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1 Introduction

We study a stochastic control problem involving the consumption-portfolio-leisure policy and the optimal
stopping time of retirement. By determining the continuous and stopping regions of the corresponding optimal
stopping time problem, we prove that the optimal retirement time is the first hitting time of the wealth process
X(t) upward to a critical wealth boundary. We implement different liquidity constraints over different time
spans, which are X(t) ≥ Rpre and X(t) ≥ Rpost separately for pre- and post-retirement periods. The numerical
analysis shows that the wealth boundary triggering the retirement is decreasing to Rpre but increasing to Rpost.
The additional retirement option impels the agent to consume less and invest more as the wealth approaches
the retirement boundary, and this incentive becomes weaker as Rpre decreases.

The considered retirement mechanism is directly referred to [1, 2]. More precisely, [1] studied the optimal
retirement model regarding the consumption-portfolio-leisure strategy, in which the leisure rate is limited to the
binomial choice. [2] investigated a more complex optimization problem that endows the agent the flexibility
in labour supply in the context of retirement planning. We extend their research and adopt a different utility
function, a power utility function, as in [3], instead of the Constant Elasticity of Substitution (CES) function.
Additionally, compared to [2], other extensions are i) the introduction of a continuous debt repayment the agent
should face, ii) the different liquidity constraints before and after retirement, which is the main contribution of
this work.

2 Problem Formulation

We deal with a financial market in which two kinds of investment are provided: the money market, concerning
a fixed risk-free rate r > 0, and a risky asset, which dynamics is described by the stochastic differential equation
dS(t) = µS(t)dt+σS(t)dB(t), S(0) = S0, with µ and σ representing the constant drift and diffusion coefficients.
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B(t) represents a standard Brownian motion on the filtered probability space (Ω,F ,P), and {Ft, 0 ≤ t < ∞}
is the augmented natural filtration on B(t). Moreover, by introducing the market price of risk as θ ,

µ−r
σ

,

we can define the state-price density process as H(t) , ξ(t)Z̃(t) following [4], where ξ(t) , e−rt and Z̃(t) ,

e−
θ2

2
t−θB(t) indicate the discount process and an exponential martingale, respectively. Then we define the

equivalent martingale measure P̃ by P̃(A) , E

[

Z̃(t)IA

]

, ∀A ∈ Ft. Based on the Girsanov Theorem, a standard

Brownian motion under P̃ measure can be defined as B̃(t) , B(t) + θt, ∀t ≥ 0.

We now describe the optimization problem. The agent needs to optimally allocate the consumption c(t),
the amount of money for the risky investment π(t) and the leisure rate l(t). The sum of labour and leisure
rates equals the constant L̄. Furthermore, denoting the retirement time as τ , the retirement mechanism can
be elaborated as: 0 ≤ l(t) ≤ L < L̄ on 0 ≤ t ≤ τ , i.e., the leisure rate, as the complement of labour rate,
is upper bounded for keeping the employment state; and l(t) ≡ L̄ on t > τ , since the agent enjoys the entire
leisure L̄ after declaring retirement. Then the dynamics of the wealth process X(t), i.e., the state variable of
the optimization, is

dX(t) =
[

rX(t) + π(t)(µ − r)− c(t)− d+ w(L̄− l(t))
]

dt+ σπ(t)dB(t), ∀t ≥ 0,

d and w are the constant debt repayment and the wage rate, respectively. The initial wealth is X(0) = x.
The considered optimal retirement problem (P ) is

V (x) , sup
(τ,{c(t),π(t),l(t)})∈A(x)

J(x; c, π, l, τ) = sup
(τ,{c(t),π(t),l(t)})∈A(x)

E

[
∫ ∞

0
e−γtu(c(t), l(t))dt

]

, (P )

in which γ is the subjective discount rate, and the utility is characterized by a power function

u(c, l)=

(

cδl1−δ
)1−k

δ(1− k)
, 0<δ<1, k>1.

The admissible control set A(x) follows the standard definition, e.g., [5, Definition 2.1], imposing liquidity
constraints: X(t) ≥ Rpre for 0 ≤ t < τ , X(τ) ≥ Rpre ∨ Rpost, and X(t) ≥ Rpost for t > τ a.s.. Notice that we

must impose Rpre ≥
d−wL̄
r

and Rpost ≥
d
r
to have the existence of an admissible solution, where d−wL̄

r
represents

the discounted value of the full debt repayment minus the maximum amount to borrow against the future labour
income (in the pre-retirement period).

3 Solution of Optimization Problem

Defining JPR(X(τ); c, π) , E
[∫∞
τ
e−γ(s−τ)u(c(s), L̄)ds

∣

∣Fτ
]

, the gain function of Problem (P ) can be rewrit-
ten as the expectation of two separated terms representing the pre- and post-retirement part

J(x; c, π, l, τ)=E

[
∫ τ

0
e−γtu(c(t), l(t))dt + e−γτJPR(X(τ); c, π)

]

,

where the subscript PR indicates that the corresponding variables and functions are related to the post-retirement
problem.

The solutions of the pre- and post-retirement part are based on similar techniques, therefore in this letter
we only report the solution of the post-retirement part, referring to the Online Appendix, Section A, for details.
Depending on the value of Rpost, the solution of the post-retirement problem is divided into two different cases:
one is Rpost = d

r
, in which the liquidity constraint has no restriction on the optimization, and the other is

Rpost >
d
r
, with the optimal solution being binded by the liquidity constraint.
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Lemma 3.1. The post-retirement value function

U(x) , sup
{c(t),π(t)}

JPR(x; c, π),

for x ≥ Rpost, is given by:

U (x) =







(

x− d
r

)δ(1−k)
K

1−δ(1−k)
1 L̄(1−k)(1−δ) 1

δ(1−k) , if Rpost =
d
r
,

B2,PR(λ
∗
PR

)n2 + 1−δ(1−k)
δ(1−k) K1L̄

(1−k)(1−δ)
1−δ(1−k) (λ∗

PR
)

δ(1−k)
δ(1−k)−1 − d

r
λ∗

PR
+ λ∗

PR
x, if Rpost >

d
r
.

The Legendre-Fenchel transform of U(x), Ũ(z) , sup
x≥Rpost

[U(x)− zx], is:

• Ũ(z) = 1−δ(1−k)
δ(1−k) z

δ(1−k)
δ(1−k)−1K1L̄

(1−k)(1−δ)
1−δ(1−k) − d

r
z, z > 0, if Rpost=

d
r
;

• Ũ(z)=







B2,PRẑ
n2
PR+

1−δ(1−k)
δ(1−k) K1L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

δ(1−k)
δ(1−k)−1
PR − d

r
ẑPR−Rpost(z−ẑPR), z≥ ẑPR,

B2,PRz
n2 + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z, 0<z<ẑPR,

if Rpost>
d
r
.

Proof. See the Online Appendix A for the proof and the definition of the constants λ∗
PR
, K1, n2, ẑPR and B2,PR.

3.1 Pre-retirement Part

Based on the dynamic programming principle, we can only consider a subset of the admissible control set of
Problem (P ), that is A1(x) ⊂ A(x), in which any policy achieves the maximum of the post-retirement problem’s
gain function. Hence we have

V (x) = sup
(τ,{c(t),π(t),l(t)})∈A1(x)

E

[
∫ τ

0
e−γtu(c(t), l(t))dt + e−γτU

(

Xx,c,π,l(τ)
)

]

,

where U
(

Xx,c,π,l(τ)
)

, sup
{c(t),π(t),l(t)}∈A1(x)

E
[∫∞
τ
e−γ(s−τ)u(c(s), L̄)ds

∣

∣Fτ
]

is given in the previous lemma.

We first define an admissible control set corresponding to a fixed stopping time τ ∈ T , with T represent-
ing the set of Ft-stopping times, as Aτ (x) , {{c(t), π(t), l(t)} : (τ, {c(t), π(t), l(t)}) ∈ A(x)}, and the utility
maximization problem

Vτ (x) , sup
{c(t),π(t),l(t)}∈Aτ (x)

J(x; c, π, l, τ). (Pτ )

Then, Problem (P ) is converted into an optimal stopping time problem, that is

V (x) = sup
τ∈T

Vτ (x).

Similar to the post-retirement problem, the primal optimization problem’s solution depends on the value of
Rpre, which prompts us to solve it in two different cases. Before the discussion, we follow [5, Proposition 2.1] to
provide the pre-retirement budget constraint, that is:

E

[
∫ τ

0
H(t)

(

c(t) + d+ wl(t) −wL̄
)

dt+H(τ)X(τ)

]

≤ x. (3.1)

Additionally, we define the Legendre-Fenchel transform of u(c, l) by

ũ(y), sup
c≥0, 0≤l≤L

[u(c, l)−(c+wl)y] .
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3.1.1 Duality Approach with Rpre =
d−wL̄
r

Following the method from [6, Section 6], we first deduce an inequality of J(x; c, π, l, τ) by introducing a
Lagrange multiplier λ > 0 and using the budget constraint (3.1),

J(x; c, π, l, τ) ≤ E

[
∫ τ

0
e−γt

(

ũ(λeγtH(t))− (d− wL̄)λeγtH(t)
)

dt+ e−γτ Ũ(λeγτH(τ))

]

+ λx.

The inequality turns to equality if and only if the conditions

c(t) +wl(t) = −ũ′(λeγtH(t)), ∀t ∈ [0, τ ], X(τ) = −Ũ ′(λeγτH(τ)), a.s.,

and E
[∫ τ

0

(

c(t)+wl(t)+d−wL̄
)

H(t)dt+X(τ)H(τ)
]

=x hold.

Additionally, Lemma 3.1 implies X(τ) =−Ũ ′(λeγτH(τ))≥Rpost≥
d−wL̄
r

. Then the following lemma shows

that under the above conditions, there always exists a portfolio policy to ensure Xx,c,π,l(t) ≥ d−wL̄
r

= Rpre,
∀t∈ [0, τ ], which implies the liquidity constraint is satisfied automatically.

Lemma 3.2. For any given initial wealth x ≥ Rpre, any fixed stopping time τ ∈ T , any Fτ -measurable random

variable K with P(K ≥ d−wL̄
r

) = 1 under the P measure, and any given progressively measurable consumption
and leisure processes c(t) ≥ 0, l(t) ≥ 0, ∀t ≥ 0, satisfying E

[∫ τ

0 H(t)(c(t) + wl(t) + d− wL̄)dt+H(τ)K
]

= x,

there exists a portfolio process π(t) making Xx,c,π,l(t) ≥ d−wL̄
r

, ∀t ∈ [0, τ ], and Xx,c,π,l(τ) = K hold almost
surely.

Proof. See Online Appendix B.

Moreover, the Lagrange method indicates that Vτ (x) = inf
λ>0

[J̃τ (λ) + λx] with introducing

J̃τ (λ) , E

[
∫ τ

0
e−γt

(

ũ(λeγtH(t))− (d− wL̄)λeγtH(t)
)

dt+ e−γτ Ũ(λeγτH(τ))

]

,

and the value function of Problem (P ) can be transformed as

V (x) = sup
τ∈T

Vτ (x) = sup
τ∈T

inf
λ>0

[J̃τ (λ) + λx] ≤ inf
λ>0

sup
τ∈T

[J̃τ (λ) + λx] = inf
λ>0

[sup
τ∈T

J̃τ (λ) + λx].

