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Abstract—Recent advances in the Internet of Things are
leading to a proliferation of smart devices in our daily life. Having
so many connected devices around us potentially introduces new
witnesses that can be a reference for forensic investigations. For
these reasons, IoT Forensics has become a popular research area
with the goal of extracting information from IoT devices to be
used as potential evidence. This work presents Feature-Sniffer, a
framework to be installed in Wi-Fi access points with the aim
of facilitating the extraction of network traffic information from
IoT devices, to be later used for forensic purposes. The tool allows
the on-the-fly computation of traffic features from connected IoT
devices by using a simple user interface for its configuration.
After presenting the tool logic and its implementation details, we
present an accurate analysis of the tool computational impact on
two different consumer Wi-Fi access points. Finally, we present
four different IoT forensics use cases, in which network traffic
features extracted with the proposed tool from consumer IoT
devices are analyzed with machine learning techniques with the
goal of 1) identifying the device producing the traffic; 2) rec-
ognizing the activity performed by the user; 3) detecting the
user’s passage through a room door; and 4) detecting and clas-
sifying user interactions with a smart speaker. We conclude the
work by presenting an analysis of possible storage optimization
for evidence preservation with the use of lossy compression
techniques.

Index Terms—Internet of Things, IoT forensics, network traffic
analysis, network traffic collection.

I. INTRODUCTION

WE ARE living in the Internet of Things era. The devices
surrounding us are becoming smart and new objects,

such as home assistants, have become the main characters in
our daily activities. If on the one hand, such devices help
us in many aspects, they can also introduce potential privacy
and security threats. Being such devices always connected,
they can be potentially used by attackers for collecting private
information or even for controlling our home environment. At
the same time, with all the devices always present in our living
environment, there are additional witnesses in our daily activ-
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ities that could be used for forensic purposes. The extraction
of such information is the goal of a new branch of digital
forensics, named IoT Forensics. The device now not only
serves the user performing its operations but could be lever-
aged for extracting potential sources of evidence that can help
to solve forensic cases, unveiling information on the device
itself, the user, and the surrounding environment. IoT foren-
sics has recently attracted the attention of the current research
in all its different aspects [1]. The state-of-the-art divides IoT
forensics into three different layers, depending on where the
information is retrieved: 1) cloud forensics; 2) network foren-
sics; and 3) device-level forensics. Our work focuses on the
middle layer, and in particular on network traffic extracted
from IoT devices to unveil information on the device and
the user activities. Proposed methodologies from the litera-
ture usually require the setup of advanced collection pipelines
for 1) collecting the network traffic in the network in which
devices are located and 2) extracting potentially relevant char-
acteristics from the traffic to be used for forensic tasks. The
data are usually managed in the form of PCAP files and
require a consistent post-processing phase for the information
extraction, which makes forensic analysis usually very time-
consuming. This work extends our previous study presented
in [2], presenting more advanced results and extending the
proposed framework functionalities. The work takes the goal
of solving the main limitations of PCAP-based forensic anal-
ysis by proposing a framework, named Feature-Sniffer, to be
installed in the smart home gateways and that can directly col-
lect the main network traffic characteristics from IoT devices,
avoiding splitting the pipeline into two separate phases of col-
lection and feature extraction. Feature-Sniffer can be installed
in any Wi-Fi access point supporting the OpenWrt project. The
tool allows on-the-fly extraction of network traffic features,
aggregating captured packets into time windows of a fixed
duration and extracting statistical features on network/transport
layer characteristics as well as physical layer indicators. The
tool can be easily configured with a simple Web interface
through which the user can totally customize the collection: it
is possible to select the network interface from which to cap-
ture packets, the window duration for grouping packets, the
features to compute, and several parameters to obtain a person-
alized output. By using the proposed framework, it is possible
to save both in storage and time domains, avoiding storing
the full raw traffic as PCAP files, which usually also contain
nonrelevant information, and saving time in the analysis by
directly producing the required features.
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The contribution of this work is as follows: first, we present
the Feature-Sniffer framework, focusing on its working prin-
ciple as well as on its implementation details. After the
presentation of the tool in all its features, we present an
overview of its performance impact in modern Wi-Fi networks
by showing the CPU consumption under stressed network
conditions using two different consumer Wi-Fi access points.
To complete the work, we show potential application cases
of the tool, using it to perform four different IoT foren-
sics activities: 1) IoT devices identification analyzing a public
widely used data set containing modern common devices traf-
fic traces; 2) human activity recognition from IoT camera
encrypted traffic; 3) human passage detection with physi-
cal layer features extracted from a generic IoT device used
as a source of traffic; and 4) detection and classification
of human interactions with a smart speaker. The work con-
cludes with an analysis of the data set storage occupation
and presenting possible optimization techniques to reduce the
data set size preserving the forensic capabilities. Feature-
Sniffer source code and installation guidelines are publicly
available.1

The remainder of this article is structured as follows:
Section II presents the main related works on IoT Forensics.
Section III provides an accurate description of the Feature-
Sniffer tool with implementation and installation details.
Section IV presents the computational impact of the tool when
installed in two commercial access points and highlights the
affordability of the tool in modern real-life networks. Four
different IoT forensics use cases are discussed in Section V,
and the corresponding experimental results obtained with the
application of machine learning techniques are summarized
in Section VI, including an analysis of potential storage
optimization. Section VII concludes the works with some final
remarks and possible future research directions.

II. RELATED WORK

Most IoT devices in modern smart home networks com-
municate using encrypted traffic for both privacy and security
reasons. The use of encryption, however, does not exclude the
possibility of extracting information from such devices by only
inspecting the corresponding network traffic. Many works in
the literature revealed that it is possible to extract potentially
private information from such devices using the most com-
mon network traffic sniffer and analyzer tools. Ren et al. [3]
presented a deep analysis of consumer IoT devices located
in two laboratories, one in the U.S. and one in the U.K. The
work considers more than 80 different modern IoT devices and
highlights that for most of them, it is possible to understand
the activity that caused the devices to generate the traffic by
only inspecting network packets. In the work presented in [4]
instead, Wan et al. proposed a framework named IoTAthena
capable of characterizing the IoT device activities from the
raw network packets. The framework proposes two novel
polynomial-time algorithms to extract device activities and
has been tested on 16 different consumer devices, including
smart bulbs, smart plugs, and other types. Many other works

1https://github.com/fpalmese/feature-sniffer

have shown that it is possible to expose information from
IoT devices only referring to the network traffic they use for
communication [5], [6], [7]

Advanced IoT forensic analysis pipelines usually assume
as known the type of device producing the traffic (i.e., ana-
lyzing home assistant traffic for speaker detection). However,
this assumption does not hold in all application cases, and
there are forensic cases in which it can be crucial to know
the type of device present in the environment. For this rea-
son, several works in the current research have explored
the possibility of identifying IoT devices only relying on
the produced traffic, and we will do so later in this work.
Sivanathan et al. [8] presented a two-way approach for suc-
cessfully identifying the device producing the traffic, with
a first classification based on domain names, remote ports,
and cipher suites, and a second stage applying a random for-
est classifier to the previous stage results, adding network
features, such as flow rate and volume. The authors tested
the proposed approach using the network traffic from 31
IoT and non-IoT devices produced in a period of six con-
secutive months and obtained remarkable results with over
99.8% F1-Score. As an additional contribution, the authors
publicly shared the data set in the form of PCAP files for
research purposes. Different solutions for identifying the dif-
ferent devices from their network traffic traces have been
proposed in the literature (e.g., [9] and [10]). However, all
these works usually require advanced collection pipelines
and long processing times, which is one of the reasons that
led us to propose the framework in this work. In the same
research line, Shahid et al. [11] proposed a solution based on
t-distributed stochastic neighbor embedding (t-SNE) for iden-
tifying the device only relying on the first N network packets
of each bidirectional flow of the device. However, in this work,
the approach is very limited by the number of devices con-
sidered (only four devices are used) and should be tested in
bigger networks.

