Selective Hardening of CNNs based on Layer
Vulnerability Estimation

Cristiana Bolchini, Luca Cassano, Antonio Miele, Alessandro Nazzari
Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Ttaly
{first_name.last_name} @polimi.it

Abstract—There is an increasing interest in employing Con-
volutional Neural Networks (CNNs) in safety-critical application
fields. In such scenarios, it is vital to ensure that the application
fulfills the reliability requirements expressed by customers and
design standards. On the other hand, given the CNNs extremely
high computational requirements, it is also paramount to achieve
high performance. To meet both reliability and performance
requirements, partial and selective replication of the layers of the
CNN can be applied. In this paper, we identify the most critical
layers of a CNN in terms of vulnerability to fault and selectively
duplicate them to achieve a target reliability vs. execution time
trade-off. To this end we perform a design space exploration to
identify layers to be duplicated. Results on the application of the
proposed approach to four case study CNNs are reported.

Index Terms—Convolutional Neural Networks, Functional Vul-
nerability Factor, Reliability Analysis, Selective Hardening.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are widely adopted
to provide perception functionalities in several application
domains, including safety-critical ones. An example is the
Advanced Driver Assistance System (ADAS) in the automo-
tive scenario [1], where CNNs detect track lanes, interpret
road signs and traffic lights, and identify pedestrians and
obstacles [2], [3]. Based on such observations, subsequent
planning modules take trajectory and control decisions.

The design of digital systems in safety-critical applications
fields is regulated by standards, e.g., the ISO 26262 for auto-
motive [4]. In the same scenario, the functionalities provided
by an ADAS are regulated by the Society of Automotive
Engineers (SAE). Both standards require high reliability and
fault detection/management mechanisms to be exposed by
the system. Among the possible causes of failures of digital
systems, it has to be mentioned that soft errors, e.g., Single
Event Upsets (SEUs) [5], may interfere with electronic sys-
tems also at the ground-level [6]. A rate of two transient faults
every thousand billion hours, on average, has been estimated.
Although this fault rate may appear negligible, if we take into
account that in 2019 the number of cars traveling in Europe
has been 268 millions [7], the estimate of faults per car would
be one every 3.7 hours, which indeed may be a concern.

In this application scenario, though, classical redundancy-
based software-level fault detection and mitigation techniques,
such as Duplication with Comparison (DWC) or Triple Modu-
lar Redundancy (TMR), may not be affordable when applied to

978-1-6654-5938-9/22/$31.00 ©2022 IEEE

CNNs due to the excessive performance overheads [8]. How-
ever, applications exploiting deep learning generally expose an
intrinsic degree of fault resiliency [9]. It is therefore possible
to analyze the effects of faults in the architecture and how they
interfere with the top-most application, to tailor the hardening
scheme. To limit the overheads, recent studies (e.g., [8], [10],
[11]) proposed selective duplication at the granularity of layers
or feature maps, duplicating only the CNN layers (or feature
maps) that most contribute to the failure rate of the system.
Different strategies are used to estimate layers’ vulnerability
and to determine which ones to harden.

We tackle the same problem, CNN robustness against SEUs,
by exploiting selective hardening of the CNN layers based
on the estimation of their vulnerability, introducing two main
contributions: i) vulnerability/robustness is estimated with re-
spect to a usability-based concept [12], rather than the classical
correct/incorrect one, and ii) a Design Space Exploration
(DSE) approach for exploring the relevant selective hardening
alternatives, rather than using heuristic-based policies. The
former element allows us to better exploit the inherent nature
of CNN-based application context, focusing on whether the
downstream system is able to correctly carry out its task even
when CNN output is corrupted. The latter aims at allowing
the designer to choose among the most relevant alternatives,
leveraging reliability and performance degradation.

We estimate the Layer Vulnerability Factor (LVF) [8] of
the layers of the CNN, by means of CLASSES [13]. Based
on this estimation of the fault susceptibility and on the profiled
execution times, the DSE explores the solution space by
evaluating the overall reliability and execution time of each
hardened solution and identifies the Pareto points representing
the most interesting ones. We applied the proposed selective
hardening methodology to four CNNs and we show that it is
possible to significantly reduce the CNN execution time with
an extremely reduced decrease in reliability.