Defining Ṽ (λ) , sup
τ∈T

J̃τ (λ), [6, Section 8, Theorem 8.5] shows that V (x) = inf
λ>0

[Ṽ (λ) + λx] holds under the

condition that the function Ṽ (λ) exists and it is differentiable for any λ > 0. Then, the process to solve Problem
(P ) is divided into two steps: the first is involved in the pure optimal stopping time problem of Ṽ (λ), and the
second step mainly concerns finding the optimal Lagrange multiplier. We begin with the first step and introduce
a new process, Z(t) , λeγtH(t). Then Ṽ (λ) can be rewritten as

Ṽ (λ) = sup
τ∈S

E

[
∫ τ

0
e−γt

(

ũ(Z(t))− (d−wL̄)Z(t)
)

dt+ e−γτ Ũ(Z(τ))

]

.

We proceed with a generalized optimal stopping time problem

φ(t, z) = sup
τ≥t

E

[
∫ τ

t

e−γs
(

ũ(Z(s))− (d− wL̄)Z(s)
)

ds+ e−γτ Ũ(Z(τ))

∣

∣

∣

∣

Z(t) = z

]

, (3.2)

which shows that Ṽ (λ) = φ(0, λ). The following lemma gives the continuous region and stopping region of the
above optimal stopping time problem.
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Lemma 3.3. Considering the optimal stopping time problem (3.2) with the state variable Z(t), the continuous
region is Ω1={Z(t)>z̄}, the stopping region is Ω2={0<Z(t)≤ z̄}, where z̄ denotes the boundary that separates
Ω1 and Ω2.

Proof. See Online Appendix C.

Straight follows, with the operator L = ∂
∂t

+ (γ − r)z ∂
∂z

+ θ2

2 z
2 ∂2

∂z2
, the optimal stopping time problem (3.2)

is equivalent to solving the free boundary problem below.
Variational Inequalities: Find a free boundary z̄ >0 (Retirement level), and a function φ(t, z)∈C1((0,∞)×R

+)∩
C2 ((0,∞) × (R+ \ {z̄})) satisfying























(V 1) Lφ(t, z) + e−γt
(

ũ(z)− (d− wL̄)z
)

= 0, z > z̄,

(V 2) Lφ(t, z) + e−γt
(

ũ(z)− (d− wL̄)z
)

≤ 0, 0 < z ≤ z̄,

(V 3) φ(t, z) ≥ e−γtŨ(z), z > z̄,

(V 4) φ(t, z) = e−γtŨ(z), 0 < z ≤ z̄,

(3.3)

for any t ≥ 0, with the smooth fit conditions φ(t, z̄) = e−γtŨ(z̄) and ∂φ
∂z
(t, z̄) = e−γtŨ ′(z̄). The analytical

solution of the above inequalities is presented in Online Appendix D.

Once φ is computed, we recover Ṽ (λ) = φ(0, λ), and the value function is given by

V (x) = inf
λ>0

[Ṽ (λ) + λx] = Ṽ (λ∗) + λ∗x,

x being the initial wealth. The retirement time is the first time the process Z∗(t) , λ∗eγtH(t) touches the
barrier z̄ from above. The optimal strategies are reported at the end of the Online Appendix D.

Remark 3.1. The optimal retirement time is the first time the process Z∗(t) touches the lower barrier z̄. The
same can be obtained with respect to the wealth level X(t). In fact, the optimal process Z∗ is connected to the
optimal wealth X by the relation X(t) = −v′(Z∗(t)), being φ(t, z) = e−γtv(z), see the online appendix. The
convex property of v(·), see [4, Section 3.4, Lemma 4.3], indicates that X(t) is a decreasing function of Z∗(t),
therefore, in this case the optimal retirement time is the first time the process X(t) touches an upper barrier
x̄ = −v′(z̄).

3.1.2 Duality Approach with Rpre >
d−wL̄
r

Before proceeding to solve the problem, we present the following proposition to construct expectation form
of the liquidity constraint related to X(t)≥Rpre, ∀t ∈ [0, τ ].

Proposition 3.1. The liquidity constraint of the considered problem is

E

[
∫ τ

t

H(s)

H(t)

(

c(s) + d+wl(s)− wL̄
)

ds+
H(τ)

H(t)
X(τ)

∣

∣

∣

∣

Ft

]

≥ Rpre, ∀t ∈ [0, τ ]. (3.4)

Proof. See [5, Proposition 4.1].

Considering the budget and liquidity constraints, (3.1) and (3.4), and introducing a Lagrange multiplier
λ > 0 and a non-increasing process D(t) ≥ 0 [6, 7], the following inequality is obtained:

J(x; c, π, l, τ)≤E

[
∫ τ

0
e−γt

(

ũ(λD(t)eγtH(t))−(d−wL̄)λeγtD(t)H(t)
)

dt+e−γτ Ũ(λD(τ)eγτH(τ))

]

+ λE

[
∫ τ

0
RpreH(t)dD(t)

]

+ λx,
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which inspires us to define the dual individual’s shadow price problem

Ṽτ (λ) , inf
D(t)∈D

E

[
∫ τ

0
e−γt

(

ũ(λD(t)eγtH(t))− (d−wL̄)λeγtD(t)H(t)
)

dt

+ e−γτ Ũ(λD(τ)eγτH(τ))

]

+ λE

[
∫ τ

0
RpreH(t)dD(t)

]

,

(Sτ )

where D is the set of non-negative, non-increasing and progressively measurable processes. Then we establish
the duality between Problem (Sτ ) and (Pτ ).

Theorem 3.1. (Duality Theorem) Suppose D∗(t) is the optimal solution to Problem (Sτ ), then c
∗(t)+wl∗(t)=

−ũ′(Z∗(t)) and Xx,c∗,π∗,l∗(τ)=−Ũ ′(Z∗(τ)) coincide with the optimal solution of Problem (Pτ ), and there exists

Vτ (x)= inf
λ>0

[

Ṽτ (λ)+λx
]

, ∀x≥Rpre. Here Z∗(t) = λ∗eγtD∗(t)H(t), where λ∗ and D∗(t) are the parameters λ and

D(t) giving the infimum.

Proof. See [5, Theorem 4.1].

This duality theorem allows us to link Problem (P ) with the shadow price problem through

V (x) = sup
τ∈T

Vτ (x) = sup
τ∈T

inf
λ>0

[Ṽτ (λ) + λx] ≤ inf
λ>0

sup
τ∈T

[Ṽτ (λ) + λx] = inf
λ>0

[sup
τ∈T

Ṽτ (λ) + λx].

Defining Ṽ (λ) , sup
τ∈T

Ṽτ (λ), [6, Section 8, Theorem 8.5] indicates that the last inequality takes the equal sign

with the condition that Ṽ (λ) exists and is differentiable for any λ > 0. Thereafter, the objective optimization
problem can be divided into two parts:







Ṽ (λ) = sup
τ∈S

Ṽτ (λ),

V (x) = inf
λ>0

[Ṽ (λ) + λx] , Ṽ (λ∗) + λ∗x.

We now consider the technique of [8] and insert an assumption on the process D(t) for acquiring a closed-form
solution.

Assumption 3.1. The non-increasing process D(t) is absolutely continuous with respect to t. Hence, there is a
non-negative process ψ(t) such that dD(t) = −ψ(t)D(t)dt.

Then, by means of a new defined process Z(t) , λD(t)eγtH(t), the value function of the individual’s shadow
price problem can be written as

Ṽτ (λ) = inf
ψ(t)≥0

E

[
∫ τ

0
e−γt

(

ũ(Z(t))− (d− wL̄)Z(t)−Rpreψ(t)Z(t)
)

dt+ e−γτ Ũ(Z(τ))

]

,

where ψ(t) is the control variable, and Z(t) is the state variable. Introducing a generalized problem

φ(t, z),sup
τ≥t

inf
ψ(t)≥0

E

[
∫ τ

t

e−γs
(

ũ(Z(s))−(d−wL̄)Z(s)−Rpreψ(s)Z(s)
)

ds+e−γτŨ(Z(τ))

∣

∣

∣

∣

Z(t)=z

]

,

the solution of Ṽ (λ) is turned to φ(t, z) with Ṽ (λ)=φ(0, λ). We first handle the infimum part by defining

φinf(t, z), inf
ψ(t)>0

E

[
∫ τ

t

e−γs
(

ũ(Z(s))−(d−wL̄)Z(s)−Rpreψ(s)Z(s)
)

ds+e−γτŨ(Z(τ))

∣

∣

∣

∣

Z(t)=z

]

.
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The corresponding Bellman equation is

min
ψ≥0

{

Lφinf(t, z) + e−γt
(

ũ(z)− (d− wL̄)z
)

− ψz

[

∂φinf

∂z
(t, z) +Rpree

−γt

]}

= 0.

The optimum ψ∗ has the following characterization,

•
∂φinf

∂z
(t, z)+Rpree

−γt=0 ⇒ ψ∗≥0 and ∂φ
∂z
(t, z) =

∂φinf

∂z
(t, z) = −Rpree

−γt, z ≥ ẑ.

•
∂φinf

∂z
(t, z)+Rpree

−γt≤0 ⇒ ψ∗=0, then φ(t, z) switches to a pure optimal stopping time problem,

φ(t, z)=sup
τ≥t

E

[
∫ τ

t

e−γs
(

ũ(Z(s))−(d−wL̄)Z(s)
)

ds+e−γτ Ũ(Z(τ))

∣

∣

∣

∣

Z(t)=z

]

,

which has the same form as (3.2) but applies to the interval 0 < z < ẑ.

Lemma 3.3 can be easily extended also in this case, therefore the optimal retirement time is the first time the
process Z∗(t) touches the lower barrier z̄. Therefore, we need to compare the value of z̄ and ẑ, and split the
discussion into two cases: the first one is z̄ < ẑ, which corresponds to the case where the liquidity constraint
boundary, Rpre, is lower than the retirement threshold.

Variational Inequalities assuming z̄ < ẑ: Find the free boundaries z̄ > 0 (retirement), ẑ > 0 (Rpre-wealth
level), and a function φ(·, ·) ∈ C1((0,∞) × R

+) ∩ C2((0,∞) × R
+ \ {z̄}) satisfying











































(V 1) ∂φ
∂z
(t, z) +Rpree

−γt = 0, z ≥ ẑ,

(V 2) ∂φ
∂z
(t, z) +Rpree

−γt ≤ 0, 0 < z < ẑ,

(V 3) Lφ(t, z) + e−γt
(

ũ(z)− (d− wL̄)z
)

= 0, z̄ < z < ẑ,

(V 4) Lφ(t, z) + e−γt
(

ũ(z)− (d− wL̄)z
)

≤ 0, 0 < z ≤ z̄,

(V 5) φ(t, z) ≥ e−γtŨ(z), z̄ < z < ẑ,

(V 6) φ(t, z) = e−γtŨ(z), 0 < z ≤ z̄,

(3.5)

for any t ≥ 0, with the smooth fit conditions

∂φ

∂z
(t, ẑ) = −Rpree

−γt,
∂2φ

∂z2
(t, ẑ) = 0, φ(t, z̄) = e−γtŨ(z̄), and

∂φ

∂z
(t, z̄) = e−γtŨ ′(z̄).

The analytical solution of the variational equation (3.5) is reported in Online Appendix E. Once φ and z̄ are
computed, the value function and the optimal retirement decision can be recovered as in Section 3.1.1. The
optimal strategies are reported at the end of the Online Appendix E.

If the first case does not admit a solution, that is, the liquidity constraint boundary Rpre is high enough
(and larger than Rpost) to make the agent declare retirement at time 0 for any admissible initial wealth, we deal
with an immediate retirement, and therefore V (x) = U(x), and all the optimal strategies are the ones of the
post-retirement problem.

4 Numerical Analysis

We now perform the sensitivity analysis to the liquidity constraint boundaries. All the input parameters are
reported in Table 4.1. We change the values of Rpre, Rpost and keep all other input parameters consistent with

7



Table 4.1: Input Parameters

δ k r µ σ γ d w Rpre Rpost L̄ L

0.6 3 0.02 0.07 0.15 0.1 0.3 1.5 0 15 1 0.8

Figure 4.1: Convergence w.r.t. Liquidity Constraint Boundary of Pre- and Post-Retirement Part
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Table 4.1 to discover the different convergence phenomena of retirement wealth threshold concerning the pre-
and post-retirement liquidity constraints.

