
Architecting Explainable Service Robots

Marcello M. Bersani1, Matteo Camilli1, Livia Lestingi1,
Raffaela Mirandola1, Matteo Rossi1, Patrizia Scandurra2

1 Politecnico di Milano, Milan, Italy,
{name}.{surname}@polimi.it

2 University of Bergamo, Bergamo, Italy,
patrizia.scandurra@unibg.it

Abstract. Service robots entailing a tight collaboration with humans
are increasingly widespread in critical domains, such as healthcare and
domestic assistance. However, the so-called Human-Machine-Teaming
paradigm can be hindered by the black-box nature of service robots,
whose autonomous decisions may be confusing or even dangerous for
humans. Thus, the explainability for these systems emerges as a crucial
property for their acceptance in our society. This paper introduces the
concept of explainable service robots and proposes a software architec-
ture to support the engineering of the self-explainability requirements
in these collaborating systems by combining formal analysis and inter-
pretable machine learning. We evaluate the proposed architecture using
an illustrative example in healthcare. Results show that our proposal
supports the explainability of multi-agent Human-Machine-Teaming mis-
sions featuring an infinite (dense) space of human-machine uncertain
factors, such as diverse physical and physiological characteristics of the
agents involved in the teamwork.

Keywords: Human-Machine Teaming, explainability, software architec-
ture, statistical model checking, interpretable ML

1 Introduction

Service robots are being used for a wide range of applications such as telepres-
ence, education, personal care, and assistive medicine [10]. In these applications,
humans and robots become “peers” as they share the environment and collabo-
rate to achieve a common goal through coordinated actions. This paradigmatic
collaboration is referred to as Human-Machine Teaming [28] (HMT).

Effective teaming results from the ability of team members to coordinate
their actions based on mutual trust. The level of trust depends on several fac-
tors, including dependability aspects and mutual understanding among agents.
However, the adoption of complex control policies including Machine learning
(ML) techniques often makes robotic agents “opaque”, hence difficult for humans
to understand [13]. According to Bersani et al., [2, 3], to achieve better trust,
robotic agents must exhibit behavior that offers strong assurances, along with
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human interpretable explanations of the expected collaboration outcome. In par-
ticular, human stakeholders need to know the main reasons for phenomena of
interest occurring during the teaming, such as dependability issues or excessive
fatigue of human agents. The phenomena (or explananda) must be understood
in terms of interpretable and measurable (changing) factors [2, 3].

Recent studies focus on particular facets of explainability related to the
decision-making strategies of the robotic agents [12, 29], while other teaming
aspects such as those mentioned above are often neglected. Ultimately, there is
still a limited understanding of systematic engineering methods that can gener-
ate useful explanations to human stakeholders. Indeed, there exist frameworks
that help designers build adaptive HMT-based systems [24] by extending the
MAPE-K control loop architectural style with human-related tasks and runtime
models to support online teaming monitoring [6]. To the best of our knowledge,
there is a lack of design guidelines for service robots realizing explainable HMT.

In line with M.A. Köhl et al. [18], we consider explainability as a pivotal re-
quirement. We introduce six different levels of explainability that service robots
may achieve during the realization of an HMT. We then propose a software ar-
chitecture for explainable service robots that supports the (offline) specification
and analysis of multi-agent HMT and the (online) generation of explanations
for the phenomena of interest. Our solution combines our experience in the do-
main of service robots, formal verification through Statistical Model Checking [7]
(SMC), and interpretable ML [27]. Explanations are generated in a collective
manner—i.e., they are produced by multiple cooperating agents that collectively
achieve the HMT goals. We evaluate the proposed architecture considering dif-
ferent explainability scenarios occurring in an existing HMT in the healthcare
domain. Results show that our proposal supports explainable service robots run-
ning HMT missions with infinite (dense) space of factors, such as diverse physical
and physiological characteristics of the agents involved in the teamwork.

This paper is organized as follows. In Sec. 2, we provide preliminary concepts
and then we introduce an illustrative example in Sec. 3. In Sec. 4, we characterize
the notion of explainability and levels of explainability in HMT. In Sec. 5, we
describe our architectural solution, while we discuss a scenario-based evaluation
in Sec. 6. We discuss related work in Sec. 7 and then draw conclusions in Sec. 8.