The remainder of this paper is organized as follows. Sec-
tion II introduces the necessary background and a brief review
of related work. Section III describes the proposed analysis and
hardening method, and Section IV reports its application to the
selected case studies. Finally, Section V draws conclusions.

II. BACKGROUND AND RELATED WORK
A. The Considered Working Scenario

The scenario we envision is the one of cyber-physical
systems, such as the one of an autonomous rover, where

overall system specification

o DA

inputimage .

CNN application

e)],

camera output image

downstream
%@ application

o
usability-
based
classification)

——
error . error_
models simulation
\

Phase B on entire CNN

b Fault error
() injection modeling

reliability
report

Phase A on each operator

CLASSES framework
Figure 1. The considered system (a) and the CLASSES framework (b).

part of the computation includes image processing tasks.
The overall system uses a camera to take images of the
surrounding environment, that are then processed by a CNN,
as in Figure 1(a). The CNN analyzes the captured images to
detect, classify and/or locate features that are possibly used to
enhance the input image. The output data is then used by a
downstream control application, to take decisions.

CNNs are internally organized in a pipeline of layers,
each one performing one or multiple operations, such as
convolutions, batch normalizations or poolings. We propose
a software-based selective hardening of the CNN to limit per-
formance degradation overheads, that works at the granularity
level of the single CNN layer. For the sake of simplicity, we
assume each CNN layer to contain a single operator, therefore
both robustness and duplication considerations are directly
referred to the layer itself. However, the approach can be easily
extended to the general case of multiple operators within a
single layer, and we will comment on the overall impact.

The adopted fault model is the Single Event Upset, which
leads to a transient computational error at inference time. A
transient error could either have no effect, get detected by the
OS or remain undetected and corrupt the output data, a so-
called Silent Data Corruption (SDC). We here focus on the
latter class, SDC, being interested in improving the resiliency
of the CNN-based perception module.

Due to their data-intensive nature, CNNs are generally
accelerated onto Graphic Processing Units (GPUs) or on cus-
tom designed/configurable hardware, and here we refer to the
former. The choice of the underlying hardware platform affects
the effects of faults on the running application. In particular,
when working at the application level to simulate/analyze
the errors produced by a fault in the CNN computation, the
hardware architecture is a fundamental aspect. In the present
study, the error models adopted and used in the CLASSES
framework (depicted in Figure 1(b)) are those associated with
the GPU hardware platform.

Finally, we adhere to the usable/unusable paradigm rather
than the correct/incorrect one, so that the CNN corrupted
output is actually considered so only if the downstream
application will not be able to exploit it, and to this end we
rely on the CLASSES framework [13] to carry out the layer
robustness analysis, as explained in the following.

B. Related work

Selective (or partial) hardening is not a new strategy and it
has been investigated in the past as a viable solution to limit

reliability-related overheads, working either at hardware or
software level. Sometimes the strategy is used in a best-effort
fashion, getting the most from the reliability point of view,
based on the available resources. In most cases, the selection
of the elements to be hardened is arbitrary, based on the
designer’s considerations on the criticality of the components
and/or on the available resources. In the context of CNN
resiliency, there are a few recent works, among which [8],
[11], [14]. In the first two works, an analysis is performed to
identify the layers of the CNN that have more impact on its
correct final output, being implemented on an FPGA, and on
a GPU, respectively. In [8] the concept of Layer Vulnerability
Factor is introduced to characterize the relevance of the errors
in the layers with respect to the correctness of the CNN output,
the same we here adopt. The estimated LVFs are directly used
by the designer to decide what layers to replicate, in a selective
hardening strategy, without any DSE.

Selective duplication based on the vulnerability of the CNN
elements is presented in [11], which identifies and statically
protects the most vulnerable feature maps in a CNN. The
strategy aims at achieving the desired reliability, limiting the
impact of the hardening as much as possible, and the designer
is therefore unable to select the trade-off they deem most
interesting. In the future we plan to explore the opportunity
to port our DSE to such a context to compare the benefits of
working on different CNN elements.

