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A secure data sharing scheme in Community
Segmented Vehicular Social Networks for 6G

Abstract—The use of aerial base stations, AI cloud, and satellite
storage can help manage location, traffic, and specific application-
based services for vehicular social networks. However, sharing of
such data makes the vehicular network vulnerable to data and
privacy leakage. In this regard, this paper proposes an efficient
and secure data sharing scheme using community segmentation
and a blockchain-based framework for vehicular social networks.
The proposed work considers similarity matrices that employ the
dynamics of structural similarity, modularity matrix, and data
compatibility. These similarity matrices are then passed through
stacked autoencoders that are trained to extract encoded em-
bedding. A density-based clustering approach is then employed
to find the community segments from the information distances
between the encoded embeddings. A blockchain network based
on the Hyperledger Fabric platform is also adopted to ensure data
sharing security. Extensive experiments have been carried out to
evaluate the proposed data-sharing framework in terms of the
sum of squared error, sharing degree, time cost, computational
complexity, throughput, and CPU utilization for proving its effi-
cacy and applicability. The results show that the CSB framework
achieves a higher degree of SD, lower computational complexity,
and higher throughput.

Index Terms—5G, Internet of Things, Vehicular social
networks, Secure Data Sharing, Community Segmentation,
Blockchain.

I. INTRODUCTION

THE popularity of vehicular social networks (VSNs) has

been increasing recently due to the advancement of

wireless communication networks and ubiquitous devices.

Considering the scalability of ubiquitous devices, it is not

efficient to rely on a single cloud or satellite server to meet

quality of service (QoS) demands. In this regard, unmanned

aerial vehicles (UAVs) are considered for providing services

to roadside vehicles. Connection to a nearby UAV would be

much more convenient and spontaneous compared to the cloud

or satellite server. For example, vehicles can transmit their

information related to traffic events, current location, accel-

eration, speed, and so forth, to the connected UAV that can

be shared with other UAVs for probable danger or accidental

situations [1]. Furthermore, the cloud or satellite server can

provide optimal traffic analysis by collecting information from

multiple UAVs in soft real-time [2].

With the emergence of VSNs, vehicular networks have ben-

efitted a lot in terms of service availability and convenience.

However, concerns related to privacy and security have risen

rapidly. For example, data shared by an individual vehicle,

such as location, can be intercepted by an attacker that can

lead to the user’s work or home address [3]. Furthermore,

manipulation or alteration of information regarding accelera-

tion, speed, or traffic events can affect the judgment of other

vehicles that can lead to serious accidents [4]. It is also well-

known to VSN community that the devices associated are

computational and battery constrained. Moreover, the vehicles

move at high speeds that raises the issues of connectivity with

the base station. The main reason for considering UAVs as

aerial base station in this study is to overcome the connectivity

and availability issues concerning base stations. However,

UAVs also have limited capacity; therefore, designing a scal-

able and privacy-preserving scheme for VSNs is still an open

issue in the VSN community [4].

The problem of VSNs is similar to that of complex commu-

nication networks, where nodes grow at an exponential rate;

therefore, division of nodes in different communities is one of

the potential solutions to make the beyond 5G communication

system scalable. Generally, the nodes that share common

information or possess common characteristics can be grouped

to form a single community. To the best of our knowledge,

the community segmentation method using the deep learning

method for VSNs has not yet been exploited. It is well-

known that deep learning methods increase the computation

complexity of the system which can be a hindrance in meeting

flexible deadlines. Researchers are considering reducing the

dimensions of feature representation in an efficient manner

to reduce this computational complexity while retaining a

reasonable accuracy of community detection. In this regard,

this study opts for stacked autoencoders as they extract fea-

ture embedding while reducing the dimensional space, thus,

reducing the computational complexity of the system.

Recently, blockchain has been gaining a lot of interest due

to being the underlying technology related to bitcoin as well

as yielding the characteristics of immutability and scalability.

Blockchain can be considered as a distributed record keeping

system that demonstrates the dynamics of decentralization,

privacy preservation, and non-tamperability that help to main-

tain the privacy and security of shared data [5]. Blockchain

has been applied to a wide variety of application domains

such as power industry, internet of things (IoT), and medical

care, while achieving reliable results [6]. There are several

blockchain platforms or frameworks available for implemen-

tation; however, Ethereum, R3 Corda and Hyperledger Fabric

are considered the most preferable platforms by both research

and industrial communities1. In this study, we opt for Hy-

perledger Fabric platform which is a permissioned blockchain

platform that was developed by the Linux Foundation. The

hyperledger platform is selected because of its need-to-know

characteristics in data sharing schemes, less storage require-

ments, transaction speed, active user community, pluggable

consensus schemes, modular architecture, quality control, and

support for open collaboration.

