
Wireless synchronisation as a control problem
embedded in new-generation networked automation systems

Alberto Leva, Federico Terraneo and William Fornaciari

Abstract— In the present and rapidly evolving industrial
scenario, wireless networked controls are gaining importance.
This brings about new problems concerning the use of the radio
channel, as well as the energy efficiency of the involved devices
(often running on battery). We argue that such problems,
among which a fundamental one is clock synchronisation,
should be addressed by dedicated control structures embed-
ded in the used hardware/software architecture, and that
the construction of the said controls should follow strictly
system-theoretical principles to the maximum extent. In this
paper, building on previous experience, we present such a
synchronisation solution together with a formal model for its
operation, also accounting for non-idealities in the reference
time base. Some experimental results are reported to support
the statements made.

I. INTRODUCTION, STATE OF THE ART, CONTRIBUTION

This paper belongs to a long-term research aimed at
making time synchronisation an embedded integral part of in-
dustrial wireless controls, instead of just a source of problems
that resides in the host hardware/software architecture. In
other words, our position is to not take the said architecture
as an immutable entity that causes latencies and delays
versus which controllers needs making resilient [9] and that
in the opinion of some authors [22] can even question the
applicability of well assessed control structures like the PID.
On the contrary, we aim to embed into the above architecture
suitable controls dedicated to synchronisation and timing,
transparent to the developer of application software. Doing
so allows to counteract timing-related issues at their origin,
and make them practically negligible when designing the
control system for the primary scope of the plant.

Numerous surveys [11], [4], [5] indicate that the interest in
wireless systems is growing, both in the process control [21]
and in manufacturing applications [14]. In the former case
wireless architectures allow to reduce wiring that is often
exposed to adverse environmental conditions, in the latter the
absence of cables facilitates factory floor reconfigurations.
In both cases one has to do with a shared communication
medium (a limited set of radio channels where strict regu-
lations exist about the allowable utilisation) and frequency
with battery-operated devices. Hence, minimising the radio
use and aiming for energy efficiency are enabling factors
for the industrial acceptance of any solution. Also, tight
synchronisation is vital for applications involving sampling
rate optimisation [10] or event-based communication [13].

1A. leva, F. Terraneo and W. Fornaciari are with the Di-
partimento di Elettronica, Informazione e Bioingegneria, Politecnico
di Milano, Italy, {alberto.leva, federico.terraneo,
william.fornaciari}@polimi.it

As per the current technology, high-precision wireless
synchronisation requires each node to (i) measure its clock
error with respect to the designated reference, and (ii) correct
its rate to keep the error low without requiring too frequent
synchronisation actions: (i) requires to take into account non-
idealities of the radio communication channel, while (ii)
deals with non-idealities of the local node timebase.

For (i) feedback control solutions were proposed, but in
general using established schemes instead of a tailor-made
one. Examples include FBS [3] and FLOPSYNC [12], based
on PI control, SCTS [17], that uses a PLL, RBS [6] and
FTSP [16] that exploit linear regression to estimate the rate
error — a problem on which several works set the focus [23],
[2], [17]. Concerning time-dissemination, available solutions
rely on either pairwise synchronisation or flooding. TPSN [8]
is the most famous example the first class, nut needs a
spanning tree of the network and entails a substantial trans-
mission overhead. The second class, where FTSP [16] is the
precursor and Glossy [7] the most famous scheme, strongly
mitigate transmission ans thus energy overhead, but has the
disadvantage that nodes do not know how the network is
composed and thus – contrary to the first class, see e.g.
TATS [15] – cannot compensate for propagation delays.

Our research, at present focusing on the so called “asym-
metric master-slave” synchronisation problem (See Sec-
tion II) but in principle more general, aims to provide an
efficient solution to the issues just evidenced. In particular,
in this paper we combine a rate correction [20] and a radio
delay compensation scheme [19], coming to devise a way for
nodes to maintain aboard them a virtual clock available to
the running applications. Also, we investigate the effects of
a non-ideal reference (master) clock, presenting a theoretical
model that we assess via suitably designed experiments.