2 Preliminaries

Predictive ML models are built by using supervised learning techniques [26] to
create a concise representation of the distribution of an outcome y in terms of
quantifiable properties, known as features (or explanatory variables). A data
point x is a vector that contains a value xj for each feature j. A supervised
learning algorithm that implements classification or regression is referred to as
classifier and regressor, respectively (more in general, predictor). Supervised
learning uses a training set that includes pre-labeled data points 〈x, y〉 to “learn”

the desired prediction function f̂ . There exist several popular predictors (either
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classifiers or regressors) in supervised ML including, for instance, Decision Trees,
Random Forests, and Neural Networks.

Interpretable ML [27] refers to the extraction of relevant knowledge from an
ML model concerning existing relations contained in the data or learned by the
predictive function. In this context, we refer to interpretability (or explainability
as introduced by Miller [25]) as the ability of a model to be understood and
explained by humans. Some predictive models are designed to have a clear and
simple structure, and their predictions are inherently explained (e.g., Linear
Regression, Decision Trees). More complex techniques (e.g., Neural Networks,
Random Forests) do not explain their predictions and are referred to as black
box (or non-interpretable) models.

The scope of interpretability is either global (i.e., holistic model interpretabil-
ity) or local (i.e., interpretability for a single prediction). Global explanations
describe the average behavior of a given model. They give a holistic view of
the distribution of the target outcome (e.g., class labels) based on the features.
Partial Dependence Plot [27] (PDP) is a global model-agnostic method that
shows the marginal effect that selected features have on the predicted outcome
of a model. Local explanations, such as those produced by Local Interpretable
Model-agnostic Explanation [27] (LIME), take into account an individual data

point of interest x and examine the prediction f̂(x) to explain possible reasons
based on an interpretable surrogate model. The model so built has the local
fidelity property, that is, it represents a good approximation of local predictions,
but it does not have to be a good global approximation.

3 Towards explainable HMT

To illustrate our approach, we adopt an example of HMT mission in the health-
care domain introduced by Lestingi et al. [22]. The mission features a hospital
ward with an analysis room, a waiting room for patients, and a storage room
with medical equipment. A service robot assists the patients and the hospital’s
personnel during daily operations. The robot executes the following sequence of
services to complete the mission: (i) the robot escorts a patient from the en-
trance to the waiting room; (ii) the doctor leads the robot to a storage room to
retrieve the equipment required for the visit; (iii) the robot follows the doctor
to the analysis room while carrying the equipment; and (iv) the robot escorts
the patient from the waiting room to the analysis room set up for the visit.

The example yields a highly dynamic setting in which human agents may
indeed behave differently based on their own characteristics. These dynamics
can be formally modeled as a Stochastic Hybrid Automata (SHA) network, an
automata-based formalism that allows the specification of stochastic behavior
and time-dependent physical phenomena through generalized differential equa-
tions [8]. The SHA network of our illustrative example includes five automata,
together modeling the mission, the behavior of human agents (i.e., the patient
and the doctor), the service robot, the physical dynamics of the battery, and
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Table 1: HMT factors of our illustrative example.

Factor Agent Type Domain

Free will profile Patient/Doctor Categorical {focused, nominal, inattentive}
Health status Patient/Doctor Categorical {healthy, sick, unsteady}
Age group Patient/Doctor Categorical {young, elderly}
Walking Speed Patient/Doctor Continuous [30.0, 100.0] cm/s

Initial position x Doctor Continuous [0.0, 50.0] m
Initial position y Doctor Continuous [0.0, 8.0] m

Translational Speed Robotic Device Continuous [30.0, 100.0] cm/s
Battery charge Robotic Device Continuous [11.1, 12.4] V
Maximum Distance Robot Controller Continuous [5.0, 7.5] m
Minimum Distance Robot Controller Continuous [2.0, 4.5] m
Maximum Fatigue Robot Controller Continuous [0.5, 0.8]
Minimum Fatigue Robot Controller Continuous [0.1, 0.4]

Time Bound (τ) - Continuous [250, 700]

the robot controller3. Given the SHA network, Statistical Model Checking [7]
(SMC) can be used to analyze the HMT mission. For instance, the robot suc-
ceeds in escorting a human when both are sufficiently close to the destination.
This kind of property can be expressed through a logical condition expressed
in terms of network elements modeling the successful completion of a certain
service provided by the robot. Hence, given a sequence of services, the mission
is complete when all services in the sequence have been provided. In this case,
the robot is dependable if it completes the mission within a given time bound,
that is, the mission is successful. This is formalized through the Metric Temporal
Logic (MTL) property ψ = ♦≤τ

∧Ns

i γi,scs, where γi,scs models the completion of
the service i in the sequence Ns ∈ N, ♦ is the “eventually” operator and τ ∈ N is
the time bound for the completion of the mission. Uppaal SMC [7] can be used
to estimate the probability of ψ holding. In addition, Uppaal can quantify other
properties, such as the fatigue of the patients. This quantity can be estimated as
the maximum expected value E[≤ τ ](max : Fj), where Fj is a real-valued variable
modeling the physical fatigue of a human subject j in the SHA network.