Figure 4.1 shows that the retirement wealth threshold x̄ is a decreasing function of Rpre due to the fact that
the agent with higher Rpre values prefers to set a lower wealth threshold to make sure entering in retirement
ahead of schedule such that getting rid of the restriction caused by Rpre. Whereas, the critical wealth level of
retirement is increasing with respect to Rpost. Since the pre-retirement restriction keeps constant, a higher value
of Rpost, which implies a more rigorous circumstance for the post-retirement period, impels the agent to step
into retirement with a higher wealth level.

Moreover, we provide figures to illustrate the sensitivity of optimal consumption, portfolio and leisure frac-
tions in terms of x− d

r
with respect to different values of Rpre and Rpost. We begin this kind of analysis fixing

the value of Rpost and arranging three values to Rpre. The optimal control strategies for different cases are
presented in Proposition A.3, Proposition D.1 and Proposition E.1 in the online appendix. In Figure 4.2, Rpost
is set equal to d

r
= 15, which implies that the post-retirement part is not restricted by the liquidity constraint.

We can observe that the optimal consumption and portfolio fractions suffer a downward jump for various Rpre
values. This is due to the discontinuity of the leisure rate at the retirement time, which leads to a shrinkage of
labour income and reduces the resources allocated to the consumption and investment. In fact, if x > 256.6913
(Rpre = −60), x > 164.5320 (Rpre = 0), x > 137.4776 (Rpre = 10), i.e., the initial wealth is larger than the
retirement threshold x̄, the agent is facing the post-retirement region, with l∗(t) = L̄ = 1 (full leisure). In
addition, it should be noted that for different Rpre values, the jump happens at different wealth levels. As also
shown in the left plot of Figure 4.1, the agent with a higher Rpre value experiences the jump at a lower wealth
threshold of retirement x̄. Moreover, since the value of Rpost keeps identical, the optimal consumption and
portfolio fractions of different curves are coincident for the post-retirement part and equal to a constant, in line
with the Merton classical problem.
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Figure 4.2: Optimal Control Fractions w.r.t. Liquidity Constraint Boundary of Pre-Retirement Part
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Then we conduct a similar sensitivity analysis with respect to Rpost. Figure 4.3 shows that the retirement
threshold is increasing with the value of Rpost (x̄ = 164.5320 for Rpost = 15, x̄ = 171.1993 for Rpost = 20,
x̄ = 180.7943 for Rpost = 25), in line with the right plot of Figure 4.1, and describes that the optimal control
fractions for the post-retirement part of blue dashed and red dotted curves, whose Rpost values are greater than
the boundary d

r
, i.e., the liquidity constraints impose restrictions on optimal solutions, converge to the ones of

the green curve ( Rpost =
d
r
) as x increases. It can be explained by the fact that the liquidity constraint plays a

slighter role as the wealth becomes comparably larger and imposes a weaker restriction on the admissible control
set. Moreover, we also notice that a high liquidity constraint for the post-retirement part induces the agent to
take a large risk (high value of π∗) when the retirement threshold is close.

Finally, we conduct the sensitivity analysis of optimal control strategies to both the liquidity constraint
boundary and the retirement option. In Figure 4.4, we fix the value of Rpost to

d
r
and plot the curves of optimal

consumption and portfolio fractions in terms of x − d
r
under different situations. The dashed lines represent

the optimal control fractions of different Rpre values with retirement option, while the solid lines represent the
corresponding optimal control fractions without retirement option (and therefore with fixed liquidity constraint
R = Rpre).

1 From all the dashed lines, we can see that the optimal consumption and portfolio fractions suffer
a downward jump for various Rpre values. This is due to the discontinuity of the leisure rate at the retirement
time, which leads to a shrinkage of labour income and reduces the resources allocated to the consumption and
investment. Comparing the solid and dashed lines with the same colour, the agent with the additional retirement
option tends to consume less and invest more in the risky asset for the motivation of arriving at the retirement
wealth threshold and enjoying the full leisure rate faster. This kind of difference becomes more significant as
the wealth approaches the critical level. Furthermore, the degree of this motivation is related to the liquidity
constraint boundary. Observing the convexity of the pre-retirement part of different dashed lines, the optimal
control fraction with a higher Rpre value takes a larger convexity, which is because stricter liquidity constraints
give the agent a stronger motivation to achieve the critical wealth level to get rid of this restriction.

1The theoretical solutions of optimal consumption-portfolio problem without retirement comes from [5, Section 5] by replacing
the liquidity constraint boundary F + η with Rpre.
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Figure 4.3: Optimal Control Fractions w.r.t. Liquidity Constraint Boundary of Post-Retirement Part
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Figure 4.4: Optimal Control Fractions w.r.t. Liquidity Constraint Boundary and Retirement Option.
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A Post Retirement Part

Assuming τ = 0−, we deal with the post-retirement problem, which is an infinite-time optimization prob-
lem with two control variables, the consumption and portfolio processes. Introducing uPR(c) , u(c, L̄) =
cδ(1−k)L̄(1−δ)(1−k)

δ(1−k) , the corresponding value function, denoted as (PPR), is

VPR(x) , sup
{c(t),π(t)}∈APR(x)

JPR(x; c, π). (PPR)

The admissible control set APR(x) takes the compatible definition with A(x), except that the condition for
stopping time is abolished, and the condition for liquidity constraint is given by X(t)≥Rpost, a.s., ∀t≥0. Then
we derive the derivative function u′

PR
(c) = cδ(1−k)−1L̄(1−k)(1−δ), which is positive and strictly decreasing and

has the inverse function IPR(z) , z
1

δ(1−k)−1 L̄
(1−k)(1−δ)
1−δ(1−k) . Furthermore, referring to [4, Section 3, Definition 4.2], we

define the Legendre-Fenchel transform of uPR(z) as ũPR(z) , sup
c≥0

[uPR(c) − cz], which has the explicit expression

ũPR(z) = uPR(IPR(z))− zIPR(z) =
1− δ(1 − k)

δ(1 − k)
z

δ(1−k)
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) .

Proposition A.1. The infinite horizon budget constraint of the post-retirement problem is

E

[
∫ ∞

0
H(t)(c(t) + d)dt

]

≤ x. (A.1)

Proof. The proof can be accomplished directly by replacing l(t) in [5, Proposition 3.1] with the constant L̄,
meanwhile inserting a constant term d in the integral.

Depending on the value of Rpost, the solution of Problem (PPR) is divided into two different cases. One is
Rpost =

d
r
, in which the liquidity constraint has no restriction on the optimization, and the other is Rpost >

d
r
,

with the optimal solution being binded by the liquidity constraint.

As in [4, Chapter 3, Example 9.22], the optimal wealth process under the condition Rpost =
d
r
is X∗(t) =

(

x− d
r

)

e
1

1−δ(1−k)

(

r−γ+θ2

2

)

t+ θ
1−δ(1−k)

B(t)
+ d
r
. The optimal consumption-portfolio polices are c∗(t)= 1

K1

[

X∗(t)− d
r

]

and

π∗(t)= θ
σ(1−δ(1−k))

[

X∗(t)− d
r

]

, with K1 ,
1−δ(1−k)

γ−rδ(1−k)− θ2

2
δ(1−k)

1−δ(1−k)

> 0. And the value function of Problem (PPR) can

be obtained as

VPR(x) =

(

x−
d

r

)δ(1−k)

K
1−δ(1−k)
1

L̄(1−k)(1−δ)

δ(1 − k)
. (A.2)

Remark A.1. Analogous to the solution of the Merton problem, under the infinite time horizon, the opti-
mal fraction invested in the risky asset in terms of the wealth minus the debt, i.e., π∗(t)

X∗(t)− d
r

keeps constant as

− θ
σ(δ(1−k)−1) =

µ−r
σ2(1−δ(1−k)) , and the optimal fractional consumption c∗(t)

X∗(t)− d
r

takes a constant ratio as 1
K1

.

1



Hereafter, we impose a stricter liquidity constraint on the wealth process, X(t) ≥ Rpost >
d
r
. The following

proposition provides the expectation form of the liquidity constraint, which will be accessible to deduce the
duality problem subsequently.

Proposition A.2. The infinite horizon liquidity constraint of the post-retirement problem is

E

[
∫ ∞

t

H(s)

H(t)
(c(s) + d)ds

∣

∣

∣

∣

Ft

]

≥ Rpost. (A.3)

Proof. See [5, Proposition 3.2].

Referring to [6, 7], we introduce a real number λPR > 0, the Lagrange multiplier, and a non-increasing
process DPR(t) ≥ 0, then rewrite the post-retirement gain function as

JPR(x; c, π) ≤ E

[
∫ ∞

0
e−γt

(

ũPR(λPRe
γtH(t)DPR(t))− dλPRe

γtDPR(t)H(t)
)

dt

]

+ λPRx+ λPRE

[
∫ ∞

0
RpostH(t)dDPR(t)

]

.

The derivation of this inequality involves the budget constraint (A.1) and the liquidity constraint (A.3). In line
with [7, Section 4], the post-retirement individual’s dual shadow price problem, labelled (SPR), can be defined
as

ṼPR(λPR) , inf
DPR(t)∈D

E

[
∫ ∞

0
e−γt

(

ũPR(λPRe
γtH(t)DPR(t))− dλPRe

γtDPR(t)H(t)
)

dt

]

+ λPRE

[
∫ ∞

0
RpostH(t)dDPR(t)

]

,

(SPR)

where D is the set of non-negative, non-increasing and progressively measurable processes. Then the duality
between Problem (PPR) and Problem (SPR) is put forward.

Theorem A.1. (Duality Theorem) Suppose D∗
PR(t) is the optimal solution to the dual shadow price problem

(SPR), then c∗(t) = IPR(λ
∗
PRe

γtD∗
PR(t)H(t)) is the optimal consumption solution to the problem (PPR). And we

have the relation VPR(x)= inf
λPR>0

[ṼPR(λPR)+λPRx], with λ
∗
PR attaining the infimum.

Proof. See Appendix A.1.

The Duality Theorem enables us to transform the solution of Problem (PPR) to its duality, (SPR). Besides,
adopting the technique from [8], the subsequent assumption should be imposed for solving the problem explicitly.

Assumption A.1. The non-increasing process DPR(t) is absolutely continuous with respect to t. Hence, there
exists a process ψPR(t) such that dDPR(t) = −ψPR(t)DPR(t)dt.

Introducing ZPR(t),λPRe
γtDPR(t)H(t), the value function of Problem (SPR) is converted into

ṼPR(λPR) = inf
ψPR(t)≥0

E

[
∫ ∞

0
e−γt(ũPR(ZPR(t))− dZPR(t)− ψPR(t)ZPR(t)Rpost)dt

]

.