II. PROBLEM AND MODEL

The asymmetric master-slave synchronisation problem is
formulated as follows. One node is the (time) master, all
the others are slaves. The master clock is the reference to
which slaves must synchronise. Some slaves are in the master
radio range (we name this set hop 1) and can receive direct
communications from it. Other slaves can only hear from
the master thanks to others that rebroadcast the necessary
communications: depending on how many rebroadcasts are
needed to reach it, such a slave will belong to hop 2, 3, and
so on. Each slave takes action when the master initiates a
network-wide synchronisation (sync) event. There is no slave
to master communication, whence the name “asymmetric”.

2023 31st Mediterranean Conference on Control and Automation (MED)
June 26 - 29, 2023. Limassol, Cyprus

979-8-3503-1543-1/23/$31.00 ©2023 IEEE 974

20
23

 3
1s

t M
ed

ite
rr

an
ea

n 
C

on
fe

re
nc

e 
on

 C
on

tro
l a

nd
 A

ut
om

at
io

n 
(M

ED
) |

 9
79

-8
-3

50
3-

15
43

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
M

ED
59

99
4.

20
23

.1
01

85
67

6

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 



To obtain the model we need for control, let tm and ts
be the master and slave time, and t indicate the “universal”
or “exact” time (in fact unknown to any node, as no clock
is perfect). Clocks are based on crystal oscillators built
to resonate at a nominal frequency fo at temperature To.
However at To the frequency will in fact be fo +δ fo, where
δ fo is a production tolerance. Also, physiological ageing
makes frequency change very slowly, typically by just a few
parts per million per year [1]; we call this variation δ fa(t).
Third, as frequency depends on temperature, we add a term
δ fθ (t), of time scale – given the size of typical devices –
from tens to hundreds of seconds hence comparable to that
of clock synchronisation. Finally, oscillators are subject to a
short-term jitter term δ f j(t), owing to electronic noise and
component non-linearity. We thus have

δ f (t) := δ fo +δ fa(t)+δ fθ (t)+δ f j(t), (1)

whence the ts 7→ tm relationship

ts(tm) =
∫ tm

0

f (τ)
fo

dτ =
∫ tm

0

fo +δ f (τ)

fo
dτ. (2)

According to the Network Time Protocol (NTP) notation,
the error and error rate of ts with respect to its reference tm
are respectively called offset and skew, and are defined as

o(tm) := tm − ts(tm), s(tm) :=
do(tm)

dtm
, (3)

which recalling (2) to express offset and skew as functions
of tm gives

ts(tm) =
∫ tm

0

(
1− s(τ)

)
dτ. (4)

For synchronisation we are interested in the value of
the offset at the periodic sync events. Letting the index
k = 0,1, . . . count those events, we can define the sampled
master and slave times, and the sampled offset, as

tm(k) := kT, ts(k) := ts(kT ), o(k) := o(kT ), (5)

and the period-cumulated skew as

sT (k) :=
∫ (k+1)T

kT
s(τ)dτ. (6)

Given this, we have

o(k) = tm(k)− ts(k) = kT −
∫ kT

0
(1− s(τ))dτ =

∫ kT

0
s(τ)dτ

=
k−1

∑
ℓ=0

∫ (ℓ+1)T

ℓT
s(τ)dτ =

k−1

∑
ℓ=0

sT (ℓ),

(7)
and as a consequence of the introduced abstractions, the very
simple model

o(k) = o(k−1)+ sT (k−1). (8)

where the set point for o(k) is clearly zero and the goal of
the feedback control to design is to reject the disturbance
sT (k) as effectively as possible.

III. FEEDBACK CONTROL ABOARD EACH SLAVE

We now describe the feedback loop that runs aboard each
slave, organising the section into sensing synchronisation
the error, rejecting the cumulated skew disturbance, and
compensating for radio propagation delays.

A. Sensing the synchronisation error

The master sends out sync packets at a period T known
network-wide (in this paper we do not discuss the network
formation phase) and containing only a hop counter h, that
the master sets to zero. Each slave timestamps the received
packet in its own clock, and retransmits it after a small
delay τr with h incremented by one. As τr is practically
constant thanks to transceiver-level hardware support for
timestamping and rebroadcast, all the nodes in the same
hop will transmit simultaneously. This allows to exploit the
constructive interference effect discussed in [7] as the basis
of the Glossy flooding scheme, for disseminating the sync
event through the network hops.

A peculiarity of our proposal is that the sync packet does
not contain a timestamp of the master clock, because the τr-
based flooding scheme is so deterministic that the time when
the packet is sent is a reliable enough timing information.
The only additional datum to compensate a slave clock
is an initial offset, obtained from the master at network
formation/join time via a request/response protocol.

