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Abstract

Generalization bounds are valuable both for theory and applications. On the one
hand, they shed light on the mechanisms that underpin the learning processes; on the
other, they certify how well a learned model performs against unseen inputs. In this
work we build upon a recent breakthrough in compression theory (Campi & Garatti,
2023) to develop a new framework yielding tight generalization bounds of wide
practical applicability. The core idea is to embed any given learning algorithm into
a suitably-constructed meta-algorithm (here called Pick-to-Learn, P2L) in order to
instill desirable compression properties. When applied to the MNIST classification
dataset and to a synthetic regression problem, P2L not only attains generalization
bounds that compare favorably with the state of the art (test-set and PAC-Bayes
bounds), but it also learns models with better post-training performance.

1 Introduction

Machine learning has achieved remarkable results in the last decades, with successful stories ranging
from digit recognition (Dosovitskiy et al., 2020), to protein folding (Jumper et al., 2021), traffic
prediction (Li et al., 2017), medical diagnosis (Kononenko, 2001), and beyond. Contrary to that, the
understanding of the mechanisms underpinning generalization, and the availability of bounds for its
evaluation, is still limited. This is unfortunate because generalization bounds are important both to
develop trust in learning methods as well as to allow for a fair comparison among alternatives, which
is relevant to hyper-parameter tuning.

Among the various tools that have been introduced to provide generalization bounds, we recall the VC-
dimension (Vapnik & Chervonenkis, 1971), Radamacher complexity (Bartlett & Mendelson, 2002),
mutual information (Xu & Raginsky, 2017), sharpness (Keskar et al., 2017), compression schemes
(Littlestone & Warmuth, 1986; Floyd & Warmuth, 1995; Graepel et al., 2005), and PAC-Bayes
approaches (Dziugaite & Roy, 2017; Perez-Ortiz et al., 2021). Each of these frameworks is applicable
to specific contexts. For example, the approach based on the VC-theory requires that a model is
selected from a class with finite VC-dimension, while compression schemes are applicable provided
the existence of an informative subset of data points from which the model can be reconstructed. It
has also to be said that the level of precision of the available bounds is highly problem-dependent and
they often take a significant margin from the actual performance.
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While bounds based on the VC-dimension, and some other aforementioned approaches, are often
conservative (resulting in untight, or even vacuous, evaluations), the sharpest approach to evaluate
generalization across various learning domains is still that based on test-set bounds (Langford, 2005).
However, the test-set approach requires holding out a portion of the training set for testing, which
makes it data-inefficient with negative impact on the post-training performance. In view of these
considerations, it would be highly desirable to develop a new general-purpose technique able to set
the data free in their double role of (i) delivering the information that is needed to learn, while also
(ii) providing evaluations on the attained generalization result.

In this paper, we move towards the goal expressed in (i) and (ii). To this aim, we build upon a recent
breakthrough in the field of compression schemes, (Campi & Garatti, 2023). Therein, the authors
have established new and tight bounds for the so-called probability of change of compression that
hold under certain properties: under the property of preference, tight upper bounds have been obtained
that link the probability of change of compression to the size of the compressed set1; moreover, under
a so-called non-associativity property and a property of non-concentrated mass, a lower bound has
also been obtained. Hence, under these additional properties, the change of compression is put in
sandwich between two bounds, which are shown to rapidly converge one on top of the other as the
number of data points increases. The interest of these results in the context of statistical learning lies
on the fact that some learning algorithms naturally define a compression scheme and the probability
of change of compression can be used to bound the probability of misclassification/misprediction.
However, the challenge is that many other learning algorithms (including most algorithms for deep
learning) do not exhibit any compression property.

With this paper, we give new, significant, thrust to the above findings. Specifically, we present a
meta-algorithm, called Pick-to-Learn (P2L), that incorporates any learning algorithm given as a black
box and makes it into a compression scheme, so licensing the use of results from compression to
establish generalization bounds in virtually any learning problem. More precisely, the meta-algorithm
constructs a loop around the original learning algorithm that elects at each iteration a new data
point to be included in the set of those used for training. Independently of the inner algorithm
(which can be any algorithm, e.g., GD – Gradient Descent – for regression), we show that the meta-
algorithm possesses the properties of preference, non-associativity and non-concentrated mass by
which, as mentioned above, one can secure extremely tight bounds on the change of compression. By
further linking the change of compression to the probability of misclassification (or misprediction, in
regression problems), powerful and informative generalization bounds are obtained without requiring
the use of test-sets. When using our approach on various setups, of which we here present the MNIST
classification problem and a synthetic regression problem, we find that P2L returns bounds that are
comparable, or superior, to those attained via test-set and PAC-Bayes bounds, while it learns models
with better post-training performance.

The idea and the theoretical apparatus behind P2L is presented for the first time in this paper, which
also provides a complete set of proofs (given in the appendices) to establish the ensuing generalization
results. On the other hand, it has to be said that the usage of the meta-algorithm P2L requires the
user to choose a rule by which a new data point is selected at each iteration of the external loop, a
choice that is problem-dependent and cannot be part of the general theory. Therefore, the present
contribution lays the groundwork of a general new methodology and we expect that this methodology
will thrive in the coming few years by adapting it to various specific contexts.

While our demonstrative focus in this paper is on classification and regression, P2L bears a promise
of applicability to any data-driven learning problem, including large-scale constrained optimization.
Interestingly, in recent years, selection rules to iteratively find “core” examples in the training dataset
have been studied in various learning problems, see, e.g., (Toneva et al., 2018; Paul et al., 2021; Yang
et al., 2022). These works differ from the present contribution both in their motivations (pruning
the training dataset is motivated by computational issues) and results (none of these works provide
a compression scheme according to the classical definition and certainly they do not enforce any
preference property). Nonetheless, these selection rules can be adopted in the external loop of P2L

1The notion of preference was known in the machine learning literature before (Campi & Garatti, 2023)
where it is often referred to as stability. Under stability, previous contributions, e.g., (Bousquet et al., 2020;
Hanneke & Kontorovich, 2021), have provided valuable generalization results and the approach we propose
may as well build upon these results; however, the bounds in (Campi & Garatti, 2023) largely improve over all
previous findings.
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and we envisage a synergy of our results with these methods. This opens exciting perspectives for
future research.

Structure of the paper. After introducing the mathematical preliminaries (Section 2), we present
the meta-algorithm P2L (Section 3) and its generalization results (Section 4). For the sake of
generality, these sections adopt an abstract viewpoint that accommodates various learning frameworks.
Applications to MNIST classification and synthetic regression can be found in Sections 5 and 6.
Appendix A contains the proof of the main result and various additional results, including an extended
version of P2L. Appendix B instead includes some implementation details and additional material for
the MNIST application. Finally, Appendix C provides a further numerical experimentation to study
the interpretability of the results of P2L. The source code necessary to reproduce all our numerical
results can be found in the Supplementary Material, and at at https://github.com/dario-p/P2L.

2 Mathematical Preliminaries

We use z to denote an example, which is an element from a generic set Z . For instance, in supervised
classification, z is an input-label pair (x, y) and Z = X × {1, 2, . . . ,M}; instead, in supervised
regression, Z = X × R. We assume to have access to N examples, which we collect in a dataset
D; that is, D = {z1, z2, . . . , zN}. Throughout, we model D as a multiset.2 This is motivated by
the fact that P2L’s output will not depend on the order of appearance of the examples but it will
account for (possibly) repeated observations. With multisets, the set operations ∪,∩, \,⊆ extend
from their definitions for sets in an obvious way.3 All multisets encountered in our mathematical
derivations have a finite number of elements and | · | denotes the cardinality where each element is
counted as many times as is its multiplicity. The multiset of examples D is modeled as a realization
of D = {z1, z2, . . . ,zN}, where z1, z2, . . . ,zN are independent and identically distributed (i.i.d.)
random elements taking value in Z and defined over a probability space (Ω,F ,P).4

We wish to utilize D to construct a hypothesis from a hypothesis spaceH, which can be any generic
space. For example, if we are tasked with making predictions on the label/output of previously
unseen inputs,H can be the space of classifiers/predictors obtained by suitably parameterized neural
networks. We assume to be given a learning algorithm L that maps a list of examples to a hypothesis
(this is the inner black-box of P2L). Unlike multisets, lists come with a positional order of their
elements and our approach works rigorously with learning algorithms L whose returned hypothesis
either depends on this positional order or does not. Considering a list (as opposed to a multiset)
as input to L gives a setup that embraces the most general perspective. This is important as many
commonly employed algorithms, e.g., SGD for the training of neural networks, are of the first type.

