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Abstract— We address the problem of assessing the
power flexibility that a pool of prosumers equipped with
a generalized storage device can offer to the electrical
grid as an ancillary service for balancing power demand
and generation. A key feature of the proposed approach is
that the disaggregation policy is computed jointly with the
aggregate flexibility set, and it is hence readily available
for the pool to supply any (feasible) power profile request
from the grid. Each prosumer is assumed to provide a
contribution which is an affine function of the aggregated
power profile. The coefficients of the affine policies are
designed by solving a distributed optimization program
where the volume of the aggregate flexibility set is max-
imized while satisfying the power and energy constraints
of each storage device and additional constraints involving
multiple (possibly all) devices. Simulation results show the
superiority of the proposed approach with respect to a
state-of-the-art method that inspired our work.

I. INTRODUCTION

The energy sector is facing a transition due to the high
penetration of non-programmable renewable energy resources,
such as wind and solar power, and the increasing consumption
due to the constant electrification of facilities, houses, and
vehicles. This transition puts at risk the grid stability by
making it more challenging to balance demand and generation.
Traditional large-scale, inertia-based facilities, such as gas
and pumped-hydro storage power plants, will not be able to
offer enough flexibility to the grid to guarantee a safe and
reliable operation. Fortunately, the energy sector transition
is accompanied by a modernization of the electrical grid,
which enables the provision of flexibility (i.e., the capability of
adjusting the electric energy exchanged with the grid according
to some external signal) through direct involvement of the
prosumers, which can be grouped together in a pool by an
aggregator to support the grid via explicit demand-response.
This ultimately calls for computationally efficient methods to
assess the flexibility that the resulting aggregate can offer to
the grid, which motivated a significant effort in the literature,
including the present work.
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Assessing flexibility is equivalent to computing the set of
all the feasible power trajectories that the resources in the
pool, typically modeled as storage systems, [1], can jointly
provide along a given time horizon. It is a challenging task
because it implicitly involves mapping any (admissible) power
request by the grid back into the power exchange profile of
each single storage system (disaggregation policy). Moreover,
to fully exploit the available flexibility while reducing the
complexity of planning, trading, and control by the aggregator
and grid operator, the aggregate flexibility of the pool must
be computed and represented as a set with a concise and
compact description. Considering the possible heterogeneity
of the resources in the pool, the sought form has to be as
general as possible to represent different units.

From the observation that computing exactly the aggregated
flexibility set is generally intractable [2], approximation meth-
ods have been proposed in the literature. In particular, methods
seeking for an inner approximation of the flexibility set are
briefly reviewed next. Interested readers are referred to [3] for
a more comprehensive review.

Some approaches approximate the flexibility set of every
single unit independently first and then simply aggregate these
sets. The key point here is to choose a suitable geometry for
the individual sets to ease their aggregation. According to this
rationale, [1] adopts zonotopes, a subclass of polytopes with
suitably defined and fixed shapes, to approximate a unit’s origi-
nal polytopic flexibility set along some reference time horizon.
However, since zonotopic sets are symmetric and, generally,
the sets to be approximated are not, the method tends to leave
many feasible trajectories outside the approximation. Also, due
to the high computational cost to compute the volume of the
zonotopic set - ideally, one wants to find the approximation
with the largest volume among all the ones inscribed into
the original set -, auxiliary cost functions are used, leading
to conservative results when the time horizon increases. [4]
presents a different union-based approach that uses homothets
of hyper-rectangles. The polytopic set to be approximated
is decomposed by recursively inscribing maximum volume
hyper-rectangles. The idea is to adopt a set for which it
is straightforward to compute the volume and repeat the
process recursively with the residual sub-polytopes to cover
the whole flexibility set progressively. The accuracy of the
result improves at each step. However, as pointed out in [3],
the method becomes computationally intractable when more
than two steps are used, which limits its performance in
practice. [5] tries to reduce the approximation error due to
geometrical mismatches by using homothets of a prototype



polytope suitably defined to be more flexible than zonotopes
and hyper-rectangles. The formulation maximizes the dilation
coefficient of the homothets, which indirectly maximizes the
volume. However, in all these approaches, conservatism in-
creases substantially when heterogeneity increases due to the
propagation of the individual approximation errors towards the
aggregate set. Additionally, aggregation of power flexibility is
typically limited by constraints over the distribution network,
which these methods cannot handle because they approximate
the units independently. Disregarding these constraints causes
an over-estimation of the aggregated flexibility and, hence,
infeasibility.