Suppose now that a slave receives a sync packet sent at
the master time kT with hop count h. The master time at the
said packet arrival is

ta
m(k) = kT +hτr + τp + j f (k), (9)

where τp is the total radio propagation time, and j f (k) the
timing jitter introduced by the flooding scheme. Recalling (3)
and (5), the slave time at the same arrival is conversely

ta
s (k) = ta

m(k)−o(k) = kT +hτr + τp + j f (k)−o(k), (10)

where “a” denotes that this is the actual value, as opposite
to the expected one te

s (k) that the slave can compute as

te
s (k) = kT +hτr. (11)

thus measuring its synchronisation error as

eµ(k) = te
s (k)− ta

s (k), (12)

whence the sought model for a slave node clock completed
with error measurement is{

o(k) = o(k−1)+ sT (k−1)
eµ(k) = o(k)− τp − j f (k)

(13)

B. Rejecting the cumulated skew disturbance

Assume that the slave clock is running uncorrected, while
feedback control acts by altering the expected arrival time
for the (k + 1)-th sync packet by a quantity u(k). Clearly,
if the said feedback steers the steady-state error to zero
in the presence of constant skew, then T + u in the slave
time matches T in the master time, so that, by rejecting the
disturbance, the skew (which will serve for the virtual clock

975

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 



in Section III-F) is quantified as well. The above amounts to
computing a corrected expected arrival time tec

s as

tec
s (k) = tec

s (k−1)+T +u(k−1), tec
s (0) = hτr, (14)

and yields the corrected measured error

ec
µ(k) := tec

s (k)− ta
s (k)

= kT +hτr +
k−1

∑
ℓ=0

u(ℓ)−
(
kT +hτr + τp + j f (k)−o(k)

)
= o(k)− τp − j f (k)+

k−1

∑
ℓ=0

u(ℓ).

(15)
Based on (15) and (7) we can thus write

ec
µ(k) =

k−1

∑
ℓ=0

(sT (ℓ)+u(ℓ))− τp − j f (k). (16)

finally obtain the model of the controlled system with sensing
and actuation as{

εc
µ(k) = εc

µ(k−1)+ sT (k−1)+u(k−1)
em(k) = εc

µ(k)− τp − j f (k)
(17)

The model is very simple and contains no uncertainty, as
this is confined in the way sT is generated, as well as in the
value of τp and j f (k). As such, the design of a feedback
controller is quite straightforward. A possible control law
comes from endowing the loop with a double integrator,
since as discussed in [20] thermal stress results in ramp-like
disturbances over the time scale of interest. This gives

u(k) = 2u(k−1)−u(k−2)+3(1−α)em(k)
−3(1−α2)em(k−1)+(1−α3)em(k−2),

(18)
where parameter α ∈ [0,1) is used to trade error convergence
speed (α → 0) versus insensitivity to fast jitter (α → 1). Since
the law (18) is not the contribution of this paper, we do not
discuss it further and refer the reader to [20] for details.

C. Compensating for radio propagation delays

As our contribution is geared to industrial – and particu-
larly, process and manufacturing – applications, we assume
that nodes do not move (at least, not frequently with respect
to the time scale of network formation). This allows us to
define a flooding graph of the network based on the idea of
“hop” as introduced above. Assuming also that radio ranges
are symmetric – i.e., if node A hears B then B hears A – the
result will be like the example in Figure 1.

For the purpose of this section, each node has to estimate
the radio propagation delay τp from the master node to
it. With flooding-based synchronisation, however, there is a
problem. Nodes in a hop can receive packets from multiple
nodes belonging to the previous one, as is the case for nodes
4 and 5 in Figure 1. Hence in general the flooding graph is
not a tree, and each node has no knowledge of the structure
of that graph. This prevents the use of techniques based on
round-trip delay measurements, because these would require
to have one predecessor node in the previous hop, not a
predecessor set as in our setting (e.g., nodes 1 and 2 are the

Hop 0

M

Hop 1

1 2

3

Hop 2

4 5

6

7

8

9

Fig. 1. Flooding graph example with node radio ranges: arrows indicate
the flooding direction.

predecessor set for node 5 in Figure 1). We thus have to split
the problem in two, as explained below.