3 The Meta-Algorithm P2L

As anticipated, our goal is that of utilizing a given learning algorithm L as a building block to con-
struct a meta-algorithm (P2L) that induces a compression scheme with desired properties, regardless
of whether the initial learning algorithm has such properties. For this, we need two ingredients:
(i) an initial hypothesis h0 ∈ H; (ii) a suitable criterion of appropriateness, and a corresponding
appropriateness threshold. The criterion of appropriateness quantifies to what extent a given hy-
pothesis h is appropriate for an example z ∈ Z , while the threshold is used to assess – in the form
of a yes/no answer – whether the given hypothesis h is deemed sufficiently appropriate for z. We
formalize the idea of criterion of appropriateness, and the corresponding threshold, by introducing
a hypothesis-dependent total order ≤h over the extended set ZS = Z ∪ {Stop}, where Stop is an
external element that is added to Z for algorithmic reasons. Given a hypothesis h (our meta-algorithm
iterates over subsequent choices of h before exiting and ≤h will be used at each iteration with the
current h), ≤h orders the elements in Z and, in particular, allows us to determine the element that

2This means that, e.g., {1, 1, 2} is the same as {1, 2, 1}, but both are different from {1, 2} because in a
multiset, like in a set, there is no concept of order of the elements but account is taken of their multiplicity.

3This is easily achieved using the multiplicity function µU for a multiset U , which counts how many times
each element of Z occurs in U . Then, µU∪U′(z) = µU (z) + µU′(z), µU∩U′(z) = min

{
µU (z), µU′(z)

}
,

and µU\U′(z) = max
{
0, µU (z)− µU′(z)

}
. Finally, U ⊆ U ′ iff µU (z) ≤ µU′(z) for all z.

4Throughout, boldface denotes random quantities and we tacitly assume that all random quantities that we
introduce are measurable.
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is the least appropriate. The outside element Stop is instead used to model the appropriateness
threshold: h is “enough appropriate” for z ∈ Z if z ≤h Stop while it is not appropriate enough
if Stop ≤h z. Note that the two conditions cannot be satisfied simultaneously because z 6= Stop
(recall that Stop is an outside element) and ≤h is a total order. While remarking the generality of
this setting, we provide two examples for concreteness and clarity of presentation.

Example 3.1 (Classification). Consider a binary classification problem where z = (x, y) with x ∈ X
and y ∈ {0, 1}. Commonly employed hypotheses (e.g., neural networks) return the probability
that a feature vector is mapped to either of the two classes. A possible criterion measuring the
appropriateness of h for z is given by the cross-entropy between the label y and the probability
distribution returned by h in correspondence of x, (Bishop & Nasrabadi, 2006)[Sec. 4.3.4]. Then, the
appropriateness threshold can be used to certify if z is correctly classified by h by assessing if the
cross-entropy is above or below the threshold −ln(0.5). This setting is captured by the following
total order: for z1, z2 ∈ Z , we define z1 ≤h z2 if the cross-entropy of z1 is no bigger than the
cross-entropy of z2 (and ties are broken according to any given rule), while Stop ≤h z if z has
cross-entropy larger than −ln(0.5) and z ≤h Stop otherwise.

Example 3.2 (Regression). In regression, z = (x, y) with x ∈ X and, for example, y ∈ R. In this
setting, a hypothesis is typically a predictor that maps x into an estimate ŷ(x) for y. A possible
criterion measuring the appropriateness of h for z is given by |y − ŷ(x)|, while the appropriateness
threshold can be specified by requiring that |y− ŷ(x)| ≤ γ for a given γ for which the predictions are
sufficiently informative. In this case, the hypothesis-dependent total order can be defined as follows.
For z1, z2 ∈ Z , z1 ≤h z2 when |y1 − ŷ(x1)| ≤ |y2 − ŷ(x2)| (when |y1 − ŷ(x1)| = |y2 − ŷ(x2)|
but z1 6= z2 the tie can be broken according to any given rule); otherwise, Stop ≤h z when
|y − ŷ(x)| > γ and z ≤h Stop when |y − ŷ(x)| ≤ γ.

We are now ready to introduce the meta-algorithm P2L (Algorithm 1). P2L works by iteratively
feeding the learning algorithm L with a growing list of training examples taken from D, while
terminating when the current hypothesis is deemed sufficiently appropriate (as assessed by the
appropriateness threshold) for all the remaining examples that have not been used for training. If this
is not the case, P2L appends to the current training examples the example among those not yet used
for which the current hypothesis is least appropriate (according to the criterion of appropriateness).
P2L returns both the multiset T of the employed training examples and the final hypothesis h.

Algorithm 1 A(D) – The meta-algorithm P2L

1: Initialize: T = ∅, h = h0, z̄ = maxh0
(DS)

2: while z̄ 6= Stop do
3: T ← T ∪ {z̄} . Augment T
4: h← L([T ]A) . Learn hypothesis
5: z̄ ← maxh(DS \ T ) . Compute max
6: end while
7: return h, T . Hypothesis h and multiset T

Formally, given (L, h0,≤h), the meta-
algorithm P2L is a map from a dataset D
to two objects: an hypothesis h ∈ H, and
a multiset T ⊆ D. We denote this with
(h, T ) = A(D). P2L is composed of an
initialization, and a main loop where three
steps are performed. See Algorithm 1, where
DS = D ∪ {Stop} and [T ]A is the list of
the elements in T with positional order of
each element corresponding to the iteration
in which that element is selected by P2L.

In the initialization, we let the multiset of training examples be empty, the hypothesis h be h0,
and compute the maximal element in DS = D ∪ {Stop} according to ≤h0

, which we denote with
z̄ = maxh0

(DS).5 In the main loop, we first check if the maximal element is Stop. If so, the meta-
algorithm terminates (thus our naming it Stop). Else, the training multiset is augmented with z̄. We
then produce a new hypothesis by running the learning algorithm on [T ]A, i.e., we set h← L([T ]A).
Finally, we compute the maximal element in DS \ T according to the new hypothesis h, that is,
z̄ ← maxh(DS \ T ), and repeat. When the meta-algorithm terminates, it returns both the hypothesis
h, and the multiset T .

We conclude with two important remarks. First, note that the choice of the learning algorithm L,
ordering ≤h, and initial hypothesis h0 are arbitrary. Interestingly, strong generalization guarantees
can be secured at this high level of abstraction (Theorem 4.2) and this allows one to tackle multiple
learning problems, including both classification and regression (Sections 5 and 6). Second, observe
that the generalization guarantees we will provide rely crucially on the fact that the meta-algorithm

5Recall that the maximal element is unique.
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P2L possesses a key feature: P2L compresses the multiset D into the multiset T , and applying P2L
to D or to T reconstructs the same output.

4 Statistical Risk and Main Result

In this section we provide formal generalization guarantees on the performance of the hypothesis
obtained by running the meta-algorithm P2L. Towards this goal, we introduce the notion of statistical
risk, which we will then bound.
Definition 4.1 (Statistical Risk). The statistical risk of a given hypothesis h ∈ H is R(h) =
P{Stop ≤h z}, where z is a random example independent of and distributed as each zi.

Informally, the statistical risk of a hypothesis h measures the probability that h is not appropriate for a
new, out-of-sample, example z. Given the generality of ≤h, this notion can embody various specifica-
tions. For instance, in the context of Example 3.1 the statistical risk coincides with the probability of
misclassification; in the context of Example 3.2 with the probability of misprediction above a level γ.

In the result stated below, D is seen as a random element (with an unknown probability distribution) so
as to capture the variability in the dataset. Correspondingly, h is a random element and the risk R(h)
is a random variable. Our objective is to show that R(h) can be assessed based on the compression
level achieved by P2L, i.e., on the cardinality of T . We aim to make a statement of the form “With
high probability 1 − δ with respect to the N i.i.d. draws generating the dataset (i.e, with respect
to the unknown probability distribution of D), the statistical risk is upper bounded by ε(|T |, δ)”,
for a suitable choice of ε(·, ·). Towards defining ε(·, ·), we need to introduce the following function
Ψk,δ : (−∞, 1)→ R indexed by k = 0, 1, . . . , N and by the confidence parameter δ ∈ (0, 1):

Ψk,δ(ε) =
δ

2N

N−1∑
m=k

(
m
k

)(
N
k

) (1−ε)−(N−m) +
δ

6N

4N∑
m=N+1

(
m
k

)(
N
k

) (1−ε)m−N,

where the first summand evaluates to zero when k = N . We are now ready to state our main result.
Theorem 4.2 (Bound on Statistical Risk). Let (h,T ) = A(D), the output of P2L. For any δ ∈ (0, 1)
it holds that

P{R(h) ≤ ε(|T |, δ)} ≥ 1− δ, (1)
where, for k = 0, 1, . . . , N − 1, ε(k, δ) is the unique solution to the equation Ψk,δ(ε) = 1 in the
interval [k/N, 1], while ε(N, δ) = 1.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

k

ε

Figure 1: Function ε̄(k, δ), δ = 10−6, 10−4,
10−2, (top to bottom). N = 500. The dotted
line is k/N .