1https://searchcio.techtarget.com/feature/Top-9-blockchain-platforms-to-
consider
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2

Although existing studies use blockchain technology to solve

data privacy and security issues while presenting the frame-

works for privacy protection and data sharing, the details

of what type of data needs to be shared along with the

desired attributes in the field of VSNs has yet to be explored.

Blockchain technology considers a block number, address

number, or transaction number to complete a transaction query

that is not sufficient to ensure the security of shared data, so it

is considered a challenging task [7]. Some existing studies

raised the issues regarding the real-time services of VSNs

when used in conjunction with the blockchain technology,

however, the recent studies have proved that real-time services

are achievable while using blockchain and other emerging

technologies, i.e. AI, in VSNs, respectively [8], [9]

This paper proposes a community segmentation and

blockchain (CSB) framework for an efficient and secure data

sharing scheme in VSNs. The data sharing framework in this

study is based on Hyperledger Fabric, which acquires huge

amounts of vehicle data and transmits them to the blockchain

network. Additionally, the community detection algorithm

computes the similarity, correlation, and compatibility of the

acquired data to segment a large number of vehicles with the

intention of sharing VSN data within the matching cluster,

presuming that segmentation will help solve the scalabil-

ity issue. We propose the use of stacked autoencoders for

community segmentation algorithm to group the vehicles in

an efficient manner while evaluating the efficacy of VSN

community division through sharing degree criterion. The

main contributions of this study are listed below.

• A CSB framework is proposed for a secure, scalable, and

efficient data sharing scheme in VSN.

• Stacked autoencoder based community segmentation

method for grouping the vehicles using novel similarity

features.

• A Blockchain network workflow based on the Hyper-

ledger Fabric platform to secure the shared data.

The remainder of the paper is structured as follows. Section

2 consolidates the existing works. Section 3 presents the CSB

framework for the data sharing scheme and provides details

for the community segmentation method. Section 4 presents

the experimental results and Section 5 concludes the study

together with future work.

II. RELATED WORK

Although many studies have focused on preserving privacy

and security for the vehicular network, [10] we consolidate

a review of the state-of-the-art work on vehicular social

networks accordingly. Some studies use pseudonym strategies

or cryptographic methods to preserve vehicle privacy. For

instance, Abdallah and Shen [11] proposed the use of au-

thentication strategies that have lightweight characteristics to

preserve characteristics for vehicle-to-grid (V2G) connections.

Hussain et al. [12] proposed incentives-based vehicle witnesses

as a service framework (IVWaaS) that acquires image data

from nearby vehicles and roadside cameras to capture the

site of interest. The image data is then transferred to the

cloud anonymously for preserving privacy. Zhao et al. [13]

used a community similarity-based cache policy for vehicular

networks. The privacy is preserved by selecting similar vehi-

cles based on community likeness. Kang et al. [1] proposed a

pseudonym system that preserves privacy for vehicle networks

based on fog computing. The scheme used edge resources with

road infrastructure to improve the security of communications

carried out between vehicles. Pu et al. [4] proposed the security

mechanism for data sharing schemes based on secret sharing

systems and attribute-based encryption techniques based on

ciphertext policy. Their system was designed specifically for

edge servers and economic denial-of-sustainability attacks. Ma

et al. [14] proposed the use of attribute-based encryption to

secure the announcements shared between vehicular networks.

The study considered vehicular attributes to share the data,

accordingly.

Researchers have also tried to integrate the characteristics of

blockchain into vehicular networks to deal with data security

and privacy issues, accordingly. Kang et al. [6] proposed a

blockchain-based solution for data sharing security on the

Internet of Vehicles (IoV). The study presented a two-stage

solution; the first performs a computation on the reputation of

a miner, and the second audits the concerned blocks to avoid

collision between active and standby miners. The bottleneck,

due to the lack of interaction between standby and active

miners, was solved using their proposed contract theory. Yao et

al. [15] proposed the use of blockchain-assisted authentication

mechanisms for vehicular networks to maintain anonymity and

protect privacy, respectively. Extensive security analysis was

carried out for validating the practicality and efficiency of

their proposed method. Su et al. [16] proposed the use of

a permissioned blockchain system to ensure secure charging

of electric vehicles through smart contracts. The study also

used Byzantine fault tolerance as a consensus algorithm in

permissioned blockchain systems. The study showed that the

blockchain system not only achieves a satisfactory level of

security but also enhances energy efficiency. Pu et al. [4]

proposed the use of blockchain for preserving security and

privacy in data sharing methods with respect to VSNs. The

study also used game theory to impose rewards and punish-

ments to protect vehicle information. Jiang et al. [17] also

proposed the use of blockchain together with an identity-based

authentication mechanism to establish trust among vehicular

nodes.