Then we define

φPR(t, z), inf
ψPR(t)≥0

E

[
∫ ∞

t

e−γs (ũPR(ZPR(s))−dZPR(s)−ψPR(s)ZPR(s)Rpost) ds

∣

∣

∣

∣

ZPR(t)=z

]

,
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and observe that ṼPR(λPR) = φPR(0, λPR). The associated Bellman equation to φPR(t, z) follows

min
ψPR≥0

{

L̃φPR(t, z) + e−γt(ũPR(z)− dz)− ψPRz

[

∂φPR

∂z
(t, z) + e−γtRpost

]}

= γφPR(t, z),

with the operator L̃ = (γ − r)z ∂
∂z

+ 1
2θ

2z2 ∂2

∂z2
. From the characterization of optimum ψ∗

PR
:

∂φPR

∂z
(t, z) + e−γtRpost = 0 ⇒ ψ∗

PR
≥ 0;

∂φPR

∂z
(t, z) + e−γtRpost ≤ 0 ⇒ ψ∗

PR
= 0,

the Bellman equation is equivalent to

min

{

L̃φPR(t, z)− γφPR(t, z) + e−γt(ũPR(z)− dz),−

[

∂φPR

∂z
(t, z) + e−γtRpost

]}

= 0,

which results in the consequent modified variational inequalities: Find a free boundary ẑPR > 0, which makes
Rpost-wealth level, and a function φPR(·, ·) ∈ C

2((0,∞) × R
+) satisfying























(V 1) ∂φPR

∂z
(t, z) + e−γtRpost = 0, z ≥ ẑPR,

(V 2) ∂φPR

∂z
(t, z) + e−γtRpost ≤ 0, 0 < z < ẑPR,

(V 3) L̃φPR(t, z)− γφPR(t, z) + e−γt(ũPR(z)− dz) = 0, 0 < z < ẑPR,

(V 4) L̃φPR(t, z)− γφPR(t, z) + e−γt(ũPR(z)− dz) ≥ 0, z ≥ ẑPR,

(A.4)

for any t ≥ 0, with the smooth fit conditions ∂φPR

∂z
(t, ẑPR) = −Rposte

−γt and ∂2φPR

∂z2
(t, ẑPR) = 0.

Proposition A.3. Under the assumption φPR(t, z) = e−γtvPR(z), the variational inequalities (A.4) takes the
solution

vPR(z) =







B2,PRẑ
n2
PR + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) ẑ

δ(1−k)
δ(1−k)−1
PR − d

r
ẑPR −Rpost(z − ẑPR), z ≥ ẑPR,

B2,PRz
n2 + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z, 0 < z < ẑPR,

with

n2 = −
γ − r − θ2

2

θ2
+

√

√

√

√

(

γ − r − θ2

2

θ2

)2

+
2γ

θ2
,

ẑPR = L̄(1−k)(1−δ)

[

(1− n2)(1− δ(1 − k))

n2(δ(1 − k)− 1)− δ(1 − k)

(

Rpost −
d
r

)

K1

]δ(1−k)−1

> 0,

and

B2,PR ==
K

(δ(1−k)−1)(n2−1)
1 L̄(1−k)(1−δ)(1−n2 )

n2(n2 − 1)(δ(1−k)−1)

[

(1−n2)(1−δ(1−k))

n2(δ(1−k)−1)−δ(1−k)

(

Rpost−
d

r

)]δ(1−k)−n2(δ(1−k)−1)

<0.

Furthermore, for a given initial wealth x ≥ Rpost, the value function of the post-retirement problem is

VPR(x)=B2,PR(λ
∗
PR

)n2+
1−δ(1−k)

δ(1−k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) (λ∗

PR
)

δ(1−k)
δ(1−k)−1 −

d

r
λ∗

PR
+λ∗

PR
x, (A.5)
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with −n2B2,PR(λ
∗
PR)

n2−1 +K1L̄
(1−k)(1−δ)
1−δ(1−k) (λ∗PR)

1
δ(1−k)−1 + d

r
= x. Taking Z∗

PR(t) , λ∗PRe
γtH(t), the optimal wealth

process follows

X∗(t) = −n2B2,PR(Z
∗
PR(t))

n2−1 +K1L̄
(1−k)(1−δ)
1−δ(1−k) (Z∗

PR(t))
1

δ(1−k)−1 +
d

r
, 0 < Z∗

PR(t) ≤ ẑPR,

and the corresponding optimal consumption and portfolio strategies are

c∗(t) = IPR(λ
∗
PR
eγtH(t)) = (Z∗

PR
(t))

1
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) ,

π∗(t) =
θ

σ

[

n2(n2 − 1)B2,PR(Z
∗
PR

(t))n2−1 −K1
1

δ(1 − k)− 1
L̄

(1−k)(1−δ)
1−δ(1−k) (Z∗

PR
(t))

1
δ(1−k)−1

]

.

Proof. See Appendix A.2.

Then based on the dynamic programming principle, we can only consider a subset of the admissible control
set of Problem (P ), that is A1(x) ⊂ A(x), in which any policy achieves the maximum of the post-retirement
problem’s gain function. Hence, for any (τ, {c(t), π(t), l(t)}) ∈ A1(x), we have E

[∫∞
τ
e−γtu(c(t), L̄)dt

]

=
E
[

e−γτVPR(X
x,c,π,l(τ))I{τ<∞}

]

. Afterwards, the whole optimization problem can be rewritten as

V (x) = sup
(τ,{c(t),π(t),l(t)})∈A1(x)

E

[
∫ τ

0
e−γtu(c(t), l(t))dt + e−γτU

(

Xx,c,π,l(τ)
)

]

,

denoting U
(

Xx,c,π,l(τ)
)

, sup
{c(t),π(t),l(t)}∈A1(x)

E
[∫∞
τ
e−γ(s−τ)u(c(s), L̄)ds

∣

∣Fτ
]

= VPR

(

Xx,c,π,l(τ)
)

. Finally, we sum-

marize the two different forms of U(x) and introduce its Legendre-Fenchel transform under the definition
Ũ(z), sup

x≥Rpost

[U(x)−xz], 0<z<∞ following [4, Chapter 3, Definition 4.2].

Lemma A.1. The post-retirement value function U(x), for x ≥ Rpost, is given in two separate cases, the
partition being based on the value of threshold in the liquidity constraint, i.e., Rpost.

U (x) =







(

x− d
r

)δ(1−k)
K

1−δ(1−k)
1 L̄(1−k)(1−δ) 1

δ(1−k) , if Rpost =
d
r
,

B2,PR(λ
∗
PR

)n2 + 1−δ(1−k)
δ(1−k) K1L̄

(1−k)(1−δ)
1−δ(1−k) (λ∗

PR
)

δ(1−k)
δ(1−k)−1 − d

r
λ∗

PR
+ λ∗

PR
x, if Rpost >

d
r
.

Furthermore, the Legendre-Fenchel transform of U(x) is:

• Ũ(z) = 1−δ(1−k)
δ(1−k) z

δ(1−k)
δ(1−k)−1K1L̄

(1−k)(1−δ)
1−δ(1−k) − d

r
z, z > 0, if Rpost=

d
r
;

• Ũ(z)=







B2,PRẑ
n2
PR+

1−δ(1−k)
δ(1−k) K1L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

δ(1−k)
δ(1−k)−1
PR − d

r
ẑPR−Rpost(z−ẑPR), z≥ ẑPR,

B2,PRz
n2 + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z, 0<z<ẑPR,

if Rpost>
d
r
.

Proof. See Appendix A.3.
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A.1 Proof of Theorem A.1

We first provide a lemma for proving Theorem A.1.

Lemma A.2. For any given initial wealth x > Rpost, and any given progressively measurable consumption process
c(t) ≥ 0 satisfying sup

τ∈T
E
[∫ τ

0 H(t)(c(t) + d)dt
]

≤ x−Rpost, with T standing for the set of F-stopping times, there

exists a portfolio process π(t) making Xx,c,π(t) ≥ Rpost, ∀t ≥ 0, holds almost surely.

Proof. Adopting the technique of [7, Appendix, Lemma 1], we introduce K(t) ,
∫ t

0 (c(s) + d)H(s)ds and show
that {K(τ)}τ∈T is uniformly integrable from the fact E[K(t)] <∞. Then, Dellacherie & Meyer (1982), Appendix
I,1 indicates that there exists a Snell envelope of K(t) denoted as K̄(t), which is a super-martingale under the
P measure and satisfies K̄(0) = sup

τ∈T
E[K(τ)], K̄(∞) = K(∞). The Doob-Meyer Decomposition Theorem of

Karatzas & Shreve (1998), Section 1.4, Theorem 4.10,2 enables us to represent the super-martingale K̄(t) as
K̄(t) = K̄(0) + M̄(t) − Ā(t), with a uniformly integrable martingale under the P measure M̄ (t) satisfying
M̄(0) = 0 and a strictly increasing process Ā(t) satisfying Ā(0) = 0. Moreover, the Martingale Representation
Theorem from Bjork (2009), Chapter 11, Theorem 11.2,3 makes M̄(t) take expression M̄(t) =

∫ t

0 ρ̄(s)dB(s),
where ρ̄(t) is an F-adapted process satisfying

∫∞
0 ρ̄2(s)ds <∞ a.s..

Defining a new process X̄(t) , 1
H(t)

[

x− K̄(0) + K̄(t)−K(t) + Ā(t)
]

− Rpost, it can be observed that X̄(t) is a

non-negative process with the initial wealth X̄(0) = x−Rpost, because of

K̄(0) = sup
τ∈T

E[K(τ)] = sup
τ∈T

E

[
∫ τ

0
H(t)(c(t) + d)dt

]

≤ x−Rpost.

Then X̄(t) can be expressed with M̄(t) as

X̄(t) =
1

H(t)

[

x+ M̄(t)−K(t)
]

−Rpost =
1

H(t)

[

x+

∫ t

0
ρ̄(s)dB(s)−

∫ t

0
(c(s) + d)H(s)ds

]

−Rpost.

Applying the Itô’s formula to H(t)Xx,c,π(t), we can get

d(H(t)Xx,c,π(t)) = −H(t)Xx,c,π(t)θdB(t)− (c(t) + d)H(t)dt+ σπ(t)H(t)dB(t).

Considering the portfolio strategy π(t) = ρ̄(t)
σH(t) +

θXx,c,π(t)
σ

, the wealth process takes

Xx,c,π(t) =
1

H(t)

[

x+

∫ t

0
ρ̄(s)dB(s)−

∫ t

0
(c(s) + d)H(s)ds

]

,

which indicates that X̄(t) = Xx,c,π(t)−Rpost, a.s.. The non-negativity of X̄(t) makes clear that Xx,c,π(t) ≥ Rpost,
a.s., ∀t ≥ 0.

Now we turn back to the proof of Theorem A.1. Following [7, Section 4, Theorem 1], the proof mainly contains
two aspects: the first part is to show the admissibility of c∗(t), and the second part is to claim that c∗(t) is the
optimal consumption strategy to Problem (PPR).

1C. Dellacherie and P. Meyer, Probabilities and potential b, theory of martingales, North–Holland Mathematics Studies, 1982.
2I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus. Second edition. Springer-Verlag, 1998.
3T. Bjork, Arbitrage theory in continuous time. Oxford university press, 2009.
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(1) We first prove that c∗(t) = I∗PR(λ
∗
PRe

γtD∗
PR(t)H(t)) is an admissible consumption policy. Taking any stopping

time τ from T and a positive constant ǫ, we can introduce Dǫ
PR(t) , D∗

PR(t)+ ǫI[0,τ)(t), which evidently satisfies
Dǫ

PR(t) ∈ D. Then defining a function

L(D(t)) , E

[
∫ ∞

0
e−γt

(

ũPR(λ
∗
PR
eγtD(t)H(t)) − dλ∗

PR
eγtD(t)H(t)

)

dt

]

+ λ∗PRE

[
∫ ∞

0
RpostH(t)dD(t)

]

+ λ∗PR(x−Rpost)D(0),

an inequality, L(D∗
PR

(t)) ≤ L(Dǫ
PR

(t)), is obtained from the facts that D∗
PR

(t) is the optimal solution of Problem
(SPR) and x ≥ Rpost. This inequality gives us

lim sup
ǫ↓0

E

[
∫ τ

0

(

e−γt
ũPR(λ

∗
PR
eγtDǫ

PR
(t)H(t))−ũPR(λ

∗
PR
eγtD∗

PR
(t)H(t))

ǫ
−dλ∗PRH(t)

)

dt

]

+λ∗PR(x−Rpost)≥0,

considering dDǫ(t) = dD∗(t), ∀t ∈ (0, τ). The decreasing property of ũPR(·) and the Fatou’s lemma endows us
with

E

[
∫ τ

0
e−γtũ′PR(λ

∗
PRe

γtD∗
PR(t)H(t))λ∗PRe

γtH(t)dt

]

≥

lim sup
ǫ↓0

E

[
∫ τ

0
e−γt

ũPR(λ
∗
PR
eγtDǫ

PR
(t)H(t))− ũPR(λ

∗
PR
eγtD∗

PR
(t)H(t))

ǫ
dt

]

.