Once the device type is known, either by identification or
with apriori knowledge, it is possible to reason on device-
specific tasks for extracting potential forensic information on
the device, the user, or the surrounding environment. Among
the others, many researchers focused their attention on smart
home environments analyzing devices, such as home assis-
tants [12], smart cameras [13], or even combining events
from different devices to infer human activities [5], [14]. It
is worth reporting here the main related works based on traf-
fic analysis from smart cameras and smart speakers, as these
types of devices are widely analyzed in the next sections of
this work. The work in [13] analyzes the traffic produced
by two different IP cameras to distinguish nine daily activ-
ities performed by the user in front of the camera Field of
View (FoV, i.e., dressing, sporting, and reading). The authors
apply six different machine learning classifiers to several sta-
tistical features extracted from the network traffic produced
by the cameras during user activities. The main considered
features are packet interarrival times, transmission rates, and
payload lengths extracted from the traffic stored in 9000 PCAP
files (one per activity). Wampler et al. [15] highlighted the
possibility of detecting a motion or a scene change from

Authorized licensed use limited to: University College London. Downloaded on November 22,2023 at 10:14:43 UTC from IEEE Xplore.  Restrictions apply. 



20688 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

encrypted traffic produced by IP cameras, regardless of the
codec used by the devices. They additionally propose a graph-
ical analysis of the network traffic, plotting several features
over time, including interarrival time between packets, packet
sizes, and video stream bandwidth. Finally, Li et al. [16]
used two common IoT cameras from Google and Samsung
to show that attackers spoofing the network traffic from such
devices could easily distinguish basic activities of the user’s
daily life.

For what concerns Wi-Fi physical layer analysis, many
works in the current state-of-the-art analyzed the correlation of
the Wi-Fi channel state information (CSI) with human activ-
ity in the surrounding environment. Soto et al. [17] presented
a survey on the main works using CSI features to detect
vital signs from the surrounding environment: several works
show that it is possible to use such features for human heart
rate and respiration monitoring. However, the data-gathering
pipeline in such works is usually strictly task-specific and
requires proper hardware/software setups. This article, on the
contrary, does not assume any specific transmission setup and
allows the extraction of information from already deployed IoT
devices.

Given the widespread popularity of smart speakers in mod-
ern smart homes, many research works in the last years
focused on analyzing the corresponding network traffic to
understand the consequences and impact of the presence of
such devices on user privacy. Caputo et al. [18] showed
that it is possible to detect the human presence in the
environment in which a Google Home device is located,
even if the user is not interacting with the device. Several
works have been performed with the goal of detecting if
a smart speaker is recording and transmitting sounds from
the environment, even if not explicitly triggered using the
proper activation words [19], [20]. Other works in the lit-
erature focused on the extraction of forensically relevant
information from smart speakers with the goal of finger-
printing voice commands [21], [22], [23] or distinguishing the
speaker interacting with the device [24]. However, most of the
proposed models are evaluated using data produced with syn-
thetic speech to activate the devices. Differently, in this work,
we use a combination of real and synthetic speech.

To conclude the section, we report the main related work
proposing IoT forensics frameworks. Meffert et al. [25]
presented a framework to be installed in a centralized smart
hub that allows to control and concurrently acquire the state of
consumer IoT devices in a smart home environment. The work
in [26] presents IoTDots, a forensic framework that processes
the mobile smart applications used for controlling the IoT
devices and introduces an automatic logging procedure to store
potential forensic data in a centralized database, subsequently
analyzed with machine learning techniques to perform forensic
tasks. However, in both frameworks, the data acquisition does
not consider network traffic produced by the devices, which
can unveil very relevant forensic information. Liu et al. [27]
presented a script to be executed in OpenWrt-based systems
that allows keeping track of devices connection logs by cap-
turing TCP SYN packets. The output is optionally transmitted
periodically to external entities using emails.

III. FEATURE-SNIFFER

A. Overview

The related work on network traffic analysis applied to IoT
forensics puts in evidence the main limitation when working
with IoT devices network traffic: the huge amount of data to
handle. The state-of-the-art methodology usually involves the
application of machine learning classification techniques to
features extracted from network traffic obtained by storing the
full information in the form of a PCAP file and then processing
it. The storage of the raw traffic in PCAP files introduces two
main limitations.

1) The amount of occupied storage becomes a problem in
IoT scenarios.

2) The amount of time to process all the packets stored in
the PCAP file is not trivial and introduces a consistent
delay in the forensics analysis phase.

Moreover, considering the transient nature of the network traf-
fic, the acquisition of such data requires the preparation of
the collection environment to be able to capture the pack-
ets that are flowing for the communication, otherwise the
information simply gets lost. This requires the hardware to
be properly set for collection and to be able to store sev-
eral days/months of traffic to maintain the information until it
is needed. To solve these PCAP-related limitations, this work
presents Feature-Sniffer, a tool that allows computing network
traffic features in an online fashion on any consumer WiFi
access point operated by the OpenWrt firmware, hence avoid-
ing the cumbersome tasks of 1) dumping network traffic to
PCAP files and 2) implementing ad-hoc routines for analyzing
the captured traffic.

The tool is designed to be extremely user friendly so that
network administrators, data scientists, or forensic investiga-
tors can easily extract and make use of a multitude of network
traffic features instead of building ad-hoc traffic capture and
analysis pipelines. In a nutshell, Feature-Sniffer analyzes all
network packets that flow through the access point and orga-
nizes them into time windows of user-defined duration. For
each time window and for each device connected to the access
point (identified by its MAC address), the tool extracts and
stores a set of statistical traffic features which can be selected
by the user through the access point graphical user interface
(GUI). Fig. 1 sketches the architecture of the proposed tool,
which is composed of three main parts: 1) an application for
the LuCI Web interface, developed to access all functionali-
ties directly from the access point control panel; 2) a feature
extraction engine (FEE), developed in the C programming lan-
guage and easily configurable through the Web interface; and
3) A physical layer FEE (P-FEE) responsible of the collec-
tion of RSSI and CSI-based features. The next sections will
explain the main components of the proposed framework in
detail.

B. Envisioned Usage

We present here a small description of the envisioned
usage of the tool. A network administrator wants to install
an IoT forensic-ready access point on the premises of a Smart
Home/Smart Building. Therefore, she sets up an access point
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Fig. 1. Feature-Sniffer architecture. The OpenWrt control panel on the access
point allows the interaction with the FEEs in order to perform IoT forensics
analysis.

with Feature-Sniffer installed. If the network administrator
also has a forensic background and possesses prior knowl-
edge of the type of IoT devices present in the network or
the forensics activities that might be performed in case of an
anomalous event, she can create ad hoc configurations select-
ing only the network features that will be useful for such
analysis. Otherwise, in case of no prior knowledge, a basic
configuration with all possible network features selected will
constitute the most informative approach and can be set to
start as the access point is powered on automatically. The
network administrator can, however, decide to control the
forensic acquisition through the Web interface buttons to start
and stop the capture processes. In case something happens and
a forensic analysis is requested, the network administrator can
download the Feature-Sniffer output through the interface and
pass it to the investigator for proper analysis and information
extraction.

C. Web Interface

The Feature-Sniffer user interface is an add-on built on
top of LuCI functionalities.2 LuCI is the standard Web user
interface for OpenWrt systems. It is based on the Lua program-
ming language, which easily allows the creation of customized
extensions. As illustrated in Fig. 2, we extended LuCI with
a new user interface dedicated specifically to IoT Forensics
operations. The interface allows the network administrator to
quickly create traffic analysis configurations, used to extract
specific features from the network traffic flowing through the
access point. The main page shows all the existing configura-
tions with the corresponding information and control buttons
(start, stop, edit, download output, delete), as well as a section
to create new configurations.

Each configuration is saved in a .cfg file, which is made
compliant with the libconfig configuration C library and
is characterized by the following parameters.

1) Name and Description: Representing the configura-
tion unique identifier, as well as a brief optional text
describing the configuration purposes.

2https://github.com/openwrt/luci

2) Window Duration: The duration in time of each analysis
window. Traffic features are computed independently in
each window.