Other approaches try to overcome these limitations by
looking for an approximation of the aggregated set directly. [6]
and [7] reformulate the involved sum operation as a set
projection. The aggregate flexibility is hence considered as the
projection of a higher dimensional polytope onto the subspace
representing the aggregate power of the units. Therefore,
instead of approximating the sum directly by its definition,
authors approximate the associated projection operation with
respect to the homothets of a given polytope. This problem
is solved by means of a robust optimization problem, which,
however, introduces conservatism to the solution. The idea has
been recently extended in [8] and [9] to reduce conservative-
ness. However, all these methods use several reformulations
of the original optimization problem, often introducing ap-
proximations to recover tractability. An interesting approach
to approximate the aggregated flexibility is the one proposed
in [10], where the aggregated flexibility set is described
through an equivalent battery model, whose parameters are
determined by assuming a disaggregation policy which is
linear as a function of the power profile requested by the
grid. Later in [11], an expansion method of the set resulting
from [10] is proposed while also accounting for network
constraints.

Inspired by [10], in this paper the disaggregation policy
structure is fixed a priori and its parameters are chosen so as
to maximize the volume of the aggregate flexibility set directly.
Differently from [10], where some restrictive assumptions are
imposed on the storage-like devices that are aggregated, our
framework is more general since it allows to account for
time-varying power and energy constraints, as well as for an
arbitrary initial energy content. Indeed, a specific initialization
cannot be guaranteed, in general, and it would fail to be met as
soon as the offered flexibility is actually exploited. Also, we
assume an affine disaggregation policy (as opposed to a linear
one) and take a box to model the aggregate flexibility set,
so as to comply with the requirements of the energy service
market, where the offered flexibility has to be given in terms of
(constant) downward and upward power made available along
some reference time horizon. We show that the problem of
maximizing the volume of the aggregate flexibility box while
accounting for global constraints related to, e.g., minimum
levels of upward and downward services and network con-
straints, is convex and has a multi-agent constraint-coupled
structure. It can then be solved via a distributed scheme, which
allows to cope with the growth of the computational effort as
the population size increases, while guaranteeing information

privacy. The latter is a key feature since, typically, prosumers
are willing to offer flexibility but not to disclose their private
information encoded in their local constraints.

II. PROBLEM SETTING AND BACKGROUND

In this section, we first formalize the addressed problem
and then briefly recall the approach in [10], which inspired
our methodology.

A. Problem Formulation

Consider a pool of N prosumers, indexed by i, i =
1, . . . , N , and a time-horizon composed of M time-slots, each
one of duration τ . Each prosumer is equipped with an energy
storage device, which can be a battery, a thermostatically
controlled load, or another type of load, see [7]. Nominal
operating conditions will correspond to a certain usage of the
storage device, thus possibly making the residual capacity and
power that are available for the flexibility service time-varying
quantities.

In each time-slot k, k = 0, . . . ,M − 1, prosumer i can
vary its baseline power profile by an amount pi(k) to absorb
(pi(k) > 0) or supply (pi(k) < 0) some constant power. The
power pi(k) exchanged within the k-th time-slot must satisfy

li(k) ≤ pi(k) ≤ ui(k), k = 0, . . . ,M − 1, (1)

to comply with the prosumer’s (possibly time-varying) power
limitations. Denote as ei(k) the energy content of the storage
device with respect to the baseline content at the beginning of
time-slot k. Then, the evolution of ei(k) is described by the
recursive equation

ei(k + 1) = ζi ei(k) + τ pi(k), k = 0, . . . ,M − 1, (2)

where the self-discharge coefficient ζi ∈ (0, 1] models storage
energy losses in a time-slot and ei(M) denotes the storage
energy content at the end of time-slot M − 1. The energy
quantity that can be stored into or retrieved from the storage
is constrained to be within a (possibly time-varying) minimum
emin
i (k) and a maximum emax

i (k) values, i.e.,

emin
i (k) ≤ ei(k) ≤ emax

i (k), k = 0, . . . ,M. (3)

