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Abstract: Remaining useful life (RUL) prediction is important for wind turbine operation and
maintenance. The degradation process of gearboxes in wind turbines is a slowly and randomly
changing process with long-range dependence (LRD). The degradation trend of the gearbox is
constantly changing, and a single drift coefficient is not accurate enough to describe the degradation
trend. This paper proposes an original adaptive generalized Cauchy (GC) model with LRD and
randomness to predict the RUL of wind turbine gearboxes. The LRD is explained jointly by the fractal
dimension and the Hurst exponent, and the randomness is explained by the diffusion term driven by
the GC difference time sequence. The estimated value of the unknown parameter of adaptive GC
model is deduced, and the specific expression of the RUL estimation is deduced. The adaptability
is manifested in the time-varying drift coefficient of the GC model: by continuously updating the
drift coefficient to adapt to the change in the degradation trend, the adaptive GC model offers high
accuracy in the prediction of the degradation trend. The performance of the proposed model is
analyzed using real wind turbine gearbox data.

Keywords: adaptive generalized Cauchy model; long-range dependence; remaining useful life;
randomness

1. Introduction

As wind energy continues to grow, ensuring the reliability and reducing maintenance
of wind turbines gains increasing importance [1,2]. Monitoring the health state and pre-
dicting the RUL of wind turbines has become important to limiting premature failures of
wind turbines [3,4]. Bearings and gearbox failures are common wind turbines failures [5].
According to the statistics of the latest reliability database in 2011, approximately 76% of
wind turbine failures occur due to bearings and gearboxes [6]. Most gearbox failures start at
the bearing location and transfer to the gear teeth in the form of bearing fragments leading
to shutdown [7,8].

Research has been conducted in wind turbine condition monitoring, fault detection
and diagnosis, and failure prediction. The methods proposed are mainly divided into
data-driven methods and model-based methods [9]. For example, a multi-class support
vector machine is proposed for fault detection and identification in wind power trans-
mission gearboxes by fusing different time-domain and frequency-domain features. An
integral extension load mean decomposition multi-scale entropy method is used in [10] to
extract features, and a least square support vector machine is developed to perform fault
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diagnosis and RUL prediction for wind turbines. In [11], an adaptive Bayesian algorithm
is used to predict the bearing’s RUL in wind turbines. A practical disadvantage of the
data-driven methods is that they usually require historical data of degradation to train
the model [12]. Wind turbines are usually complex, large-scale and highly reliable, and
obtaining large amounts of fault measurement data is expensive and time-consuming. The
degradation process of wind turbine bearings and gearboxes can be affected by many fac-
tors (for example, different environmental factors, failure modes, operating conditions, etc.),
which introduces difficulties to the construction and training of data-driven models [13].
Therefore, fault diagnosis and failure prediction based on limited fault data samples are
still challenging problems [3].

As a practical alternative, model-based wind turbine life prediction methods have been
considered. For instance, a gamma model has been proposed in [14] to describe degradation
processes. The model parameters are estimated and updated by the maximum likelihood
estimation method and Bayesian method, respectively. A monotonic degradation model
based on the inverse Gaussian process is used in [15] to describe the degradation process.
The change point of the bearing degradation process is considered in [16] to establish a
stochastic prediction model based on the Wiener process. However, the degradation of
wind turbine gearboxes is a slow and continuous process with the LRD characteristic,
which is affected by the historical state evolution. The above-mentioned model-based
prediction methods of wind turbine do not take the LRD into account and do not consider
the adaptive nature of the drift coefficient.

In this context, the work presented in this paper proposes an adaptive GC model to
describe the LRD and randomness of wind turbine degradation. The adaptive GC model
considers the time-varying nature of the drift coefficient of the degradation process [17].
In the continuous change in the degradation trend, the drift coefficient is automatically
updated and adjusted in real time to adapt to the change so that the adaptive GC model
can predict the degradation trend with high accuracy. The LRD and randomness are
explained by the diffusion term driven by the GC difference time sequence. The LRD of
the GC process is evaluated by its autocorrelation function (ACF) [18]. The GC process
is considered to satisfy the LRD characteristics if its ACF integral diverges. Based on the
integration of ACF, the GC process has been found to satisfy the LRD characteristic when
0 < (4− 2D)(2− 2H) ≤ 1 [19]. H is the Hurst index, and D is the fractal dimension. The
GC process satisfies the LRD characteristics, which means that its ACF slowly decays to the
extent of integral divergence. According to the above conditions, the LRD characteristics of
the GC process are jointly evaluated by the fractal dimension and the Hurst exponent.