Then ũ′
PR

(·) = −IPR(·) indicates that E
[∫ τ

0 H(t)(c∗(t) + d)dt
]

≤ x − Rpost. Since τ can be any stopping time
in the set T , Lemma A.2 claims that there exists a portfolio strategy π∗(t) making the related wealth process
satisfying Xx,c∗,π∗

(t) ≥ Rpost, ∀t ≥ 0.

(2) We move to show the optimality of c∗(t) to Problem (PPR). The proof of Lemma A.2 indicates that for an
arbitrary consumption strategy c(t) ∈ APR(x), there exists a process ζ(t) satisfying

∫ t

0
(c(s) + d)H(s)ds +H(t)Xx,c,π(t) = x+

∫ t

0
ζ(s)dB(s). (A.6)

The property Xx,c,π(t) ≥ Rpost a.s. gives us the subsequent inequality with any process D(t) ∈ D,

∫ T

0

∫ t

0
(c(s) + d)H(s)dsdD(t) +

∫ T

0
RpostH(t)dD(t) ≥

∫ T

0

[

x+

∫ t

0
ζ(s)dB(s)

]

dD(t),

where T is any time meeting T ≥ t. Since D(t) is bounded variational, integrating by parts gives us

∫ T

0
D(s)(c(s) + d)H(s)ds −

∫ T

0
D(s)ζ(s)dB(s) ≤

D(0)x+D(T )

[
∫ T

0
(c(s) + d)H(s)ds−x−

∫ T

0
ζ(s)dB(s)

]

+

∫ T

0
RpostH(s)dD(s).

Then we can take the expectation under the P measure on both sides and replace Equation (A.6) to get

E

[

∫ T

0 D(s)(c(s) + d)H(s)ds
]

≤ D(0)x + E

[

∫ T

0 RpostH(s)dD(s)
]

. Then the Lebesgue’s Monotone Convergence

Theorem indicates that

E

[
∫ ∞

0
D(s)(c(s) + d)H(s)ds

]

≤ D(0)x+ E

[
∫ ∞

0
RpostH(s)dD(s)

]

,

6



which holds for any admissible consumption policy c(t) and any non-negative, non-increasing process D(t).
Furthermore, it will be proved that the above inequality becomes equalized with the given c∗(t) and D∗

PR(t).
Introducing D̄ǫ

PR(t) , D∗
PR(t)(1 + ǫ) ∈ D with a small enough constant ǫ and defining a new function as

L̃(D(t)) , E

[
∫ ∞

0
e−γt

(

ũPR(λ
∗
PR
eγtD(t)H(t)) − dλ∗

PR
eγtD(t)H(t)

)

dt

]

+ λ∗
PR

E

[
∫ ∞

0
RpostH(t)dD(t)

]

+ λ∗
PR
xD(0),

we get L̃(D̄ǫ
PR

(t)) ≥ L̃(D∗
PR

(t)). Following the same argument with the first part, we apply the Fatou’s lemma
to obtain separately

E

[
∫ ∞

0
D∗

PR
(t)H(t)(c∗(t) + d)dt

]

≤ xD∗
PR

(0) + E

[
∫ ∞

0
RpostH(t)dD∗

PR
(t)

]

,

E

[
∫ ∞

0
D∗

PR(t)H(t)(c∗(t) + d)dt

]

≥ xD∗
PR(0) + E

[
∫ ∞

0
RpostH(t)dD∗

PR(t)

]

,

which claims E
[∫∞

0 D∗
PR

(t)H(t)(c∗(t)+d)dt
]

=xD∗
PR

(0)+E
[∫∞

0 RpostH(t)dD∗
PR

(t)
]

. Afterwards, we define a new
optimization problem named (P ′

PR
) as

max
c(t)≥0

E

[
∫ ∞

0
e−γtuPR(c(t))dt

]

(P ′
PR)

s.t. E

[
∫ ∞

0
D∗

PR(t)H(t)(c(t) + d)dt

]

≤ xD∗
PR(0) + E

[
∫ ∞

0
RpostH(t)dD∗

PR(t)

]

.

The Lagrange method implies that the optimal consumption solution of the above problem, denoted as c̃∗(t),
satisfies e−γtu′PR(c̃

∗(t)) = λ̃PRD
∗
PR(t)H(t), with λ̃PR > 0 as the Lagrange multiplier. The condition λ̃PR = λ∗PR

makes the constraint of Problem (P ′
PR) takes equality. And the condition u′PR(c̃

∗(t)) = λ∗PRe
γtD∗

PR(t)H(t) implies
that c̃∗(t) = I(λ∗PRe

γtD∗
PR(t)H(t)) = c∗(t), which shows that c∗(t) is the optimal consumption policy of Problem

(P ′
PR). Finally, since the maximum utility of Problem (PPR) is upper bounded by the maximum utility of (P ′

PR),
we can conclude that c∗(t) is also the optimal consumption solution of the primal problem (PPR).

A.2 Proof of Proposition A.3

Referring to [2, Appendix A], the function φPR(t, z) is assumed to be time-independent, that is, φPR(t, z) =
e−γtvPR(z). Then the condition (V 3) of (A.4) leads to a differential equation

− γvPR(z) + (γ − r)zv′PR(z) +
1

2
θ2z2v′′PR(z) + ũPR(z)− dz = 0, 0 < z < ẑPR, (A.7)

which has the solution

vPR(z) = B1,PRz
n1 +B2,PRz

n2 +
1− δ(1 − k)

δ(1− k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 −

d

r
z, 0 < z < ẑPR.

n1 and n2 are the roots of the second-order equation θ2

2 n
2 +

(

γ − r − θ2

2

)

n− γ = 0, and satisfy

n1,2 = −
γ − r − θ2

2

θ2
∓

√

√

√

√

(

γ − r − θ2

2

θ2

)2

+
2γ

θ2
, n1 < 0, n2 > 1.
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Since n1 < 0, the term zn1 will suffer the explosion as z goes to 0. Therefore, we set the coefficient B1,PR = 0
by the boundedness assumption. Considering the smooth conditions at ẑPR, we can construct a two-equations
system to determine the parameters B2,PR and ẑPR.

• C1 condition at z = ẑPR: n2B2,PRẑ
n2−1
PR −K1L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

1
δ(1−k)−1
PR − d

r
+Rpost = 0.

• C2 condition at z = ẑPR: n2(n2 − 1)B2,PRẑ
n2−2
PR −K1

1
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

2−δ(1−k)
δ(1−k)−1
PR = 0.

By multiplying the C2 condition with ẑPR and then adding with the C1 condition, we have

B2,PRẑ
n2−1
PR

= K1
δ(1 − k)

δ(1 − k)− 1

1

n22
L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

1
δ(1−k)−1
PR +

1

n22

(

d

r
−Rpost

)

.

Then, substituting the above expression into the C1 condition, we get the exact value of ẑPR as

ẑPR = L̄(1−k)(1−δ)

[

(1− n2)(1− δ(1 − k))

n2(δ(1 − k)− 1)− δ(1 − k)

(

Rpost −
d
r

)

K1

]δ(1−k)−1

> 0,

and B2,PR can also be solved by bringing ẑPR into the expression B2,PRẑ
n2−1
PR ,

B2,PR=
K

(δ(1−k)−1)(n2−1)
1 L̄(1−k)(1−δ)(1−n2 )

n2(n2 − 1)(δ(1−k)−1)

[

(1−n2)(1−δ(1−k))

n2(δ(1−k)−1)−δ(1−k)

(

Rpost−
d

r

)]δ(1−k)−n2(δ(1−k)−1)

<0.

Moreover, the piecewise function of vPR(z) is completely determined as

vPR(z) =







B2,PRẑ
n2
PR + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) ẑ

δ(1−k)
δ(1−k)−1
PR − d

r
ẑPR −Rpost(z − ẑPR), z ≥ ẑPR,

B2,PRz
n2 + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z, 0 < z < ẑPR.

Since vPR(z) is a piecewise polynomial function with smoothing merging conditions and differentiable everywhere,
[6, Section 8, Theorem 8.5] indicates that VPR(x) = inf

λPR>0
[ṼPR(λPR)+λPRx] keeps true for any given initial wealth

x ≥ Rpost. Thereafter, the closed-form of VPR(x) is

VPR(x)=B2,PR(λ
∗
PR

)n2+
1−δ(1−k)

δ(1−k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) (λ∗

PR
)

δ(1−k)
δ(1−k)−1 −

d

r
λ∗

PR
+λ∗

PR
x, x≥ x̂PR,

with −n2B2,PR(λ
∗
PR

)n2−1 +K1L̄
(1−k)(1−δ)
1−δ(1−k) (λ∗

PR
)

1
δ(1−k)−1 + d

r
= x, x ≥ x̂PR. x̂PR is the critical wealth level corre-

sponding to ẑPR and follows

x̂PR = −
∂vPR

∂z

∣

∣

∣

∣

z=ẑPR

= −n2B2,PRẑ
n2−1
PR +K1L̄

(1−k)(1−δ)
1−δ(1−k) ẑ

1
δ(1−k)−1
PR +

d

r
.

Moreover, the optimal wealth process takes the form

X∗(t)=−v′PR(Z
∗
PR(t))=−n2B2,PR(Z

∗
PR(t))

n2−1+K1L̄
(1−k)(1−δ)
1−δ(1−k) (Z∗

PR(t))
1

δ(1−k)−1 +
d

r
, 0<Z∗

PR(t)≤ ẑPR,

and the related optimal consumption-portfolio strategies are

c∗(t) = IPR(λ
∗
PRe

γtH(t)) = (Z∗
PR(t))

1
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) ,

π∗(t) =
θ

σ

[

n2(n2 − 1)B2,PR(Z
∗
PR(t))

n2−1 −K1
1

δ(1 − k)− 1
L̄

(1−k)(1−δ)
1−δ(1−k) (Z∗

PR(t))
1

δ(1−k)−1

]

,

the optimal portfolio strategy is obtained from [7, Section 5, Theorem 3].
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A.3 Proof of Lemma A.1

The form of function U(x) is directly summarized from Equation (A.2) and (A.5), hence the proof here only
focuses on the derivation of the Legendre-Fenchel transform of U(x), which is also divided into two cases. We
first extend the supremum in the definition of Legendre-Fenchel transform Ũ(z) by enlarging the range of x to
R, that is, Ũ(z) = sup

x∈R
[U(x)− xz], for 0 < z <∞. Moreover, it can be proved the optimal solution x∗ attaining

the supremum automatically satisfies x∗ ≥ Rpost.
(1) Rpost =

d
r
: From the first-order condition, we have

z = U ′(x∗) = K
1−δ(1−k)
1 L̄(1−k)(1−δ)

(

x∗ −
d

r

)δ(1−k)−1

,

which entails that x∗ =
(

zK
δ(1−k)−1
1 L̄−(1−k)(1−δ)

)
1

δ(1−k)−1
+ d

r
. Then x∗ > Rpost =

d
r
is obviously satisfied for

z > 0. Taking the above relationship back to the dual transform definition, Ũ(z) is directly acquired after
elementary calculation,

Ũ(z) =
1− δ(1 − k)

δ(1 − k)
z

δ(1−k)
δ(1−k)−1K1L̄

(1−k)(1−δ)
1−δ(1−k) −

d

r
z.