See Appendix A for a proof. Theorem 4.2 unveils
a deep connection between the level of compres-
sion achieved byA, as measured by the cardinality
|T |, and the generalization level of the hypothe-
sis. Quantitatively, the link is dictated by ε(k, δ),
whose trend is exemplified in Figure 1 for different
values of δ.

Three important observations are in order. First,
higher compression, i.e., a lower |T |, corresponds
to better generalization guarantees. Second, the
dependence of ε(k, δ) on δ is provably logarith-
mic. Hence, selecting a very small value of δ, say
10−6, i.e., asking for R(h) ≤ ε(|T |, δ) to hold
with high confidence, say 0.999999, in practice
with certainty, has little cost. Third, we notice
that the bound can be applied without knowledge
of the probability distribution by which data are
generated (distribution-free result).

5 Application to MNIST Classification

In this section we apply P2L to the MNIST digit recognition problem. Our goal is to compare the post-
training performance and generalization bounds obtained with an implementation of P2L, PAC-Bayes
and test-set approaches. The latter two are known to give the best generalization bounds to date.
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More precisely, we consider a binary version of the MNIST dataset introduced in the seminal work of
(Dziugaite & Roy, 2017) for the specific purpose of comparing the generalization guarantees of PAC-
Bayes and other approaches, and later employed in, e.g., (Rivasplata et al., 2019). In this problem, the
digits 0-4 and 5-9 are mapped to the labels 0 and 1. To classify the inputs, we employ a fully connected
feed-forward neural network with three hidden layers each with 600 nodes and ReLu activation
functions. The input has 784 nodes and the output has two nodes which are passed to a softmax
function. This architecture, employed in the above-cited works, is used across all our experiments.
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Figure 2: Top row: Average bounds on the risk (dashed) and misclassification on the test dataset
(solid) ± one standard deviation for P2L ♦, test-set �, and PAC-Bayes 4 with a confidence of
δ = 0.035 (left) and δ = 0.001 (right). The solid markers denote the best bounds achieved and their
corresponding post-training performance. Bottom row: Distribution of the upper bounds on the risk
and misclassification on the test dataset for the models achieving the best bounds for P2L +, test-set
+, and PAC-Bayes +. Precisely, each point in these figures corresponds to the pair (generalization
bound, actual misclassification level) achieved in one of the 60 partitions of the MNIST training
dataset we use. The means are indicated with a solid diamond, circle, and triangle, respectively.

MNIST consists of a training dataset containing 60000 examples and a test dataset with 10000
examples. In our experiments, we train all models only on 1000 samples from the training dataset
at a time. We particularly care of this “small” dataset setting, in which one has to make the most
of the data for both training and assessing the generalization. This is a setting of interest to various
fields where data are a limited, possibly costly, resource.6 Specifically, we shuffle the original MNIST
training dataset and extract 60 disjoints datasets with 1000 data points each. All approaches we
compare are run on the resulting 60 datasets, which are used to both train the network and provide
generalization bounds. The full test dataset, containing 10000 examples, is never used in any training
phase. It is instead used to evaluate the actual post-training performance of each trained model. We

6Our experience ranges from applications to cardiac defibrillation in which patients in out-of-hospital cardiac
arrest are classified as being able or not able to positively react to a defibrillation shock (in the latter, alternatives
are possible, chiefly administrating a cardiac massage prior to the shock), to applications with spacesuit testing in
which suits are artificially bombarded with particles to mimic the condition encountered in the outer space. While
in the first example the number of recorded cases is potentially very high (modern defibrillators automatically
collect ECG traces), still these data are not made public and easy to secure in large quantities, while in the second
example each single data point can be quite costly, suggesting that the dataset has to be kept as small as possible.
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now present the specific algorithmic choices made for P2L. Due to space limitations, the details
concerning the test-set approach and PAC-Bayes can be found in Appendix B.1.

P2L. As discussed, P2L is fully specified once a learning algorithm L, an initial hypothesis h0,
and a hypothesis-dependent total ordering ≤h with a criterion of stop are defined. For the learning
algorithm L, we choose the widely employed GD (gradient descent) with momentum, which we run
for 200 epochs with a learning rate of 0.01, momentum of 0.95, dropout probability of 0.2. For the
sake of clarity, we remark that each time GD is called by P2L, GD iterates until convergence (or
until reaching the allowed number of epochs) so as to perform the minimization of the empirical risk.
As initialization of GD, we take the h returned at the previous iteration of P2L.7 Regarding h0, it
is clear that when starting from an educated guess the choice of the worst example to be inserted
in T tends to be more meaningful, allowing P2L to terminate with a smaller T and, thus, a better
generalization bound. To this purpose, one can use a portion of each training dataset to pretrain h0

(using GD again), while P2L and, therefore, the ensuing generalization bound rely on the remaining
part of the training dataset. In our computation, we experiment with multiple sizes of the pretraining
portion. As for≤h, given an hypothesis h, i.e., a neural network, we use the total order induced by the
cross-entropy of its output as discussed in Example 3.1 (ties are broken according to the lexicographic
order of the examples’ bit representation). This choice ensures that the statistical risk of Definition 4.1
corresponds to the probability of misclassification, and thus a bound on the statistical risk coincides
with a bound on the misclassification. The final bound we present on the misclassification is that of
the main result in Theorem 4.2, where the number of samples equals N minus those used to pretrain
the initial hypothesis h0.

Experimental results. The results are presented in Figure 2 for different values of the confidence.
The top row depicts, the average (over the 60 trials) generalization bounds as well as the average
misclassification levels on the test dataset (post-training performances) with their dispersion for the
three approaches. The values are plotted as functions of the portion of the dataset (called train/pretrain
portion) used to train the the model in GD+test-set, to pretrain the prior distribution in PAC-Bayes,
and to pretrain the initial hypothesis h0 in P2L. The joint distribution of the returned bound and actual
post-training misclassification level for the best models (corresponding to train/pretrain portion equal
to 0.5, 0.6, 0.7 for P2L, PAC-Bayes, and test-set approach, respectively) are shown in the bottom row.
The average bounds and misclassification levels for these best models are also presented in Table 1
for δ = 0.035. For the sake of completeness, Table 1 also reports the average running times of one
execution (i.e., for one dataset with 1000 examples) of the three approaches (computational resource:
Apple MacBook Pro with M1 Pro CPU and 32Gb of ram).

Table 1: Risk of best models for δ = 0.035.
Bound on risk Risk on the test dataset Difference Average running time

P2L 0.143 0.072 0.071 2m 1s
Test-set 0.129 0.079 0.050 0m 5s
Pac-Bayes 0.177 0.088 0.089 4m 1s

Conclusions. Four important observations are in order. First, it is evident that, in the present
application, the implementation of P2L with GD outperforms the PAC-Bayes approach with respect
to both the provided upper bound on the risk and the post-training performance on the test dataset.
This is true not just for the best model learned with each approach (cfr. the solid diamonds and the
solid triangles in Figure 2), but it holds uniformly across all train/pretrain portions we tried (cfr. the
green and red curves). Notably, the model returned by P2L+GD when using only 10% of the data to
pretrain the initial hypothesis h0 has a risk bound that is comparable to that of the best PAC-Bayes
model (whose prior is trained on 60% of the data) while it achieves a better post-training performance.
Second, P2L+GD provides best risk bounds that are comparable to those of GD+test-set approach,
albeit slightly inferior (0.143 vs 0.129 for δ = 0.035 and 0.163 vs 0.155 for δ = 0.001). However,
P2L+GD provides better post-training performance uniformly across all train/pretrain portions. As a
matter of fact, for any choice of pretrain portion, P2L+GD’s performance is equal to that obtained
when GD is run on the whole data set (N = 1000), for which the test-set approach cannot provide

7As an alternative, one could also re-train a model from scratch at every iteration. This implementation of
GD can be seen as a slightly different choice of the inner algorithm L for P2L. The selected implementation
of GD is motivated by the ensuing computational advantage, since fewer gradient steps are typically needed
to converge, and the fact that this implementation makes h less sensitive to the addition of one example in T ,
which is helpful in later stages of P2L to speed up its termination.