As far as the approach at estimating the LVF for our DSE
is concerned, the mentioned studies employ Radiation Testing
(RT), Fault Injection (FI) and Fuctional Error Simulation
(FES) solutions. RT is able to accurately reproduce the effects
of radiation in the circuit but it is extremely expensive and it
does not provide enough internal controllability and observ-
ability. FI, e.g., [15], [16], [17], provides high controllability
and observability of the experiments, as well as high accuracy.
However, FI techniques generally require a long time and
effort to be integrated within the system under analysis and
they can generally be applied very late in the design process.
Moreover, FI requires the execution of extensive experimental
campaigns in order to collect a statistically relevant amount
of corrupted data since faults may either be not activated or
produce no observable error.

The last family of techniques is Application-Level FES,
e.g., [18], [19], [20], whose advantages are: i) shorter devel-
opment and deployment times, ii) ease of use and availability
early during the design process of the application under
analysis, and iii) no fault activation issues. On the other
hand, the accuracy of the analysis carried out by FES engines
strongly depends on the accuracy of the adopted error models.

The most representative FES engine is TensorFI [18] that
is an error simulator for CNNs integrated in the TensorFlow
framework. TensorFI emulates the effects of faults affect-
ing the execution of the operators of the CNN. A similar
strategy has been adopted in other FES engines, i.e., [19],
[20], integrated into the Pytorch and Caffe frameworks, re-
spectively. Other methodologies, like [21], [22], only support
the corruption of the operator weights. However, the error

models adopted by TensorFI (at the basis of the work in
[11]) have some limitations as discussed in [13], therefore we
adopted CLASSES. As shown in Figure 1(b), it relies on an
architecture-level FI applied on each single CNN operator to
define a set of accurate error models that are representative
of the effects of the HW-level faults affecting the underlying
GPU. These error models are then integrated into a FES
environment to carry out an early, fast and still accurate
reliability evaluation of the entire CNN w.r.t. usability.

III. THE PROPOSED METHODOLOGY

The method we propose first performs the reliability analy-
sis of the CNN layers, then explores the DSE associated with
the different selective hardening alternatives, as detailed in the
following.

A. The Reliability Analysis

The proposed analysis method relies on the LVF metric [8],
defined as the probability of a fault injected in a specific layer
to affect the final CNN output. Starting from the results of
a fault injection campaign consisting of #exps experiments
targeting a specific layer ¢, LVF is computed as:

#sdc;

Hexps

where #sdc; is the number of SDCs, i.e., faults injected in the
layer whose effect is propagated to the final CNN results. To
align the metric to the usability paradigm, we here replace
#sdc; with #u;, that is the number of faults causing an
unusable result (instead of the incorrec/t_\rgsult). We identify
our LVF metric related to usability as LV F';, computed as:

LVF;, =

ey

IVF, — 0)
#exps
The corresponding robustness of the layer is:
Ri=1—LVF —1— 0 3)
#exps

Based on the CLASSES workflow, we split the computation
of R; in two steps. First, architecture-level fault injection
is used to analyze the susceptibility of each operator i' to
faults. More precisely, results of the preliminary fault injection
campaigns used for error modeling can be used to retrieve the
number of experiments #errors; where an error has been
observed in the output tensor among the overall # faults;
runs. Thus, the susceptibility of operator i, S, ;, is computed

as:
#errors;

faults;

In the second phase, we collect the effect of erroneous tensors
produced by the layer 7 (executing operator ¢) on the final
output of the CNN, with respect to its usability. We inject
#sim_errs; errors on the output of the considered layer to
collect the number of usable results #u,;, notwithstanding the
error in the tensor output.

“4)

Serr_i —

!Given the fact we here adopt the one layer-one operator reference, we use
index ¢ for both the operator and the layer.

These two contributions are combined to compute the layer
robustness, that is the probability of the CNN output to be
usable when a fault affects the GPU executing the application,
such that layer ¢ could be affected, and it is formulated as:

Ri = (1 - serr_i) + Serr_i % (5)
where the first part of the formula represents the percentage
of cases where the fault did not cause an error on the layer
output, and the second part represents the percentage of cases
where the fault led to a final usable result. Note that here #u;
refers to the number of executed error simulations.