By collecting the time-evolution of the introduced quantities
of the i-th prosumer into the following vectors

pi = [pi(0) · · · pi(M − 1)]>,

li = [li(0) · · · li(M − 1)]>,

ui = [ui(0) · · · ui(M − 1)]>,

ei = [ei(1) · · · ei(M)]>,

emin
i = [emin

i (1) · · · emin
i (M)]>,

emax
i = [emax

i (1) · · · emax
i (M)]>,

and unrolling the recursive equation (2), constraints (1) and (3)
can be compactly rewritten as

li ≤ pi ≤ ui ∧ emin
i ≤ Aiei(0) +Bipi ≤ emax

i ,



where

Ai =

 ζi...
ζMi

 , Bi = τ


1 0 . . . 0
ζi 1 . . . 0
...

...
. . .

...
ζM−1i ζM−2i . . . 1

 .
By further defining ei = emin

i − Aiei(0) and ei = emax
i −

Aiei(0), the set of all power trajectories pi that the i-th
prosumer can exchange on top of its nominal operation is
given by

Pi = {pi ∈ RM : li ≤ pi ≤ ui ∧ ei ≤ Bipi ≤ ei}. (4)

Set Pi describes the flexibility that prosumer i can provide
to the grid and belongs to a class of polytopes known in the
literature as PE-polytopes [1] (or resource polytopes [2]), as
they are defined by Power constraints (i.e., li ≤ pi ≤ ui) and
Energy constraints (i.e., ei ≤ Bipi ≤ ei).

Since the power profile p = [p(0) · · · p(M − 1)]> that the
whole pool can absorb/supply is given by

p =

N∑
i=1

pi, (5)

then, the flexibility set of the prosumer pool can be expressed
as

P =

{
p =

N∑
i=1

pi : pi ∈ Pi, i = 1, . . . , N

}
. (6)

Note that the exact description of P in (6) as a polytope given
by the intersection of multiple half-planes is hard to use for
assessing the flexibility offered to the grid. In fact, relevant
properties like, e.g., the minimum upward and downward
power that the pool of storage devices can provide to the
grid, are not readily available. Much effort has been spent
in the literature to find a simpler and more explicit inner
approximation of P , which is easy to compute also when the
number of prosumers is large. This is also the objective of
the present work, where a distributed scheme for computing
a hyper-box inner approximation – together with the local
prosumer charge/discharge policy – is proposed.

Starting from the observation that P can be computed as

P = P1 ⊕ · · · ⊕ PN ,

where ⊕ denotes the Minkowski sum between sets, some
approaches in the literature exploit an inner set representation
of the local flexibility sets in the form of axis-aligned boxes
or zonotopes with specific generators aiming at reproducing
the PE-polytopes shape to ease the Minkowski sum inner-
approximation, see, e.g., [4], [1]. Besides the conservativeness
of the resulting flexibility set, a further step for disaggregating
the grid power request is needed. Motivated by these obser-
vations in [10], a different approach is proposed where the
aggregated flexibility set is directly inner-approximated while
designing the disaggregation strategy.

B. The Generalized Battery Model (GBM) Approach

The authors of [10] impose the following simplifying as-
sumptions on each prosumer i, i = 1, . . . , N ,

li(k) = Li ≤ 0 ui(k) = Ui ≥ 0 (7a)

emin
i (k) = −Ci ≤ 0 emax

i (k) = Ci ≥ 0 (7b)
ei(0) = 0 (7c)

and try to inner-approximate the overall flexibility set P with
a PE-polytope P̃ defined as

P̃ = {p ∈ RM : L1 ≤ p ≤ U1 ∧ −C1 ≤ B̃p ≤ C1}, (8)

where L ≤ 0, U ≥ 0, and C ≥ 0 are three scalar parameters
to be determined so that P̃ ⊆ P , while 1 is the all-one vector
in RM and

B̃ = τ


1 0 . . . 0
ζ 1 . . . 0
...

...
. . .