The use of community detection has also been extensively

studied in existing studies. Sammarco et al. [18] proposed

the use of community segmentation for wireless traffic ap-

plications by computing the similarities of the traces. Xia

et al. [19] proposed the use of betweenness and closeness

to calculate the similarity between social dimensions. Raj

et al. [20] proposed a granulation-based factoring method

to segment the community for social networks. Liu et al.

[21] proposed the use of colony optimization and contiguity-

constraints to form spatial vehicle communities to predict

their trajectories. Compared to the aforementioned works,

the proposed method aims to achieve two objectives. The

first is the segmentation of vehicle communities that would

improve the energy efficiency and scalability of vehicular

social networks. We propose novel similarity matrices and
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stacked auto-encoders for segmentation. To the best of our

knowledge, similarity matrices that would assume the data

compatibility in combination with the stacked auto-encoders

for segmentation have not been proposed before. The second

is the security and privacy issue concerning the data-sharing

mechanism in VSNs that is achieved using Hyperledger fabric

platform.

III. PROPOSED METHODOLOGY

The transactions for data sharing services in VSNs con-

cerning beyond 5G networks are classified according to their

level of privacy. The blockchain databases characterize these

levels based on the availability of data in public domain, i.e.

encrypted, community-specific, and public data, respectively.

Our assumption in this work considers that the privacy level

for the shared data should be set to the community-specific so

that the data is available to the vehicles categorized to be in the

same cluster. Our work will mostly revolve around the design

of a community segmentation method for efficient accessing

and sharing of community-specific data. The proposed CSB

framework for the data sharing scheme is depicted in Figure

1. The CSB framework comprise three layers, i.e. data-,

segmentation-, and blockchain- layer, respectively. The first

layer is responsible for data collection from UAVs and vehicles

and its transmission to the segmentation layer. The segmen-

tation layer narrows the scope of data sharing by segmenting

vehicles into communities. The blockchain layer then secures

the transaction records and community segmentation results.

The details for each of the layers are given in the subsections

below.

A. Data Layer

This layer in CSB framework is mostly concerned mainly

with the data generated from vehicles that include sensors, on-

board units, machine running state, quantity, product type, and

other parameters. The data from these vehicles are collected

by the aerial base stations (UAVs). The reasons for considering

UAVs for this study are threefold. The first concerns beyond

5G networks, which cater to diverse and stringent requirements

through portable base stations that include UAVs [22]. The

second is the wide range of use cases that could be handled

by the use of UAVs such as remote constructions, real-time

surveillance, media production, and package delivery. The

third is the increasing demand for UAV deployment, which can

reach more than 1.5 million by 2024 according to the Federal

Aviation Administration [23]. Furthermore, the concept of

unmanned aircraft systems for traffic management (UASTM)

is proposed for beyond 5G networks that could operate at

low-altitudes to provide the service in high traffic density

and low service coverage areas. The data collected by the

UAVs can then be used for comprehensive analysis sent to

the segmentation layer for a secure data sharing scheme.

B. Segmentation Layer

The segmentation layer comprises vehicles, UAVs,

and AI cloud. The UAVs act as an intermediary that

collect the data from vehicles and transmits the data

to AI cloud and blockchain network. The AI cloud is

responsible for segmenting vehicles in communities via our

proposed community segmentation method, generating the

segmentation results, and updating the blockchain network

with the segmented communities, accordingly. Once vehicles

have been successfully segmented, they can query the shared

data with the help of smart contract execution. One of the

unique points of CSB framework is the consideration of data

compatibility in the similarity matrix, which is neglected

in existing studies. We assume that the reasons community

segmentation in such studies does not achieve suitable results

is due to the machine learning model or the data shared is

incompatible. It is of utmost importance that the shared data

are compatible within the community to achieve efficient

results and ease of processes. We also hypothetically presume

that it could reduce the computation time in the AI cloud,

since machine learning models with similar types of data are

trained and updated faster compared to heterogeneous data

modalities. Another component to highlight is the stacked

autoencoder that further helps reduce the computational

process by reducing the dimensions of the similarity matrix

for community segmentation.

1) Community Segmentation Method: Our proposed com-

munity segmentation method is based on 4 steps, i.e., simi-

larity matrix construction, stacked autoencoders, information

distance and density-based clustering. In this study, we con-

sider the use of social networks to aggregate all vehicles into

communities. The basic theory of social networks is that the

relationship among vehicles of the same community would

be stronger in comparison to those vehicles belonging to a

different community. Our proposed method uses the combina-

tion of graph embedding, information theory, and clustering

method, for segmenting vehicles into different communities.