D. Last-hop delay

We first address how a node i can measure the propagation
delay from its predecessor set Pi. To this end, we exploit a
side effect of the constructive interference idea: A node p in
the previous hop with respect to i is either at a comparable
distance with the closest ones, hence can interfere construc-
tively with them, or not be at a comparable distance, and
in this case its transmission will be shadowed by capture
effects. But if a node is at a comparable distance with the
closest ones, also its cumulative propagation delay from the
master δM→p will be comparable with theirs. For example, in
Figure 1, δM→1 and δM→2 are comparable, while δM→3 could
not be, but its transmissions are not heard by node 4. This
allows us to define the predecessor set P of node i as “the
set of the closest nodes in the previous hop that are received
with a comparable power (in Figure 1, P4 = {1,2}).

Once Pi is defined, node i can measure the last-hop
propagation delay by replicating in a round-trip measurement
the concurrent transmission conditions that occur during
flooding. Referring again to Figure 1, node 4 can initiate the
measurement by sending out a packet with its hop number
minus one (i.e., 1). Under our assumptions, this packet can
only be received by nodes belonging to the previous, same
and subsequent hop. These check that the content matches
their hop number, ignoring the packet if not. In the match
case, they wait for a fixed time τw and then reply with another
packet. In our example, the packet sent by node 4 is received
by 1, 2, 3, 5 and 7; 5 and 7 ignore it, while after τw 1, 2 and 3
reply, but the response from 3 is shadowed by distance. Node
4 can thus measure the time difference between its packet
transmission and the concurrently received responses from 1
and 2, and knowing τw, it can estimate the propagation delay
from its predecessor set.

E. Cumulated delay

Once a node knows its last-hop delay, it needs an estimate
of the sum of all such delays for the hops that separate it from

976

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 



the master. We address the problem recursively, querying
nodes in the previous hop for their cumulated delay from
the master. However we have another problem. Since all
transmissions are broadcast, we are in fact querying for
its delay a predecessore set. Nodes in that set could have
similar but not identical measurements of their delay from
the master. As such, when queried, they would respond with
numbers that are reasonably close but not equal.

In the absence of topology information – otherwise a node
could query another specific one instead of broadcasting the
query to a predecessor set – we found a solution that makes
the radio channel itself fuse the received information. We do
this with ad hoc encoding that we call bar encoding, yielding
in intelligible packets even when some contained symbols
interfere destructively. To explain, assume to have an 8-bytes
packet payload, and that we encode a number between 0
and 16 as the number of consecutive 0xF (i.e., half-byte or
nibble) blocks starting from the packet beginning, leaving
the remaining blocks at 0x0. When sending two different
numbers, for example 6 and 8, the two packets

ffffff0000000000
ffffffff00000000

would be transmitted, and the generic received packet will
look like

ffffffXX00000000,

where X is an unpredictable value due to the interference
on the channel. The receiver can then detect that the values
form the predecessor set lie in the 6–8 range, and take for
example the average. We omit implementation details for
space limitations.

Putting it all together and indicating with ec
m the measured

synchronisation error corrected with delay compensation, we
can therefore contribute the anticipated complete model of
the closed-loop system as

u(k) = 2u(k−1)−u(k−2)+3(1−α)ec
m(k)

−3(1−α2)ec
m(k−1)+(1−α3)ec

m(k−2)
εc

µ(k) = εc
µ(k−1)+ sT (k−1)+u(k−1)

em(k) = εc
µ(k)− τp − j f (k)

ec
m(k) = em(k)+ τ̂p

= εc
µ(k)− τp + τ̂p − j f (k)

(19)

F. Virtual clock

To provide applications with timing information, we use
a virtual clock approach. An algorithm is applied to the
uncorrected hardware clock every time ts needs converting
into an estimate of tm. At each sync event, the slave controller
computes a new u(k), which the virtual clock uses to
compute the skew estimate for the period beginning at kT as

ŝ(k) =−u(k)/T. (20)

and the required master time estimate t̂m(ts) is

t̂m(ts) = kT − τ̂p +
1

1− ŝ(k)
[ts − te

s (k)] , (21)

where kT is the last sync event time and te
s (k) the slave time

when the last sync packet was expected.