Once we have computed R; for each layer 7, the robustness
of the entire CNN can be computed, Ron . All layers are
executed in sequence on the same GPU, the probability of
the fault to affect the i-th layer can be approximated with the
portion of time needed to run it w.r.t. running the entire CNN.
In the single fault assumption, if a fault occurs while running
layer ¢, the execution of other layers is fault-free. Therefore the
conditional probability of layer ¢ performing correctly if a fault
occurs is R;. Thus, according to the law of total probability
and the theorem of Bayes, Ronn can be computed as:

t.
Ronny= > Ri- " -
iECNN ONN

(6)

being tonyn and t; the profiled execution time of the overall
CNN and of layer i, respectively.

B. The Selective Hardening Strategy

Rcn v measures the intrinsic resiliency of the CNN against
faults, i.e., its capability to output usable elaborations also in
presence of faults. The aim of this paper is to define a selective
hardening technique maximizing such a value while limiting
the introduced performance overhead.

We here adopt the DWC applied at the granularity of the
single layer. More in details, two instances of the same layer
are executed in sequence and the produced results are then
checked by an ad-hoc additional checking layer, executed on
the GPU as well. The proposed scheme can detect errors in the
single layer run; being it in a software context, a re-execution
of the single layer can be triggered to recover from the error.

The duplication of the layer improves the CNN reliability,
w.r.t. fault detection properties, incurring in a performance
degradation PD); related to the additional execution of the
layer ¢;, plus the additional checking layer ¢. ;. Therefore, the
replication of layer ¢ is characterized by:

Ri=1 7
PD; =1t; +t.; ®)

Do note that being the fault a rare event, the overhead of error
correction is negligible, as commented in [12].

The application of the DWC to the entire CNN constitutes
a boundary solution, characterized by the highest overall ro-
bustness and performance degradation and does not exploit its
inherent resiliency. We propose to selectively harden the CNN,
by applying the DWC only to a subset of the layers H_C NN

(while leaving the remaining H_CNN layers unprotected),
thus achieving a partial robustness with a limited performance
degradation. The selectively hardened solution is characterized
by the following two figures of merit measuring robustness and
execution time, respectively:

t; t;
Rsponn= Y Ri——+ > —— ()
i€H_CNN ONN jen_cnn ONN
tsuony =tonn+ > PD; (10)
i€H_CNN

To support the selective hardening strategy, we adopt a
multi-objective DSE process that explores the solution space
of possible combinations of replicated layers evaluated w.r.t.
the two above figures of merits. The process returns a Pareto
front where the best solutions lie; the designer has therefore
the opportunity to select the most interesting one according to
the given constraints (e.g., a deadline on the execution time).
The solution space is not characterized by relevant constraints,
thus a straightforward multi-objective genetic algorithm engine
has been adopted for a fast DSE execution. In particular, the
solution has been encoded in a chromosome where each gene
is a binary variable representing whether a layer is hardened
or not; then the well-known NSGA-II genetic algorithm has
been adopted by using classical single point crossover and
mutation operators. Given the limited effort to perform the
DSE, we perform a systematic exploration of the a richer set
of solutions w.r.t. the work in [9], which only identifies a
single, good hardened solution using a LVF-based heuristic.
Indeed, our proposal also identifies such a solution among the
numerous alternative ones.

IV. EXPERIMENTAL EVALUATION

The proposed analysis and DSE methodology has been
implemented in a Python script interfaced with CLASSES
prototype. We conducted an experimental campaign aimed
at assessing the effectiveness of the proposed approach. For
the experiments we selected four CNNs, performing different
perception functionalities, taken from the set of applications
considered in the experimental campaign performed in [18]. In
particular we employed CNN implementations in TensorFlow
and datasets provided by the developers. Experimental tests
have been performed on the NVIDIA Jetson TX2 board.

A. The considered CNN applications

Comma’s AI Steering Wheel Model performs steering angle
detection for autonomous driving applications. Its structure is
composed of three subsequent convolution layers followed by
two subsequent bias add layers. According to the analysis
performed in [18], we defined a usability-based classifier
tagging as usable any processing result differing from the
expected predicted angle by less than 5°.

PilotNet is another automotive application for steering an-
gle detection. Its structure is composed of five subsequent
convolutional layers followed by four subsequent fully con-
nected layers and a final multiplication operator. We adopted

here the usability-based classifier previously presented for the
Comma’s Al Steering Wheel Model.