7



any meaningful bound since no data are left for testing the model. This is a clear indication of the
important feature that P2L utilizes all data to jointly learn a good model and provide a risk bound.
Third, the post-training performance of PAC-Bayes and GD+test-set approaches are similar. This
suggests that in PAC-Bayes the training of the posterior does not exploit the additional available data
to improve the model, but rather to certify it, in a similar vein as in the test-set approach. This fact has
also been observed recently in (Lotfi et al., 2022)[Fig 1(a)]. Fourth, as for the tightness of the bounds
(i.e., the difference between the upper bounds and risk on the test dataset), GD+test-set approach
provides the tightest results, while P2L+GD and PAC-Bayes approaches alternate depending on the
specific train/pretrain portion selected.

6 Application to a synthetic regression problem
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Figure 3: An instance of dataset used for re-
gression. The crosses are examples (x, y).
The black line depicts the function f(x) =
sin(2.5πx)/(2.5πx) around which noise is
added. The red dashed and blue solid lines
represent the fit obtained with a choice of
train/pretrain portion equal 0.3 (best) for P2L
and test-set approaches. The red shaded re-
gion depicts a tube of radius 0.1 around the
red model. The risk of the red model is the
probability that an unseen example falls out-
side the shaded region.

In this section we apply our methodology to a syn-
thetic regression problem in order to showcase the
flexibility of the approach introduced in Section 4.

Specifically, we consider 100 distinct training
datasets with N = 200 examples (x, y) and then
another 100 distinct training datasets with N = 500
examples (x, y). The input x ∈ [−0.5, 1.5] is
extracted uniformly at random and the output is
y = f(x)+ewith f(x) = sin(2.5πx)/(2.5πx) and
e extracted according to a normal distribution with
zero mean and standard deviation 0.05, see Figure 3.
For each dataset, our objective is twofold: finding a
model that fits the data well, and providing a bound
on the probability that the model mispredicts the
output by more than a threshold γ = 0.1 (bounds of
this sort matters in relation to many applications).

In pursuing this goal, we compare the generaliza-
tion bounds and post-training performances attained
using P2L and test-set bounds. For illustration pur-
poses, in all our experiments we consider a simple
network architecture comprising one input node, one
output node, and one hidden layer with six nodes,
each equipped with a tanh activation function. To
evaluate the post-training performance, we use an
additional test dataset with 20000 examples. The
value of δ is set to 0.035.

P2L. In deploying P2L we use GD as learning algorithm L, and, similarly to the MNIST example, we
experiment with initial hypotheses h0 trained on different fractions of the training dataset (including
the null fraction in which case h0 is the network with all weights set to 0). We fix the same total order
≤h of Example 3.2, with γ = 0.1. In this context, the risk introduced in Definition 4.1 measures
the probability that the output y is mispredicted by more than γ, thus giving us a guarantee on the
quality of the model. The generalization bound we use is that in Theorem 4.2, where the number of
samples equals N minus those used to pretrain the initial hypothesis h0. We use a learning rate of
0.1, momentum of 0.95, 1000 epochs, and no dropout.

Test-set approach. We apportion each dataset in two, with one portion used for training, and
the other for deriving the generalization bounds. We run GD for 1000 epochs, perform a grid
search over learning rates [0.001, 0.005, 0.01], momentum [0.9, 0.95] (no dropout), and select
those giving the best generalization bound. As in the MNIST example (see Appendix B.1), we use
the binomial test-set bound of (Langford, 2005)[Thm 3.3] with a number of samples equal to N
minus those used for training.

Experimental results. The first two panels of Figure 4 present the average (over the 100 trials) upper
bounds on the risk and the average risk on the test dataset jointly with their dispersion, as a function of
the data portion used to train the model (GD+test-set) or to pretrain the initial hypothesis (P2L). The
third and fourth panels depict the distribution of the upper bound and of the risk on the test dataset
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Figure 4: Top row: Average bounds on the risk (dashed) and risk on the test dataset (solid) ± one
standard deviation for P2L ♦ and test-set � approaches, with N = 200 (left) and N = 500 (right).
The solid markers denote the best average bounds and the corresponding risks on the test dataset.
Bottom row: Empirical distribution of the bound and risk on the test dataset for the data split returning
the best average bound for P2L + and test-set +. Their means are indicated with a solid diamond and
circle, respectively. Note that the test-set approach is not considered for zero train portion, as it always
requires a non-zero amount of data to train the model. Observe that three instances in the test-set
case (out of one hundred) in the bottom row violate the upper bound. This is in line with the choice
of δ = 0.035, suggesting that the bound will fail, on average, on 3.5 datasets out of one hundred.

for the data proportion 0.3, returning the best learned models for both P2L and the test-set approach.
Their averages are compared in Table 2, which also includes the average runtime (computational
resource: Apple MacBook Pro with M1 Pro CPU and 32Gb of ram).

Table 2: Risk of best models for N = 200, δ = 0.035
Bound on risk Risk on the test dataset Difference Average running time

P2L 0.172 0.064 0.108 1.18s
Test-set 0.250 0.173 0.077 0.21s

Conclusions. First, it appears evident that, in this synthetic regression problem, the application of
P2L with GD provides superior results to those achieved by GD with the test-set approach, regardless
of the size of the datasets used for training. This holds true jointly for the upper bound and the risk on
the test dataset uniformly across all train/pretrain portions (cfr. the red and blue dashed lines, similarly
for the solid ones). We ascribe this result to the fact that P2L does not set aside data for testing, and
yet it also provides rigorous evaluations of the risk. Second, the test-set approach provides bounds
that are closer to the risk it incurs on the test dataset for N = 500, while this effect is less clear with
N = 200. Third, as expected, when the size of the training dataset grows, both the upper bounds and
the risk on the test dataset improve.

To conclude, it is fair to notice that GD does not pursue directly the goal of obtaining a prediction
error smaller than γ, and this may justify the large gap in the post-training performance between
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the two approaches also when almost all the dataset is used for training in the test-set approach.
Although GD is used as inner algorithm L in P2L, it seems that a good performance with respect to
the chosen appropriateness criterion can be obtained thanks to the structure of the meta-algorithm.
This is another interesting feature of P2L.

7 Conclusions, Limitations and Future research

We have proposed a novel framework called P2L to provide virtually any learning algorithm with
sharp generalization bounds. Our approach is based on making a given learning algorithm into a
compression scheme with desirable properties, thus enabling the use of powerful generalization results.
Numerical results show that P2L is capable of learning hypotheses with post-training performances
and generalization bounds equal or superior to the state of the art.

Computational aspects. While P2L requires learning a hypothesis over a training set of increasing
size, and thus might be less efficient than learning the hypothesis only once over the full dataset, it is
important to look at it from the appropriate perspective: we are concerned with settings where data is
limited or costly to acquire (see, e.g., Footnote 6 and ensuing discussion) while computations are
performed off-line and fast execution does not represent a primary concern (a setup also considered
in other recent work, e.g., (Foong et al., 2021)).

Source of conservatism. In our framework, as revealed by the proof of Theorem 4.2, the risk is
controlled by bounding the probability of change of compression (as defined in Equation (2) in
Appendix A.1). Notably, the mismatch between the risk and the probability of change of compression
is the only source of conservatism our approach needs to resolve since the upper and lower bounds on
the probability of change of compression from Theorem A.4 are extremely tight – see Remark A.9.
The magnitude of this conservatism is determined by the choices we make in specializing the proposed
meta-algorithm. For a given learning algorithm L, these choices entail selecting an initial hypothesis
h0 and an hypothesis-dependent total order used to select which data points are fed to the learning
algorithm L. Our experimenting with multiple initial hypotheses (trained with different portions of
the dataset) was solely geared at reducing this gap. Indeed, after training h0, P2L allows the data to
“freely speak”, and thus improve the resulting hypothesis, as it can be appreciated from the fact that
the misclassification on the test dataset for P2L is constant across all prior/train portions (see Figure 2,
top row). This is in stark contrast with the test-set approach and even PAC-Bayes. In the former, data
are either used to train the model or to provide a risk bound. In the latter, data employed to train
the posterior are effectively used to compute a risk bound as opposed to significantly improving the
quality of the prior (see first row in Figure 2). We conclude noting that our choices of the initial
hypothesis and total order is but one of many possible. Depending on the specific learning problem,
other choices can be made (see for examples the last part of the Introduction). We believe that
the overall fact that the theoretical apparatus in our approach clearly identifies the sole source of
conservatism will put us and others in the position to build upon the P2L framework beyond this
work.
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Appendix

A Proof of Theorem 4.2 and Additional Results

In this section we prove Theorem 4.2. En route to this goal, we will also present additional results
that help better position our contribution. Doing so will allow us to highlight directions where we
believe there is room for exciting future work. The section is conceptually divided in three portions:
in Appendix A.1 we recall a relevant result from (Campi & Garatti, 2023) along with the necessary
mathematical background; this result is then leveraged in Appendix A.2 to prove Theorem 4.2 and
other related results; finally, in Appendix A.4 we revisit the P2L framework in the light of some
technical details revealed by the proof of Theorem 4.2.