We represent the topological structure of the network as a

graph Gr = (Vt, Ed), where Ed represents the edges or the

connection of two nodes and Vt refers to the N number of

nodes. The adjacency matrix of Gr is given by a positive

symmetric matrix Adj = apq ∈ R
N×N comprising of binary

values 0,1, accordingly. For instance, apq is set to 0 if no egde

exists between vtp and vtq , and 1, otherwise.

The adjacency matrix intrinsically describes the relationship

between the nodes in a network; however, the similarity of

the nodes in vehicular social networks is more complicated.

Therefore, indirect relationships should also be taken into

account when computing the similarity matrices. In this work,

we describe three varying functions to measure the similarity

between vehicular nodes. The first is the one that is widely

used for social networks, that is, the structural similarity

matrix, defined in Equation 1.

Simstr(p, q) =
|vt(p) ∩ vt(q)|√|vt(p)× vt(q)|

vt(p) = {q ∈ V t|(p, q) ∈ Ed} ∩ {p}
(1)

The numerator describes the number of nodes that are con-

nected to p and q both and the denominator refers to the num-

ber of nodes that p and q can be connected with. Leveraging
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4

Fig. 1. The proposed community segmentation and blockchain framework for data sharing scheme in vehicular social networks

the structural similarity Simstr(p, q), we compute the distance

matrix as shown in equation 2.

Distgr = [dpq]N×N , dpq =

{
1

Simstr(p,q)
, if p �= q

0, otherwise
(2)

The second similarity matrix we consider is the modularity

matrix [24] which represents the difference between the ex-

pected number of edges that characterize all nodes and the

number of edges within the communities. The similarity matrix

is shown in Equation 3.

Simmod = [mdpq]N×N ,mdpq = apq − γpγq
2μ

(3)

The term
γpγq

2μ refers to the number of edges randomly placed

between nodes p and q, μ is the average number of network

edges, γp and γq represent the vertex degree for nodes p
and q, respectively. The third similarity matrix is based on

the data compatibility. This measure computes the similarity

between the feature spaces transformed with the principal

component analysis (PCA). PCA has been mostly used for

feature extraction or projecting data onto lower dimensions by

choosing the coefficients based on their variance. Let the data

acquired from a vehicular node and the embedding dimension

be represented as x and �, respectively. The matrix can then

be written as shown in Equation 4.

xpca =
1√
ι

⎡
⎢⎣
x1 · · · xι

...
. . .

...

x� · · · xZ

⎤
⎥⎦
T

=
1√
ι

⎡
⎢⎣
x1

...

xι

⎤
⎥⎦ (4)

where Z refers to the number of samples and ι = Z−(�−1).
A covariance matrix Λ ∈ R

ι×ι is computed from xpca as

shown in Equation 5.

Λι×ι =
1

ι
xpca · xT

pca (5)

Once the covariance matrix is obtained, the Eigenvalues λ are

calculated and sorted in the descending order. The data is then

projected onto lower dimensions using PCA, followed by the

computation of Euclidean distance from the feature spaces to

construct a similarity matrix as shown in equation 6.

Simfeat = [ftpq]N×N , ftpq =

{
1, if disteuc < τ,

0, otherwise
(6)

where τ represents the threshold that varies from [0 1] and

disteuc refers to the Euclidean distance, accordingly. We

assume that a single adjacency matrix representing similarity

would lose significant relationship information in a complex

network; therefore, multiple similarity matrices are required to

map out the node relationship in an efficient manner.

Fig. 2. Encoded Embedding from similarity matrices using stacked autoen-
coders

2) Stacked Autoencoders: We use the similarity matrices

to train the stacked autoencoders that provide latent space

representation as shown in Figure 2. The representation of

lower-dimensional data in feature space where similar points
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5

are closer, while dissimilar points are farther is suggested to

be the latent space. The stacked autoencoders are comprised

of input, encoding, decoding, and output layers, accordingly.

In this study, the stacked autoencoders are first trained to en-

code lower-dimensional representations and decode the same

matrices from the encoded embedding. Once, the training is

complete, the second step is to use the encoded embedding

for computing information distances for community segmen-

tation, accordingly. As stacked autoencoders reduce the overall

dimensionality of the feature space, it is intuitive to assume

that the computational complexity is reduced in comparison

to existing studies that either use the full feature space or

extract features that are larger in dimensions. The hidden layer

representation for encoding part is shown in Equation 7

EncN = Act(W · SN + b) (7)

where S = [Distgr, Simmod, Simfeat], and Act(·) is the

activation function of the sigmoid. The terms W and b refer

to the weights and biases for the encoder. The decoder part

uses the encoded embedding for reconstructing Ŝ, which can

be formulated as shown in equation 8.