In summary, the main contributions of this paper are highlighted as follows:

1. The LRD prediction model driven by a GC process is introduced to describe the
degradation process of wind turbine gearboxes. The LRD is explained jointly by the
fractal dimension and the Hurst exponent, and the randomness is explained by the
diffusion term driven by the GC difference time sequence;

2. The time-varying drift coefficient is used to describe the adaptive update of the
degradation trend, and the parameter estimation and RUL estimation of the adaptive
GC model are deduced;

3. The normality test of the GC difference time sequence ensures the accuracy of the
multi-dimensional joint distribution of the predicting model.

The remaining sections of this paper are organized as follows. Section 2 describes the
LRD characteristics of the GC process. The GC difference time sequence is constructed by
ACF, and a normality test is carried out. Section 3 proposes an adaptive GC model and
derives the parameter estimation and RUL estimation of the degradation model. Section 4
describes how the proposed procedure is applied to online monitoring and RUL prediction
of wind turbines gearboxes. Finally, Section 5 is the conclusion of this paper.
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2. Properties of the GC Process and Its Simulation
2.1. The LRD Characteristic of The GC Process

Let {x(t), 0 < t < ∞} be a GC stochastic process; the ACF, R(τ), of x(t) can be written
as follows [19]:

R(τ) = E[x(t + τ)x(t)] = (1 + τα)−β/α, (1)

where τ is the lag time, and α and β are parameters describing the LRD characteristics.
The LRD characteristics of the GC process are evaluated jointly by the Hurst index H
and the fractal dimension D, which represent global self-similarity and local roughness,
respectively. The specific relationships are H = 1− β/2, D = 2− α/2 [19].

If the improper integral of the ACF of x(t) on (0, ∞) is infinite, then x(t) is said to be
a stochastic process with LRD characteristics. The infinite integration of the ACF can be
calculated as follows:∫ +∞

0
R(τ)dτ =

∫ +∞

0
(1 + τα)−β/αdτ =

{ 1
α B( 1

α , β− 1
α ), i f (αβ > 1)

∞, i f (0 < αβ < 1)
, (2)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta function and Γ(·) is the gamma function.
Consider the condition when αβ = 1,∫ +∞

0
R(τ)dτ =

∫ +∞

0
(1 + τα)−1/α2

dτ =
B(1/α, 0)

α
=

Γ(1/α)Γ(0)
αΓ(1/α)

=
Γ(0)

α
, (3)

which diverges since Γ(z) ∼ 1/z as z→ 0 . Thus,Γ(0)/α ∼ ∞ and the GC process is LRD
for 0 < αβ ≤ 1, whereas it is short-range dependent if αβ > 1. According to the definition
of LRD, we obtain that when 0 < αβ ≤ 1, the GC process satisfies the LRD condition:∫ +∞

0
R(τ)dτ = ∞, i f (0 < αβ ≤ 1). (4)

Substituting the fractal dimension and Hurst exponent for α and β, one obtains the
evaluation criterion for LRD, 0 < (4− 2D)(2− 2H) ≤ 1. The ACF for different values of H
and D is plotted in Figure 1.

Figure 1. The ACF of the GC process.

It can be seen from Figure 1 that low D and high H values make the ACF curve decay
slowly. When the lag time is large enough, the ACF curve does not decay to zero and the
improper integral in Equation (4) diverges.

2.2. The Construction of the GC Difference Time Sequence

In this paper, the ACF is used to construct the GC time sequence. The specific steps
are as follows.

Step 1: The power spectral density (PSD) function of the GC process is obtained from
the relationship between the ACF and the PSD:

S(ω) = F[R(τ)] = F
[
(1 + |τ|α)−β/α

]
, (5)
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where F stands for the Fourier transform. Suppose that H(ω) and h(t) are the system
function and impulse response function, respectively, and that h(t) is the inverse Fourier
transform of H(ω). The relationship between the power spectral density function S(ω)

and the system function H(ω) is S(ω) = |H(ω)|2. From Equation (5), we can derive the
expression of the impulse response function h(t):

h(t) = F−1[
√

S(ω)] = F−1

{
F
[(

1 + |τ|4−2D
)− 1−H

2−D
]0.5}

. (6)