A.1 Preferent Compression Gives Tight Risk Bounds

We begin with introducing two properties of a compression function c (preference and non-
associativity) and the property of non-concentrated mass from which strong generalization guarantees
follow. Recall that a compression function c is a map from any multiset D of elements in Z to a sub-
multiset c(D) ⊆ D.8 Throughout, we use c(D, z) as a shorthand for c(D ∪ {z}), and likewise for
c(D, z1, . . . , zp). Moreover, z denotes a random example independent of and identically distributed
as each zi.
Property A.1 (Preference). For any pair of multisets V and D of elements of Z with V ⊆ D,
c(D) 6= V =⇒ c(D, z) 6= V, ∀z ∈ Z .

The preference property asserts that, if the multiset V was not chosen when compressing D, it will
also not be chosen when compressing the set D augmented with one more element z. Under the
preference property, it is easy to prove that c(c(D)) = c(D), i.e., the compression of a compressed
multiset must be the compressed multiset itself.
Property A.2 (Non-associativity). For any multiset D of elements of Z and for any z1, . . . , zp ∈ Z ,
p > 1, c(D, zi) = c(D), ∀i ∈ {1, . . . , p} =⇒ c(D, z1 . . . , zp) = c(D).

The non-associativity property ensures that, if the compression does not change by adding one
element at a time, it must also not change when adding all the elements together.9

Property A.3 (Non-concentrated mass). P{z = z} = 0, ∀z ∈ Z .

The property of non-concentrated mass ensures that every point z ∈ Z is drawn with probability
zero.

Under these three properties, strong results on the probability of change of compression, formally
defined as

φ(D) = P{c(c(D), z) 6= c(D) |D} (2)

(i.e., change of compression occurs when the compression of c(D) augmented with one element is
different from c(D)) are established in (Campi & Garatti, 2023).

Theorem A.4 (Thm. 7 in (Campi & Garatti, 2023)). Assume Properties A.1 to A.3. Then, for any
δ ∈ (0, 1),

P{ ε(|c(D)|, δ) ≤ φ(D) ≤ ε(|c(D)|, δ) } ≥ 1− δ, (3)

where ε(k, δ) for k = 0, 1, . . . , N − 1 is the unique solution to Ψk,δ(ε) = 1 in the interval [k/N, 1],
while ε(N, δ) = 1, and ε(k, δ) for k = 0, 1, . . . , N is the maximum between 0 and the unique
solution to Ψk,δ(ε) = 1 in the interval (−∞, k/N ] (function Ψk,δ(ε) is defined in Section 4).

The previous statement asserts that, with probability 1− δ over the draws of D, the probability of
change of compression is contained in an interval with upper and lower extremes given by ε(k, δ)

8Note that this definition, and the properties that we shall introduce later in the section, apply not only to the
multiset of actually observed examples, they apply to arbitrary multisets of any cardinality. Although we have
used D to avoid proliferation of the symbols, D is used here, and elsewhere when needed, to denote generic
multisets.

9Theorem A.4 continues to hold if the non-associativity property is required to apply P-almost surely (as
opposed to realization-wise). We use a realization-wise version for the sake of simplicity and also because this
formulation suffices for the goals of this paper.

13



and ε(k, δ), where k is evaluated at the cardinality of the compression of the draw. Prompted by one
of the reviewers, we gladly provide a concise outline of the proof structure for Theorem A.4 in the
following Remark A.5.

Remark A.5 (Gist of the proof of Theorem A.4). The proof of Theorem A.4 in (Campi & Garatti,
2023) starts by associating any compression scheme that satisfies Properties A.1 to A.3 to a proba-
bility measure from which one can compute P{ ε(|c(D)|, δ) ≤ φ(D) ≤ ε(|c(D)|, δ) } and then by
characterizing the class of all such probability measures in terms of certain conditions. The next step
consists in obtaining an upper bound to P{ ε(|c(D)|, δ) ≤ φ(D) ≤ ε(|c(D)|, δ) } by maximizing
this quantity over the class of probability measures that has been previously characterized. The ensu-
ing maximization problem is infinite dimensional and its solution is obtained by duality. Interestingly,
no conservatism is introduced at this stage because strong duality holds. See (Campi & Garatti,
2023) for details.

The interest of Theorem A.4 in the context of statistical learning lies in the fact that, whenever the
compression function c ties in with the learning algorithm so that inappropriateness (e.g., misclas-
sification or misprediction) implies change of compression, then the probability of inappropriate
examples is dominated by the probability of change of compression and, therefore, it can be upper
bounded with high confidence based on (3). See also Section 4 in (Campi & Garatti, 2023). This
means that we can prove Theorem 4.2 by exhibiting a compression function that enjoys the result of
Theorem A.4 and for which whenever h(D) is inappropriate for z, i.e., Stop ≤h(D) z, we also have
c(c(D), z) 6= c(D). This is indeed the demonstration path pursued in the next Appendix A.2.

A.2 Proof of main result

Note that Theorem 4.2 does not assume the non-concentrated mass Property A.3. To ease the
presentation, however, Theorem 4.2 will be first proven by assuming Property A.3, which allows
for a more direct application of Theorem A.4; later, we will show how this extra assumption can be
removed.

Suppose thus for the time being that Property A.3 holds true. Throughout this section, we denote
with cA the compression function obtained by A when it compresses multiset D into T ⊆ D (recall
that (h, T ) = A(D)). We show that cA enjoys the preference and non-associativity Properties A.1
and A.2. This licenses the use of Theorem A.4 to obtain upper and lower bounds on the probability of
change of compression. We shall then relate these bounds on the probability of change of compression
to the statistical risk as in Definition 4.1, so closing the proof when Property A.3 is assumed. We
shall use A(D, z) and cA(D, z) as shorthand for A(D ∪ {z}) and cA(D ∪ {z}).

We begin by showing that cA(·) is preferent.

Lemma A.6. The compression function cA satisfies the preference Property A.1.

Proof. Consider a multiset D of elements of Z and further let z ∈ Z . Suppose that cA(D, z) 6=
cA(D). Our goal is to show that in this case cA(D, z) 6= V for any V ⊆ D, from which Property A.1
immediately follows.
Denote by Tk, hk and T

′

k, h
′

k the multisets T and hypotheses h constructed in A(D) and A(D, z),
respectively, at iteration k of the “while” loop. T0 = ∅ = T ′0 and h0 = h

′

0 instead denote the empty
multisets T and initial hypotheses in the initialization step. Finally, let D

′

S = DS ∪ {z} (where we
recall that DS = D ∪ {Stop}).
Since cA(D, z) 6= cA(D), there must exist a k̄ ≥ 0 such that the executions of A(D) and A(D, z)

match for k < k̄ (which implies that T
′

k = Tk and h
′

k = hk for k ≤ k̄), but they differ at iteration
k̄ because, for k = k̄, the maximal element computed in A(D) (line 5 if k̄ ≥ 1 or line 1 if k̄ = 0)
is different from the one computed in A(D, z). That is, maxhk̄

(DS \ Tk̄) 6= maxh′
k̄

(D
′

S \ T
′

k̄
) =

maxhk̄
(D

′

S \Tk̄), where the last equality holds because, as previously noticed, T
′

k̄
= Tk̄ and h

′

k̄
= hk̄.

We claim that it must be that maxhk̄
(D

′

S\Tk̄) = z and z /∈ DS\Tk̄. Indeed, if this was not the case, it
would be that maxhk̄

(D
′

S\Tk̄) ∈ DS\Tk̄, which would imply that maxhk̄
(D

′

S\Tk̄) = maxhk̄
(DS\Tk̄)

since DS \ Tk̄ ⊆ D
′

S \ Tk̄. The latter would contradict maxhk̄
(DS \ Tk̄) 6= maxhk̄

(D
′

S \ Tk̄).
Since maxhk̄

(D
′

S \ Tk̄) = z 6= Stop, A(D, z) executes at least one more iteration after the k̄-th, and
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z /∈ DS \ Tk̄ yields that T
′

k̄+1
= Tk̄ ∪ {z} contains the element z as many times as it appears in

D ∪ {z}, i.e., as many times as it appears in D plus one. Therefore T
′

k̄+1
6⊆ D and, since the multiset

T
′

k is increasing with k, it must be that T
′

k 6⊆ D for all k ≥ k̄ + 1. This implies cA(D, z) 6⊆ D; that
is, cA(D, z) 6= V for any V ⊆ D.