3) Capture Filter: An optional string following the libpcap
pcap_filter syntax to extract features only from the traffic
of interest (e.g., only outgoing UDP traffic).

4) Device Filter: The user may insert here the MAC
addresses of the devices to consider in the analysis. If the
list is left empty, all devices associated with the access
point are considered.

5) Capture Type: Live or from PCAP. In Live capturing
mode, the packets will be captured and analyzed from
one of the network interfaces of the access point. This
mode requires the user to specify the interested interface
as an additional mandatory parameter. In PCAP capture
mode instead, packets will be captured from a PCAP file,
which is specified by the user by passing the file global
path in a proper configuration field (the file needs to
be previously uploaded in the access point). This latter
capture type is useful for reproducible research, using
publicly available data sets usually stored in the form of
PCAP files.

6) Features List: Feature-Sniffer allows the user to select
the traffic features to be computed for each time window
and each associated device. The most popular features
used in network traffic analysis are available for extrac-
tion. Such features include several statistics regarding
the packet size (72 features), the payload length (63
features), and the packet interarrival times (45 features).
The available statistics include count (#), sum (�), mean
(μ), median (μ1/2), mode (M), variance (σ 2), standard
deviation (σ ), and Kurtosis (K). Specific options for
TCP and UDP packets can be selected, or packets carry-
ing any of the two transport protocols can be considered
in an aggregated fashion. The same holds for Downlink
(DL) and Uplink (UL) packets. Additionally, the user
can select 144 features derived from the probability
mass function (PMF) of packet lengths, discretized in
intervals of 100 bytes (i.e., containing the number of
packets with length in range [0,100] bytes, [100,200],
and so on . . .), again with the possibility of differenti-
ating between uplink/downlink and TCP/UDP packets.
Furthermore, we include five more features containing
the number of remote IP addresses contacted by a device
in each time window, the number of local TCP/UDP
used ports, and the number of remote TCP/UDP ports
contacted. In total, the user can select up to 329 features
extracted from the network and transport layers.
Finally, to complete the potential information to be
extracted using the proposed tool, we extend the set of
available features, including some physical layer charac-
teristics, that can be computed when operating the tool
in live capturing mode. In particular, the user can select
statistical features based on receiver signal strength
indicator (RSSI) and CSI from frames sniffed from
the selected devices, specifying the statistical operation
(e.g., mean and variance) and the interface collection
parameters (e.g., Wi-Fi band and Wi-Fi channel). Many
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Fig. 2. Feature-Sniffer GUI homepage. The user can control existing configurations or create new ones for collecting network traffic features with custom
parameters.

works in the literature have shown that such features
are appropriate for unveiling potential information about
the surrounding environment, such as detecting human
movements. RSSI expresses the power of the transmis-
sion at the receiver, while CSI returns a complex value
for each subcarrier of the OFDM channel, each rep-
resenting the amplitude attenuation and phase shift of
the transmission. The user can decide to extract statis-
tical values for each subcarrier, i.e., mean amplitude of
the frames in a time window for each subcarrier, or to
aggregate over all the subcarriers using an additional
statistical function to obtain a 1-D feature for each win-
dow for each device. The user can select a total of
20 combinations of features extracted from CSI data:
four by selecting mean, standard deviation, variance,
and Kurtosis for each subcarrier, and 16 by combin-
ing the four with a subsequent aggregation over all the
subcarriers. For the RSSI value, instead, six statistical
features can be selected for each time window: 1) mean;
2) median; 3) mode; 4) standard deviation; 5) variance;
and 6) Kurtosis.

7) Output Parameters: Feature-Sniffer allows the creation
of customized outputs, such as the addition of a ground-
truth label for each device (useful, e.g., for device
identification tasks), the use of feature headers name
in the output, the possibility to create one file for each
different associated device or the use of relative or abso-
lute timestamps for each time window. The user can also
decide to periodically switch output files specifying the
switching period duration and the maximum number of
files to generate, an option that could be used to period-
ically transfer files to external entities and hence extend
the storage capabilities. This last functionality allows
defining a closed-circuit behavior in which a predefined
number of files are recycled indefinitely until the user
decides to stop the process, avoiding the risk of fill-
ing the access point storage and hence unintentionally
killing the collection process.

D. Feature Extraction Engine

Once a configuration is set up, it can be started by clicking
on the start button in the user interface. This will trigger the
transmission of an HTTP request to the Web server on the
access point, which in turn will start the FEE according to
the selected configuration parameters. In particular, the extrac-
tion process is divided into two different components: one for
the collection of network/transport layer features (FEE) and
another for the physical layer characteristics (P-FEE). The
FEE process is a C program running inside the access point
and working as follows: first, all configuration parameters are
loaded with the help of the libconfig library3 APIs. Then, two
concurrent threads are started: one thread is in charge of cap-
turing packets for each associated device, using the libpcap
library [28], and grouping them in consecutive time windows
according to the user-defined window length and packet/device
filters. When a window is ready, the thread pushes it into the
input queue of a second thread, which is in charge of com-
puting the selected features on the packets contained in the
window and saving the result to a comma separated value
(CSV) file. Such a decoupled approach for capturing and
processing network traffic is chosen to avoid losing packets
due to the computational burden of feature extraction and the
corresponding write operations to the output files.

Whenever the user wants to interrupt the packet capture,
it can use the stop control button from the Feature-Sniffer
interface to trigger a kill signal for the corresponding pro-
cess. In particular, to avoid losing some of the windows in the
output, we have redefined the handler of the SIGINT signal:
the signal triggers the break of the capture loop of the main
thread so that no additional packets are considered; all the not
yet considered windows are then loaded into the output queue
so that the secondary thread can process them and finally print
them in the output file. Finally, all the output files are closed,
and the FEE process can terminate. In the particular case of
PCAP file capturing mode, the packet capture automatically

3https://github.com/hyperrealm/libconfig
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terminates when the process has parsed all the packets in the
selected file.

E. Physical Feature Extraction Engine

Differently from the previous case, the collection of CSI
cannot be done from all network interface cards (NICs) and
requires proper hardware and software. For this reason, after
an accurate analysis of the existing solutions reasoning on the
tradeoff between costs and processing capabilities, to build
the P-FEE, we selected the Nexmon CSI tool [29] to be
installed in a Raspberry Pi 3B+, connected to the access
point using a standard Ethernet cable. Nexmon CSI is a
simple software that allows the extraction of CSI charac-
teristics from frames collected from a wireless interface set
in monitor mode, after a proper selection of the collection
parameters (interface, Wi-Fi band, channel bandwidth, and
channel number). To control the Nexmon collection process
with the parameter selection and the corresponding output
management and integrate it with the Feature-Sniffer func-
tionalities, we create an MQTT link between the access point
and the Raspberry. The MQTT protocol perfectly matches our
requirements, thanks to the publish-subscribe pattern and its
lightweight characteristics. In particular, we set the Raspberry
Pi to create an instance of the mosquitto [30] broker and to run
a subscriber to receive commands incoming from the access
point to control the Nexmon collection process. As the user
selects CSI/RSSI features in a configuration and starts the
Feature-Sniffer capture, the access point communicates the
configuration parameters sending a publish message to the
start topic in the broker so that the subscriber process can
properly tune the Nexmon CSI and start the collection. With
the same logic, to stop the collection of such features, as the
user presses the stop button, the access point sends a publish
message to the stop topic that will trigger the termination of
the Nexmon process in the Raspberry Pi. For what concerns
the RSSI/CSI data processing and statistical feature extraction,
as the user requests for the output, a publish message directed
to the download topic triggers the Raspberry Pi to process
the data collected from the Nexmon process through a sim-
ple python script, to eventually produce a CSV file containing
the selected RSSI/CSI features for each time window for each
device.