ŜN = Act(Ŵ · EncN + b̂) (8)

where Ŵ and b̂ are the corresponding weights and biases for

the decoder. The embedding for the encoder and reconstruction

for the decoder can be optimized by minimizing the objective

function shown in Equation 9.

J(ϑ) = minϑ

N∑
t=1

L(St, Ŝt) + Ψ

M∑
m=1

KL(ρ||ρ̂m)

= minϑ

N∑
t=1

L(St, Ŝt)

+ Ψ
M∑

m=1

ρlog
ρ

ρ̂m
+ (log

1− ρ

1− ρ̂m
)(1− ρ)

(9)

The term Ψ corresponds to the parameter that controls the

sparsity penalty term. The reconstruction loss between the

input and the decoded output is characterized by L(·), which

is defined as
∑N

t=1(Ŝtlog(St) + (1 − Ŝt)log(1 − St)). The

notation M in the penalty term refers to the number of neurons

in the hidden layer. The average activation function is defined

by the term ρ̂m. The sparsity penalty term is usually set very

close to 0 which is the case in this study. The parameters are

optimized iteratively until a minimum reconstruction loss is

obtained. The optimization of parameters is performed by the

following set of equations shown in Equation 10.

W ← W − η
∂J(ϑ)

∂W
, Ŵ ← Ŵ − η

∂J(ϑ)

∂Ŵ
,

b ← b− η
∂J(ϑ)

∂b
, b̂ ← b̂− η

∂J(ϑ)

∂b̂

(10)

The notation η corresponds to the learning rate for updat-

ing the hyperparameters. The process of extracting encoded

embedding using a stacked autoencoder from the similarity

matrices is depicted in figure 2.

3) Information Distance: The output of the stacked autoen-

coders provides us with K encoded vectors having lower di-

mensions. Each encoded vector is assumed to represent a prob-

ability distribution with unknown parameters. Therefore, we

obtain a series of probability distributions, each representing

the embedding of a single vehicular node, PD = ϕ1, · · · , ϕK,

which contains the low-dimensional representation of similar-

ity matrices. We then use Kullback-Leibler (KL) divergence

to compute the information distance between the probability

distributions as shown in Equation 11.

dist(ϕ1, ϕ2) =
∑

ϕ1log
ϕ1

ϕ2
, s.t.ϕ ≥ 0, and

∑
ϕK = 1

(11)
4) Density-based Clustering: Existing works have used

features or similarity matrices directly to form a community

segment. Most of the studies use K-means clustering, non-

negative matrix factorization-based clustering, nearest neigh-

bor clustering, and others. These clustering methods are lim-

ited to the distance in Euclidean space, rather than considering

the information-centric similarity. Furthermore, the computa-

tional complexity of the aforementioned methods increases

with respect to the feature space, thus, hinder the scalability

of the system [25]. In this regard, we adopt the density-based

clustering approach [26] for community segmentation based

on encoded embedding from similarity matrices. Furthermore,

the density based clustering method has been extensively

adopted to make the systems scalable. The only parameter that

needs to be optimized is the number of communities; therefore,

the number of communities with the highest partition density

is considered accordingly.

C. Blockchain Layer
The blockchain network in this study is based on the

characteristics of the Hyperledger Fabric framework, which

consists of nodes such as committer, orderer, and endorser,

accordingly. The transaction proposals submitted by vehicles

are endorsed by the endorser node, the transformation of

the transaction into blocks along with their packaging and

sorting is performed by the orderer node, and the addition

and validation of blocks to the database is carried out using

the committer node. The transaction process mainly consists

of the 4 steps, i.e. construction of transaction proposals by

vehicles, emulation of transaction by endorser node, vehicles

send the transactions to consensus service, and ordering of

transactions via orderer nodes. These four steps are also used

in the proposed CSB framework. Each of the entities in the

CSB framework is defined below.

• vehicles (v): This entity is responsible for collecting data,

vi → i ∈ 1, ..., I .

• UAVs (U ): The entity is responsible for collecting vehicle

data and sending the collected data to the AI Cloud,

satellite storage, and the blockchain network, Uj → j ∈
1, ..., J .