We now show that cA is non-associative.

Lemma A.7. The compression function cA satisfies the non-associativity Property A.2.

Proof. Fix any multiset D of elements of Z and further let z1, . . . , zp ∈ Z . We will prove the claim
by contrapositive. Towards this goal, assume that cA(D, z1, . . . , zp) 6= cA(D). We will then show
that there exists an i ∈ {1, . . . , p} such that cA(D, zi) 6= cA(D).
We first focus on the executions ofA(D) andA(D, z1, . . . , zp). Similarly to the proof of Lemma A.6,
denote by Tk, hk and T

(p)
k , h

(p)
k the multisets T and hypotheses h constructed in A(D) and

A(D, z1, . . . , zp), respectively, at iteration k (k = 0 corresponds to the initialization). Finally,
let D(p)

S = DS ∪ {z1, . . . , zp}. Since cA(D, z1, . . . , zp) 6= cA(D), also in the present context
there must exist a k̄ ≥ 0 such that the executions of A(D) and A(D, z1, . . . , zp) match for k < k̄

(so that Tk = T
(p)
k and hk = h

(p)
k for k ≤ k̄), but they differ at iteration k̄ because, for k = k̄,

the maximal element computed in A(D) (line 5 if k̄ ≥ 1 or line 1 if k̄ = 0) is different from
the one computed in A(D, z1, . . . , zp). That is, maxhk̄

(DS \ Tk̄) 6= max
h

(p)

k̄

(D
(p)
S \ T (p)

k̄
). Then,

following an argument identical to that in the proof of Lemma A.6, one observes that it must be that
max

h
(p)

k̄

(D
(p)
S \ T

(p)

k̄
) = zi for some i ∈ {1, . . . , p} and zi /∈ DS \ Tk̄.

Now compare the executions of A(D) and A(D, zi), and denote by T
′

k, h
′

k the multiset T and the
hypothesis h constructed in the execution ofA(D, zi) at iteration k (k = 0 still corresponds to the ini-
tialization). Further, let D

′

S = DS ∪ {zi}. One can first observe that also the executions of A(D) and
A(D, zi) for k < k̄ must be identical. Notice indeed that: i. T

′

0 = T0 = T
(p)
0 and h

′

0 = h0 = h
(p)
0 ;

ii. when T
′

k = Tk = T
(p)
k and h

′

k = hk = h
(p)
k for a k < k̄, the maximal element selected at

iteration k of A(D) and A(D, zi) is the same since this is so for the maximal element of A(D) and
A(D, z1, . . . , zp) and DS \Tk ⊆ D

′

S \T
′

k ⊆ D
(p)
S \T

(p)
k ; iii. this in turn gives T

′

k+1 = Tk+1 = T
(p)
k+1

and h
′

k+1 = hk+1 = h
(p)
k+1. At iteration k̄, instead, the identity of executions ends, and it must be

maxh′
k̄

(D
′

S \ T
′

k̄
) = zi because zi is maximal over D(p)

S \ T (p)

k̄
and zi ∈ D

′

S \ T
′

k̄
⊆ D

(p)
S \ T (p)

k̄

(surely zi still belongs to D
′

S \ T
′

k̄
because T

′

k̄
= Tk̄ ⊆ D and D

′

S = D ∪ {zi} ∪ {Stop}). Further,
recall that zi /∈ DS \ Tk̄. Since A(D, zi) executes at least one more iteration after the k̄-th (because
zi 6= Stop) and since the T

′

k’s are increasing, we have that any T
′

k for k ≥ k̄ + 1 is different from
any of the Tk’s. This implies cA(D, zi) 6= cA(D), thus concluding the proof.

Given that Properties A.1 and A.2 hold true, and since Property A.3 is assumed, Theorem A.4
applies, yielding P{ε(|cA(D)|, δ) ≤ φA(D) ≤ ε(|cA(D)|, δ)} ≥ 1 − δ, where φA(D) =
P{cA(cA(D), z) 6= cA(D) |D}. As anticipated, to obtain from this the sought result for the statisti-
cal risk, it is enough to show that, givenD and the hypothesis h returned byA(D), every realization z
such that Stop ≤h z also changes the compression, i.e., cA(cA(D), z) 6= cA(D). As a matter of fact,
this implies that for every D the event {Stop ≤h z} is a sub-event of {cA(cA(D), z) 6= cA(D)},
and hence that R(h) ≤ φA(D) almost surely. Then, Theorem 4.2’s claim readily follows since

P{R(h) ≤ ε(|cA(D)|, δ)}
≥ P{φA(D) ≤ ε(|cA(D)|, δ)}
≥ P{ε(|cA(D)|, δ) ≤ φA(D) ≤ ε(|cA(D)|, δ)}
≥ 1− δ.

Thus, we are left to prove the following lemma.

Lemma A.8. Let D be any multiset of elements of Z , z ∈ Z be any example, and (h, T ) = A(D).
If z is such that Stop ≤h z, then cA(cA(D), z) 6= cA(D).
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Proof. We prove the contrapositive and show that, if z is such that cA(cA(D), z) = cA(D), then
z ≤h Stop.
Note that (h, T ) = A(D) means that T = cA(D) and h = L([T ]A) thanks to line 4 in Algorithm 1.
Consider the execution of A(cA(D) ∪ {z}). By definition of cA, the condition cA(cA(D), z) =
cA(D) means that A(cA(D) ∪ {z}) terminates with cA(D) = T . Hence, the maximal elements
selected by A(cA(D) ∪ {z}) are the same as those selected by A(D). Further, by the properties of
max operators, the elements selected by A(cA(D) ∪ {z}) and A(D) match at each iteration. This
implies that A(cA(D) ∪ {z}) terminates returning h, besides T . For this to occur, it must be that
maxh((cA(D)∪{z}∪{Stop})\T ) = Stop (line 2). This is equivalent to maxh({z, Stop}) = Stop,
i.e., z ≤h Stop.

Having proven Lemma A.8, we have completed the derivation of the main result under the additional
assumption that Property A.3 holds true, an assumption that, however, does not appear in the statement
of Theorem 4.2. To remove this assumption, and thus complete the proof of Theorem 4.2, we can
proceed as follows.

Augment each random element zi with a random variable ui that is uniformly distributed over [0, 1]
and independent of zi. Moreover, define the ui’s so that the random elements z̃1, z̃2, . . . , z̃N , where
z̃i = (zi,ui) for all i, are independent and identically distributed (i.i.d.). Also, let z̃ = (z,u) be
independent of and identically distributed as each z̃i. Let Z̃ = Z × [0, 1], which is the space where
the z̃i’s take value. For any z̃ = (z, u) ∈ Z̃ and z̃′ = (z′, u′) ∈ Z̃ define z̃ ≤h z̃′ if z ≤h z′ and
u ≤ u′, while define z̃ ≤h Stop [resp. Stop ≤h z̃] if z ≤h Stop [resp. Stop ≤h z]. Also, for any
n, define L(z̃1, . . . , z̃n) = L(z1, . . . , zn), where z̃i = (zi, ui), i = 1, . . . , n, are elements of Z̃ .

Consider now the executions of A over multisets of elements of Z̃ according to the redefinition of
≤h and L, and let (h̃, T̃ ) = A(D̃), where D̃ = {z̃1, . . . , z̃N}. As is clear, the non-concentrated
mass Property A.3 applies for the z̃i’s and an application of the results obtained so far gives
P{R̃(h̃) ≤ ε(|T̃ |, δ)} ≥ 1− δ, where R̃(h) = P{Stop ≤h z̃}. On the other hand, by virtue of the
redefinition of ≤h and L, one can notice that, for every realization of D̃, the execution of A(D̃)
matches step by step that of A(D), with the sole difference that elements in T that are otherwise
indistinguishable are incorporated in T̃ with their “u” counterparts (and the highest values are selected
first). Thus, the multiset T is equal to the multiset of the “z” components of the elements of T̃ ,
yielding |T̃ | = |T |. Moreover, since the addition of elements in T and T̃ occurs in the same order,
we also have that h̃ = h. Finally, noticing that R̃(h) = R(h) because z̃ ≤h Stop ⇐⇒ z ≤h Stop,
one has that

P{R(h) ≤ ε(|T |, δ)} = P{R̃(h̃) ≤ ε(|T̃ |, δ)} ≥ 1− δ,

and this concludes the proof of Theorem 4.2.