...
ζM−1 ζM−2 . . . 1

 ,
with ζ ∈ (0, 1] a-priori chosen based on the values of
ζ1, . . . , ζN , e.g., set equal to ζ = 1

N

∑N
i=1 ζi. The assumption

underlying the choice of P̃ in (8) is that the prosumer pool can
be regarded as an equivalent battery model (hence the name
of the approach) e(k + 1) = ζ e(k) + τ p(k) with e(0) = 0
and constraints

L ≤ p(k) ≤ U ∧ |e(k)| ≤ C, k = 0, . . . ,M − 1.

In order to ensure that P̃ ⊆ P , for any p ∈ P̃ , there
must exist p1, . . . , pN , with pi ∈ Pi, i = 1, . . . , N , such that∑N
i=1 pi = p. To enforce this condition, the authors of [10]

propose to parameterize each prosumer’s power profile pi as
follows

pi(k) = βip(k), k = 0, . . . ,M − 1, (9)

with βi ≥ 0 and
∑N
i=1 βi = 1, and then impose βip = pi ∈ Pi

by requiring, for all i = 1, . . . , N ,

Li1 ≤ βip ≤ Ui1 ∧ −Ci1 ≤ βiBip ≤ Ci1, ∀p ∈ P̃, (10)

which, according to [10], is satisfied if, for all i = 1, . . . , N ,

βiC ≤
Ci
Φi
∧ βiL ≥ Li ∧ βiU ≤ Ui (11)

with Φi = 1 + |(ζ − ζi)/ζi|, βi ≥ 0, and
∑N
i=1 βi = 1.

While there are several combinations of the free parameters
satisfying (11), the authors of [10] provide, among other
alternatives, the following explicit formulas for maximizing
the capacity (which is related to flexibility) of the equivalent
battery model:

C =

N∑
i=1

Ci
Φi
, βi =

Ci
ΦiC

, L = max
i

Li
βi
, U = min

i

Ui
βi
. (12)

Although inspiring, this approach has three major short-
comings: i) it assumes time-independent power and energy
bounds (cf. (7a) and (7b)), which excludes those scenarios in
which the baseline power and energy profiles are not constant,



ii) it assumes symmetric energy bounds for each prosumer
(cf. (7b)), and iii) it assumes a zero initial condition (cf. (7c)).

Regarding the third shortcoming, given that the amount of
energy that the storage device can absorb or deliver (depending
on the sign of ei(0)) is reduced by an amount equal to |ei(0)|,
zero initial conditions can be recovered while preserving
symmetric energy bounds by reducing the capacity boundary
parameter Ci in (10) of an amount |ei(0)| and, hence, using
Ci − |ei(0)| in place of Ci in (12).

III. PROPOSED METHODOLOGY

In this section, we build on [10] to propose a new approach
to approximate the overall flexibility set P . Specifically,
instead of using the linear disaggregation policy (9), we
parameterize each prosumer’s power profile with the affine
map

pi(k) = βip(k) + αi, k = 0, . . . ,M − 1, (13)

and, instead of inner-approximating P with a PE-polytope, we
inner-approximate it with a box

B = {p ∈ RM : c1− d1 ≤ p ≤ c1 + d1}, (14)

where c ∈ R affects the center of the box and d ∈ R is half-
length of the cube edge.

The introduction of the affine term in (13) is to add a further
degree of freedom to the policy proposed in [10], enabling a
net-zero (see (15)) energy exchange among prosumers, while
the choice of a box in place of a PE-polytope is motivated
by market requirements. As explained next, the use of a box
for the inner approximation enables us to find the values of
the design parameters c, d, βi, and αi, i = 1, . . . , N , that
maximize the volume of B while ensuring B ⊆ P via a simple
convex optimization problem, without imposing any of the
assumptions in (7).

Clearly, (5) must hold, therefore, given (13), one has

p =

N∑
i=1

pi = p

N∑
i=1

βi + 1

N∑
i=1

αi,

for any p ∈ B, which can be satisfied if and only if

N∑
i=1

βi = 1 ∧
N∑
i=1

αi = 0. (15)

On the other hand, for all i = 1, . . . , N , we must ensure
pi ∈ Pi, which, using (13) in (4), translates into

li ≤ βip+ αi1 ≤ ui, (16a)
ei ≤ Biβip+ αiBi1 ≤ ei. (16b)