Step 2: The GC time sequence can be obtained from the white noise signal and the
impulse response function of the GC process [20]:

y(t) = w(t) ∗ h(t) = w(t) ∗ F−1

{
F
[(

1 + |τ|4−2D
)− 1−H

2−D
]0.5}

, (7)

where w(t) is the white noise signal. Suppose that the frequency spectrum of unit white
noise is W(ω) = exp(jθ(ω)). The white noise signal w(t) is obtained by inverse Fourier
transform of the frequency spectrum W(ω) of the white noise:

w(t) = F−1[W(ω)] =
1

2π

∫ ωc

−ωc
exp(jθ(ω)) exp(jθ(ω))dω. (8)

Step 3: Set the time interval to 1 and obtain the GC difference time sequence through
the difference dGC(t) = GC(t + 1)− GC(t).

The specific flowchart of the above generation procedure is shown in Figure 2.

Figure 2. Flowchart of the procedure for generating the difference time sequence.

The GC time sequence is generated with D = 1.2 and H = 0.7. The GC difference
time sequence is shown in Figure 3.

Figure 3. GC difference time sequence.
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2.3. The Normality Test on the GC Difference Time Sequence

The PSD is generated by the Fourier transform of the ACF of the GC process, and the
impulse response function is obtained by the system function. Then, the GC time sequence
is obtained by convolving the impulse response function with the white noise sequence.
Finally, the first-order difference processing is performed to obtain the GC difference time
sequence. Before obtaining the distribution to which the increment of the degradation
process obeys, it is necessary to test the normality of the GC difference time sequence.
The histograms under different lengths of the GC difference time sequence are shown in
Figure 4. The histogram test, the joint test of skewness and kurtosis, the Shapiro–Wilk (SW)
test and the Kolmogorov–Smirnov (KS) test were used to verify the normality of the GC
difference time sequence [21,22].

Figure 4. The histograms of GC difference time sequence.

It can be seen from Figure 4 that as the length of the time sequence increases, the time
sequence is closer to the normal distribution. The skewness describes the symmetry of the
time sequence, and the skewness of the normal distribution is zero. The kurtosis describes
the steepness of the time sequence, and the kurtosis of the normal distribution is three. The
result of the joint test of skewness and kurtosis is shown in Table 1.

Table 1. The Joint Test of Skewness and Kurtosis of GC Difference Time Sequence.

Length of Time Sequence 100 500 1000 2000 5000

mean value of skewness −0.1291 0.1067 0.0672 0.0867 −0.0498
mean value of kurtosis 2.8574 3.0816 2.9410 3.0737 2.9841

In Table 1, skewness and kurtosis are close to zero and three, respectively, under different
sequence lengths. The results of the SW test and KS test are shown in Tables 2 and 3,
respectively.

Table 2. The SW Test on the C Difference Time Sequence.

Length of Time Sequence 100 500 1000 2000 5000

Statistics 0.980 0.997 0.998 0.999 1.000
p-values 0.131 0.527 0.738 0.827 0.919

Table 3. The KS Test on the GC Difference Time Sequence.

Length of Time Sequence 100 500 1000 2000 5000

Statistics 0.833 0.683 0.520 0.516 0.498
p-value 0.491 0.739 0.950 0.953 0.965
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In Tables 2 and 3, the p-values of the different-length time sequences after the SW test
and the KS test are larger than 0.05, which shows that there is no significant difference
between the GC difference time sequence and the normal distribution. Therefore, the GC
difference time sequence obeys the normal distribution.

3. Degradation Modeling and RUL Prediction Based on Adaptive GC Model
3.1. The Adaptive GC Model

The degradation process of wind turbine gearboxes can be described as [23]

dyk = akΛk(tk) + σdB(tk), (9)

where yk is the degradation value at time tk,dyk is the difference of yk,akΛk is the drift
function of the degradation process, reflecting the degradation trend item Λk is a function
of time tk and σdB(tk) is the diffusion function of the degradation process.