Achieving explainability in this context is typically challenging since there is a
huge (dense) space of uncertain characteristics that can change and collectively
affect the mission—hence the phenomena we want to explain. Table 1 lists a
number of selected characteristics, hereafter referred to as HMT factors, with
their intuitive meaning and ranges of values specific to this work. Some factors
apply to the agents participating in the mission (e.g., robots or humans), while
others apply to software components (e.g., the robot controller). For instance,
humans may pay more or less attention to the robot’s instructions according to
different free will profiles representing their inherent attitude. People may walk
at different speed. Each robot is managed by a controller, which decides when the
robot must move or stop based on the fatigue of the patients (min/max fatigue)
and on protective human-robot distance (min/max distance). Ultimately, the

3 We let the reader refer to [22] for a comprehensive treatment of the model and its
accuracy w.r.t. a real-world deployment.
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Table 2: Levels of HMT explainability.

Level Description

L1 No explanability: The system ignores any possible explanandum X.

L2 Recognition of explainability needs: The system is aware that an explanandum X for
stakeholders G exists. Thus, it collects knowledge about the context C either passively
or actively, by means that are deliberately designed to increase explainability through
exploration.

L3 Local explainability: The system provides an explanation E for an explanandum X by
considering a specific (punctual) operating context C to make G able to understand how
the relevant individual elements of C influence X.

L4 Global explainability: The system provides an explanation E for an explanandum X
by considering a varying operating context C to make G able to understand the extent
to which changes of relevant elements of C influence X on average.

L5 Collective local explainaibility: The process of local explainability (L3) is realized by
multiple cooperating agents that collectively achieve the mission objectives. Each agent
has a partial view of the operating context C whose relevant elements are collected (and
possibly analyzed) in a decentralized manner.

L6 Collective global explainaibility: The process of global explainability (L4) is realized
by multiple cooperating agents that collectively achieve the mission objectives. Each agent
has only a partial view of the operating context C whose relevant elements are collected
(and possibly analyzed) in a decentralized manner.

HMT factors yield a possibly dense space V of elements v̄ and, therefore, an
infinite set of SHA networks M[v̄], one for each v̄. Hence, explainability by
exhaustive exploration of the factor space is unfeasible.

4 Explainability Levels

We define explainability concerns in HMT, building upon the conceptual analysis
proposed by M.A. Köhl et al. [18]. In particular, we hereby refer to an explanation
E with respect to an explanandum X, a group of stakeholders G, and a context
C, as the ability to make any representative of G understand X. Thus, a system
is explainable if and only if it is able by a means M to produce an explanation
E of an explanandum X for a target group G in a certain operating context C.
In other words, the system satisfies a given explainability requirement, defined
as a tuple R := 〈X,G,C〉. The means M that produces an explanation E to
satisfy R may be part of the system responsible for X or not. When a means M
is directly integrated into the system, we consider the system self-explainable.

In our view, the context is a composite element that contains factors charac-
terizing relevant phenomena that may affect X according to domain knowledge.
Since explanations are directed to G and constructed according to C, it is im-
portant that selected factors in C can be interpreted by representatives of G.

The notion of explainability, and in particular the characterization of context
C and means M , can be given according to different (increasing) levels. We take
inspiration from the classification introduced by Camilli et al. [5] that identifies
levels of explainability of self-adaptive systems based, in turn, on the guidelines
introduced by the roadmap for robotics in Europe [9]. In Table 2, we identify and
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describe different levels of explainability in the HMT domain. Collective levels
L5 and L6 (highlighted in Table 2) are the focus of this work.

To instantiate the abstract notions introduced in Table 2, we exemplify here
L5 and L6 with two scenarios occurring in our illustrative HMT mission. The
scenarios include multiple mission agents, stakeholders, and different explain-
ability requirements, i.e., explananda (aspects related to mission dependability
and patient fatigue), as well as contexts composed of various HMT factors listed
in Table 1. We assume that this list captures domain knowledge, and therefore,
contains relevant factors of the agents involved in the HMT as described in [21].