F. Output Management

The Web interface allows the user to download the out-
put either when the FEE process has finished or while it
is under execution. By using the proper download button
in the GUI, the user triggers a shell script to 1) request
the physical layer CSV output through an MQTT sub-
scription to the output topic and 2) prepare a compressed
archive (using tar and gzip) with all the output files con-
taining all the requested features produced from the FEE
and P-FEE components. As the compressed output is ready,
it is eventually sent back to the user as a response
to the HTTP request, and it is ready for the analysis
process.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup

After the installation of the tool with all the required com-
ponents, the access point becomes ready for the collection of
potential information to be used in forensics processes. The
network administrator should set at least one configuration to
run in the access point and collect such information in order
to be analyzed when needed. To understand the impact of the
proposed tool in real-life smart home scenarios, we installed
Feature-Sniffer on two commercial Wi-Fi access points sup-
porting the OpenWrt firmware to present an evaluation of the
computing performance. In particular, the following access
points have been selected for our analysis.

1) Access Point 1: Linksys WRT3200ACM. This device is
characterized by 512-MB RAM and 1.8-GHz CPU and
has been selected for analyzing modern medium-sized
networks.

2) Access Point 2: Netgear R6120. This device is equipped
with 64-MB RAM and a less powerful 580-MHz CPU
and has been selected to simulate more common small
networks (i.e., with few IoT devices).

As a first step, we flushed the two selected access points
with the most up-to-date compatible version of OpenWrt
(version 21.02.0 for both), properly compiled for the two
different system architectures. Once the operating system is
up and running, we installed the Feature-Sniffer GUI as an
extension of the LuCI Web interface, adding both the client
(HTML/Javascript views) and server parts (Lua controller).
Finally, to install the FEE, we compiled the C program for
the two proper system architectures by using the corresponding
OpenWrt Software Development Kits.

The compilation procedure produces a .ipk package to be
installed into the system using the Opkg packet manager, a
fork of ipkg used in OpenWrt-based systems. Finally, to
extend the access point storage capabilities, we mounted a
USB drive to the two access points to store the Feature-
Sniffer output and easily move it to other machines for proper
analysis.

To evaluate the computing performance, we set up a Wi-Fi
network in our laboratory and let 10 IoT devices connect to
each access point. The devices included in our experiments
are reported with their traffic types in Table I. Each device
is characterized by a different traffic profile: for what con-
cerns IoT devices, we stimulate the production of traffic by
interacting with them during the tests (e.g., turning on/off the
smart bulbs or activating the smart cameras). Moreover, in
order to test the performance of Feature-Sniffer under con-
siderable traffic loads, we configured a Raspberry Pi 3B+
and a laptop as iperf3 client and server, respectively. The
iperf3 tool allows the generation of different traffic pro-
files, controlling the traffic bandwidth, the packet size, the
transport protocol, and the transmission duration. In order to
tune the iperf3 tool parameters to be consistent with respect
to modern IoT networks, we deeply analyzed a public IoT
data set [8] containing network traffic traces from different
common devices to understand the different traffic patterns
of a vast variety of IoT devices and emulate them through
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Fig. 3. Analysis of the traffic of devices in the data set in [8]. We report the box plot of the uplink (top) and downlink (bottom) rate, in terms of packets/s.

TABLE I
LIST OF DEVICES INCLUDED IN THE EVALUATION NETWORK

the iperf3 tool. In particular, we analyze the first 14 days of
traffic traces involving 20 different devices: 16 IoT and four
non-IoT. Fig. 3 reports the Downlink and Uplink traffic rate
of the considered devices in the form of a box plot. For the
computation of the plot, we consider only the active periods
for each device. The two rightmost boxes in the figure report
the cumulative IoT and Non-IoT traffic rates to understand the
overall average traffic load of the network.

As a consequence of the data set analysis, we tune the
iperf3 software to generate traffic with a maximum rate of
400 packets/s, given that this value is highly above the mean
traffic produced from tens of IoT devices simultaneously con-
nected. We keep track of the CPU and RAM consumption of
the FEE process [tracked by process identifier (PID)] using
two specific shell scripts, which are able to periodically mea-
sure the values with a sampling rate of two samples per second.
For what concerns RAM usage, the monitoring script is pro-
grammed to read the memory usage from the FEE process as
it is done from the htop tool,4 a common software for real-
time monitoring of resources usage in Linux-based systems.
To extract the memory usage of the process, we follow the

4https://htop.dev/

guideline reported in [31]: we take the value of the memory
consumption from the /proc/$PID/status/VmRSS/ file,
which is updated from the operating system each time
memory allocation changes for the process having $PID
as unique PID. For the CPU usage, instead, we used the
Linux ps command to track the percentage of CPU used
from the FEE process, passing the correct PID as an
argument.

B. Computational Performance

The performance evaluation phase is performed in the same
way for the two selected access points under the same network
conditions as explained above. We perform several tests with
the goal of monitoring the performance of the Feature-Sniffer
tool under different traffic loads while understanding its impact
on the access points working operations. In particular, we
created one Feature-Sniffer configuration, activating all avail-
able network/transport layer features to be extracted for each
device in the network, setting the window size to 5 s. Features
extracted from the physical layer are not considered here since
they are computed in the Raspberry Pi and do not require
additional access point resources.

1) Impact on Access Point Resources: To understand the
difference in CPU and RAM enabling/disabling the Feature-
Sniffer tool, the tests have been executed as follows: first,
we start the Feature-Sniffer tool with only the IoT devices
connected and run the monitoring script to keep track of the
resource consumption. After 30 s, we start generating traffic
triggering the various IoT devices and running the iperf3 client
under different transmission rates. We generate the traffic for a
total duration of 60 s, and at time t = 90 s, we stop the iperf3
tool and stop triggering IoT devices. Finally, we let another
210-s pass, and after 5 min of total execution, we stop the
Feature-Sniffer process, together with the monitoring script.
During the execution, the different IoT devices triggered pro-
duce, on average, a rate of 100 packets/s in total. To analyze
the results under different transmission rates, we repeated the
tests four times for each access point, each time changing the
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Fig. 4. Access Point 1 CPU utilization of the FEE process over time, using
different network traffic loads (w = 5 s, all features).

Fig. 5. Access point 2 CPU utilization of the FEE process over time, using
different network traffic loads (w = 5 s, all features).

Iperf3 client traffic rate: 0 pcks/s (only the traffic produced
from the connected IoT devices is considered), 100 pcks/s,
200 pcks/s, and 400 pcks/s. We report the CPU usage for the
two access points in Figs. 4 and 5, respectively. As the two fig-
ures show, the CPU utilization remains low for the two access
points, even if considering a rate of around 500 packets/s,
equivalent to having around 50 IoT devices communicating
simultaneously. In all analyzed cases for both access points,
the average RAM utilization remains almost constant below
2 MB, regardless of the traffic rate. During the simulation,
we also kept track of the packet error rate as reported by the
iperf3 client-server interaction: no particular differences have
been observed when executing/not executing the tool in the
various considered cases.

As we reported in the previous figures, CPU utilization
of the FEE process strongly reacts to the network traffic
conditions. However, the reaction is not immediate, but we
observe a shift of a few seconds depending on the window
duration used in the Feature-Sniffer configuration. To ana-
lyze the CPU utilization under different time window values,
we replicate the tests maintaining the same traffic rate and
changing the window value used to aggregate packets to com-
pute the features. Figs. 6 and 7 report the CPU utilization
for the two access points when using a time window in the
set [1,2,5,8,10] seconds to model the data set. Also in this
case, we set a configuration with all the available features
enabled and tune the iperf3 client to generate traffic at a rate
of 200 packets/s, additionally to the traffic produced by IoT

Fig. 6. Access point 1 CPU utilization of the FEE process over time, using
different window duration values.

Fig. 7. Access point 2 CPU utilization of the FEE process over time, using
different window duration values.

devices in the network. The two figures highlight that using
a longer time window to model the data set leads to higher
CPU consumption.

Finally, to investigate the behavior of the tool with higher
traffic loads under different amounts of features selected,
we also report the maximum CPU used by the FEE pro-
cess in function of the transmission rates when using two
Feature-Sniffer configurations: one with all the available fea-
tures enabled and a lighter version representing the average
use case, with only 1/3 of the available features turned on
(selected randomly). As shown in Figs. 8 and 9, as the gener-
ated traffic rate increases, the FEE saturates the CPU in both
access points. However, running the tool with a lower number
of features maintains the execution affordable even at higher
traffic rates, especially in Access Point 1.