The GC degradation process is obtained by replacing the random term B(tk) with
GC(tk) [24]:

dyk = akΛk + σdGC(tk). (10)

In order to express the time-varying nature of the degradation trend, suppose that
a = [a1, a2, . . . , an] is a time-varying drift coefficient that obeys the normal distribution
N(µa, σ2

a ). Then, an adaptive GC model is proposed. Adaptability is necessary to auto-
matically adjust and update the model parameter values and associated RUL expressions
according to the data characteristics. The principle of adaptive update of the drift coefficient is
shown in Figure 5. The cycle ends when the health indicator (HI) exceeds the fault threshold
(FT). Bringing the difference time sequence into Equation (10) yields Equation (11):

dyk = akΛk + σ[GC(tk + 1)− GC(tk)]. (11)

Figure 5. Adaptive update of the drift coefficient.
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3.2. Parameter Estimation in the Adaptive GC Model

There are five unknown parameters—µa, σa, σ, H, D—in Equation (11), the values of
which need to be determined. Let us denote the unknown parameter vector as
Φ= [µa, σa, σ, H, D]T , where [·]T represents the transpose of the vector. The maximum
likelihood estimation method is used to estimate the values of the unknown parameters
based on actual degradation data. Suppose that the measured values of the degradation pro-
cess of the HI at time t1, t2, . . . , tn are contained in the vector variable Y = [y1, y2, . . . , yn]

T ,
where n is the number of measurements. Let Λ= [Λ1, Λ2, . . . , Λn]

T . According to the
nature of the independent increment of the GC process, the multi-dimensional random
variable Y follows:

Y ∼ N(µa, Λ, σ2
a , σ2, Q), (12)

where Q is the covariance matrix of the GC process. The likelihood function is obtained
from the probability density function of the multi-dimensional joint normal distribution

l(Φ|Y) = −n ln(2π)

2
− ln|Σ|

2
− 1

2
(Y− µaΛ)′Σ−1(Y− µaΛ), (13)

with
|Σ| =

∣∣∣σ2Q
∣∣∣(1 + σ2

a Λ′(σ2Q)
−1

Λ), (14)

Σ−1 = (σ2Q)
−1 − σ2

a (σ
2Q)

−1ΛΛ′(σ2Q)
−1

1 + σ2
a Λ′(σ2Q)−1Λ

. (15)

Calculating the partial derivatives of Equation (13) can predict the parameters µa and
σa, respectively,

∂l
∂µa

= ΛTΣY− µaΛTΣ−1Λ, (16)

∂l
∂σ2

a
= − ΛT(σ2Q)

−1Λ

2(1 + σ2
a ΛT(σ2Q)−1Λ)

+
(Y− µaΛ)T(σ2Q)

−1ΛΛ′(σ2Q)
−1

(Y− µaΛ)

2(1 + σ2
a ΛT(σ2Q)−1Λ)

2 . (17)

Setting Equations (16) and (17) to 0 and solving to obtain the maximum likelihood
estimates of µ̂a and σ̂2

a

µ̂a =
ΛTΣ−1Y
ΛTΣ−1Λ

, (18)

σ̂2
a =

(Y− µaΛ)T(σ2Q)
−1ΛΛ′(σ2Q)

−1
(Y− µaΛ)

(ΛT(σ2Q)−1Λ)
2 − 1

ΛT(σ2Q)−1Λ
. (19)

The contour log-likelihood function about σ can be obtained by substituting Equations
(18) and (19) into Equation (13):

l(Φ|Y, µa = µ̂a, σ2
a = σ̂2

a ) = −n ln(2π)

2
−

ln
∣∣Σ̂∣∣
2
− 1

2
(Y− µ̂aΛ)TΣ̂−1(Y− µ̂aΛ), (20)

where Σ̂ = σ̂2
a ΛΛ′ + σ2Q. The maximum likelihood value σ̂2 can be obtained by maximiz-

ing the contour log-likelihood function.
In order to maximize the contour log-likelihood function, it is usually necessary to set

the initial value of σ2. An inaccurate setting of the initial value will affect the result of the
estimated values σ̂2. The initial values of σ2 can be obtained as follows:
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1. Maximize l(a1, a2, . . . , an|Y) to obtain the initial estimated values of a1, a2, . . . , an; the
estimated values of a1, a2, . . . , an can be obtained by the least square method

l(a1, a2, . . . , an|Y) =
n

∑
i = 1

(Y− aiΛ)T(Y− aiΛ). (21)

2. Regarding the initial values of a1, a2, . . . , an as n actual values of ai ∼ N(µa, σ2
a ), the

initial estimated values of µa, σ2
a are obtained by calculating the mean and variance of

a1, a2, . . . , an.
3. According to a1, a2, . . . , an, maximize l(σ2

∣∣Y) to obtain the estimated value σ̂2

l(σ2|Y) = −n ln(2π)