SL 5 (Patient Fatigue). The doctor (G) wants to understand the main char-
acteristics of all agents—including the robot(s), the patient, and the doctor
himself/herself—that currently affect the fatigue of the patient (X). Understand-
ing the positive/negative impact (E) of these characteristics can suggest to the
doctor how to reduce the level of stress of the patient. The context C consists of
the HMT factors characterizing the agents involved in the HMT. Furthermore, C
does not include factors that cannot be interpreted by the doctor (e.g., controller
configuration) who is the main stakeholder in this scenario. An explanation E
here may reveal that joint high doctor and high robot speed have a strong neg-
ative effect on fatigue only when the patient has unsteady health. It is worth
noting that reasoning on the joint effect of factors of multiple agents is possible
here because the scenario yields a collective explainability level. A non-collective
level (e.g., L3, L4) would lead to short-sighted explanations based on factors of
individual agents only (e.g., speed of the doctor without taking into consider-
ation the health status of the patient), ultimately leading to reduced business
impact of stakeholder decisions.

SL 6 (Mission Dependability). The system administrator (G) wants to un-
derstand what are the important configuration options of the software compo-
nents (e.g., min and max distance) and how the interactions between them and
the other characteristics of the agents affect the likelihood (E) of satisfying the
dependability requirements of the mission (X). In this case, context C is com-
posed of all HMT factors, including those concerning the controller configuration
that can be interpreted by the system administrator. As an example, the expla-
nation E may suggest to the administrator that the max distance configuration
has almost no impact. At the same time, on average there is a linear dependency
between max fatigue and the likelihood of mission success.

5 Architectural Solution

Figure 1 illustrates the key components of our architectural solution to realize
collective explainability (i.e., L5 and L6) for service robots. The main building
blocks are subsystems Offline Mission Builder, Online Mission Monitor,
and the shared Knowledge repository.

The component Specification Manager assists the modeler in capturing
the domain knowledge by creating all necessary artifacts to produce the expla-
nations at runtime. These artifacts are stored in the Knowledge subsystem and
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Fig. 1: Component diagram of our software architecture.

include the SHA network and HMT factors modeling the target mission, and
then Requirement Mapping that contains a set of tuples 〈X,G,C〉 mapping
to the corresponding means M used to produce explanations for X to stake-
holder G, according to the context C. In our current solution, X is an MTL
property that can be automatically estimated on SHA networks using statistical
model checking, G is a unique identifier associated with the stakeholder, C is
a nonempty subset of the HMT factors, while M is a categorical variable that
identifies a particular interpretable ML technique (either global or local).

Offline Mission Builder uses these artifacts to build a number of alter-
native predictors in charge of forecasting the explanandum X under changing
operating context. Then, Online Mission Monitor supervises an ongoing mis-
sion taking into account the information in Requirement Mapping. In particular,
for each tuple 〈X,G,C〉, it monitors the context C and provides the stakeholder
G with explanations for the predicted quantity X using the selected technique
M . In the following, we describe the main subsystems in more detail.

Offline Mission Builder. The modeler triggers the offline stage by interact-
ing with Specification Manager, a modeling workbench featuring a Domain-
Specific Language (DSL) introduced by Lestingi et al. [22]. We use this language
to specify the HMT, including the HMT factors, and the explainability require-
ments. Listing 1.1 shows a small DSL extract describing our illustrative exam-
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Listing 1.1: Specification excerpt defining our illustrative HMT.

1 define robots :
2 robot Tbot in ( 230 0 . 0 , 4 0 0 . 0 ) type t u r t l e b o t 3 w a f f l e p i charge 90 .0
3
4 define humans :
5 human pat i en t in ( 2300 . 0 , 600 .0 ) speed 40 .0 i s young s i ck

f reewi l l i n a t t e n t i v e
6 human doctor in ( 4400 . 0 , 700 .0 ) speed 100 .0 i s e l d e r l y h e a l t h y

f reewi l l f ocused
7
8 define mission m for Tbot :
9 do r o b o t l e a d e r for pat i en t with target wait ing room

10 do r o b o t f o l l o w e r for doctor with target storage room
11 do r o b o t f o l l o w e r for doctor with target ana lys i s room
12 do r o b o t l e a d e r for pat i en t with target ana lys i s room

ple4. The fragment specifies the agents: a robot, a patient, and a doctor, each one
with certain physical/physiological characteristics. As anticipated in Sec. 3, the
mission is defined by a sequence of services carried out by the robot(s) and de-
fined leveraging pre-defined templates (e.g., “robot leader”, or “robot follower”)
instantiated for the desired agent(s) and for a target location, such as “waiting
room”—that is, an alias for a location in the physical space shared by all agents.