2) Long-Term Analysis: As an additional task, we investi-
gate the long-term behavior of the tool in real IoT networks
and analyze the CPU required by the process under continuous
activity from IoT devices. We try to answer the question if the
tool can support a long period of execution and what are the
impacts on the access point functionalities. Fig. 10 reports the
CPU values over time under the same network environment
detailed previously, using the two different access points. The
long-term performance tests are executed for one full day. We
set the Feature-Sniffer enabling all the features and using dif-
ferent window values to highlight the performance difference.
For what concerns the network traffic load, in addition to the
10 physically connected IoT devices, we tune the iperf3 tool to
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Fig. 8. Access point 1 maximum CPU utilization under different transmission
rates. We set the FEE with all the features (blue line) and turning on only 1/3
of them (orange). The window value is set to 5 s.

Fig. 9. Access point 2 maximum CPU utilization under different transmission
rates. We set the FEE with two configurations, one with all the features (blue
line) and the other enabling only 1/3 of them (orange). The window value is
set to 5 s.

produce network traffic at a rate of 200 packets/s, thus simulat-
ing a network of around 30 continuously transmitting devices.
As the reported figure shows, after around half an hour, the
CPU required from the FEE process saturates to a fixed value
and stops increasing, even if the traffic is still flowing and
getting processed. This behavior confirms that for both access
points, we can afford to run the tool for days without causing
the system to overload.

3) Real-Time Analysis: To understand whether the tool can
output features in a real-time fashion, we need to analyze the
required processing time for each time window accurately.
For this purpose, we added a new output entry to be printed
along with the other selected features. Such entry computes
the total time that the printed window requires in the process-
ing phase: the processing time is computed considering the
difference between the time in which the window is ready to
be flushed by the computation thread and the time in which
it is actually printed in the output file. For the system to be
real-time, the sum of the processing times of each time win-
dow for all the connected devices should be lower than the
window duration, otherwise, new windows would start filling
the queue, causing the system to overload. For performing
this simulation, we use the same testing environment as the
previous cases. In this case, we keep the physical IoT devices
connected and transmitting at their standard rate while we

Fig. 10. FEE process CPU utilization (%) for Access Point 1 (top) and 2
(bottom) during a 1-day execution in a network with 30 active devices using
different window lengths.

Fig. 11. Time required for processing the windows of 50 devices during the
tool execution using different window lengths.

emulate 40 additional IoT devices to have an average behav-
ior as stated in the previous analysis. Considering physical
and emulated devices, we have a network traffic rate of around
500 packets/s belonging to 50 different MAC addresses. As for
previous cases, we use different time window lengths since this
value highly impacts the real-time behavior of the framework.
Fig. 11 reports the total time required for processing the time
windows of all the devices in a certain period of time for the
two access points. The total processing time for a given time
window is obtained by summing the processing times for all
the devices in that time window. As reported in the two plots,
the total processing time remains under the window length for
both access points, thus confirming the real-time behavior of
the tool. The results again confirm the clock speed difference
between the two access points.

V. USE CASES

This section showcases the potential of the proposed solu-
tion in real-life IoT forensic investigations. For this reason,
we define four different use cases in which the Feature-Sniffer
output can be extremely useful for solving forensic processes:
1) IoT device identification; 2) human activity recognition;
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3) human passage detection; and 4) voice assistant interaction
classification. The first task we define involves a high range of
IoT devices with different functionalities. To include as many
devices as possible, we referred to a public data set (from [8])
containing data from 31 different popular devices and used it
for the task of IoT device identification: the goal is to distin-
guish the IoT device only from its network traffic traces. This
task can be the first step of an advanced analysis pipeline that
includes subsequent device-specific tasks. For example, this
task allows the exclusion of non-IoT devices from forensics
analysis, avoiding storing information if the device is detected
as non-IoT and hence reducing the load of the access point
processing capabilities. Moreover, with a device identification
configuration, it is possible to set proper Feature-Sniffer con-
figurations to be enabled only if specific types of devices are
detected, i.e., start a capture for speaker recognition with a
proper predefined configuration if a home assistant is detected
in the network. The second task we consider involves the
network traffic extracted from consumer IoT video cameras.
Such devices are particularly interesting from a forensic point
of view, due to their widespread in smart homes/smart building
scenarios: indeed, they constitute the perfect digital witness by
design. However, for privacy and security reasons, IoT cameras
usually stream encrypted video traffic directed to proprietary
cloud services/mobile apps, making it almost impossible to
retrieve the video content. Nevertheless, recent works from
the state-of-the-art highlighted that some information leak-
ages occur in encrypted video traffic, allowing for a partial
understanding of the events happening in the FoV of the cam-
era [13], [15], [16]. In a nutshell, variations in packet size and
interarrival times could indicate activity in a video stream,
regardless of the used video codec, camera, and processing
hardware. The task that we aim to solve in this work using
such devices is user Activity Recognition, with the goal of dis-
tinguishing the activity being performed by a human in front
of the camera only using encrypted traffic traces.

To better understand the potential of Wi-Fi CSI, we include
a third task to unveil information on the surrounding environ-
ment using physical layer features extracted from a generic
IoT device: human passage detection. For the task, we use the
CSI features extracted from a consumer smart home device to
unveil the presence of a person passing through a room door.
Finally, given the great popularity of smart speakers in smart
homes, we conclude the application cases with a task that
takes the goal of recognizing and classifying Amazon Echo
user interactions, only referring to the traffic characteristics of
the device.

In the experimental results presented in the next section,
we show that Feature-Sniffer is a formidable tool to easily
collect the traffic features needed to successfully accomplish
the four tasks, at same time reducing the storage space needed
for storing the corresponding potential evidence.

A. IoT Device Identification

The first task relies on a public data set containing traf-
fic traces stored in PCAP files. The information extraction
required to use the Feature-Sniffer tool in an offline capturing
mode, directly processing the files instead of analyzing the live

traffic from the access point interfaces. To reduce the classifi-
cation task load, we use a subset of the public data set: the first
14 days of traffic from the available data are selected for the
task. In order to ease the processing phase, after download-
ing the traffic traces using the HTTP APIs provided by the
authors, we merged the 14 different files into a single PCAP
file. For the task at hand, we set a configuration specifying
the path of the single PCAP file, which is stored in a USB
drive connected to the access point. Then, we select 140 total
features: 32 from packet size (TCP DL, TCP UL, UDP DL,
and UDP UL), 14 from Payload size (UL, DL), 25 from inter-
arrival times (TCP DL, TCP UL, UDP DL, UDP UL, and
Total), 64 from PMF features of packet length (TCP DL, TCP
UL, UDP DL, and UDP UL), and five from local ports and
remote IPs/ports contacted. We filled the MAC filter list with
the physical addresses of the interested devices, to avoid pars-
ing traffic from undesired entities. The experimental results
are presented using a time window of 5 s: the full extraction
process with the selected parameters produced as output a sin-
gle CSV file having 20 labels (16 IoT and four non IoT) and
roughly one million total entries.

B. Human Activity Recognition

For the second application case, we set up the IoT network
using one of the two access points introduced in Section III-D
and connect several IoT cameras to it. In particular, we
selected the Linksys access point and three Wi-Fi IoT cam-
eras of different brands having similar functionalities: Ezviz
C6N, Tapo C100, and Teckin TC100. All cameras have the
same resolution (1920×1080) and can be activated through a
proper smartphone application. The three cameras have been
mounted in an indoor space very close to each other, so that
their FoV were overlapping. We configured each camera to
stream video over Wi-Fi continuously, disabling the audio
coming from the embedded microphones. Then, we selected
four different activities to be performed in the FoV of the three
cameras.

1) No Activity: A person sitting still in the FoV of the
cameras.

2) Slow Movement: A person walking slowly and calmly
in the FoV of the cameras

3) Fast Movement: A person frenetically moving in front
of the cameras

4) Lights On/Off: The artificial light in the indoor space is
turned on or off. No other light source is present.

