This difference may be due to the influence of small

municipalities that are mainly used for summer residences, compared to municipalities

that primarily comprise permanent residences, among which variation was lower. In

terms of the correlation between the weights of each waste type, we generally found little

correlation, with an average correlation coefficient of 0.2.

Whereas the dataset of socio-economic variables was complete for the period studied,

some waste variables had high amounts of missing data; 30.14% of a total of 784 obser-

vations featured missing values. These missing values exhibit a rather random behavior,

concentrated on neither any specific municipality nor any particular year. Figure 3.3

illustrates the pattern of missing values in the original dataset for two waste fractions:

general waste, which has only 5% missing data, and glass, which has over 50% missing

data. Each row represents a year, the columns represent the 98 municipalities, the gray

boxes represent observed values, and white boxes represent missing values. In order to

perform the multilevel modeling, the imputation method described in Section 3.3.4 was

used.
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Figure 3.3: Patterns of missing values for general waste and glass, from the original
dataset. Gray and white represent observed and missing values, respectively.

Waste fraction ICC Deff Estimate SE

General waste 0.51 4.60 224.84 8.04
Burnable 0.44 4.05 77.13 5.79
Metal 0.29 3.03 15.28 1.35
Plastic 0.29 3.02 3.66 0.33
Glass 0.23 2.60 15.96 0.68
Cardboard 0.23 2.60 6.91 0.38

Table 3.1: All variables present a design effect index (Deff) above 2. General waste and
burnable show high intraclass correlations.

3.4.2 Model selection

Three different model types were compared for each waste type: aggregated, disaggre-

gated, and multilevel modeling. In addition, two types of multilevel approach were tested:

the varying intercept and varying slope models. These approaches were tested using dif-

ferent combinations of external variables, based on their inclusion probabilities. Before

defining the appropriate models for each waste type, we tested the ICC and Deff to evalu-

ate the differences in responses from each municipality. In Table 3.1, we show the results

for each waste type, including the estimated mean response and standard error (SE).

Our results show that all variables have high variability between municipalities (Deff

value above 2), indicating that a multilevel approach is a suitable choice for all variables,

and especially so for the variables for general waste and burnable waste.
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Waste type Explanatory variables Best model

General waste Age ML Varying slope
Burnable Age ML Varying slope
Metal Immigration ML Varying slope
Plastic Age, gender, education ML Varying intercept
Glass Age, immigration ML Varying intercept
Cardboard Gender, marital status, education, immigration ML Varying intercept

Table 3.2: Best model for each waste type, including explanatory variables and type of
model. ML: Multilevel.

Six external variables were considered as candidates for model selection: age, immi-

gration, gender, education, marital status, and income. For each of the waste types,

different combinations of external variables were tested, considering the inclusion prob-

abilities obtained as described in Section 3.3.3. For each combination of variables, the

aggregated, disaggregated, varying slope, and varying intercept models were tested using

both the frequentist and Bayesian approaches.

Table 3.2 summarizes the results of the model selection phase. For each waste type,

the selected explanatory variables and the best model are reported. For all waste types,

the multilevel approach was the best-performing in terms of LOOIC. For general waste,

burnable, and metal, the varying slope model is the best model, which shows that the

effect of the selected variable can be considered to vary between the different municipal-

ities. For plastic, glass, and cardboard, the varying intercept model is best. In terms of

the explanatory variables, age is relevant to most waste types (general waste, burnable,

plastic, and glass) and immigration is relevant to three (metal, glass, and cardboard).

Gender and education are only relevant to plastic and cardboard, and marital status is

only relevant to cardboard. Taxable income was not found to be an explanatory variable

for any of the waste types. In terms of variable transformations, we standardize the

variable age by using its logarithm. provides details on the model selection process for

general waste.

A comparison of the prediction accuracy between the best multilevel model (varying

intercept or varying slope) and the aggregated and disaggregated Bayesian models is

presented in Table 3.3. For each waste type, Table 3.3 shows the LOOIC estimate, the

standard error (SE) of the estimate and the standard error of the difference to the best

model (SEd). For all waste types, the best multilevel model is the model with the lowest

LOOIC value. However, it is worth noting that for some waste types the accuracy of the

three models are similar, as can be seen from the SE and the SEd values. This is the

case for general waste, in which the SEs of the two models are SE = 26 and SE = 25,
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Waste type Best multilevel SE Aggregated SE SEd Disaggregated SE SEd

General waste 10,037 26 10,053 25 36 10,850 27 37
Burnable 8,190 53 8,348 48 72 9,585 137 147
Metal 5,373 86 5,837 74 113 7,185 111 140
Plastic 3,438 69 3,484 83 108 4,803 204 215
Glass 5,883 41 5,884 42 59 6,247 55 69
Cardboard 4,427 62 4,530 57 84 5,211 110 126

Table 3.3: LOOIC for the best model and the corresponding model using the aggregated
and disaggregated Bayesian models.

respectively, which are similar the standard error of the difference, SEd = 36.