Since (16) must hold for all p ∈ B we have

li ≤ min
p∈B

βip+ αi1,

max
p∈B

βip+ αi1 ≤ ui,
(17a)

ei ≤ min
p∈B

Biβip+ αiBi1,

max
p∈B

Biβip+ αiBi1 ≤ ei,
(17b)

which can be equivalently posed as

li ≤ βic1− |βid|1 + αi1,

βic1 + |βid|1 + αi1 ≤ ui,
(18a)

ei ≤ Biβic1− |Biβid|1 + αiBi1,

Biβic1 + |Biβid|1 + αiBi1 ≤ ei,
(18b)

where the minimum and maximum operators with vector
arguments and the absolute value of vectors and matrices must
be intended component-wise. Unfortunately, constraints (18)
contain the products between βi and c and between βi and
d, which are all decision variables, thus rendering (18) non-
convex. However, considering the following change of vari-
ables

δi = βid, (19a)
µi = βic+ αi, (19b)

enables to reformulate (18) as

li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,

(20a)

ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,

(20b)

which is now convex in µi and δi. The box parameters can be
easily recovered as

d =

N∑
i=1

βi︸ ︷︷ ︸
1

d =

N∑
i=1

δi, (21a)

c =

N∑
i=1

βi︸ ︷︷ ︸
1

c+

N∑
i=1

αi︸ ︷︷ ︸
0

=

N∑
i=1

µi, (21b)

and (if the feasibility set has non-zero volume) the policy
parameters can be computed as

βi =
δi
d

and αi = µi − βi c. (22)

Additional relevant constraints can also be included in the
problem formulation like, e.g.,

i) the constraint

−
N∑
i=1

δi ≤
N∑
i=1

µi ≤
N∑
i=1

δi (23)

to ensure 0 ∈ B, so that a zero request (i.e., no deviation
from the baseline profile) can be accommodated,

ii) constraints on the minimum levels of downward (umin)
and upward (lmin) services requested by the grid

−
N∑
i=1

δi + umin ≤
N∑
i=1

µi ≤
N∑
i=1

δi + lmin, (24)

iii) network constraints of the form∑
i∈N`

µi +
∑
i∈N`

δi ≤ umax
` , (25a)

lmax
` ≤

∑
i∈N`

µi −
∑
i∈N`

δi, (25b)



where the power injected by a set N` of neighboring
prosumers in a point ` of the grid is subject to congestion
constraints.

Finally, since we are inner-approximating the overall flex-
ibility set P with an M -dimensional cube, maximizing its
volume is equivalent to maximizing d =

∑N
i=1 δi. We can thus

find the largest-volume box B ⊆ P by solving the following
convex optimization program

max
{δi,µi}Ni=1

N∑
i=1

δi (26)

subject to: li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,
ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,
i = 1, . . . , N,

(23), (24), (25) ∀`,

and recovering the box and the policy with (21) and (22).
Note that d =

∑N
i=1 δi obtained by solving (26) will

necessarily be non-negative because the δi’s appear in the
constraints through their absolute value, and their sum is
maximized. Indeed, each single δi will be non-negative and,
hence, βi recovered in (22) will also be non-negative, a
condition that was enforced a priori in [10] and here is instead
an outcome of the optimization.

A slightly different cost function can be used to promote
some solutions over others, but still preserving convexity. For
example, among all the different boxes with the same volume,
one may be interested in finding the one with the center close
to zero, which can be easily achieved by using

N∑
i=1

δi − ε
∥∥∥ N∑
i=1

µi

∥∥∥2
2

where ε > 0 is a sufficiently small coefficient to ensure that
the primary objective is still maximizing the volume of B.

Note that the optimization problem (26) is coupled due
to the constraints (23)-(25). Yet, it is characterized by a
constraint-coupled multi-agent structure (that can also be re-
covered in the case when the penalization term ‖

∑N
i=1 µi‖22

is introduced by adding an auxiliary decision variable for the
aggregator to upper bound it and treating the aggregator as a
further agent), and it can then be solved by applying distributed
optimization schemes like [12], for achieving scalability and
preserving privacy.

If the constraints (23), (24), (25) and the penalization term
over µi are not of interest, then (26) has a separable structure
and each prosumer can solve the local maximization problem

max
δi,µi

δi (27)

subject to: li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,
ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,

and then coordinate with the others to recover the box pa-
rameters and the policy using (21) and (22). For instance, one
of them or an external entity could act as an aggregator, and
collect all the δi, µi solutions, compute the center parameter c
and half-size d of the box, and then send them to all the pro-
sumers so that each one can derive its own policy parameters
without sharing its local information (loss coefficient, energy
and power bounds, initial energy content).