IV. ACCOUNTING FOR MASTER CLOCK NON-IDEALITIES

As our second contribution, we now discuss what happens
if the master clock does not match to the universal time t. In
this case we have to admit that a sync event is triggered when
the difference ∆cm(k) between the master clock counter – cm
to name it – and the same counter at the last event reaches
foT , where fo is the nominal clock frequency. It is sensible
to assume that T is an integer multiple of 1/ fo, as cm is an
integer and any interval can only be appreciated as a multiple
of the clock period. Hence the transmission condition can be
written with the = (not ≥) sign, reading

∆cm(k) = foT, (22)

whence ∫ (k−1)T+∆tm(k)

(k−1)T

(
fo +δ f m(τ)

)
dτ = foT. (23)

where δ f m(t) is the time-varying master clock frequency
error. In (23) the unknown is ∆tm(k), i.e., the actual interval
(in the universal time t) between two sync events (we
assuming fo to be the same for all clocks, as not doing so
would just uselessly complicate the computations).

Denoting by δ f m(k) the average error within the k-th
integration interval in (23), we have(

fo +δ f m(k)
)

∆tm(k) = foT (24)

which yields an estimate of ∆tm(k) as

∆tm(k) =
foT

fo +δ f m(k)
. (25)

Considering now a slave clock counter cs(k) of a slave, its
variation ∆cs(k) over one actual synchronisation period is

∆cs(k) = cs(k)− cs(k−1) =
(

fo +δ f s(k)
)

∆tm(k) (26)

where δ f s(k) is the average slave frequency error over one
period. Substituting (25) into (26), then, we get

∆cs(k) =
fo +δ f s(k)

fo +δ f m(k)
foT. (27)

As for the slave synchronisation error, we notice that cs(k)
is the clock at to the actual arrival of the k-th sync packet.
Since the expected time for the same packet in slave clock
ticks is cs(k− 1)+ foT + fou(k− 1), the uncorrected error
(expected minus actual in the absence of control) – in the
presence of master non-ideality, expressed in slave clock
ticks, is

eticks(k)= cs(k−1)+ foT −cs(k−1)−∆cs(k)= foT −∆cs(k),
(28)

from which we have

eticks(k) =

(
1−

fo +δ f s(k)

fo +δ f m(k)

)
foT. (29)

977

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 



Finally, if both the master and the slave frequency error
vanish, for the error in slave ticks and in time we respectively
have

δ f m → 0 ⇒ eticks(k)→−δ f s(k)T, e(k)→−
δ f s(k)

fo
T,

δ f s → 0 ⇒ eticks(k)→
foδ f m(k)

fo +δ f m(k)
T ≈ δ f m(k)T,

e(k)→
δ f m(k)

fo
T

(30)
We can now draw some interesting conclusions. First, if

the master clock is exact, the only errors are introduced
by the slaves (which is obvious, but now emerges from
equations) and increases with the sync period T . In the
opposite case, fast flooding effectively prevents the master
clock error from increasing while sync packets traverse
the network hops. A first consequence of the above is the
necessity of fast flooding. A second one is that, if all the
slave clocks ave similar precision, any node can be the master
— or elected as a new master if the previous one ceases to
operate. The same would not hold true if clock precisions
are different: in that case, the contributed model explicitly
shows that only “precise enough” nodes would qualify.

V. EXPERIMENTAL RESULTS

Referring the reader to our previous papers for the op-
eration of the FLOPSYNC synchronisation scheme – that
is impossible to explain herein – as for cumulated skew
rejection and delay compensation, we now present two exper-
iments aimed at investigating the effects of a non ideal master
clock, so as to verify the modelling hypotheses of Section IV
and assess (i) the combination of the above components,
(ii) their correct operation also in the presence of a non
ideal master clock, and (iii) that the said “correctness” is
adequately explained by the proposed model.

We operate in an indoor laboratory, in the presence of the
usual radio traffic — hence we claim no complete coverage
of the possible environment conditions, but at the same
time that the addressed situation is not idealised at all. The
experimental setup is made of three WandStem nodes [18]
hereafter referred to as “master”, “hop 1” and “hop 2”; a
rubidium clock plays the role of the source for the universal
time t, and the nodes synchronisation errors with respect
to that time are measured by instructing all the nodes to
periodically timestamp the rubidium source in their local
clock. It is important to remark that the rubidium clock
is a completely exogenous timebase, i.e., the master is not
synchronised to it. We carried out the experiments in an
indoor setting for convenience, but we did not take any action
to isolate the setup from the disturbance conditions found in a
laboratory — a situation that we deem a decent representative
of the typical use of wireless control devices.