CIFAR-10 is a CNN devoted to image classification into 10
different classes. CIFAR-10 is composed by two convolution +
batch normalization layers followed by a maxpooling layer and
then four additional convolution + batch normalization layers
and again a maxpooling layer; the last layers are two fully
connected and a softmax. The usability-based classification is
straightforward: the corrupted output is usable if the predicted
class is the same as the class predicted by fault-free CNN.
Vggll performs image classification on traffic signs. Vggl1
has a structure similar to CIFAR-10: two convolutional layers
followed by a batch normalization layer and then four convo-
lutional layers with again a batch normalization; the structure
is then completed by three subsequent fully connected layers.
The usability-based classifier works as the one defined for the
CIFAR-10 CNN.

B. Baselines

We selected four alternative solutions to compare against:

o the plain CNN with no redundancy;
e an application-level DWC, where the entire CNN is
duplicated and only the final result is checked;
o a layer-level DWC where every layer is duplicated and
each intermediate result is checked; and
o the hardened solution identified by means of the heuristic
proposed in [8].
The plain solution only relies on the CNN intrinsic degree of
fault resiliency, as often seen in literature. The two full DWC
schemes provide 100% fault detection and are characterized
by different execution times, because of the presence of one
or more checking layers. This also affects the re-execution
policy, upon error detection: in the former case the entire
CNN is re-executed, in the latter, only the corrupted layer.
The heuristic proposed in [8] sorts layers according to LVF
and then proceeds by duplicating them incrementally until a
satisfactory solution is found. However, the paper does not
define any stop criterion for the process. This solution is indeed
included in the ones identified by the DSE.

C. Experimental results

We used CLASSES to compute s, ; and R; for all layers
considered in the CNNs. It is worth mentioning that the
computation of S, ; is application independent and once
collected, they are always available in a repository, for the
analysis of any CNN. We report in Table I the results; they
are later used to compute the robustness of the plain CNN and
of the selectively-hardened versions. For the sake of space,
the table only reports data belonging to the Comma CNN.
Moreover, the table reports the execution time of the layer and
of the checker that should be instantiated in case the layer is
chosen for replication. It can be observed that s, ; is always
below 50% and in several cases also around, or even below,
30%. We may therefore argue that basic operators are already
intrinsically resilient to faults. Moreover, the last layer of the
CNN is, as expected, the most critical one; the CNN fails in

Table I
EXPERIMENTAL RESULTS FOR THE COMMA CNN
Laver | R Execution | Checker
y Serr_i v Time (ms) | Time (ms)
Convolutionl | 0.43 0.81 76.253 0.394
Convolution2 | 0.43 0.74 81.231 0.318
Convolution3 | 0.43 0.73 85.208 0.322
BiasAddl 0.47 0.95 0.158 0.389
BiasAdd2 0.47 0.08 0.151 ~0

92% of the cases when the layer produces a wrong output.
On the other hand, the robustness of the CNN against errors
affecting the other layers is much higher, up to 95% for the first
BiasAdd, thus confirming that the overall CNN internally
absorbs erroneous values.

The values computed with these two preliminary experi-
ments are then used as input of the DSE process. The results
for the four considered CNNs are reported in Figure 2, where
we plot the robustness and execution time of the explored
solutions (the legend in only reported in the first plot for the
sake of readability). In the plots, the red dots represent the
overall explored solution space while the Pareto front and the
baselines are shown in different colors.

As expected the plain solution and the layer-level DWC
represent the two boundary points of the Pareto front; the
former having minimum execution time and robustness, while
the latter achieving a complete fault coverage while incurring
in the maximum performance overhead. As a first consid-
eration This analysis confirms what emerges in literature,
that although inherently resilient, the plain CNN does not
exhibit a high robustness. More precisely, PilotNet reaches
a 96%, however Comma and Vggll1 are characterized by a
84% and 64%, respectively. On the other side of the plot,
we can notice that the layer-level DWC an the application-
level one present very similar characteristics; the reason is
that the checking time is quite limited, thus checking the
intermediate outputs of each layer does not incur in a relevant
performance overhead. As a consequence, layer-level DWC
is more beneficial: indeed, it allows a smaller recovery time
since the actual layer affected by the error can be identified
and re-executed. The only exception to these considerations
is represented by Vggll where application-level DWC is
relevantly faster since the execution times of the various
layers is much shorter than in the other considered CNNs. As
a consequence, all the intermediate checking introduced by
layer-level DWC represent a much more relevant overhead.