2
− ln|Σ|

2
− 1

2
(Y− µaΛ)TΣ−1(Y− µaΛ). (22)

The Hurst exponent H is calculated by the rescaled range (RS) method [25]:

R/S =

max
1≤i≤N

yi,N − min
1≤i≤N

yi,N√
1

N−1 ∑N
i = 1 (yi − 〈y〉)2

, (23)

where 〈y〉 is the mean of the HI, yi and yi,N are dispersion values, R and S are the range and
standard deviation, respectively. The estimated value of the Hurst exponent H is obtained
by the logarithmic relationship between R/S and N:

ln R/S = H ln N + b (24)

The value of the fractal dimension D is estimated by the box dimension method [26]:

D = lim
d→0

ln(Nd)

ln(1/d)
, (25)

where Nd is the total number of squares occupied by the HI and d is the square side length.

3.3. RUL Estimation Based on the Adaptive GC Model

According to the concept of a RUL based on the first arrival time of degradation
process to a given failure threshold, RUL at the moment lk is defined as:

Lk = inf{lk : y(lk + tk) ≥ ω|y(tk) < ω}, (26)

where ω is the FT. When the gearbox degradation process exceeds FT after the prediction
start time (PST) for the first time, it is considered that a fault has occurred, and this time is
called the end of life (EOL). In Figure 6, the RUL prediction schematic is clearly explained.

Figure 6. RUL prediction schematic.
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Based on the RUL of the Wiener process degradation model, it is easy to obtain the
RUL based on the GC process degradation model [27].

fLk (t|y(tk), Φ) ∼=
ω− akΛk + takdΛk/dt

tσ
√

2πt
exp

{
− (ω− akΛk)

2

2tσ2

}
. (27)

With the above parameter update mechanism, one can adaptively update the drift
coefficient ak according to the observation data at the current moment. It can be seen from
Equation (27) that the expression of the RUL is related to the drift coefficient ak. Next, we
discuss the adaptive update of the RUL. The probability density function (PDF) of the RUL
is obtained from the total probability formula

fLk (t|y(tk)) =
∫

fLk (t
∣∣y(tk), ak) f (ak

∣∣y(tk))dak , (28)

where fLk (t
∣∣y(tk)) is the PDF of the RUL considering the adaptive update of the drift

coefficient ak, fLk (t
∣∣y(tk), ak) is the conditional PDF of the RUL when the drift coefficient

ak is determined, and f (ak|y(tk)) is the PDF of the drift coefficient ak following a normal
distribution. If Z ∼ N(µZ, σ2

Z), we obtain

EZ((K− Z) exp(− (K1−K2Z)2

2K3
))

= KEZ(exp(− (K1−K2Z)2

2K3
))− EZ(Z exp(− (K1−K2Z)2

2K3
))

= (K− (σZ)
2K1K2+µZK3

(K2σZ)
2+K3

)

√
K3

(K2σZ)
2+K3

exp(− (K1−K2µZ)
2

2((K2σZ)
2+K3)

).

(29)

According to the equation for the calculation of the mean value, we can regard
fLk (t

∣∣y(tk), ak) as the integrand function. Then, Equation (28) can be written as

fLk (t
∣∣∣y(tk)) = Eak |y(tk)

[ fLk (t
∣∣∣ak, y(tk))]

= 1
tσ
√

2πt
Eak

{
(ω− akΛk + takdΛk/dt) exp[− (ω−akΛk)

2

2tσ2 ]}

= Λk−tdΛk/dt
tσ
√

2πt
Eak

{
( ω

Λk−tdΛk/dt − ak) exp[− (ω−akΛk)
2

2tσ2 ]}.

(30)

Comparing Equations (29) and (30), we can set Z, K, K 1, K 2 and K 3 to Z = ak,
K = ω

Λk−tdΛk/dt , K1 = ω, K2 = Λk and K3 = tσ2, respectively,

fLk (t|y(tk)) =
ωSk − (Λk − tdΛk/dt)(σ2

a ωΛk + µatσ2)

tSk
√

2πSk
exp[− (ω− µaΛk)

2

2Sk
], (31)

where Sk = Λ2
kσ2

a + tσ2. When the drift coefficient ak updates adaptively, the mean µa
and variance σa of the drift coefficient ak also change accordingly. It can be seen from
Equation (31) that the PDF of the RUL is related to µa and σa, so that the RUL is also
updated adaptively with the drift coefficient ak. According to the above, the flowchart of
the specific procedure for RUL prediction is shown in Figure 7.
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Figure 7. Flowchart of the procedure for RUL prediction.