IV. SIMULATION RESULTS

In this section, we compare the performance of the proposed
method and the GBM approach in [10]. To this aim, we
consider a pool of N = 50 prosumers, each one equipped with
a storage device that satisfies the simplifying assumptions (7a)
and (7b) adopted in [10], with the lower and upper bounds on
the power exchange in (7a) taken with the same absolute value
(Li = −Ui, i = 1, . . . , N ) and the time-slot duration τ = 1.
In order to generate the population of prosumers, we extract at
random the parameters Ci, Ui, ζi from a uniform distribution
U(I) over some interval I , respectively set equal to [8, 12],
[5.5, 7.5], and [0.6, 1].

Given the extracted population, we then compute the flex-
ibility sets according to the two approaches. We consider
M = 2, . . . , 7 as values for the number M of time-slots,
while we maintain the time slot duration constant and equal
to τ , with an initial condition ei(0) extracted according to
U(γ[−Ci, Ci]) with γ = 0, 0.2, 0.4, . . . , 1, so as to impose an
initial state dispersion around zero of γ · 100%.

For each pair (M,γ · 100), Figure 1 reports the ratio

Vrel =
VGBM
Vbox

(28)

where VGBM and Vbox are the volumes of the M -dimensional
flexibility sets obtained with the GBM approach in [10] and
our method, respectively. Volume VGBM has been computed
using the COntinuous Reachability Analysis (CORA) Tool-
box, [13]. Darker colors correspond to values of Vrel close
to zero (meaning that the flexibility set provided by our
approach is much larger than the one returned by [10]), while
lighter colors correspond to higher ratios, for which the GBM
approach is more effective.

Note that Vrel is strictly smaller than 1 in most instances.
Also, Vrel takes smaller and smaller values as γ grows, which
indicates that the approximation adopted in [10] is more
conservative as the dispersion in the initial condition increases.
For a dispersion larger than 20%, Vrel decreases as the number
M of time slots increases.

Just to appreciate the level of conservatism introduced in the
GBM approach by a growth in the initial condition dispersion
γ · 100% within the capacity range −[Ci, Ci], we consider
M = 2 and report the flexibility sets for γ ∈ {0, 0.4} in
Figure 2a (γ = 0) and 2b (γ = 0.4). Note that our method
is more robust against the dispersion of the initial condition.
In fact, in both scenarios, the box reaches the boundaries
of the exact aggregated flexibility set and, thus, the error of
the approximation is mainly given by geometric mismatches,
whereas the region obtained using [10], despite having the



Fig. 1: Volume ratio as a function of the number M of time-
slots and the dispersion γ · 100% of the initial state. The red
line separates the (M,γ · 100%) pairs for which the volume
ratio is larger than 1 from those where it is smaller than 1.

potential of adopting the “right” shape, has a smaller volume
when γ = 0.4.

Note that, when γ = 0, the approach in [10] performs better
than ours (Vrel > 1) because of its PE-polytopic shape. In this
respect we are favoring [10] in the comparison since the PE-
polytope obtained by [10] should be inner-approximated by a
box to comply with the energy service market requirements. If
we compare the volume of our box and the volume of the box
contained in the PE-polytope of [10], then we are always better
by construction, since our box is the one which maximizes the
volume.

V. CONCLUSION

We propose a new method to assess the power flexibility of
a population of storage systems, which rests on the adoption of
an affine disaggregation policy and on the approximation of the
flexibility set with a box. Notably, the resulting optimization
problem for determining the box and the coefficients of the
disaggregation policy is amenable for a distributed implemen-
tation. Numerical results reveal that our method has a better
performance than an inspiring contribution in the literature
as the time horizon length and the dispersion of the initial
condition grow. Future work will focus on further improving
the results by extending the degrees of freedom of the affine
policy. Note that the proposed method was derived referring
to resources that are described as PE-polytopes. Resources
modeled as general convex polytopes (see [7]) could also be
considered, whereas the non-convex case remains open.
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