(2) Rpost >
d
r
: Considering the fact VPR(x) = inf

λPR>0
[vPR(λPR)+λPRx], it can be obtained that vPR(z) is the

Legendre-Fenchel transform of VPR(x) from [4, Chapter 3, Lemma 4.3]. Then the identical forms of functions
VPR(x) and U(x) enable us to deduce the solution as Ũ(z) = vPR(z). The last step is to claim x∗ ≥ Rpost, which
can be resorted to the condition x∗ = −v′PR(z) ≥ −v′PR(ẑPR) = Rpost.

B Proof of Lemma 3.2

Following [6, Section 6, Lemma 6.3], we first define a new continuous process as

G(t) ,
1

ξ(t)
Ẽ

[
∫ τ

t

ξ(s)(c(s) + wl(s) + d− wL̄)ds+ ξ(τ)K

∣

∣

∣

∣

Ft

]

, ∀t ∈ [0, τ ],

where Ẽ[·] representing the expectation under P̃ measure. From the property of the random variable K, this

process satisfies G(t)= 1
ξ(t) Ẽ

[

∫ τ

t
ξ(s)(c(s)+wl(s))ds+ξ(τ)

(

K− d−wL̄
r

)
∣

∣

∣
Ft

]

+ d−wL̄
r

≥ d−wL̄
r

, a.s.. Then, making use

of the condition E
[∫ τ

0 H(t)(c(t) + wl(t) + d− wL̄)dt+H(τ)K
]

= x, we get G(τ) = K and

G(0) = Ẽ

[
∫ τ

0
ξ(s)(c(s) + wl(s) + d−wL̄)ds+ ξ(τ)K

]

= E

[
∫ τ

0
H(s)(c(s) + wl(s) + d−wL̄)ds+H(τ)K

]

= x,

the above derivation involves changing the measure from the P̃ measure with the pricing kernel as ξ(t) to the P

measure with the pricing kernel as H(t). Meanwhile, we define a new process

M(t) = ξ(t)G(t) +

∫ t

0
ξ(s)(c(s) + wl(s) + d− wL̄)ds, ∀t ∈ [0, τ ].
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Based on the fact

Ẽ[M(t)] = Ẽ

[

Ẽ

[
∫ τ

t

ξ(s)(c(s)+wl(s)+d−wL̄)ds+ξ(τ)K

∣

∣

∣

∣

Ft

]

+

∫ t

0
ξ(s)(c(s)+wl(s)+d−wL̄)ds

]

= Ẽ

[
∫ τ

0
ξ(s)(c(s) + wl(s) + d− wL̄)ds + ξ(τ)K

]

= x =M(0),

M(t) is a P̃-martingale. According to the Martingale Representation Theorem from Bjork (2009), Chapter 11,
Theorem 11.2, it can be expressed as M(t) = x +

∫ t

0 ρ(s)dB̃(s), ∀t ∈ [0, τ ], with an F-adapted process ρ(t)

satisfying
∫∞
0 ρ2(s)ds < ∞ a.s.. Furthermore, adopting the portfolio strategy π(t) , ρ(t)

σξ(t) , the wealth process
becomes

dXx,c,π,l(t) = rXx,c,π,l(t)dt+ π(t)(µ − r)dt− (c(t) +wl(t) + d− wL̄)dt+ σπ(t)dB(t)

= rXx,c,π,l(t)dt− (c(t) +wl(t) + d− wL̄)dt+ σπ(t)dB̃(t)

= rXx,c,π,l(t)dt− (c(t) +wl(t) + d− wL̄)dt+
ρ(t)

ξ(t)
dB̃(t),

the second equality also comes from changing the measure by B̃(t) , B(t) + θt. We can observe that G(t) =
Xx,c,π,l(t) a.s. on [0, τ ], which concludes the proof of this lemma.

C Proof of Lemma 3.3

Remark C.1. In this section we prove Lemma 3.3. Moreover, we also show that the conditions z̄ < ỹ, defined
below, and z̄< ẑPR hold true.

The proof here refers to Oksendal (2013) Section 10, Example 10.3.1.4 First of all, [5, Lemma 2.1] shows that

ũ(z)=

[

A1z
δ(1−k)

δ(1−k)−1 −wLz

]

I{0<z<ỹ}+
[

A2z
−1−k

k

]

I{z≥ỹ},

with A1,
1−δ+δk
δ(1−k)L

(1−k)(1−δ)
1−δ(1−k) , A2 ,

k
δ(1−k)

(

1−δ
δw

)

(1−k)(1−δ)
k , and ỹ , L−k

(

1−δ
δw

)1−δ(1−k)
.

Introducing two functions

g(t, z) , e−γtŨ(z), G(t, z, w̄) , g(t, z) + w̄ = e−γtŨ(z) + w̄,

and an operator APG(t, z, w̄) ,
∂G
∂t

+ (γ − r)z ∂G
∂z

+ θ2

2 z
2 ∂2G
∂z2

+ e−γtũ(z)− e−γt(d−wL̄)z, we can determine the
continuous region as Ω1 = {(t, z, w̄) : APG(t, z, w̄) > 0}. Moreover, since

APG(t, z, w̄) = −γe−γtŨ(z) + (γ − r)ze−γtŨ ′(z) +
θ2

2
z2e−γtŨ ′′(z) + e−γt

(

ũ(z)− (d− wL̄)z
)

,

defining a new function h(z) = −γŨ(z) + (γ − r)zŨ ′(z) + θ2

2 z
2Ũ ′′(z) + ũ(z)− (d−wL̄)z, the continuous region

can be rewritten as Ω1 = {z > 0 : h(z) > 0}. Since the function Ũ(z) takes two different forms based on the
value of Rpost, we split the remaining discussion also into two cases: Rpost =

d
r
and Rpost >

d
r
.

4B. Oksendal, Stochastic differential equations: an introduction with applications. Springer Science & Business Media, 2013.
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(1) For Rpost=
d
r
, we have Ũ(z)= 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z. After the basic calculation, we get

h(z) =
δ(1 − k)− 1

δ(1 − k)
L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 + wL̄z + ũ(z)

=
δ(1−k)−1

δ(1−k)
L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 +wL̄z+

[

A1z
δ(1−k)

δ(1−k)−1 −wLz

]

I{0<z<ỹ}+
[

A2z
− 1−k

k

]

I{z≥ỹ}.

(C.1)

h(z) inherits the piecewise form from the function ũ(z). Afterwards, determining the continuous region cor-
responds to characterize the features of the zero of h(z). We begin claiming its convexity by the second
derivative function. On the interval 0 < z < ỹ, we can directly determine the sign of h′′(z) with h′′(z) =

1
δ(1−k)−1z

2−δ(1−k)
δ(1−k)−1

[

L̄
(1−k)(1−δ)
1−δ(1−k) − L

(1−k)(1−δ)
1−δ(1−k)

]

> 0. As for the interval z > ỹ, the corresponding second derivative

function h′′(z) is

h′′(z) =
1

δ(1 − k)− 1
L̄

(1−k)(1−δ)
1−δ(1−k) z

2−δ(1−k)
δ(1−k)−1 +

1

δk

(

1− δ

δw

)

(1−k)(1−δ)
k

z−
1+k
k .

By solving the inequality, 1
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) z

2−δ(1−k)
δ(1−k)−1 + 1

δk

(

1−δ
δw

)

(1−k)(1−δ)
k z−

1+k
k > 0, we get

z > L̄−k

(

1− δ(1 − k)

δk

)

k(δ(1−k)−1)
(1−k)(δ−1)

(

1− δ

δw

)1−δ(1−k)

.

Since

ỹ − L̄−k
(

1−δ(1−k)

δk

)

k(δ(1−k)−1)
(1−k)(δ−1)

(

1−δ

δw

)1−δ(1−k)

=

(

1−δ

δw

)1−δ(1−k)


L−k−

(

1−δ(1−k)

δk

)

k(δ(1−k)−1)
(1−k)(δ−1)

L̄−k



>0,

h′′(z) > 0 keeps true for z > ỹ. Besides, considering the condition lim
z↑ỹ

h′′(z) = lim
z↓ỹ

h′′(z), we can conclude that

the function h(z) is strictly convex on the interval z > 0. Then we move to claim h(ỹ) > 0: before this, a new
function is introduced as

f(z) =
δ(1− k)− 1

δ(1 − k)
L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 +

k

δ(1 − k)

(

1− δ

δw

)

(1−k)(1−δ)
k

z−
1−k
k + wL̄z, z > 0,

and its derivative functions are

f ′(z) = z
1

δ(1−k)−1 L̄
(1−k)(1−δ)
1−δ(1−k) −

1

δ

(

1− δ

δw

)

(1−k)(1−δ)
k

z−
1
k + wL̄,

f ′′(z) =
1

δ(1 − k)− 1
z

2−δ(1−k)
δ(1−k)−1 L̄

(1−k)(1−δ)
1−δ(1−k) +

1

δk

(

1− δ

δw

)

(1−k)(1−δ)
k

z−
1+k
k .

Defining ỹ1 = L̄−k
(

1−δ
δw

)1−δ(1−k)
, it can be obtained that

f(ỹ1)=
δ(1−k)−1

δ(1−k)
L̄1−k

(

1−δ

δw

)−δ(1−k)

+
k

δ(1−k)
L̄1−k

(

1−δ

δw

)−δ(1−k)

+wL̄1−k

(

1−δ

δw

)1−δ(1−k)

=0,
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f ′(ỹ1)=

(

L̄−k
(

1−δ

δw

)1−δ(1−k)
)

1
δ(1−k)−1

L̄
(1−k)(1−δ)
1−δ(1−k) −

1

δ

(

1−δ

δw

)

(1−k)(1−δ)
k

(

L̄−k
(

1−δ

δw

)1−δ(1−k)
)−1

k

+wL̄=0.

For the second derivative, f ′′(z) > 0 is equivalent to z >
(

1−δ(1−k)
δk

)

k(δ(1−k)−1)
(1−k)(δ−1) (1−δ

δw

)1−δ(1−k)
L̄−k. Since 0 <

(

1−δ(1−k)
δk

)

k(δ(1−k)−1)
(1−k)(δ−1)

< 1, we have ỹ1 >
(

1−δ(1−k)
δk

)

k(δ(1−k)−1)
(1−k)(δ−1) (1−δ

δw

)1−δ(1−k)
L̄−k, which results in f ′′(z) > 0 for

z > ỹ1. Then the fact f ′(ỹ1) = 0 indicates that f ′(z) > 0 for z > ỹ1, which means f(z) is strictly increasing

on the corresponding interval. Considering the relationship ỹ = L−k
(

1−δ
δw

)1−δ(1−k)
> ỹ1, we can observe the

positive value of h(ỹ) through
0 = f(ỹ1) < f(ỹ) = h(ỹ). (C.2)

Finally, in view of the limitations

lim
z↓0

h(z) = lim
z↓0

[

δ(1 − k)− 1

δ(1 − k)
z

δ(1−k)
δ(1−k)−1

(

L̄
(1−k)(1−δ)
1−δ(1−k) − L

(1−k)(1−δ)
1−δ(1−k)

)

+ wz(L̄− L)

]

= 0,

lim
z↓0

h′(z) = lim
z↓0

[

z
1

δ(1−k)−1

(

L̄
(1−k)(1−δ)
1−δ(1−k) − L

(1−k)(1−δ)
1−δ(1−k)

)

+w(L̄− L)

]

= −∞,

and the properties h′′(z) > 0 for z > 0, h(ỹ) > 0, we can conclude that there is a unique zero of h(z), which

is denoted as z̄, satisfying z̄ < ỹ and h′(z̄) = L̄
(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 + wL̄+ ũ′(z̄). Hence, the continuous region is

Ω1 = {(t, z, w̄) : APG(s, z, w̄) > 0} = {z : h(z) > 0} = {z > z̄}.