The modeler also defines the HMT factors as a set of variables with type
and domain (Table 1) and the Requirement Mapping by defining all tuples of
interest 〈X,G,C〉 and the corresponding means M . An explanandum X is a
quantitative MTL property that can be computed or estimated given the speci-
fication of the mission and an assignment to the HMT factors. For instance, in
SL5, X is the maximum expected value of the fatigue of the patient. In SL6, X is
an MTL property ψ whose probability P (ψ) is the likelihood of mission success.
The component in charge of estimating the explananda is the HMT Analyzer.
Our current solution makes use of Uppaal SMC given that the HMT is for-
mally specified as an SHA network. To this end, M2M Transformer processes
the DSL sources to generate an SHA M[v̄], with v̄ a valid value assignment
to HMT factors according to their definition. This is carried out by a fully au-
tomated model-to-model transformation in which a set of Uppaal templates
corresponding to the elements of the SHA network are customized based on the
DSL specification [22]. Our illustrative example reduces to a SHA network with
structural complexity equal to ∼ 176 × 103 (calculated as the product of the
number of locations, edges, and the cardinality of state variables’ domains).

The objective of the Sampler component is to mitigate the uncertainty due to
changing HMT factors by enriching Knowledge through a stochastic exploration5

of the factor space rather than exhaustive enumeration (generally unfeasible).
Sampler produces many assignments v̄ to HMT factors. Then, the corresponding

4 A package with full mission specification, data and sources to replicate our results
is available at https://doi.org/10.5281/zenodo.8110691.

5 Our current implementation relies on uniform random sampling.

https://doi.org/10.5281/zenodo.8110691
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SHA networkM[v̄] is generated and analyzed through HMT Analyzer. This latter
component estimates the explanandum X for each tuple 〈X,G,C〉.

The analysis, executed for all v̄ and all requirements, produces the artifact
Dataset, which is a set {〈v̄, y〉}, where y is the value of X for model M[v̄].
For instance, value y in SL5 is the patient fatigue represented as a percentage
(i.e., a real value in [0, 1]). In SL6, instead, the outcome is the mission success
represented by a Boolean value (i.e., a categorical variable in {0, 1}6). When
Dataset is available, Predictor Builder creates a Predictor component by
training/testing a predictive model (e.g., neural network regressor/classifier) to
forecast the explanandum given new HMT value assignments. A predictor is
created for each explainability requirement in Requirement Mapping, according
to the nature of X and context C. In our scenarios, we create regressors for real-
value variables and classifiers for categorical variables. Context C determines
the subset of HMT factors used for training. Note that we define C based on
domain knowledge. Nonetheless, our solution does not prevent engineers from
complementing this practice through automated techniques to feature selection.

Online Mission Monitor. This subsystem is invoked by Mission Builder once
Predictor Catalog is complete and available in Knowledge. The Explainer

Builder component uses each available predictor to create an Explainer compo-
nent according toM for each tuple in textttRequirement Mapping. An Explainer

embeds a global/local model-agnostic interpretable ML technique to make the
predicted explananda interpretable by stakeholders. Our current implementation
adopts PDP for global explanations and LIME for local explanations (see Sec. 2).
Once Explainer Catalog is ready, the subsystem initializes a publish-subscribe
mechanism to realize the collective explainability levels introduced in Sec. 4. In
particular, for every requirement R, the corresponding requirement topic /<R>

is instantiated. Then, the corresponding Explainer component subscribes to
topic /<R>. Finally, for each HMT agent, there is a Local Monitor component
subscribed to one or more /<mission-agent> topics to receive sensor data. Our
solution adopts the Event Sourcing pattern7, whereby explanations are deter-
mined and possibly reconstructed on demand by storing all messages exchanged
over topics /<R>. Persisting the messages enables the Explainer components to
have a complete chronicle of past context changes.

Once the HMT application is deployed, the explanations E are realized at
runtime using the publish-subscribe mechanism. Each sensor periodically sam-
ples an HMT factor and the associated Sensor component publishes the data
to the corresponding /<mission-agent> topic. The subscriber Local Monitor

can clean or aggregate raw data received by sensors. Since a Local Monitor

belongs to an individual agent, collected data represents a subset of the HMT
factors, namely a portion C ′ of one or more contexts. The outcomes of a Local

Monitor are published to the identified topics /<R> and, therefore, received by all
Explainers subscribed to them. This mechanism allows each Explainer to run
a continuous collection of the relevant HMT factors used to build the explana-

6 Mission success occurs if P (ψ) is greater than a user-defined probability threshold.
7 https://martinfowler.com/eaaDev/EventSourcing.html

https://martinfowler.com/eaaDev/EventSourcing.html
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tions E to the stakeholders based on the latest context available. A stakeholder
initiates a direct interaction with an Explainer component solely at times when
an explanation is required. Through Event Sourcing, the Explainer components
can reconstruct the temporal sequence of explanations over a specific time win-
dow by using historical data of the context retrieved from Event Log.