In the Bayesian approach, a full posterior distribution is obtained for each of the

parameters of the model. In Table 3.4, the main statistics are shown for the posterior

distributions of the varying slope model when predicting general waste based on age.

Because the multilevel model allows each municipality to have different estimates of the

parameters, results can be divided into municipality-level and population-level effects. At

the municipality level, the standard deviations of the parameters represent the variance

of the estimates between municipalities, compared to the overall average response at

the population level. On average, the population-level effect of age on general waste is

positive, with a unit change in kgs per 1.05 units of age. However, the standard deviation

of the effect of age between municipalities is quite large (1.19), showing that the effect

of age can be very different depending on the municipality. This result is obtained with

high uncertainty in the standard deviation estimate, represented by an SE of 1.07, which

can be explained by the small sample size of eight observations per municipality in this

case study. presents a histogram of the posterior samples of the intercept and the slope

of the model.

3.4.3 Comparison of frequentist and Bayesian approaches

A major difference between frequentist and Bayesian approaches is the estimation of con-

fidence intervals for the parameters of the model. In the frequentist approach, estimates

are obtained based on the least squares or maximum likelihood methods, and then a

confidence interval is constructed using the associated standard errors. In contrast, in

the Bayesian approach a full posterior distribution of the parameters is obtained, and the

confidence intervals—called credible intervals—are the quantiles of that distribution (usu-

ally 5% and 95% quantiles) (Stegmueller, 2013). Figure 3.4 compares the Bayesian and

frequentist multilevel models predicting general waste based on age. The points represent

the intercept for each municipality, surrounded by 95% credible/confidence intervals. The

figure shows that for predicting municipality-level general waste, model choice is clearly
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Municipality-level effects:
Estimate SE Lower-95% CI Upper-95% CI

sd(β0j) Intercept 1.06 1.04 1.00 1.17
sd(β1j) Age 1.19 1.07 1.03 1.36
corr(β0j, β1j) (Intercept, age) 0.27 0.56 -0.89 0.98

Population-level effects:
Estimate SE Lower-95% CI Upper-95% CI

β0j Intercept 214.86 1.04 198.34 230.44
β1j Age 1.05 1.05 0.95 1.15

Table 3.4: Estimates of the parameters of the varying slope model predicting general
waste based on age drawn from their posterior distributions. sd(): standard deviation,
corr(): correlation, CI: credible interval.

not trivial. From the bottom to the top of the plot, the frequentist model predictions

range from around 110 to 325 kg, whereas the Bayesian model estimates are rather more

consistent, at between 200 and 225 kg.

Compared to its frequentist equivalent, the conservatism of the Bayesian multilevel

model results in rather extreme differences in predictions for some municipalities. For

example, the frequentist maximum likelihood estimate for Nyborg is around 110 kg of

general waste, whereas the corresponding mean posterior estimate is around 205 kg,

almost twice as large. For the municipality Varde, the frequentist model estimate of the

average is around 305 kg, whereas the multilevel model estimate is around 220 kg. The

substantial differences for these municipalities arise because the Bayesian multilevel model

is more skeptical about extreme predictions. It treats mean values of municipalities that

are far from the overall mean as likely to be chance events. This treatment is based on a

low estimated variation between the municipalities and the relatively small sample sizes

in municipalities with extreme values of general waste production. To mitigate the risk

of being misled by chance results in these municipalities, the Bayesian model aggressively

shrinks municipality-level estimates of general waste towards the grand mean.

Finally, the two models yield different sizes of confidence/credibility intervals for esti-

mated average general waste. The narrow confidence intervals of the frequentist multilevel

model reflect a narrow range of values of average general waste that is consistent with

an α = 5% test. Conversely, the credible intervals of the Bayesian model encompass a

wider range of values that are compatible with the model, the data, and the prior. For

instance, for Nyborg municipality the model, data, and prior are consistent with a 95%

credibility interval from 160 to 240 kg. Again, this reflects the more conservative nature

of Bayesian estimation, where penalization through adaptive regularization helps protect
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Figure 3.4: Comparison of the estimates and confidence/credible intervals of the intercept
(β0) for general waste based on age for the frequentist and Bayesian multilevel models.
Results are reported for all 98 municipalities.
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against overconfidence in the model results.

3.5 Conclusion

The present study proposes a multilevel framework under a Bayesian approach to predict

waste generation rates in cases where data are structured hierarchically in municipalities

or districts. This study is the first to investigate the advantages of using a multilevel

Bayesian approach compared to aggregated and disaggregated linear models in the con-

text of waste management. The proposed methodology is used in a case study of yearly

waste generation rates for six waste types from the 98 municipalities of Denmark, com-

bined with socio-economic and demographic variables in the period from 2010 to 2017.