• Authentication Certificate Provider (ACP ): The entity

issues a public key to each vehicle in the form of a digital

certificate. The certificate can be used to prove the listing

of the vehicle and the ownership of the public key later

on.
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6

Fig. 3. Flow of Interaction in the proposed CSB framework

• AI Cloud/Satellite Storage: This is where the data from

all the vehicles is sent. The collected data is then used for

rendering the segmentation method in order to generate

vehicle communities, and to transmit the outcome to the

blockchain network.

• Endorser Node (EN ): The transaction proposals suc-

cumbed by the vehicle are endorsed at this stage.

• Orderer Node (ON ): The transactions are packaged and

sorted into blocks at this stage.

• Committer Node (CN ): Blocks are added and validated

to the blockchain network at this stage.

1) Flow of Interaction: The flow of interaction concerning

the blockchain, i.e. Hyperledger Fabric, has been adopted from

the studies [27] and is shown in Figure 3. The flow of inter-

action comprises four stages, i.e., initialization, authorization,

verification, and data sharing stage, respectively. The process

of initialization mainly revolves around the generation of keys

and IDs for UAVs and vehicles. The authentication service

provider (ACP) selects two multiplicative groups Gr1 and Gr2
that are of the order of a prime number (PN). Subsequent to the

selection mentioned above, a bilinear mapping BM(·) is per-

formed such that BM(Gr1, Gr1) = Gr2. The ACP then gen-

erates two s×r dimension matrices RMu and RMv along with

two s dimensional column vectors CVu and CVv at random.

These matrices and columns are represented in the form of

linear equations, i.e. RMu ·Φu = CVu and RMv ·Φv = CVv .

The notation Φu and Φv represent the solutions to the afore-

mentioned linear equations. The ACP calculates the columns

Φuj and Φvi for each UAV Uj and vehicle vi, respectively.

The ACP then sends the aforementioned column vectors to the

corresponding UAV and vehicle as proof of identity. The ACP

subsequently generated two r dimensional column vectors Ωu

and Ωv to calculate IDUj = ΩT
uΦuj and IDvi = ΩT

v Φvi.

The randomly generated matrices, column vectors, and IDs,

that is, RMu, RMv, CVu, CVv,Ωu,Ωv, IDvi, and IDUj , are

stored by the ACP. Information such as RMv, CVv,Ωv and

IDUj is sent to each UAV involved in the communication

process, IDvi is sent to each vehicle, whereas RMu, CVu,
and Ωu are sent to AI Cloud / Satellite Storage, accordingly.

The ACP then generates two private keys PV Kj1 and PV Kj2

along with two public keys PKj1 = PV Kj1 · Gr and

PKj2 = PV Kj2 · Gr in a random manner for each UAV.

In order to initiate a communication with AI Cloud/Satellite

Storage, ACP randomly selects two private keys and generates

two public keys. Vehicles and UAVs then obtain these public

parameters for a further communication process.

The purpose of the authorization stage is to authenticate the

parties trying to communicate and exchange information with

each other. UAV selects a random number (rnd) and computes

the authentication parameters AuP1 = rnd.RMv and AuP2 =
rnd.CVv , accordingly. An authorization message is sent to the

vehicle from UAV, that is, msg1 = {time1, AuP1, hashuj},

where time1 and hashuj are time stamps and one-way hash

functions for the respective message. Vehicle then receives the

authorization message from UAV and computes the parameter

AuPvi = AuP1.Φvi. As indicated in the study [27] that

the parameters AuPvi, AuP2 should be equal, this implies

that the hash functions will also be similar. Once the ve-

hicle is legally verified by the UAV, the vehicle sends an

authorization message, i.e. msg2 = {time2, IDvi, hashuj}
to the UAV, however, this time the hashuj corresponds to

{time1||AuPvi||IDuj} and time2 is the time stamp of this

message. Once the hash functions match, the identity param-

eters will be verified and the authorization will be completed.

The verification stage ensures that the transmitted data are

tamper-free. The verification process is quite similar to that

of authorization, with only a slight modification in that the

message is uploaded with its corresponding signature key. The

rest of the process for computing parameters and comparing

hash functions is the same. The study [27] could be referred

for more details of the formulation and proof.

2) Data Sharing: The AI Cloud / Satellite Storage collects

data from vehicles and performs the community segmentation

algorithm to segment vehicles in different communities to
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7

make the data sharing process efficient and scalable. The

results from the segmentation of communities will be shared

with the Hyperledger Fabric platform, accordingly. The pro-

cess is summarized in the points below:

• AI Cloud/Satellite Storage collects the data from vehicles,

performs authorization, and divides vehicles into different

communities.

• A transaction proposal from AI Cloud/Satellite Storage

for storing the segmentation results is initiated and sub-

mitted to the blockchain network.