(2) For Rpost >
d
r
, we have

Ũ(z) =







B2,PRẑ
n2
PR + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) ẑ

δ(1−k)
δ(1−k)−1
PR − d

r
ẑPR −Rpost(z − ẑPR), z≥ ẑPR,

B2,PRz
n2 + 1−δ(1−k)

δ(1−k) K1L̄
(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 − d

r
z, 0<z<ẑPR,

then the function h(z) on the interval 0 < z < ẑPR is obtained as

h(z)=B2,PRz
n2

[

−γ+(γ−r)n2+
θ2

2
n2(n2−1)

]

+
δ(1 − k)− 1

δ(1 − k)
L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 +wL̄z + ũ(z).

From n1 + n2 = −
γ−r− θ2

2
θ2

2

and n1n2 = − γ
θ2

2

, we can deduce −γ + (γ − r)n2 +
θ2

2 n2(n2 − 1) = 0. Hence, the

function h(z) is reduced as

h(z) =
δ(1 − k)− 1

δ(1 − k)
L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 + wL̄z + ũ(z), 0 < z < ẑPR.

Compared to Equation (C.1), we can observe that h(z) adopts the same form but applies to the different
intervals. As for the interval z ≥ ẑPR, considering that Ũ(z) = vPR(ẑPR) − Rpost(z − ẑPR), and the condition
(A.7) is applicable at the point z = ẑPR, we get

h(z) = −γ (vPR(ẑPR)−Rpost(z − ẑPR))− (γ − r)zRpost + ũ(z)− (d− wL̄)z

= (rRpost − d)(z − ẑPR)− ũPR(ẑPR) + ũ(z) +wL̄z.
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h′′(z)= ũ′′(z)> 0 shows that h(z) is strictly convex on (ẑPR,∞). Then a contradiction is constructed to prove

z̄< ẑPR. We first use r= θ2

2 (1−n2)(n1−1) and n2>1> δ(1−k)
δ(1−k)−1 >0 to derive the condition

(1− n2)(1− δ(1 − k))

n2(δ(1 − k)− 1)− δ(1 − k)

1

K1
= r

γ − rδ(1− k)− θ2

2
δ(1−k)

1−δ(1−k)

γ − rδ(1− k) + θ2

2 n2
< r,

which gives us

ẑ
1

δ(1−k)−1
PR = L̄

(1−k)(1−δ)
δ(1−k)−1

(1− n2)(1 − δ(1 − k))

n2(δ(1 − k)− 1)− δ(1 − k)

(

Rpost −
d
r

)

K1
< L̄

(1−k)(1−δ)
δ(1−k)−1 (rRpost − d) .

Assuming z̄ ≥ ẑPR, we can observe the contradiction through

h′(z̄) = L̄
(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 + wL̄+ ũ′(z̄)

≤ L̄
(1−k)(1−δ)
1−δ(1−k) ẑ

1
δ(1−k)−1
PR + wL̄+ ũ′(z̄)

< L̄
(1−k)(1−δ)
1−δ(1−K) L̄

(1−k)(1−δ)
δ(1−K)−1 (rRpost − d) +wL̄+ ũ′(z̄)

= (rRpost − d) + wL̄+ ũ′(z̄) = h′(z̄).

Then the condition z̄ < ẑPR implies h(ẑPR) > 0 and

lim
z↑ẑPR

h′(z) = lim
z↑ẑPR

[

L̄
(1−k)(1−δ)
1−δ(1−k) z

1
δ(1−k)−1 + ũ′(z) + wL̄

]

= −ũ′PR(ẑPR) + ũ′(ẑPR) + wL̄ ≥ 0.

Afterwards, we have

lim
z↓ẑPR

h′(z) = rRpost − d+ ũ′(ẑPR) + wL̄

≥ rRpost − d+ ũ′PR(ẑPR)

= rRpost − d− ẑ
1

δ(1−k)−1
PR L̄

(1−k)(1−δ)
1−δ(1−k)

= rRpost − d−
(1− n2)(1− δ(1 − k))

n2(δ(1 − k)− 1)− δ(1 − k)

1

K1

(

Rpost −
d

r

)

> 0,

which indicates that h(z) is strictly increasing for z > ẑPR regarding the convex property already shown.
Therefore, z̄ is the unique zero of function h(z), and satisfies z̄ < ẑPR. The last step is to claim z̄ < ỹ under
this case, which is equivalent to h(ỹ) > 0 and discussed in two different situations. If ỹ ≤ ẑPR, using the result
(C.2), we have

h(ỹ) =
δ(1− k)− 1

δ(1 − k)
L̄

(1−k)(1−δ)
1−δ(1−k) ỹ

δ(1−k)
δ(1−k)−1 + wL̄ỹ + ũ(ỹ) = f(ỹ) > 0,

otherwise, if ỹ> ẑPR, we use the increasing property of h(z) on (ẑPR,∞) to directly obtain h(ỹ)>0.

D Calculation of Variational Inequalities (3.3)

The solution of (3.3) is split into two different cases based on the value of Rpost, namely Rpost=
d
r
and Rpost>

d
r
.

Following [2, Appendix A], we take the time-separated form of function φ(t, z)= e−γtv(z) for solving the above
variational inequalities explicitly.
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We recall that [5, Lemma 2.1] shows that ũ(z) =

[

A1z
δ(1−k)

δ(1−k)−1 −wLz

]

I{0<z<ỹ}+
[

A2z
−1−k

k

]

I{z≥ỹ}, with A1 ,

1−δ+δk
δ(1−k)L

(1−k)(1−δ)
1−δ(1−k) , A2 , k

δ(1−k)

(

1−δ
δw

)

(1−k)(1−δ)
k , and ỹ , L−k

(

1−δ
δw

)1−δ(1−k)
. Moreover, n1 and n2 are the roots of the

second-order equation θ2

2 n
2 +

(

γ − r − θ2

2

)

n− γ = 0, and satisfy

n1,2 = −
γ − r − θ2

2

θ2
∓

√

√

√

√

(

γ − r − θ2

2

θ2

)2

+
2γ

θ2
, n1 < 0, n2 > 1.

Case 1. Rpre =
d−wL̄
r

& Rpost =
d
r

From the condition (V 1) of (3.3), the following differential equation holds in the region z > z̄,

− γv(z) + (γ − r)zv′(z) +
1

2
θ2z2v′′(z) + ũ(z)− (d− wL̄)z = 0, (D.1)

whose solution takes a form as

v(z) =

{

B11z
n1 +B21z

n2 + A1
Γ1
z

δ(1−k)
δ(1−k)−1 + w(L̄−L)−d

r
z, z̄ < z < ỹ,

B12z
n1 +B22z

n2 + A2
Γ2
z−

1−k
k + wL̄−d

r
z, z ≥ ỹ.

Since n2 > 0, for the sake of avoiding the explosion of the term zn2 as z goes to ∞, we set B22 = 0. Then, the
condition (V 4) of (3.3) enables us to obtain

v(z̄) = Ũ(z̄) =
1− δ(1 − k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 −

d

r
z̄,

the second equality results from the condition Rpost =
d
r
. Furthermore, combining with the smooth condition at

the point z = ỹ, we can construct a four-equations system to determine the parameters B11, B21, B12 and z̄.

• C0 condition at z = z̄

B11z̄
n1 +B21z̄

n2 +
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄− L)

r
z̄ =

1− δ(1 − k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 ;

• C1 condition at z = z̄

n1B11z̄
n1−1+n2B21z̄

n2−1+
δ(1−k)

δ(1−k)−1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄−L)

r
=−K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 ;

• C0 condition at z = ỹ

B11ỹ
n1 +B21ỹ

n2 +
A1

Γ1
ỹ

δ(1−k)
δ(1−k)−1 −

wL

r
ỹ = B12ỹ

n1 +
A2

Γ2
ỹ−

1−k
k ;

• C1 condition at z = ỹ

n1B11ỹ
n1−1 + n2B21ỹ

n2−1 +
δ(1 − k)

δ(1 − k)− 1

A1

Γ1
ỹ

1
δ(1−k)−1 −

wL

r
= n1B12ỹ

n1−1 −
1− k

k

A2

Γ2
ỹ−

1
k .
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Case 2. Rpre =
d−wL̄
r

& Rpost >
d
r

Then we move to the second case with a different condition Rpost >
d
r
compared to Case 1, which mainly

affects the post-retirement part and leads to a different form of Ũ(z). Lemma 3.1 shows that the corresponding
Legendre-Fenchel transform of post-retirement value function Ũ(z) is

Ũ(z) = B2,PRz
n2 +

1− δ(1− k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z

δ(1−k)
δ(1−k)−1 −

d

r
z.

Meanwhile, the dual transform involving the pre-retirement part ũ(z) stays the same; hence Equation (V 1) from
(3.3) takes the identical solution. Afterwards, using the smooth fit conditions at z= z̄ and z= ỹ, we construct a
four-equations system to achieve the unknowns, B11, B21, B12 and z̄.

• C0 condition at z = z̄

B11z̄
n1+B21z̄

n2+
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄−L)

r
z̄=B2,PRz̄

n2+
1−δ(1−k)

δ(1−k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 ;

• C1 condition at z = z̄

n1B11z̄
n1−1+n2B21z̄

n2−1+
δ(1−k)

δ(1−k)−1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄−L)

r
=n2B2,PRz̄

n2−1−K1L̄
(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 ;

• C0 condition at z = ỹ

B11ỹ
n1 +B21ỹ

n2 +
A1

Γ1
ỹ

δ(1−k)
δ(1−k)−1 −

wL

r
ỹ = B12ỹ

n1 +
A2

Γ2
ỹ−

1−k
k ;

• C1 condition at z = ỹ

n1B11ỹ
n1−1 + n2B21ỹ

n2−1 +
δ(1 − k)

δ(1 − k)− 1

A1

Γ1
ỹ

1
δ(1−k)−1 −

wL

r
= n1B12ỹ

n1−1 −
1− k

k

A2

Γ2
ỹ−

1
k .

After obtaining the closed forms of v(z) separately in Case 1 and Case 2, and given the initial wealth x ≥ Rpre,
the optimal Lagrange multiplier λ∗ can be acquired through solving the equation x = −v′(λ∗), due to the fact
that V (x) = inf

λ>0

[

Ṽ (λ) + λx
]

= inf
λ>0

[

v(λ) + λx
]

= v(λ∗) + λ∗x holds under the differentiable property of v(·).

Then the optimal dual process of wealth follows Z∗(t) = λ∗eγtH(t).

Proposition D.1. For Case 1 and Case 2, the optimal retirement time is τ∗ = inf
t≥0

{Z∗(t) ≤ z̄}, the optimal

consumption-portfolio-leisure plan {c∗(t), π∗(t), l∗(t)} before retirement is given by

c∗(t) =







L
−

(1−k)(1−δ)
δ(1−k)−1 (Z∗(t))

1
δ(1−k)−1 , z̄ < Z∗(t) < ỹ,

(

1−δ
δw

)

(1−δ)(1−k)
k (Z∗(t))−

1
k , Z∗(t) ≥ ỹ,

l∗(t) =

{

L, z̄ < Z∗(t) < ỹ,
(

1−δ
δw

)−
δ(1−k)−1

k (Z∗(t))−
1
k , Z∗(t) ≥ ỹ,

π∗(t) =















θ
σ

[

n1(n1 − 1)B11(Z
∗(t))n1−1 + n2(n2 − 1)B21(Z

∗(t))n2−1

+ δ(1−k)
(δ(1−k)−1)2

A1
Γ1

(Z∗(t))
1

δ(1−k)−1

]

, z̄ < Z∗(t) < ỹ,

θ
σ

[

n1(n1−1)B12(Z
∗(t))n1−1 + 1−k

k2
A2
Γ2

(Z∗ (t))−
1
k

]

, Z∗(t) ≥ ỹ.