Remark A.9 (On the tightness of Theorem 4.2). Although both upper and lower bounds that hold with
confidence 1− δ are available for the probability of change of compression, only the upper bound
ports over to the statistical risk, because any realization for which Stop ≤h z (i.e., a realization
that is inappropriate) is also a realization that changes the compression, but the opposite does not
hold. Given that the lower and the upper bounds are provably close to each other even for relatively
small values of N , this means that ε(|T |, δ) is an accurate evaluation of the probability of change of
compression, but it can be loose for the statistical risk whenever this deviates from the probability of
change of compression. Interestingly, this is the only source of looseness in the evaluation of the risk
provided by Theorem 4.2.

A.3 An extension of P2L: adding multiple examples in T simultaneously

A simple extension of the meta-algorithm P2L described in Algorithm 1 consists in adding at every
iteration multiple, say R > 1, examples in T at a time. A possible implementation is then formalized
in Algorithm 2 below, where maxRh (U) returns the R maximal points (the maximum, the 2nd
maximum, . . . , the R-th maximum) of U according to the total order ≤h (if U has less than R
elements, then the whole U is returned).
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Algorithm 2 AR(D) – Meta-algorithm P2L with R examples added at a time

1: Initialize: T = ∅, h = h0, z̄1, . . . , z̄R ← maxRh (DS)
2: while z̄i 6= Stop for all i = 1, . . . , R do
3: T ← T ∪ {z̄1, . . . , z̄R} . Augment T
4: h← L([T ]A) . Learn hypothesis
5: z̄1, . . . , z̄R ← maxRh (DS \ T ) . Compute max
6: end while
7: T ← T ∪ {z̄i : z̄i ≥h Stop} . Complete T
8: return h, T . Hypothesis h and multiset T

Interestingly, Theorem 4.2 continues to hold true (with no modification in the statement) also when
the pair h, T is the output of Algorithm 2 instead of Algorithm 1. To prove this, it is enough to
observe that Algorithm 2 is completely equivalent to the following sequential Algorithm 3, which is
identical to Algorithm 1, so that only one point is added to T at each iteration, except for the fact
that h is updated every R iterations (mod(iter, R) is the remainder of the division of iter by R). This
equivalence secures the result because the proof of Theorem 4.2 can be repeated for Algorithm 3
word for word, without any modification.

Algorithm 3
1: Initialize: T = ∅, h = h0, z̄ = maxh0

(DS), iter = 0
2: while z̄ 6= Stop do
3: iter← iter + 1
4: T ← T ∪ {z̄} . Augment T
5: if mod(iter, R) = 0 then
6: h← L([T ]A) . Learn hypothesis
7: end if
8: z̄ ← maxh(DS \ T ) . Compute max
9: end while

10: return h, T . Hypothesis h and multiset T

As is clear, Algorithm 1 is a particular case of Algorithm 2 since the former is re-obtained from the
latter when R = 1. We notice that adding more than one example to T at every iteration might or
might not have a beneficial effect on P2L. Indeed, on one hand, adding more examples simultaneously
might result in building a better h earlier on (and save computational time). However, by introducing
examples in groups (and thus not allowing for the fine-grained choice of adding them one-by-one)
might also result in a larger T , which could worsen the final bound on the risk. In this regard, a
modulation of R across iterations seems to be a promising line of investigation, which however is
beyond the scope of the present paper and is therefore left for future work.

A.4 A discussion on the P2L framework in retrospect

A close inspection of the proofs of the key Lemmas A.6 and A.7 reveals that these two lemmas strongly
rely on the fact that the maxh operator is a compression function from many elements to just one
with the following properties: i) it is preferent (as a matter of fact, for any multiset A and additional
element b, either maxh(A ∪ {b}) = b or maxh(A ∪ {b}) = maxh(A)); and ii) it is non-associative
(maxh(A ∪ {bi}) = maxh(A) for all i ∈ {1, . . . , p} implies that there is an element ā of A such
that c ≤h ā for all c ∈ A ∪ {b1, . . . , bp} and, therefore, maxh(A ∪ {b1, . . . , bp}) = maxh(A)).

Importantly, these are the only two properties of maxh that are used and, therefore, one could have
formulated Algorithm 1 in an (apparently, see below) more general form: instead of introducing
a hypothesis-dependent total ordering ≤h, one might have considered in its place a hypothesis-
dependent preferent and non-associative compression function from many to one example. Mutatis
mutandis, Theorem 4.2 and the arguments to prove it would have remained the same. This gener-
alization extends to the context in which multiple examples are selected at a time as suggested in
Appendix A.3.
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We feel advisable to also notice that the above generalization is indeed a real generalization only in
the case of selection of multiple example at a time. Instead, in the context of one example selected at a
time the alternative setup illustrated above turns out not to be more general than that of Section 4 (this
is why we wrote “apparently” in parenthesis). In fact a converse property holds: any compression
function from many examples to one that is preferent and non-associative always defines a total
ordering whose notion of max coincides with the compression function itself. This fact follows from
the following proposition (see a few lines down for a proof).

Proposition A.10. Any preferent compression function w from many examples to one defines a total
ordering ≤w for which it holds that w(a1, . . . , an) = maxw(a1, . . . , an).

Note that, as a byproduct of Proposition A.10, we have that any preferent compression function w from
many examples to one is also non-associative (since maxw is non-associative). Therefore, the notion
of max from a total ordering and that of preferent and non-associative compression function from
many examples to one are equivalent. Interestingly, this equivalence crucially relies on the fact that
the compression selects only one example, while, provably, the class of preferent and non-associative
compression functions offers more freedom than using a total ordering when selecting more than
one example at a time. This is important for the development of alternative implementations of
Algorithm 2, the version of P2L where multiple examples are selected at a time.

Proof of Proposition A.10. For any a and b define a ≤w b if w(a, b) = b (and thus b ≤w a if
w(a, b) = a). To show that ≤w is indeed an ordering, we have to prove that ≤w enjoys the reflexive,
antisymmetric, and transitive properties.

a. Since w always selects one element, we have that w(a, a) = a, i.e., a ≤w a, which is the
reflexive property.

b. If a ≤w b and b ≤w a, then w(a, b) = b and w(a, b) = a. Thus, a ≤w b and b ≤w a =⇒
a = b, which is the antisymmetric property.

c. Suppose that a ≤w b and b ≤w c, which corresponds to w(a, b) = b and w(b, c) = c. Since
w is preferent, it must be that w(a, b, c) = c (indeed, w(a, b, c) cannot be a because a is
not selected by w(a, b); it cannot be b either because b is not selected by w(b, c)). Then,
an application of preference again gives w(a, c) = c. This means that a ≤w b and b ≤w c
implies that a ≤w c, which is the transitive property.

We next prove that the maxw operator associated to ≤w corresponds indeed to w; that is, it holds
that ai ≤w w(a1, . . . , an) for all i ∈ {1, . . . , n}. The proof is by contrapositive. Suppose thus that
w(a1, . . . , an) = ai for some i, but ai <w aj (i.e., ai ≤w aj and ai 6= aj) for some j. Condition
ai <w aj means that w(ai, aj) = aj . By preference, adding another element ak to ai and aj would
give w(ai, aj , ak) 6= ai. But then, preference again would give that the compression of ai, aj , and
ak plus a fourth element cannot be ai, and so forth and so on. Thus, proceeding iteratively would
eventually lead to w(a1, . . . , an) 6= ai, which is a contradiction.