• The results in the form of transactions are verified by the

endorser nodes.

• If enough endorser nodes verify the transaction, the

segmentation results are sent to the orderer nodes.

• The segmentation results are transformed into blocks by

orderer nodes and broadcasted to the committer nodes.

• The committer nodes perform the final authorization

and send the blocks generated at orderer nodes to the

blockchain.

• If a UAV wants to access the segmentation results of the

blockchain network, it should invoke a smart contract. A

vehicle can also obtain its own community information

from the UAV in a similar manner.

D. Evaluation Metrics

Most of the existing studies consider the contour coefficient

method and a sum of squared error as the evaluation metric

for the clustering method. Some studies have suggested that

the former metric is unstable, while the latter one can be

used reliably. Therefore, we consider the sum of squared error

(SSE) metric to evaluate the density-based clustering approach.

As we are dealing with the community segmentation which

is based on the similarity matrices and encoded embedding,

it is necessary to evaluate the reliability of the segmentation

method. To do so, studies also employ sharing degree metrics

to evaluate the quality of community segmentation. Sharing

degree is jointly used with the error function such that the

higher the rate of node similarity and lower error results in a

high degree of sharing, accordingly.

IV. EXPERIMENTAL RESULTS

A. Network Parameter

For the design of stacked autoencoders, we evaluated a

variety of architectural parameters including the number of

layers, the number of filters, the learning rate, the sparsity

penalty term and the optimizer. On the basis of the number

of experiments, we chose the parameters that achieved the

best results in terms of SSE. The values for the parameters

mentioned above are set to 5, 32-16-8, 0.01, 2.8, and SGD,

respectively.

B. Simulation Setup

We generated 3 random datasets RD1,··· ,3 corresponding

to the proportion of public data and the number of vehicles

in a community. The details of the generated datasets are

provided in Table 1, accordingly. The proportion of community

TABLE I
SIMULATED DATASET DESCRIPTION

Dataset Name vn Cdata data points Ratio
RD1 128 405 540 0.75
RD2 128 225 500 0.45
RD3 128 92 460 0.20

data is represented by Cdata and the number of vehicles in

a community is represented by vn. The data is represented

in JSON format. The data features include vehicle name,

sensor devices, communication protocol, application type,

corresponding feature space, gateway type, and label.

C. Evaluation of Community Segmentation

The main contribution of this study lies in the proposition of

a community segmentation method for efficient data sharing

within VSNs. In general, existing studies opt for the SSE

metric to evaluate the clustering effect; however, current work

also focuses on the efficiency of data sharing coupled with

community segmentation. Therefore, we need to perform a

joint evaluation of the sharing degree (SD) and SSE, ac-

cordingly. We first consider RD1, to determine the number

of communities in which the vehicles should be segmented.

Vehicles are continuously added during the iterative process

so that the resultant cluster may be updated accordingly. We

present the rate of change in SSE and SD during the iterative

clustering process in Figure 4 and Figure 5, respectively. The

selection of an optimal number of communities is made based

on the assumption that the optimal number of communities is

the one before the SSE appears to be flat. As it is shown

in Figure 4, the Elbow line connects the head and tail

of the SSE curve (green) by a red line. We calculate the

difference between the values of the Elbow line and SSE,

the value with the maximum difference would be considered

as the optimal number of communities as suggested by the

Elbow method theory and existing studies [27]. The elbow

method also provides the optimal number of communities

concerning the SSE; however, we need to consider the number

of communities that could help us optimize SD as well.

Therefore, we consider the SD among three values, i.e. the

optimal number of communities, one step forward and one step

backward from the said number. We presume that the optimal

number should not deviate from the region where the optimal

number of communities lies. Amongst, these three values we

consider the one with the highest sharing degree. As per the

results presented, the number of communities with the highest

difference between SSE and Elbow line is selected to be 7.

Considering the aforementioned process, we choose 6, 7, and

8 communities to check the highest SD, which is selected to

be 6, respectively. For the next set of experiments, we need

to determine the number of iterations it would take to achieve

the optimal Sharing degree. We performed this experiment for

all three datasets, that is, RD1, RD2, and RD3. The method

is iterated so that the sharing degree gets improved while

reducing the SSE, accordingly. The results for all three datasets

are shown in Figure 6. The degree of sharing increases from

37 to 66, 10 to 26, and 3 to 11, when the ratio is selected
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8

to 0.75, 0.45, and 0.20, respectively. The results indicate that

the maximum Sharing degree for all three datasets is obtained

around 300 iterations.

Fig. 4. The characteristics of Elbow line and SSE with respect to the number
of communities

Fig. 5. The characteristics of Sharing degree with respect to the number of
communities.