Between the two boundary solutions there is the selective
hardening solution space. The size of the overall solution
space highly varies depending on the number of layers in
the CNN; indeed some of he considered applications (Comma
and PilotNet) are quite small. Future work is devoted to the
analysis of a much more complex case study, that is Yolo,
comprising approximately 280 layers, and therefore generating
a much broader space.

The proposed DSE identifies a rich Pareto front, where
designers can select the most interesting trade-off based on

their needs or on any imposed constraint, e.g., on the system
performance. For example, when considering CIFAR-10 or
PilotNet, it can be observed that it is possible to reduce
the execution time of about 150ms reducing only about 1%
robustness w.r.t. the per-layer DWC scheme. The solutions
identified by the heuristic proposed in [8] either belong to the
elements of the Pareto front identified by our DSE method-
ology, or, sometimes, they are sub-optimal points very close
to it. Layers sorting according to the identified LVF and then
selectively duplicating the layers based on this sorting is a
quite effective strategy to identify a reduced set of relevant
solutions in a very short execution time (about one second for
the considered CNNs). Yet, the genetic algorithm performing
the proposed DSE runs in almost one minute, an affordable
time, also considering that the entire Pareto front is returned.

As a final note, we want to mention that the generalization
of the CNN model where multiple operators are executed
within a single layer would only affect the computation of R;.
Indeed, in the mentioned generalized CNN models R; should
be computed by taking into account the s, ; contributions
of all the operators in the layer. On the other hand, in the
methodology proposed in this paper duplication is already
applied at layer level, therefore the size of the solution space
would remain the same, as well as the selective hardening
strategy and related comments.

V. CONCLUSIONS

We presented a methodology aimed at improving the ro-
bustness of CNNs against SEU faults affecting the underlying
hardware platform (a GPU). The strategy applies selective
duplication of CNN layers driven by a Layer Vulnerability
Factor metric to find a satisfactory robustness/performance
trade-off. The proposal is based on a Design Space Exploration
that explores the combinations of layer duplication estimating
robustness and the execution times that allows the designer to
compare alternatives. The size of the solution space is such that
the DSE offers a viable systematic alternative to heuristically
selected solutions, included in the result set.

REFERENCES

[1] M. Campbell, M. Egerstedt, J. How, and R. Murray, “Autonomous
driving in urban environments: approaches, lessons and challenges,”
Philosophical Trans. of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 368, no. 1928, pp. 46494672, 2010.

[2] R. Valiente, M. Zaman, S. Ozer, and Y. P. Fallah, “Controlling Steering
Angle for Cooperative Self-driving Vehicles utilizing CNN and LSTM-
based Deep Networks,” in Proc. Intelligent Vehicles Symp., 2019, pp.
2423-2428.

[3] Z. Ouyang, J. Niu, Y. Liu, and M. Guizani, “Deep CNN-Based Real-
Time Traffic Light Detector for Self-Driving Vehicles,” IEEE Trans.
Mobile Computing, vol. 19, no. 2, pp. 300-313, 2020.

[4] International Organization for Standardization (ISO), “26262: Road
vehicles - Functional safety,” https://www.iso.org/standard/68383.html,
2011.

[5] T. Karnik and P. Hazucha, “Characterization of soft errors caused by
single event upsets in CMOS processes,” IEEE Trans. Dependable and
Secure Computing, vol. 1, no. 2, pp. 128-143, 2004.

[6] E. Normand, “Single event upset at ground level,” IEEE Trans. Nuclear
Science, vol. 43, no. 6, pp. 2742-2750, 1996.

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

1.000 1 L 4

0.995 1 ©

Robustness (prob.)

0.970 1

09651 ¥

1.00 1 * ot

0.95 e

Robustness (prob.)

0.70 .