Proof. The optimal consumption and leisure strategies come from [5, Lemma 2.1], and the optimal portfolio
strategy is derived by π∗(t) = θ

σ
Z∗(t)v′′(Z∗(t)) from [7, Section 5, Theorem 3].
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E Calculation of Variational Inequalities (3.5)

Recalling the condition z̄ < ỹ in Lemma 3.3, the problem to be solved is split into four different cases depending
on the relationship between ỹ with ẑ, and Rpost with

d
r
. We provide a diagram for a clear classification.

0 < z̄ < ỹ ≤ ẑ

Case 4. 0 < z̄ < ỹ ≤ ẑ, Rpre >
d−wL̄
r

& Rpost >
d
r

Case 3. 0 < z̄ < ỹ ≤ ẑ, Rpre >
d−wL̄
r

& Rpost =
d
r

0 < z̄ < ẑ < ỹ

Case 6. 0 < z̄ < ẑ < ỹ, Rpre >
d−wL̄
r

& Rpost >
d
r

Case 5. 0 < z̄ < ẑ < ỹ, Rpre >
d−wL̄
r

& Rpost =
d
r

Additionally, we assume that φ(t, z) takes the time-separated form, φ(t, z)=e−γtv(z), as in [2, Appendix A].

Case 3. 0 < z̄ < ỹ ≤ ẑ, Rpre >
d−wL̄
r

& Rpost =
d
r

We begin with the condition (V 3) in (3.5), the following differential equation is obtained,

−γv(z) + (γ − r)zv′(z) +
1

2
θ2z2v′′(z) + ũ(z)− (d− wL̄)z = 0,

which is identical with Equation (D.1), hence shares the same solution as

v(z) =

{

B11z
n1 +B21z

n2 + A1
Γ1
z

δ(1−k)
δ(1−k)−1 + w(L̄−L)−d

r
z, z̄ < z < ỹ,

B12z
n1 +B22z

n2 + A2
Γ2
z−

1−k
k + wL̄−d

r
z, ỹ ≤ z < ẑ.

(E.1)

As follows, a six-equations system is established to obtain the unknown parameters B11, B21, B12, B22, z̄ and ẑ.

• C0 condition at z = z̄

B11z̄
n1 +B21z̄

n2 +
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄− L)

r
z̄ =

1− δ(1 − k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 .

• C1 condition at z = z̄

n1B11z̄
n1−1+n2B21z̄

n2−1+
δ(1 − k)

δ(1− k)− 1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄− L)

r
=−K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 .

• C0 condition at z = ỹ

B11ỹ
n1 +B21ỹ

n2 +
A1

Γ1
ỹ

δ(1−k)
δ(1−k)−1 −

wL

r
ỹ = B12ỹ

n1 +B22ỹ
n2 +

A2

Γ2
ỹ−

1−k
k .
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• C1 condition at z = ỹ

n1B11ỹ
n1−1+n2B21ỹ

n2−1+
δ(1−k)

δ(1−k)−1

A1

Γ1
ỹ

1
δ(1−k)−1 −

wL

r
=n1B12ỹ

n1−1+n2B22ỹ
n2−1−

1−k

k

A2

Γ2
ỹ−

1
k .

• C1 condition at z = ẑ

n1B12ẑ
n1−1 + n2B22ẑ

n2−1 −
1− k

k

A2

Γ2
ẑ−

1
k +

wL̄− d

r
+Rpre = 0.

• C2 condition at z = ẑ

n1(n1 − 1)B12ẑ
n1−2 + n2(n2 − 1)B22ẑ

n2−2 +
1− k

k2
A2

Γ2
ẑ−

1+k
k = 0.

Case 4. 0 < z̄ < ỹ ≤ ẑ, Rpre >
d−wL̄
r

& Rpost >
d
r

The only difference between this case and the previous one occurs in z = z̄. Since Rpost >
d
r
, Lemma 3.1 shows

that the Legendre-Fenchel transform of post-retirement value function Ũ(z̄) is

Ũ(z̄) = B2,PRz̄
n2 +

1− δ(1− k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 −

d

r
z̄.

As the same before, we set up a six-equation system to achieve the unknowns, B11, B21, B12, B22, z̄ and ẑ.
Compared with the first case, only C0 and C1 conditions at z = z̄ change, whereas all the others keep true.

• C0 condition at z = z̄

B11z̄
n1+B21z̄

n2+
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄−L)

r
z̄=B2,PRz̄

n2+
1−δ(1−k)

δ(1−k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 .

• C1 condition at z = z̄

n1B11z̄
n1−1+n2B21z̄

n2−1+
δ(1−k)

δ(1−k)−1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄−L)

r
=n2B2,PRz̄

n2−1−K1L̄
(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 .

Case 5. 0 < z̄ < ẑ < ỹ, Rpre >
d−wL̄
r

& Rpost =
d
r

Firstly, the interval 0 < z̄ < z < ẑ < ỹ, where the condition (V 3) of (3.5) holds, is considered. Also adopting
the time-independent form of φ(t, z) = e−γtv(z), the following differential equation is obtained −γv(z) + (γ −

r)zv′(z) + 1
2θ

2z2v′′(z) + ũ(z) − (d − wL̄)z = 0. The dual transform of u(c, l) is ũ(z) = A1z
δ(1−k)

δ(1−k)−1 − wLz

in the considered interval; therefore, the above differential equation takes the identical form of the one in
0 < z̄ < z < ỹ < ẑ of Case 3. The solution of v(z) is given directly from (E.1), only changing the parameters’
notations from B11 to B1 and B21 to B2 respectively,

v(z) = B1z
n1 +B2z

n2 +
A1

Γ1
z

δ(1−k)
δ(1−k)−1 +

w(L̄− L)− d

r
z, z̄ < z < ẑ.

Next, a four-equations system is set up to derive the desired parameters B1, B2, z̄, ẑ. The same arguments with
Case 3, only C1 and C2 conditions in z = ẑ changes.
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• C0 condition at z = z̄

B1z̄
n1 +B2z̄

n2 +
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄− L)

r
z̄ =

1− δ(1 − k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 .

• C1 condition at z = z̄

n1B1z̄
n1−1 + n2B2z̄

n2−1 +
δ(1 − k)

δ(1 − k)− 1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄− L)

r
= −K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 .

• C1 condition at z = ẑ

n1B1ẑ
n1−1 + n2B2ẑ

n2−1 +
δ(1 − k)

δ(1− k)− 1

A1

Γ1
ẑ

1
δ(1−k)−1 +

w(L̄− L)− d

r
+Rpre = 0.

• C2 condition at z = ẑ

n1(n1 − 1)B1ẑ
n1−2 + n2(n2 − 1)B2ẑ

n2−2 +
δ(1− k)

(δ(1 − k)− 1)2
A1

Γ1
ẑ

2−δ(1−k)
δ(1−k)−1 = 0.

Case 6. 0 < z̄ < ẑ < ỹ, Rpre >
d−wL̄
r

& Rpost >
d
r

We now move to Case 6. The only difference from the previous case happens on the condition Rpost >
d
r
, which is

mainly involved in the post-retirement part; hence, the solution of the partial differential equation corresponding
to Condition (V 3) in (3.5) remains unchanged, that is,

v(z) = B1z
n1 +B2z

n2 +
A1

Γ1
z

δ(1−k)
δ(1−k)−1 +

w(L̄− L)− d

r
z, z̄ < z < ẑ.

Considering the smooth fit conditions at z̄ and ẑ, we construct a four-equations system to deduce the values of
unknown parameters B1, B2, z̄ and ẑ.

• C0 condition at z = z̄

B1z̄
n1 +B2z̄

n2 +
A1

Γ1
z̄

δ(1−k)
δ(1−k)−1 +

w(L̄− L)

r
z̄ = B2,PRz̄

n2 +
1− δ(1 − k)

δ(1 − k)
K1L̄

(1−k)(1−δ)
1−δ(1−k) z̄

δ(1−k)
δ(1−k)−1 .

• C1 condition at z = z̄

n1B1z̄
n1−1+n2B2z̄

n2−1+
δ(1−k)

δ(1−k)−1

A1

Γ1
z̄

1
δ(1−k)−1 +

w(L̄−L)

r
=n2B2,PRz̄

n2−1−K1L̄
(1−k)(1−δ)
1−δ(1−k) z̄

1
δ(1−k)−1 .

• C1 condition at z = ẑ

n1B1ẑ
n1−1 + n2B2ẑ

n2−1 +
δ(1 − k)

δ(1− k)− 1

A1

Γ1
ẑ

1
δ(1−k)−1 +

w(L̄− L)− d

r
+Rpre = 0.

• C2 condition at z = ẑ

n1(n1 − 1)B1ẑ
n1−2 + n2(n2 − 1)B2ẑ

n2−2 +
δ(1− k)

(δ(1 − k)− 1)2
A1

Γ1
ẑ

2−δ(1−k)
δ(1−k)−1 = 0.
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Same argument with Case 1 and Case 2 in Appendix D, given the initial wealth x ≥ Rpre and solving x = −v′(λ∗),
we can obtain the optimal Lagrange multiplier λ∗ and then the optimal process Z∗(t) = λ∗eγtH(t).

Proposition E.1. Under the condition ỹ ≤ ẑ, corresponding to Case 3 and Case 4, the optimal consumption-
portfolio-leisure plan {c∗(t), π∗(t), l∗(t)} before retirement is given by

c∗(t) =







(

1−δ
δw

)

(1−δ)(1−k)
k (Z∗(t))−

1
k , ỹ ≤ Z∗(t) ≤ ẑ,

L
−

(1−k)(1−δ)
δ(1−k)−1 (Z∗(t))

1
δ(1−k)−1 , z̄ < Z∗(t) < ỹ,

l∗(t) =

{

(

1−δ
δw

)− δ(1−k)−1
k (Z∗(t))−

1
k , ỹ ≤ Z∗(t) ≤ ẑ,

L, z̄ < Z∗(t) < ỹ,

π∗(t) =















































θ
σ

[

n1(n1 − 1)B12(Z
∗(t))n1−1 + n2(n2 − 1)B22(Z

∗(t))n2−1

+1−k
k2

A2
Γ2

(Z∗(t))−
1
k

]

, ỹ ≤ Z∗(t) ≤ ẑ,

θ
σ

[

n1(n1 − 1)B11(Z
∗(t))n1−1 + n2(n2 − 1)B21(Z

∗(t))n2−1

+ δ(1−k)
(δ(1−k)−1)2

A1
Γ1

(Z∗(t))
1

δ(1−k)−1

]

, z̄ < Z∗(t) < ỹ.

Meanwhile, under the condition ẑ < ỹ, corresponding to Case 5 and Case 6, the optimal consumption-portfolio-
leisure plan {c∗(t), π∗(t), l∗(t)} before retirement is given by

c∗(t) = L
−

(1−k)(1−δ)
δ(1−k)−1 (Z∗(t))

1
δ(1−k)−1 , l∗(t) = L,

π∗(t)=
θ

σ

[

n1(n1−1)B1(Z
∗(t))n1−1+n2(n2−1)B2(Z

∗(t))n2−1+
δ(1−k)

(δ(1−k)−1)2
A1

Γ1
(Z∗(t))

1
δ(1−k)−1

]

.

Proof. Follow the lines of Proposition D.1.
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