6 Evaluation

The evaluation of our approach aims to answer the following research questions:

RQ1: What is the cost of producing accurate predictors in our solution?
RQ2: Is our solution able to support explainability up to level 6?

Design of the evaluation. To answer RQ1 and RQ2, we conducted an exper-
imental campaign using our illustrative example. As reported in Sec. 5, the
resulting SHA network specifying the mission is not trivial (i.e., structural com-
plexity 103). To check the satisfaction of explainability requirements, we adopt a
scenario-based assessment considering two selected scenarios: SL5 and SL6 (local
and global collective explainability, respectively).

For each scenario, we controlled the HMT factors of interest (see Table 1)
collectively composing the context C, and we generated 1k unique assignments
{v̄} using uniform random sampling. For all M[v̄] with v̄ ∈ V, we used Uppaal
to estimate the explanandum X in each scenario Concerning human fatigue,
parametrization of the formal model has been carried out considering experi-
ments with real human subjects [15]. Estimates of the explananda are obtained
through SMC. The results have been used to create a mapping between v̄ and
the corresponding real-valued outcome y ∈ [0, 1] (i.e., patient fatigue) as well
as Boolean outcome y′ ∈ {0, 1} (i.e., mission failure/success). The two datasets
{〈v̄, y〉} and {〈v̄, y′〉} have been used to feed the offline stage and study the cost
of building accurate predictors. Finally, for each scenario and corresponding con-
text C, we collected and analyzed the output E of the Explainer components to
assess the achievement of the target explainability requirements, that is, whether
E is interpretable by G and can help in understanding the explanandum X.

The experimental campaign has been conducted using a commodity hardware
machine running Ubuntu OS v22.04 with 64GB RAM and a quad-core Intel
x86 64 CPU at 2.1 GHz.

Results RQ1 (cost of producing accurate predictors). To study the cost in terms
of execution time, we conducted multiple runs of the offline stage using {〈v̄, y〉}
and {〈v̄, y′〉} for SL5 and SL6, respectively. For both scenarios, we considered
five state-of-the-art predictors commonly adopted to address classification and
regression problems: Random Forests (RF), Decision Tree (DT), Neural Network
(NN), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting Tree
(XGB). We refer the reader to [26] for further details about these techniques.

For each scenario, multiple predictors have been created by varying the size of
the training set from 100 to 800 data points to determine the cost of achieving
a relatively high and steady accuracy level. Once trained, each predictor has
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Fig. 2: Model score over training set size.

Table 3: Cost of verification and predictor train/test.

size SMC (sec.)
train/test regressors (sec.) train/test classifiers (sec.)

RF DT NN GBM XGB RF DT NN GBM XGB

100 107805.50 0.33 0.01 0.30 0.23 1.91 0.16 0.01 0.56 0.45 1.62
200 177798.85 0.35 0.02 0.75 0.33 1.88 0.48 0.02 0.78 0.50 1.71
300 282922.82 0.46 0.03 0.63 0.49 1.94 0.50 0.03 1.17 0.81 1.78
400 373003.94 0.47 0.02 0.83 0.59 2.02 0.52 0.04 1.40 1.02 1.47
500 479403.91 0.51 0.02 0.81 0.72 2.09 1.86 0.19 1.73 1.14 1.52
600 563768.23 0.56 0.02 0.88 0.86 2.21 2.03 0.05 2.05 1.40 1.37
700 652054.33 0.54 0.03 0.97 0.97 2.15 2.07 0.01 2.65 1.47 1.37
800 756494.90 0.62 0.03 1.08 1.15 2.08 2.03 0.02 2.47 1.60 1.34

been tested using the same test set composed of 200 data points that do not
belong to the training set. To measure the accuracy of regressors, in SL5, we
adopt the Negative Mean Squared Error (NMSE), which is a negative value that
increases to zero as the error decreases. In SL6, we adopt the Area Under the
receiver operator characteristic Curve (AUC) to measure the accuracy as the
discriminatory power of the classifiers [11]. The AUC ranges between 0 (worst),
0.5 (no better than random guessing), and 1 (best).