In terms of prediction performance, the Bayesian multilevel model outperformed the

traditional aggregated and disaggregated models for all waste types. For three of the six

waste types analyzed, the varying intercept model performed best, and for the other three,

the varying slope model performed best. The number of explanatory variables used in the

best selected model also varies between the waste types, from a single external variable

in the cases of general waste, burnable waste, and metal, to four variables in the case of

cardboard. These results suggest that the selection of the model complexity has to be

performed carefully because the optimal model may vary between different waste types.

Results and conclusions using Bayesian data analysis can be in conflict with those of

the traditional frequentist approach. This has been the case in many previous studies

(Nalborczyk et al., 2019). In the present study, we found that the Bayesian approach

tends to treat extreme predictions with greater skepticism, which shrinks the estimates

at the municipality level towards the grand mean. This more conservative behavior is

also reflected by broader credible intervals, in contrast with narrower confidence intervals

in the frequentist approach.

Some limitations of the proposed methodology are worth noting. First, the resulting

posterior distributions of the parameters of the model depend heavily on the selection of

the prior distributions. Selecting prior distributions that can translate expert knowledge

into the model is essential in the modeling phase. Future research should investigate

the impact of using, for instance, weakly informative priors compared to prior predictive

simulations. Second, the implementation of multilevel Bayesian models can be compu-

tationally expensive for models with a large number of parameters. This can impose

practical limitations particularly in the case when several models have to be compared.

Finally, our study provides a framework for future studies to assess the effects of

different configurations of real-world waste datasets on prediction performance. For in-

stance, the effects of the number of municipalities and the number of observations per
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municipality should be studied further. The methodology presented in this paper can

be extended to scenarios with two or more levels of hierarchy. A multilevel model with

several levels can be used to study intra-class effects between, for example, countries and

municipalities at the same time.
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Appendix A

Table 3.5 provides an overview of the socio-economic variables used in the case study.

Percentage variables represent the percentage of individuals over the total population of

the municipality. Educational variables represent the highest educational level achieved.

Socio-economic variable Mean St. Dev. Min. Max.

Population 57,424 66,531 1,793 602,481
Income (DKK) 223,953 34,632 177,544 408,095
Age 42.22 2.61 35.90 52.80
Divorced (%) 8.66 1.31 5.72 12.04
Primary education (%) 21.23 3.67 10.58 29.92
Secondary education (%) 4.96 1.93 2.40 12.97
Bachelor’s education (%) 0.81 0.77 0.22 5.36
Immigrants (%) 7.19 3.50 3.09 23.10
Men (%) 0.50 0.01 0.47 0.51
Farmhouses 11,789 7,416 785 39,471
Households 30,438 35,117 2,355 314,080

Table 3.5: Summary statistics of the municipal socio-economic variables.

Appendix B

This appendix presents details of model selection for both the variables used and model

complexity. First, Table 3.6 shows the inclusion probabilities for each of the six socio-

45



economic variables considered in the study for each waste type. Based on the variables

showing the higher inclusion probabilities, Table 3.7 presents the LOOIC results of dif-

ferent model combinations for general waste. The best model is that with the lowest

LOOIC, which is obtained by the varying slope model using only the variable age as an

explanatory variable.

Variable General waste Burnable Metal Plastic Glass Cardboard

Age 1.00 1.00 0.21 1.00 0.97 0.28
Marital status 1.00 0.04 0.33 0.33 0.57 1.00
Immigration 1.00 0.03 1.00 0.73 0.89 1.00
Education 1.00 0.03 0.86 0.91 0.12 1.00
Income 0.47 0.03 0.39 0.80 0.12 0.30
Gender 0.31 0.08 0.99 1.00 0.11 1.00

Table 3.6: Inclusion probabilities of socio-economic variables for each waste type.

Model LOOIC SE

log(λij) = β0 + β1 ∗ ageij 10,053 25
log(λij) = β0j + β1 ∗ ageij 10,052 25
log(λij) = β0j + β1j ∗ ageij 10,037 26
log(λij) = β0 + β1 ∗ ageij + β2 ∗ divorcedij 10,053 25
log(λij) = β0 + β1 ∗ ageij + β2 ∗ divorcedij + β3 ∗ immigrantij 10,051 25
log(λij) = β0 + β1 ∗ ageij + β2 ∗ divorcedij + β3 ∗ immigrantij + β4 ∗ educationij 10,051 25
log(λij) = β0 + β1 ∗ educationij + β2 ∗ immigrantij + β3 ∗ divorcedij 10,060 26

Table 3.7: LOOIC values for the best models, tested for general waste based on the
inclusion probabilities.

Appendix C

Figures 3.5 and 3.6 show histograms of the posterior samples of the intercept and slope,

respectively, obtained for general waste modeled by age.
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Figure 3.5: Histogram of the posterior samples for the intercept of the varying slopes
model of general waste modeled by age.

Figure 3.6: Histogram of the posterior samples for slope of the varying slopes model of
general waste modeled by age.
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