0.65 A o

o o o
© (e} ©o
[¢5} [¢3) ©o
o w o

L L L

L]
L]
L]

e
©
~
u
|

0.90
0.85 1 od
0.80 1 oh

0.751 -

]

600 700 800 900

Execution time (ms)

500

(b) PilotNet

6 8 10 12 14
Execution Time (ms)

(d) Vggll

Figure 2. Design space exploration w.r.t. selective DWC-based hardening.

1.00 1 Selective hardening solution space o«
« Selective hardening Pareto front
09871 . paincnN
- 0.96 1 & Layer-level DWC solution
-8 ' # Application-level DWC solution
s 0.94 1 Solutions defined as in [8] .0
@
v 0.92
5
3 0.90 1
e}
] .
X 0.881
0.86 1
084 1 . T T T T T
250 300 350 400 450
Execution time (ms)
(a) Comma
1.00 4 «
0.99 1 &
>
—_ C
< 0.984 G4
o - 4
=
E 0.97 1 -
P
< 0.96 -
2 o
3 -
5 0.95 s>
-4 o
0.94 1 <
0931 ,~
600 700 800 900 1000 1100 1200
Execution time (ms)
(c) Cifarl0
ACEA - European Automobile Manufacturers’ Associa-
tion, “ACEA Report: Vehicles in use - Europe 2019,”

https://www.acea.be/publications/article/report-vehicles-in-use-europe-
2019, 2019, (Accessed on 03/20/2020).

F. F. dos Santos, L. Carro, and P. Rech, “Kernel and layer vulnerability
factor to evaluate object detection reliability in GPUs,” IET Computers
& Digital Techniques, vol. 13, no. 3, pp. 178-186, 2019.

F. F. dos Santos, P. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli,
and P. Rech, “Analyzing and Increasing the Reliability of Convolutional
Neural Networks on GPUS,” IEEE Trans. Reliability, vol. 68, no. 2, pp.
663-677, 2019.

A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Hardnn: Feature map vulnerability evaluation in cnns,” arXiv preprint
arXiv:2002.09786, 2020.

A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. R. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing selective protection for CNN resilience,” in Proc.
Intl. Symp. Software Reliability Engineering, 2021, pp. 127-138.

M. Biasielli, C. Bolchini, L. Cassano, A. Mazzeo, and A. Miele,
“Approximation-Based Fault Tolerance in Image Processing Applica-
tions,” IEEE Trans. on Emerging Topics in Computing, vol. 10, no. 2,
pp. 648-661, 2022.

C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast and accurate
error simulation for cnns against soft errors,” IEEE Trans. on Computers,
pp. 1-14, 2022.

F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga,
C. Frost, and P. Rech, “Selective Hardening for Neural Networks in
FPGASs,” IEEE Trans. Nuclear Science, vol. 66, no. 1, pp. 216-222,
2019.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,”
in Proc. Intl. Symp. Performance Analysis of Systems and Software,
2014, pp. 221-230.

G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding
error propagation in GPGPU applications,” in Proc. Intl. Conf. High
Performance Computing, Networking, Storage and Analysis, 2016, pp.
240-251.

T. Tsai, S. K. S. H. M. Sullivan, O. Villa, and S. W. Keckler, “NVBitFI:
Dynamic Fault Injection for GPUs,” in Proc. Intl. Conf. Dependable
Systems and Networks, 2021, pp. 284-291.

Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “TensorFI: A Flexible Fault Injection Framework for Ten-
sorFlow Applications,” in Proc. Intl. Symp. on Software Reliability
Engineering, 2020, pp. 426-435.

A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve,
C. W. Fletcher, 1. Frosio, and S. K. S. Hari, “PyTorchFI: A Runtime
Perturbation Tool for DNNSs,” in Proc. Intl. Conf. Dependable Systems
and Networks Workshops, 2020, pp. 25-31.

M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are CNNs Reliable
Enough for Critical Applications? An Exploratory Study,” IEEE Design
& Test, vol. 37, no. 2, pp. 76-83, 2020.

A. P. Arechiga and A. J. Michaels, “The Robustness of Modern Deep
Learning Architectures against Single Event Upset Errors,” in Proc. High
Performance extreme Computing Conf., 2018, pp. 1-6.

A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A Reliability
Analysis of a Deep Neural Network,” in Proc. Latin American Test
Symp., 2019, pp. 1-6.