Figure 2 shows the accuracy of the predictors obtained in SL5 (Fig. 2a)
and SL6 (Fig. 2b) using training sets of increasing size. We can observe that the
accuracy generally increases as the size of the training set does. In both scenarios,
the best predictors, stabilizes around size 600. Table 3 shows the cost considering
verification and creation of predictors. Each row shows the cost of generating
the dataset of a certain size as well as the train/test cost per each individual
model. The most time-consuming part of the offline stage is due to the SMC
being repeatedly executed for each data point. Around 6.5 days are necessary to
collect 600 data points (∼ 10 mins per run) and produce the predictors with the
highest accuracy. The time required to train and test the predictors is always
negligible compared to SMC. DT yields the lowest execution time (boldface). To
further assess the accuracy of predicting the target explanandum X, we adopt
10-fold cross-validation using 600 points for the training set (as discussed above)
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0.4 0.2 0.0 0.2 0.4
weight

2345.99 < d_pos_x <= 3133.32

65.94 < p_speed <= 82.42

64.78 < d_speed <= 82.18

r1_speed > 82.30

p_age is elderly

(a) 79% patient fatigue explanation.

0.4 0.2 0.0 0.2 0.4
weight

d_age is young

425.52 < d_pos_y <= 675.00

r1_speed > 82.30

65.94 < p_speed <= 82.42

p_age is elderly

(b) 43% patient fatigue explanation.

Fig. 3: Explanations for SL5 using a LIME Explainer component.

and the remaining 400 points as the test set. After cross-validation, we created a
rank of the predictive models using the non-parametric Scott-Knott Effect Size
Difference (ESD) test [30]. Namely, we partitioned the set of AUC/NMSE values
into distinct groups with a non-negligible difference. Consistently with the data
in Fig. 2, RF is one of the first-rank regressors, and in particular it is the one
that predicts the fatigue of the patient (SL5) with the highest median NMSE,
equal to −0.01. Also, GBM is the first-rank classifier that predicts (un)successful
missions (SL6) with the highest median AUC, equal to 0.96.

RQ1 Summary. The most expensive part of the process is offline SMC. In
our scenarios around 6.5 days are necessary to collect 600 data points and
achieve high and steady accuracy. The time required by training/testing is
negligible (less than 3 sec.). RF is the best regressor in SL5 (median NMSE
−0.01). GBM is the best classifier in SL6 (median AUC 0.96).

Results RQ2 (satisfaction of explainability requirements). To answer this ques-
tion we executed the online stage and we collected the results produced by the
Explainer components in our two selected scenarios. Then, we carried out a
qualitative assessment of the explanations to determine the extent to which the
target explanandum can be understood by stakeholders.

Concerning SL5, all the HMT factors that can be interpreted by the doctor
(i.e., all factors except for those affecting the robot controller) are collected
and then dispatched to the local Explainer component paired with the best
Predictor trained to forecast the patient fatigue (i.e., RF regressor according to
RQ1). Then, we adopt a LIME Explainer to build an on-the-fly (interpretable)
local surrogate model that, given a snapshot of the context, predicts the fatigue
and explains the contribution of the factors. Figure 3a shows a LIME explanation
for a mission run where the patient fatigue is relatively high (79%). The plot
shows the relative importance of the top 5 HMT factors and illustrates whether
each value contributes to an increase or decrease in the expected fatigue level.
For instance, the elderly age group has the highest positive weight (0.31) and,
therefore, represents the main root cause of high fatigue levels. The robot speed
being greater than 82.3 cm/s has the lowest negative weight (−0.29). According
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to Fig. 3a, the doctor can see there are some factors under his/her own control
that have a high positive contribution: a relatively high walking speed (between
65.9 and 82.4 cm/s) and the initial position x (between 2345.9 and 3133.3).
The doctor can indeed inspect these values and change them to understand
the extent to which these changes impact the target explanandum. Figure 3b
shows the LIME explanation for a new assignment where these two latter factors
have been changed to decrease the expected fatigue. We can see that the new
assignment of doctor speed and position reduces their overall impact since they
are not in the top 5 factors anymore. Under the new assignment, the doctor can
see that the expected fatigue level in SL5 decreases from 79% to 43%.