D. Evaluation of CSB framework for Data Sharing

The experiments in this study are carried out using an

Intel Core i5 clocked at 3.4 GHz, 16GB of RAM, and a

GTX 1080 GPU. The Docker was used to build the CSB

framework for data sharing that includes 128 vehicle nodes, 1

AI/Satellite Cloud storage node, 1 Authentication Certificate

Provider node, 1 order node, 1 community segmentation node,

and 2 peer nodes. Vehicle data collected was stored directly

at the community node. The implementation of a community

node and a smart contract was carried out using Java and

Python, respectively. The proposed CSB framework allows

the vehicle to retrieve the data by querying the labels. Label

queries are varied in order to measure the relationship between

Fig. 6. Characteristics of SD with respect to the number of iterations

the time cost and query requests. At the time of querying,

the similarity between the community node and the data

from the queried label is computed to select the community

segment for further data retrieval accordingly. We measure

the time cost with respect to the number of query requests,

as shown in Figure 7. It can be observed that the time cost

increases with the number of query requests, which is in

line with existing studies. However, increasing the number

of query labels helps reduce computational complexity. We

assume that the increased number of query labels narrows the

search, resulting in a faster search response. Existing works

also evaluate the performance of the data-sharing scheme

through the time cost analysis and throughput, respectively.

The former includes time for encryption and decryption, time

for consensus among vehicles, i.e. verification, sorting, and

endorsing time for chain code execution, and time for request

initialization and response delivery. While the latter represent

the total business volume, the number of blockchain system

transactions per second also termed as transaction arrival

speed, encryption algorithm, consensus algorithm, number of

nodes, and server performance, accordingly.

We perform a simulation to process interaction with the

blockchain system. The number of vehicles and the request

arrival speed was set to [3, 7], and [20, 30], respectively.

The results for the said simulation are shown in Figure 8 and

Figure 9. It is revealed that increasing the number of vehicles

helps to reduce the computation time. Similarly, the throughput

increases with respect to the number of vehicles and arrival

rate. This suggests that the proposed CSB framework can

handle the query request within the acceptable time limit.

Existing studies also considered computational utilization in

terms of CPU usage when increasing the number of commu-

nities. We report the experimental results for CPU utilization

with the number of vehicles = 7 and the number of communi-

ties up to 1200 in Figure 10. It can be seen that even with 1300

communities, CPU utilization has not reached its maximum

limit, indicating two aspects. The first is that the proposed CSB

framework is resource- and energy-efficient, and the second is
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9

that the proposed framework is capable of extending the scal-

ability in terms of the blockchain network. It can be assumed

from the obtained results that the proposed CSB framework

can be used for a sustainable vehicular communication system,

which is one of the main goals of European Commission for

the future of the industries. Our results can be compared with

an existing approach [4]. Although the parameters, application,

and segmentation method are different for both of the studies,

it can be analyzed that the proposed CSB can handle more

queries in less time and yields better scalability. Furthermore,

the proposed method also yields a better throughput. This

study centers around beyond 5G network systems, the goal is

to record improvement from existing works that could help in

the development of real-world systems. The CSB framework

is shown to improve system dynamics compared to existing

systems with respect to the secure data sharing scheme.

Fig. 7. The characteristics of computation time with respect to the number
of query requests and query labels.

Fig. 8. Time Cost analysis for the proposed CSB framework

Fig. 9. Throughput analysis for the proposed CSB framework

Fig. 10. The characteristics of CPU utilization with respect to the number of
communities

V. CONCLUSION

This paper proposes a community segmentation and

blockchain (CSB) based data sharing framework for vehicular

social networks. We propose the use of similarity matrices

considering structural similarity, modularity, and data com-

patibility followed by stacked autoencoders that transform

similarity matrices into encoded embedding. The density-

based clustering approach uses output embedding to segment

the communities accordingly. We also implement a blockchain

network that includes initialization, authentication, verifica-

tion, and data sharing stages. We also propose a Hyperledger

Fabric-based workflow for vehicular social networks to ensure

secure data sharing, accordingly. We conducted extensive ex-

periments to show the efficacy of the proposed CSB framework

in terms of SSE, SD, time cost, computational complexity,

throughput, and CPU utilization. The results show that the

CSB framework not only achieves a higher degree of SD,

lower computational complexity, and higher throughput, but
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10

can also help increase the scalability of a blockchain network

for vehicular networks.

In future work, we intend to increase the scope of the

CSB framework for data and broadcasting security issues such

as spoofing and replay attacks and to make the proposed

framework lightweight to make it more realistic for current

or future 5G networks.
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