4. Case Study
4.1. Data Description

We consider a case study that concerns experimental data obtained from the FZG test
bench of the company STRAM, which operates a wind turbine. As shown in Figure 8,
the test bench is composed of a cooling and lubricating controller, gear platform, torque
controller and actual operation platform. The sampling frequency is set to 50,000 Hz, and
the sampling duration is set to the first 20 s of each minute, that is, one million data are
sampled each time. The experimental temperature is set to 70 ◦C. The vibration signal is
collected by an accelerometer placed on the experimental gearboxes. When the amplitude
of the collected vibration signal exceeds a certain fault threshold, the experiment stops.

Figure 8. The test bench of gearbox fatigue testing.

In Figure 9, the normal gears before the experiment and the broken gears after the
experiment are shown. In this paper, the gearbox vibration signal data collected by the gear
contact fatigue test bench are used to verify the effectiveness of the adaptive GC model.
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Figure 9. The normal gears and the broken gears.

4.2. Data Preprocessing

In Figure 10, the original signal is depicted, and feature extraction is required to reflect
the degradation information of the gearboxes. The unit of sampling interval in Figure 10 is
minutes. In Figure 11, nine time-domain features of the data are extracted to describe the
degradation process of the gearboxes [28].

Figure 10. Original vibration signal of the gearboxes.

Figure 11. Features of the degradation process data extracted.
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In order to reduce the computational burden, these high-dimensional features need to
be fused to form a synthetic HI. In this paper, the Mahalanobis distance (MD) method is
used to construct the HI [29,30]:

MDi =
1
m

ZT
i Σ−1

Z Zi, (32)

where MDi is the MD calculated at the i-th moment, Zi = [zi,1, zi,2, . . . , zi,m] are the m
features extracted at the i-th moment in time, and ΣZ is the covariance matrix of Zi. The
new HI is obtained by calculating the MD of Equation (32), and the result is shown in
Figure 12.

Figure 12. HI constructed by MD.

The extracted features are fused by the MD method as the HI, which is used to describe
the degradation process in the RUL prediction.

4.3. RUL Prediction

The MD method is used to perform the fusion of the features extracted from the
gearbox vibration signal into an HI, which is often used to predict the RUL. When the
failure threshold is set to 10 units of HI value, the corresponding fault occurs at 566 min. For
the parameter estimation, we give the concrete expression of the adaptive drift coefficient.
The specific estimation results of the unknown parameters Φ= [µa, σ2

a , σ2, H, D]T of the
adaptive GC model are given in Table 4. The GC model, fractional Brownian motion
(FBM) model, long short-term memory (LSTM) model and adaptive Wiener are selected for
comparison with the adaptive GC model [31,32]. The difference between the GC model and
the adaptive GC model is that the adaptive GC model takes into account the time variation
of the drift coefficient.

Table 4. Parameters Estimation of Different Prediction Models.

Parameters µa σa a σ H D

adaptive GC model 0.0635 1.2670 - 1.9643 0.5723 1.4523
GC model − − 0.0651 2.0617 0.5723 1.4523

FBM model − − 0.0592 1.9643 0.5723 −
Adaptive Wiener 0.01163 1.0274 − 1.8640 − −

From the estimated parameter value if 0 < (4− 2D)(2− 2H) = 0.9370 ≤ 1, the
gearbox degradation process has an LRD characteristic. Therefore, the adaptive GC model
with an LRD characteristic can be used to predict the gearbox RUL. The estimation of the
Hurst exponent H by the RS Method is shown in Figure 13.
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Figure 13. RS method to estimate the Hurst exponent H.

According to Equation (24), the estimated value of the Hurst exponent H is the slope in
Figure 13. The calculated result is 0.5723. The predicted RUL is obtained through 1000 trials
of Monte Carlo simulation [28,33]. The histogram and PDF of 100 RUL prediction are
shown in Figure 14.

Figure 14. The histogram and PDF of the 100 predicted RUL values.