Concerning SL6, all HMT factors (including those affecting the robot con-
troller) are collected and dispatched to the global Explainer component paired
with the best Predictor trained to forecast the mission success (i.e., GBM clas-
sifier according to RQ1). In this scenario, we adopt a PDP Explainer that builds
explanations to understand the marginal effect of selected HMT factors on the
expected probability of success. Figure 4 shows two selected PDP explanations
illustrating the joint effect of min/max distance (Fig. 4a) and min/max fatigue
(Fig. 4b). These factors represent system configuration options that affect the
decisions of the robot (e.g., the robot stops and waits for the human when the
distance is higher than the max value). The administrator can inspect the plots
using a causal interpretation since, in this case, we explicitly model the probabil-
ity of success as a function of the HMT factors. As an example, Fig. 4b shows an
almost linear dependency between max fatigue and probability of success, while
min fatigue affects the success with a concave function. The administrator can
thus (re)configure the robot controller by selecting the ranges that maximize the
expected success: max fatigue 80% and min fatigue between 25% and 35%.

RQ2 Summary. Considering our two selected scenarios, HMT factors have
been collected from multiple mission agents and dispatched to the corre-
sponding local/global Explainer components. In both scenarios, we illus-
trate the achievement of the desired explainability level by showing how the
stakeholders can interpret the explanations and take decisions to influence
the explanandum by changing relevant aspects of the operating context.

Threats to validity. We limited construct validity threats by assessing the met-
rics adopted in our experiments before using them. Both AUC and NMSE are
widely suggested to evaluate predictive models [20]. We also use a mainstream
measure of the cost in terms of execution time required by the main stages of
our approach. Conclusion validity threats have been mitigated by reducing the
possibility of overfitting on the test set by applying 10-fold cross-validation [31].
Conclusions are partially based on a qualitative assessment carried out by the
authors rather than the stakeholders involved in SL5 and SL6. Comprehen-
sive understanding of the quality of the explanations from the point of view
of real stakeholders requires further investigation. We addressed internal valid-
ity threats by creating a testbed with fine-grained access to HMT factors to
increase internal validity compared to observations without manipulation. We
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Fig. 4: Explanations for SL6 using a PDP Explainer component.

also adopted stratified sampling to reduce the risk of obtaining underrepresented
HMT factors while building the predictors. External validity threats exist since
our experiments consider a single case study. We limited these threats by con-
sidering an example described by existing literature as indicative of the char-
acteristics of other HMT systems. The generalization of our findings to other
domains requires additional experiments.

7 Related work

In recent years, explainability—i.e., the ability to provide a human with under-
standable explanations of the results produced by AI and ML algorithms—has
become a key aspect of designing tools based on these techniques [1], especially in
critical areas such as healthcare [33]. As such, it is attracting a growing interest
in the Software Engineering community [32], as witnessed by explainable analyt-
ical models for predictions and decision-making [32], explainable counterexam-
ples [14], and explainable quality attribute trade-offs in software architecture se-
lection [4]. In the area of self-adaptive systems, there are preliminary approaches
that aim at embedding explainability in software applications [16,17] and provid-
ing a more general approach to the construction of human-understandable expla-
nations for successful adaptation in robotic scenarios [5]. The role of humans in
self-adaptive systems has been mainly classified into “humans-out-of-the-loop”
(if humans cannot change the system’s behavior/outcome), and “humans-on/in-
the-loop” (if they act as external controllers and supervisors [19,24], or as input
providers for the system [23]). To facilitate the understanding of the system op-
eration through explanations, humans-on/in-the-loop have been modeled using
stochastic models, which undergo model checking [4,23]. Stochastic models have
been applied to develop service robotic applications for which formal guarantees
on the feasibility of the collaborative scenarios are obtained through SMC [22].
In such applications, the integration of explainability techniques allows both
the designers of robotic scenarios and the humans involved in the interaction
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with robots to understand the reasons why collaboration can fail or successfully
complete [2, 3]. Although these works show an effective combination of ML, ex-
plainability techniques, and formal methods, they lack a detailed investigation
of the architectural aspects involved.

8 Conclusion and future work

We addressed the problem of providing meaningful explanations in multi-agent
HMT applications to foster trust by introducing six levels of explainability and
presenting an architectural solution capable of providing stakeholders with hu-
man interpretable explanations based on user-specified explainability require-
ments. Our evaluation shows that the proposed architectural solution supports
explainability up to level six. We plan to extend our solution with other factor
sampling strategies based on metaheuristic optimization, in order to push the
exploration of the factor space toward specific conditions of interest. We also
plan to validate the approach with human participants by presenting real stake-
holders with the produced explanations and having them assess their quality.
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