B Additional material for the application to MNIST Classification

B.1 Implementation details for SGD and PAC-Bayes

GD & test-set approach. Here we follow a classical test-set approach, whereby a fraction of the
dataset is used for training, and the remaining portion is sacrificed to certify the quality of the
resulting model. We experiment with different sizes of these fractions. As for training, we use GD
with momentum and fix the number of training epochs to 200. To compute the generalization bound,
we use the tightest-known Binomial test-set bound10 of (Langford, 2005)[Thm 3.3] with a number of
samples equal to N minus those used for training. That is, letting Ñ be the number of examples out

10The Binomial test set bound is tighter then the commonly utilized Chernoff bound.
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of N used for training and h̃ = GD(z1, . . . , zÑ ) be the returned hypothesis, we have that

R(h̃) ≤ max
{
p ∈ [0, 1] :

k∑
j=0

(
N−Ñ
j

)
pj(1− p)N−Ñ−j ≥ δ, (4)

where k is the number of zj , j = Ñ + 1, . . . , N, misclassified by h̃
}

with high confidence 1− δ. We also perform a grid search over the following set of parameters: learn-
ing rate in [0.001, 0.005, 0.01], momentum in [0.9, 0.95], dropout probability in [0.01, 0.05, 0.1, 0.2].
We then select the combination of parameters that return the lowest generalization bound.11

PAC-Bayes approach. Here we learn a model and provide generalization bounds based on the recent
results presented in (Clerico et al., 2022; Perez-Ortiz et al., 2021), which build on earlier work in
(Dziugaite & Roy, 2017) while providing tighter generalization bounds. Specifically, we utilize
the same PAC-Bayes implementation of (Perez-Ortiz et al., 2021) adapted to the considered binary
classification problem, with one main difference: instead of training by optimizing a surrogate of
the generalization bound as in (Perez-Ortiz et al., 2021), we optimize the exact bound as proposed
in (Clerico et al., 2022, Eq 4.a), which provides the sharpest results to date.12 As the PAC-Bayes
approach requires a prior distribution over the networ weights to start, we split, as it is customary,
the training dataset in two and use the first part to pretrain the prior through SGD, while the
remaining data are used to obtain the posterior distribution (contrary to P2L and GD+test-set where
the final hypothesis consists of a deterministic network, the PAC-Bayes approach is forced to
work with stochastic networks). We experiment with different sizes of the data portion to be
used to pretrain the prior. In running PAC-Bayes we employ a batch size of 250, 100 prior and
posterior training epochs, and 10−6 as lower bound for the minimum probability of the softmax
output. We also perform a grid search over the remaining parameters: prior standard deviation in
[0.01, 0.02, 0.03, 0.04, 0.05, 0.1]; dropout probability in [0.01, 0.05, 0.1, 0.2]; prior/posterior learning
rate in [0.001, 0.005, 0.01]; prior/posterior momentum in [0.9, 0.95]. The final bound we present is
that in (Perez-Ortiz et al., 2021)[Sec 6.2], by using 10000 Monte Carlo samples from the learned
distribution over the models to approximate the average empirical risk. When we experiment with
δ = 0.035 (δ = 0.001), we use a confidence of 0.025 (0.00072) for the KL bound and of 0.01
(0.00028) for Monte Carlo sampling as done in (Perez-Ortiz et al., 2021)[Sec 6.2]. We apply here the
same philosophy as described in Footnote 11 regarding not introducing a union bound correction.
The post-training performance is evaluated again by sampling the distribution over the network
weights, computing the empirical misclassification on the full test dataset, and averaging over 10000
samples of the weights. As a matter of fact, the generalization bounds derived through the PAC-Bayes
approach apply precisely to this quantity.

C Some examples when the inner algorithm L has already in itself a
compression scheme

In this section, also prompted by a reviewer, we perform some synthetic numerical experiments
to investigate how P2L performs when the inner algorithm L already exhibits a compression in
itself; specifically, we consider SVM (Support Vector Machine, (Cortes & Vapnik, 1995)) and SVR
(Support Vector Regression, (Smola & Schölkopf, 2004)) as inner algorithms for P2L and compare
the returned output with that output by SVM and SVR alone. The so-called support vectors returned
by SVM and SVR are known to compress the original dataset in a way that is informative for the
underlying learning problem. With these experiments, we want to verify whether P2L returns the
same or a similar compression.

11Formally, we should introduce a union bound correction because we perform a grid search over multiple
hyper-parameters. Notably, this correction would enlarge (i.e., worsen) the risk bound. However, as the union
bound might be conservative, we do not pursue this approach and give this advantage to both the test-set and,
later, the PAC-Bayes approach.

12The research in the field of PAC-Bayes is extremely active, and we would like to acknowledge paper (Wu &
Seldin, 2022), which has introduced improved PAC-Bayes bounds based on novel concentration inequalities for
random variables with ternary values. However, in a binary setup (as in the present application), (Wu & Seldin,
2022) itself notices that there is no advantage over the existing literature. Thus, to the best of our knowledge, the
bounds proposed by (Clerico et al., 2022) are currently the tightest for our problem.
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Figure 5: Comparison of learned classifiers and compressed sets returned by SVM and P2L+SVM.
Markers +, × represent examples with labels ±1. The dashed blue and solid red lines (- -, –), which
are completely overlapped, represent the classifier returned by SVM and P2L+SVM. The blue
triangles and red squares (N,�) represent the support vectors returned by SVM and the compressed
set T returned by P2L+SVM.

In a classification problem, we consider datasets with N = 1000 examples (x, y), where instances
x are uniformly sampled from [−1, 1]2 ⊆ R2 and labels are 1 if (x1 − 0.3)2 + x2

2 ≤ 0.7 and −1
otherwise. SVM (either when run over the whole dataset or when called by P2L as inner algorithm)
is implemented with kernel k(x, x̃) = x · x̃′ + ‖x‖2 · ‖x̃‖2, for which the two classes defined above
are separable. P2L is run by selecting as h0 the classifier corresponding to setting all the parameters
in the SVM parameterization to 1. As for ≤h, we consider the order induced by the distance in the
lifted feature space of examples from the separating hyperplane corresponding to h, multiplied by 1
when examples are misclassified and by −1 otherwise (this yields that the worst examples are those
misclassified and furthest away from the separating hyperplane). Distance equal to 0 is taken as the
threshold for appropriateness, which corresponds to consider a classifier h appropriate for an example
(x, y) when (x, y) is not misclassified by h.

Figure 5 displays the results for two realizations of the considered classification problem, which are
representative of what we have observed in multiple trials. Each plot depicts: the examples in the
instance domain as markers + (label 1), × (label −1); the separation boundaries of the SVM and of
the P2L+SVM classifiers (dashed blue and solid red lines, which are completely overlapped); the
support vectors returned by SVM (red squares) and the examples in T returned by P2L+SVM (blue
triangles).

In the left panel of Figure 5, the compressed multiset T returned by P2L+SVM contains all the
support vectors of SVM with the addition of few other examples, which are incorporated in T during
the first iterations, while P2L is still exploring the problem. As it is clear, by the definition of support
vectors, the classifier returned by P2L+SVM coincides with the classifier obtained by running SVM.
In the right panel of Figure 5, only part of the support vectors are also elements of T . Nonetheless
the classifiers obtained with P2L+SVM and SVM are still the same (at least up to a negligible
approximation). Hence, it appears that P2L+SVM compensates the deficiency of support vectors
with other alternative examples that are anyway capable to recover the SVM classifier. The amount
of support vectors appearing in T depends on the realization of the dataset, but in all our trials the
classifier returned by P2L+SVM matches that obtained by running SVM on the same dataset.

As for SVR, we consider the same regression problem as in Section 6 when N = 200. SVR is run
using a radial basis function k(x, X̃) = exp(−0.1‖x − x̃‖2) as kernel, tube size equal to 0.1, and
coefficient C = 1 (C modulates the trade-off between the flatness of the predictor and the penalty for
deviations from the predictor larger than 0.1). P2L instead starts with a predictor h0 corresponding
to setting all the parameters in the SVR parameterization to 0, while we consider the same total
order ≤h of Example 3.2 with γ = 0.1. In this context, h is appropriate for an example (x, y) if the
deviation of the output y from the prediction corresponding to x is no more than 0.1.

Figure 6 displays the results obtained for one dataset, which is also representative of other realizations
of data. In the plot, examples are represented as black crosses, while the dashed blue and red lines,
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Figure 6: Comparison of learned predictors and compressed sets returned by SVR and P2L+SVR.
Markers + represent examples. The dashed blue and solid red lines (- -, –), which are completely
overlapped, represent the predictor returned by SVR and P2L+SVR. The red shaded region depicts a
tube of radius 0.1 around such predictors. The blue triangles and red squares (N,�) represent the
support vectors returned by SVR and the compressed set T returned by P2L+SVR.

which are completely overlapped, depict the predictors returned by SVR and P2L+SVR respectively.
The support vectors returned by SVR are displayed by blue triangles, while the examples in T
returned by P2L+SVR by red squares.

Similarly to the SVM case, in all our trials the predictor returned by P2L+SVR is identical to the
predictor obtained by running SVR on the same dataset. In the present example, however, it is always
the case that the compressed multiset T returned by P2L+SVR contains all the support vectors of
SVR, with the addition of few other examples incorporated in T during the first iterations during
which P2L is still exploring the problem.
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