Each activity has been performed for a period of 30 min and
in order to produce one data set for each activity, we set up
four configurations from the Feature-Sniffer GUI. Each con-
figuration uses a 2-s window containing the following features,
derived according to the study in [13] (58 features in total).

1) Downlink packet size (8 features: all statistical values).
2) Uplink packet size (8 features: all statistical values).
3) Downlink interarrival time (5 features: mean, median,

variance, standard deviation, and Kurtosis).
4) Uplink interarrival time (5 features: mean, median,

variance, standard deviation, and Kurtosis).
5) PMF features of downlink packet lengths (16 features:

all size ranges).
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Fig. 12. Sketch of the disposition of devices in the room for the human
passage detection task.

6) PMF features of uplink packet lengths (16 features: all
size ranges).

To avoid the computation of features for unrelated devices,
the device filter in the four configurations is filled with the
MAC address of the three cameras. A different ground-truth
label is used for each activity-camera pair: numbers from 1
to 3 for the No Activity configuration (Ezviz = 1, Tapo = 2,
Teckin = 3), numbers from 4 to 6 for slow movement and so
on for a total of 12 labels.

For each activity, we start the proper configuration to extract
features while performing the activity in front of the cameras.
The fourth activity (Lights) has been performed being sure that
each 2-s time window observed exactly one light switch. After
30 min, we stop the configuration and download the obtained
features for later analysis. The final data set therefore contains
roughly 900 observation windows per activity per camera, each
one containing 58 traffic features and one ground truth label.

C. Human Passage Detection

The third forensic task we present in this work takes as
a goal the detection of the passage of a person through the
room door, either entering or leaving the room, relying only
on CSI measurements. Since the aim of the task is to detect the
passage only using physical layer characteristics, the type of
device is not strictly related to the task itself. For this reason,
we selected a commercial IoT camera, considering that such
devices are usually characterized by a high-packet generation
rate. However, in our previous studies, we also considered the
case in which lower transmission rates are used for similar
tasks, and we achieved good results. Thus, we can assume
that the analysis considered here can be generalized using
other types of IoT devices with different network traffic pat-
terns [32]. We place the smart camera and the access point
with Feature-Sniffer on the two sides of the room door, as
in Fig. 12, and we start the feature collection while the per-
son moves in and out of the room walking in the dashed
line, alternating the passage with idle periods in which the
person is not moving. Differently from the second use case,
during the data set collection, the FoV of the camera does
not overlap with the area in which the person is moving, so
a variation in the camera FoV does not produce a variation
in the traffic rate. Moreover, to be sure that the camera is

transmitting sufficient traffic, we enable video streaming from
its smartphone application while collecting the data. For the
data collection, relying on the methodology presented in [33],
we create a new configuration in Feature-Sniffer and com-
pute a single feature based on CSI values extracted from the
frames of the IoT device. The selected feature aggregates the
frames into time windows of fixed duration and extracts, for
each window, the standard deviation of the CSI amplitude of
the frames for each subcarrier. Then, for each time window k,
the standard deviations over all the subcarriers are averaged to
obtain the selected feature A∗, that is: A∗

k = μ([σ i
k ∀i]), with

i ranging in the set of available subcarriers.
The device filter of the configuration is filled with the MAC

address of the selected smart camera, and the window size is
assigned to 3 s, which is the average duration of the walk of
a person through the room door. Finally, the data set is con-
structed starting the configuration while performing the human
activity several times. In total, we collected data performing 50
passages, 25 to get inside and 25 to get outside the room, tak-
ing note of the exact activity timestamps to assign the ground
truth labels.

D. Smart Speaker Interaction Classification

The last application case we present in this work involves
the analysis of the network traffic produced by an Amazon
Echo voice assistant device, one the most common type of
IoT device present in modern smart homes. Considering that
such types of devices offer many services and act as home
hubs for other IoT devices, they can reveal much potential
information about the user, the environment, and the devices
they allow to control. For this reason, we use Feature-Sniffer
to extract network traffic features and use them for three differ-
ent subtasks: 1) detecting the user interaction with the device;
2) distinguishing the user language; and 3) distinguishing the
voice nature of the speaker, i.e., whether real or synthetic
speech is being used to trigger the device. For the data set
construction, we decided to split the traffic collection pipeline
into two different steps: first, speech samples are collected
from different human speakers reading different questions in
two languages (Italian and English). To obtain homogeneous
traffic, we balanced the age and gender of the speakers. In
addition, to augment the set of audio samples used to trigger
the device, we reproduce the same set of questions for both
languages with synthetic voices using three different text-to-
speech (TTS) APIs: Google TTS,5 pyttsx36 (based on Python),
and Amazon Polly.7 In total, we obtained speech samples
from 31 Real Speakers (22 Italian and nine English) and 23
Synthetic Speakers (15 Italian and eight English), each ask-
ing 20 questions. Furthermore, each question is repeated three
times. The final data set thus contains a total of 3240 voice
audio samples, each used to produce an interaction with the
Amazon Echo device while the traffic is recorded. The network
traffic is collected using the Feature-Sniffer tool, while the
voice samples are reproduced using a Raspberry Pi 3B+

5https://cloud.google.com/text-to-speech
6https://pypi.org/project/pyttsx3/
7https://aws.amazon.com/polly/

Authorized licensed use limited to: University College London. Downloaded on November 22,2023 at 10:14:43 UTC from IEEE Xplore.  Restrictions apply. 



PALMESE et al.: DESIGNING A FORENSIC-READY WI-FI ACCESS POINT FOR THE INTERNET OF THINGS 20697

to activate the Amazon Echo device, which was previously
plugged and connected to the access point. While reproduc-
ing the speech samples, ground truth information, such as the
interaction timestamp, language, voice nature, and question,
being performed is collected. For the traffic collection, we
selected a subset of traffic features and used a 1-s time win-
dow length, motivated by the generally short duration of the
collected speech samples (in the order of 1–2 s). The selected
features (25 in total) only consider the TCP protocol, which is
the main used for the echo device communication, and refer
to statistical values of packet sizes and interarrival times. The
selected features mostly refer to Uplink traffic since it charac-
terizes the most user interactions. As the data set is collected,
we identify three different analysis tasks to be performed on
top of the extracted features. The first goal (task 4a) is to dis-
tinguish whether the user is interacting with the device or not,
i.e., the user is speaking to the device after pronouncing the
activation word. For this purpose, we used the obtained data
set and labeled all the time windows in which the device was
receiving a question with label = 1, while we used label = 0
under silent or passive periods. After the interaction detection
task, we define two different classification tasks that aim at cat-
egorizing the interactions. The first one (task 4b) takes the goal
of distinguishing the language of the question between Italian
and English, while the second one (task 4c) aims at identify-
ing a synthetic voice against a real person’s voice. For these
tasks, all the time windows containing an interaction have been
labeled with the proper language (Ita/Eng) and with the proper
voice nature (Real/Synthetic). Silent windows are not consid-
ered for the latter two subtasks to keep the classification with
only two labels (binary classifiers).

VI. EXPERIMENTAL RESULTS

This section reports the experimental results obtained by
applying machine learning algorithms to the data obtained
from the configurations explained in the previous section for
the three different tasks. In particular, we have downloaded the
features extracted from Feature-Sniffer on a laptop (Intel i7-
8750H with six CPUs @ 2.2 GHz, 16 GB of RAM) running
Ubuntu 20.04.4 and Python Version 3.7 with the use of the
scikit-learn library8 to apply several algorithms for the three
different use cases.