As shown in Figure 14, according to the statistical results, the RUL has the largest
value of the PDF in 46. Hence, the RUL estimate from Monte Carlo simulation is 46. Since
the sampling interval is minutes, all RUL values in this work are given in minutes. Then,
the PDF of the RUL at 10 different prediction starting points of the operation process is
obtained by Monte Carlo simulation. The prediction results of the PDFs by different models
are shown in Figure 15 [34–37].
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Figure 15. The PDFs of the RUL of different prediction models.

In Figure 15, the black straight line represents the actual RUL, and the five-colored star
represents the estimated RUL. The RUL obtained by the five different prediction models
is expressed in a two-dimensional plane, and the results are shown in Figure 16. The
estimated RUL value of the different models are shown in Table 5.

Figure 16. The RUL estimated by different prediction models.

Table 5. The RUL Values Estimated by Different Prediction Models.

Prediction
Start Point

(min)

Actual RUL
(min)

Adaptive GC
(min)

GC
(min)

FBM
(min)

LSTM
(min)

Adaptive
Wiener
(min)

520 46 47 48 43 49 48
525 41 42 42 38 43 40
530 36 35 39 37 38 37
535 31 30 30 33 33 29
540 26 26 28 24 24 24
545 21 22 22 19 23 19
550 16 15 17 15 18 16
555 11 10 12 10 9 10
560 6 5 6 6 7 5
565 1 2 1 2 2 2
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To comprehensively compare the prediction advantage of the different models, the
evaluation indicators of mean absolute error (MAE), root mean square error (RMSE) and
health degree (HD) are considered as follows [38]:

MAE =
1
s ∑s

i = 1|Lk − L∗k |, (33)

RMSE =

√
1
s ∑s

i = 1 (Lk − L∗k )
2, (34)

HD = 1− ∑s
i = 1 (Lk − L∗k )

2

∑s
i = 1 (Lk − Lk)

2 , (35)

where Lk is the predicted RUL, L∗k is the actual RUL, s is the number of predictions and Lk
is the mean value of Lk.

In Table 6, the RUL prediction accuracy of the adaptive GC model is higher than that
of the other four models. One of the reasons is that the drift coefficient of the adaptive GC
model has been adaptively updated on the data collected, which gives a more accurate
description of the degradation trend of the gearboxes with a fixed drift coefficient. Another
reason is that it is more accurate to use an adaptive GC model with LRD characteristics to
predict the degradation process of wind turbine gearboxes with LRD characteristics.

Table 6. Prediction Accuracy of the Five Models.

Prediction Models MAE RMSE HD

Adaptive GC 0.9000 0.9487 0.0012
GC 1.2000 1.4832 0.0409

FBM 1.6000 1.8439 0.0373
LSTM 1.9000 1.9748 0.0476

Adaptive Wiener 1.3000 1.4491 0.0112

5. Conclusions, Limitations and Future Research

Based on the GC process, an adaptive GC model with LRD characteristics and ran-
domness is originally proposed for RUL prediction of the gearboxes in a wind turbine. The
general conclusions of the work related to such model are as follows:

1. The degradation of wind turbine gearboxes is a slow and continuous process with
LRD characteristics. The LRD is demonstrated by the Hurst exponent and the fractal
dimension. The randomness is explained by the diffusion term driven by the GC
difference time sequence. In this paper, the GC difference time sequence is constructed
through the ACF of the GC process, and the normality of the time sequence is verified;

2. The adaptability of the adaptive GC model is manifested by using time-varying drift
coefficients to update the degradation trend in real time so as to improve prediction
accuracy. The expressions for the adaptive estimation of the unknown parameters
and RUL are derived. The upgradation of the parameters is beneficial to the research
of RUL prediction compared with the models of fixed parameters;

3. The upgrading of the drift coefficient is based on the random sampling of the Gaussian
distribution, which brings little error. Future work can focus on a better upgradation
of the drift coefficient.
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Abbreviations

RUL Remaining useful life
LRD Long-range dependence
GC generalized Cauchy
FBM Fractional Brownian motion
LSTM Long short-term memory
ACF Autocorrelation function
PSD Power spectral density
SW Shapiro-Wilk
KS Kolmogorov–Smirnov
HI Health indicator
FT Fault threshold
PST Prediction start time
EOL End of life
MD Mahalanobis distance
PDF Probability density function
MAE Mean absolute error
RMSE Root mean square error
HD Health degree
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