A. IoT Device Identification

To perform IoT device identification using the data set
previously described, after extracting the output from the tool
we have applied several supervised machine learning algo-
rithms for multilabel classification (random forest, adaptive
boosting, K-nearest neighbor, artificial neural network, and
Naive Bayes). In this first application case, the data set from
the tool is ready for the training since the labels are already
assigned from Feature-Sniffer. However, to reduce misclassi-
fication between non-IoT devices, we decided to merge the
features from the two smartphones and two laptops into a
single class assigning them the same label = “Non-IoT.” In

8https://scikit-learn.org/stable/

order to perform the training-test split, we applied a time-
ordered sevenfold cross-validation approach: the 14 days data
set is split into seven nonoverlapping folds, each made of two
consecutive days of traffic features. Then, seven iterations are
repeated in which sixfold are used for training and the remain-
ing one for testing. We choose this approach to simulate a real
use case, in which the train and the test sets do not contain
features relative to the same time periods (e.g., train today and
test tomorrow).

We achieve the most promising classification results using
the random forest, K-nearest neighbors, and artificial neural
network classifiers. The K-nearest neighbors has the advan-
tage of a very limited “training” time at the cost of the testing
phase, in which the algorithm computes all the distances with
the other entries in the data set to produce the classification
outcome. Considering the consistent size of the data set, we
focus here only on the random forest classifier (whose results
are reported and discussed here), in which there is a consistent
training phase, performed once, at the advantage of requiring
a limited time for future evaluations. The confusion matrix
obtained using this latter algorithm is reported in Fig. 13,
showing that the results are very promising, with an overall
classification accuracy and F1-score of 0.94. As it can be seen
from the matrix, almost all the devices are classified with over
90% accuracy. The main classification errors occurred between
two devices of the same brand (Belkin Wemo Switch and
Belkin Wemo Motion Sensor), achieving a balanced accuracy
of 87% and 78%, respectively.

For completeness, we report here the results using the other
classifiers. The K-nearest neighbors achieved a balanced accu-
racy of 88.7%, while for the neural networks, we tested four
different models having 1 or 2 hidden layers and 140 or
280 different neurons per layer. The most performing neu-
ral network has two hidden layers and 140 neurons, reaching
an accuracy and F1-Score of around 92.8%. However, as the
numbers suggest, the best results are still achieved using the
random forest classifier, which also holds for tasks 2 and 4 in
this work.

B. Human Activity Recognition

For the second task of human activity recognition, we have
trained different machine-learning classifiers for supervised
multilabel classification with the goal of classifying the activ-
ity being performed in front of the smart cameras. For the
task at hand, first we have merged the four outputs in one
single CSV file, being this possible since the labels have been
assigned properly to avoid conflicts. Then, for the activity
recognition phase, we identified two approaches.

1) A one-shot classification, which can infer the activ-
ity from the network traffic, regardless of the camera
producing it.

2) A two-way approach, based on a first identification of
the camera producing the traffic, using a logic very sim-
ilar to the first task, and a successive activity recognition
using a different pretrained classifier for each camera.

The first method required us to merge all the labels refer-
ring to an activity to a single common label regardless of the
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Fig. 13. Random forest classifier confusion matrix for the IoT device identification task using a sevenfold cross-validation approach on devices from the
data set in [8]. The last class contains the traffic from four non-IoT devices (two smartphones and two laptops).

traffic source: we renamed labels (1, 2, 3) for No Activity
as label = 1, labels (4, 5, 6) for slow movement as label = 2,
labels (7, 8, 9) for fast movement as label = 3 and finally,
labels (10, 11, 12) for lights On/Off as label = 4. We relied
on a tenfold cross-validation process: the data set is split into
tenfold and at each iteration nine of them are used for train-
ing and one for testing. We trained different classifiers and
reported here only the best performance, obtained using the
random forest. Fig. 14(a) shows the confusion matrix obtained
in this case: as one can see the performance results are good,
with an average F1-score of 83% and the majority of classifi-
cation errors occurring between the activities of slow and fast
movement.

In the second method, we try to improve the classifica-
tion performance using a camera identification classifier to
specialize the activity recognition training procedure. For the
first step, the labels (1,4,7,10) in the merged data set have
been renamed as Ezviz, while the labels (2, 5, 8, 11) and
(3, 6, 9, 12) as Tapo and Teckin, respectively. The random
forest classifier achieved again the best results with camera
identification accuracy, precision, and recall of 99.88%. As

the camera is identified correctly, the process follows with
an independent activity recognition classifier for each camera,
resulting in three different classifiers that need to be trained
for this step. The resulting confusion matrices for the activ-
ity recognition, considering previous knowledge of the camera
involved, are reported in Fig. 14(b)–(d). As observed in the
figures, the best results have been achieved by using the Tapo
camera, with an average accuracy of 96.6%, while the worst
results are observed for the Ezviz camera, with an accuracy
of 65%. The Teckin camera has obtained good results with an
overall activity recognition accuracy of 90%.

C. Human Passage Detection

As already introduced in the previous section, the third task
for human passage detection is performed by collecting a sin-
gle feature extracted from CSI data produced from the smart
camera for each time window. The first step is the construction
of the ground truth based on the timestamps of the activi-
ties performed: we assign a label equal to 1 if the window
is characterized by the person passing through the door, and
0 otherwise. As the data set is labeled, we design a binary
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Fig. 14. (a) Random forest confusion matrix for activity recognition using
one classifier for the three cameras. (b)–(d) Training a specific classifier per
camera.

classifier that takes as input the single feature A∗ and outputs
a binary label Y as a prediction. We opt for a simple threshold
classifier, according to the following:

Y =
{

1, A∗ ≥ τ

0, otherwise.
(1)

The choice of the proper value for the threshold τ greatly
impacts the obtained performance and requires particular
attention. For this reason, we perform several experiments with
1000 linearly spaced different values of τ , ranging between the
minimum and maximum values assumed by the feature A∗ in
the data set. At each iteration, we compute the value of the
prediction Y for each time window and we compare it with
the corresponding ground-truth label, obtaining the number of
true positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs). From such values, we compute the
TP rate (TPR) and FP rate (FPR) for each threshold value.
By representing TPR as a function of the FPR we obtain the
receiver operating characteristic (ROC) curve, a well-known
performance indicator used for binary classification. Moreover,
to have an overall performance indicator, we also compute the
area under the ROC curve (AUC). The ROC obtained for the
classification is reported in Fig. 15, showing very good results
with an AUC of 0.975.

D. Smart Speaker Interaction Detection

As previously stated, the fourth and last analysis task
presented in this work distinguishes three different subgoals
that involve the use of the Amazon Echo device. The first
forensically relevant information to be extracted from a voice
assistant device is to recognize whether the user is interacting
or not with the device, i.e., a person activated the device ask-
ing a question. For this goal, as the labeled data set has been

Fig. 15. Task 3: Human passage classification ROC curve. The AUC is 0.975.

constructed, we trained a binary random forest classifier using
a tenfold cross-validation approach with the 25 TCP-based fea-
tures extracted using the Feature-Sniffer tool. The interaction
classification task shows almost perfect results with an over
99% F1-Score, as shown in Fig. 16 where the ROC curve
is reported. Such excellent results are obtained thanks to the
dependence of the uplink traffic on the state of the device.
Indeed, uplink traffic peaks are observed whenever a person
interrogates the device, as speech samples are transmitted to
Amazon Web Services servers for processing.

Once an interaction has been detected by the proposed
algorithm, we define two different subtasks to distinguish the
language of the interaction (Italian versus English) and the
nature of the speaker interacting with the device (real versus
synthetic voice). For these tasks, since the same interaction
can consist of more time windows depending on the question
duration, we aggregated the statistics of more time windows
belonging to the same interaction in one unique entry to be
used in the data set: in total, 30 different features are computed
for each interaction, obtained aggregating the previously com-
puted 25 values of different windows with simple statistical
functions (sum, mean, standard deviation). After this process-
ing step, each interaction in the data set consists of one entry
having 30 different features and a label based on the language
of the speaker for task 4b and on the voice nature for task
4c. The obtained labeled data sets are then used to train one
binary classifier per task. Again the selected approach for the
two tasks is a tenfold cross-validation using random forest.
The resulting ROC curves for these latter two defined subtasks
using 1-s time windows for extracting the features are reported
in Fig. 16. As shown, the two tasks have lower scores than
interaction detection: around 86% for language recognition
and 76% for voice nature recognition. The language recogni-
tion results, even if not perfect, are still promising, considering
that we are only referring to encrypted traffic characteristics.
For the latter synthetic voice recognition task, instead, the rela-
tively bad results can be explained by the evolution of the TTS
APIs, always producing more realistic voices. The Amazon
Polly tool with neural optimization, indeed, produces a very
realistic voice that can be easily confused with a human voice.

E. Dimensioning Window Length

After presenting the results for the four different tasks using
a fixed time window value to aggregate packets and compute
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Fig. 16. Amazon Echo interaction classification ROC curve for the three
different defined subtasks.

the traffic statistical features, we propose an accurate analysis
of the impact of the window length on the classification results.
For this reason, we repeated the tests using different time
window lengths in the range [0.5,10] s, and we proceeded
with the analysis as discussed in the previous sections. In
Fig. 17, we report the results obtained using different win-
dow lengths for the first three tasks analyzed in this work.
The figure shows that different window lengths lead to dif-
ferent performance results during classification. For the first
two tasks, the performance increases with larger windows and
reaches its maximum when using 10-s windows. For the third
task, instead, the classification performance hits the maxi-
mum when using 3-s time windows, while it is lower when
using shorter or larger window lengths. The motivation for
this behavior is that the passage of a person through the room
door, on average, takes around 3 s. Hence, using 3-s time win-
dows allows to isolate in a single window the full activity.
When using bigger time windows, the aggregated values are
balanced by the periods in which the person is not moving,
thus making the value less dependent on the activity. For what
concerns instead the fourth task based on the Amazon Echo
device, we analyzed the classification performance using time
windows of 0.5 and 1 s, considering that most of the questions
activating the device in our data set have a duration lower than
2 s. The results, expressed in terms of random forest classi-
fication F1-Score, are reported in Table II. As shown in the
table, the classification performance is not impacted by the
window length.

F. Required Storage

1) Lossless Compression: To highlight the benefits of using
Feature-Sniffer in terms of used storage, we captured the com-
plete network traffic traces produced for the different tasks also
using tcpdump to store them in standard PCAP files. For each
of the three tasks we perform a storage analysis comparing the
data set size when storing the PCAP file containing the full
traffic traces, and the CSV file produced from the tool, con-
taining only the required features. In addition, we apply the
gzip lossless compression algorithm to both the PCAP and the
CSV for a further reduction of the data set size. The obtained
data set sizes for the three tasks are reported in Table III. As
the numerical results report, by compressing the CSV one can

Fig. 17. Classification accuracy for the first three tasks using different
window lengths for modeling the features.

TABLE II
TASK 4 CLASSIFICATION F1-SCORE USING 1-S AND 0.5-S WINDOWS FOR

MODELING THE DATA SET FEATURES

TABLE III
PCAP AND CSV DATA SET SIZE BEFORE/AFTER GZIP COMPRESSION

FOR THE FOUR DIFFERENT TASKS

obtain a consistently higher compression ratio with respect to
compressing the PCAP file. Results show that using our tool
one can perform IoT forensic analysis with a very reduced
data set, requiring up to 2, 5 × 103 times less storage space
(in task 2) than traditional approaches based on PCAP files.

2) Lossy Compression: To complete our discussion on stor-
age occupation, we present an advanced analysis for its
possible optimization. After proposing the results obtained by
using the gzip algorithm for lossless compression, we opt for
lossy compression techniques to encode each entry in the CSV
file and further reduce the obtained data set size. Lossy com-
pression algorithms can greatly reduce the data set occupation
with high-compression ratios, at the cost of introducing noise
in the compressed samples. Using such algorithms allows us to
decide the number of bits to allocate to each data set entry and
hence to control the final data set size, with a corresponding
data reconstruction error strictly dependent on the compres-
sion ratio. The reconstruction error usually leads to a loss in
the machine learning classification performance and thus there
is a tradeoff between the storage occupied by the compressed
data set and the obtained task accuracy. In order to study the
storage-accuracy relation using lossy compression techniques,
we selected the scalar quantization algorithm to encode the
entries of the data set in the three different tasks and trained the
machine learning models with the obtained compressed data
sets. In particular, the scalar quantization approach first nor-
malizes the entries in the data set and then encodes each value
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Fig. 18. Classification performance for the four IoT forensic tasks in function
of the storage rate required to maintain the data set, using scalar quantization
to compress the entries.

as an integer in the range (0,2b–1), thus allowing representing
it with b bits.

We decided to compress the full set of features involved
for the four tasks using different numbers of bits in the range
[1,16], and for each obtained data set, we proceed with the
analysis pipeline with the reconstructed data, training the
classifiers and extracting the classification performance. In
particular, for the first task, we compressed the selected 140
features collected for each 5-s window; for the second task,
we compress the 58 different 2-s windowed features. For what
concerns the third task, we compress the standard deviation of
the amplitude and phase in each subcarrier (56 nonnull subcar-
riers) for the 3-s windows. In this case, the second aggregation
to obtain the single feature required for the classification task
is performed after the data reconstruction step. Finally, for the
last task, we compress the 25 TCP-based features for each 1-s
time window.

Clearly, the different number of features used in the tasks
and the different window values used for aggregation lead
to different storage requirements. However, the required stor-
age over time for the four different tasks results to be in
the same order of magnitude, as reported in Fig. 18. The
figure reports the average machine learning classification
performance obtained in the four tasks, in function of the data
storage expressed in bits per second. Each line corresponds
to a different task, and each point in the line corresponds
to a different number of bits used to encode the correspond-
ing data set entries. The reported performance metric depends
on the task: we extracted the balanced accuracy for the first
two tasks, while for the third task, we selected the AUC. For
the last task, we report the binary classification F1-Score. As
the results show, the classification metric in the four tasks
reaches the optimal value using only around 200 bits of stor-
age every second. The results are good considering that under
this rate, the daily storage occupation is around 2 MB per
device (in the worst case, considering the device is con-
tinuously transmitting) against the average PCAP file size
that may reach the order of GBs per day, depending on the
device. In our previous work presented in [34], we deeply
analyzed the storage-accuracy tradeoff for the first two tasks

presented in this work, proposing a framework to extract the
best operational point, expressed as the combination (F, B) of
the number of features F and the number of bits B to use, for
the optimization of such tradeoff.

VII. CONCLUSION

This work has presented Feature-Sniffer, a tool to turn an
OpenWrt-based access point into a forensic device capable of
collecting IoT device traffic features to be used as potential
sources of evidence in forensic processes. After presenting the
tool architecture and its implementation details, we perform a
performance evaluation of the tool in modern Wi-Fi access
points to analyze its impact in terms of CPU. In particular,
we show that even small networks equipped with low-cost
access points can use the proposed framework for performing
network feature collection with a friendly graphical interface.
Finally, we showcase potential uses in real-life forensic sce-
narios in which the traffic features extracted from consumer
IoT devices can be used to unveil information from the sur-
rounding environment. We defined four different tasks with the
goal of 1) distinguishing the different IoT devices from traffic
traces; 2) identifying the human activity performed in front
of smart cameras; 3) detecting the human passage through
the door with physical layer features; and 4) classifying user
interactions with a smart speaker.

The experimental results are very promising and high-
light that it is extremely simple to use Feature-Sniffer to set
up a forensic gateway that allows the extraction of useful
information from the devices and the environment in which
they are located. To conclude the work, we provide an anal-
ysis of possible storage optimization techniques, showing the
potential storage gain when applying lossy compression tech-
niques to the output data set for the three tasks. Results show
that 2 MB per day for each device is enough for unveiling the
information for each of the four proposed tasks against the
hundreds of MBs required for storing modern IoT network
traffic traces in the form of PCAP files.

As future research directions, we plan to focus our research
on further optimization of the feature storage using different
and more complex compression schemes. In addition, we plan
to expand the work currently done by enabling Feature-Sniffer
with inference capabilities, bringing the inference procedure to
the access point level and hence detecting real-life events from
the network traffic features as soon as they occur, allowing
specific behaviors if events are detected (i.e., store the full
traffic and notify the user).
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