A. Experiment 1

In the first experimental test, the master node is subjected
to thermal stress by means of an external heater. The ex-

pected result is that both the hop 1 and the hop 2 node exhibit
a transient synchronisation error, that is eventually recovered
by the feedback inherent to the FLOPSYNC scheme, and that
since neither of those two nodes is heated, the errors have
more or less the same aspect.

0 200 400 600 800
−1

0

1

time [s]

[m
s]

Master

0 200 400 600 800
−1

0

1

time [s]

[m
s]

Errors of corrected clocks with respect to the universal time
Hop 1

0 200 400 600 800
−1

0

1

time [s]

[m
s]

Hop 2

0 100 200 300 400 500 600 700 800 900
−1

0

1

2 Errors of hop 1 and 2 with respect to master

time [s]

[µ
s]

Hop1
Hop2

0 100 200 300 400 500 600 700 800 900

25
30
35
40 Temperature of master node

time [s]

[◦
C
]

Fig. 2. Effect of thermal stress applied to the master node.

The above expectations are confirmed by the experiment
outcome, reported in in Figure 2. The top row of plots
contains the synchronisation errors of the three node clocks
with respect to the universal time: the skew of the master
node apparently changes owing to the applied thermal stress,
and since the other nodes stay synchronised with the master,
the said change is visible on their clocks as well. The centre
plot shows the errors of hop 1 and 2 with respect to the
master, that – as expected – are similar (note that the time
scale, differently from the first row, is in µs). The bottom
plot, for completeness, reports the temperature transient of
the heated master node.

B. Experiment 2

The second experiment is similar to the first one, but
the node subjected to thermal stress is the one at hop 1
instead of the master. The expected outcome is that hop 1
exhibits a transient sync error, also this time recovered by the
feedback inherent to FLOPSYNC, but since this error does
not prevent the flooding-based synchronisation to operate,
hop 2 is practically not affected.

Figure 3, organised in the same way as Figure 2, shows
the results. This time the master exhibits a quasi-constant
skew with respect to the universal time, as its temperature
does not vary; as a result, at the ms scale of the top row
of plots, the synchronised nodes show the same behaviour.
The µs scale of the centre plot, however, shows that – as
expected – the heated node at hop 1 exhibits a well visible
error, while the node at hop 2 is in fact not affected. Here too,
for completeness, the bottom row reports the temperature of
the heated node at hop 1.

Based on the shown experiments, plus several analogous
others not reported here for brevity, we can conclude that the
proposed modelling hypotheses are confirmed in practice.

978

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 



0 500 1000
0

2

4

time [s]

[m
s]

Master

0 500 1000
0

2

4

time [s]

[m
s]

Errors of corrected clocks with respect to the universal time
Hop 1

0 500 1000
0

2

4

time [s]

[m
s]

Hop 2

0 200 400 600 800 1000 1200 1400
−4

−2

0

2

Errors of hop 1 and 2 with respect to master

time [s]

[µ
s]

Hop1
Hop2

0 200 400 600 800 1000 1200 1400
20
30
40
50 Temperature of node at hop 1

time [s]

[◦
C
]

Fig. 3. Effect of thermal stress applied to the node at hop 1.

VI. CONCLUSIONS AND FUTURE WORK

We presented a complete and strictly control-theoretical
solution to clock synchronisation in multi-hop mesh wireless
networks, combining previous partial results, and doing so
we provided a comprehensive model suitable for feedback
control design, and capable of formally accounting for non-
idealities in the reference time base.

We believe that such results can pave the way toward
embedding control-based high-precision timing primitives as
integral parts of new-generation wireless control network
stacks — a matter that is hard to address by just resorting
to standard protocols, as the required accuracies call for a
coordinated design and management of all the layers of the
said stack. The only drawback – or price to pay – is a slightly
increased computational complexity, well tolerable however
by modern hardware.

Future research will be directed at a more comprehensive
experimental campaign and more in general at pursuing the
objective just stated, as well as continuing the development
of the WandStem-based implementation of our ideas, both
as a demonstration and as an open test platform available to
the scientific and engineering community.

REFERENCES

[1] Plastic Tuning Fork Crystals [Online]. http://www.
cardinalxtal.com/uploads/files/cpfb.pdf.

[2] M. Buevich, N. Rajagopal, and A. Rowe. Hardware assisted clock
synchronization for real-time sensor networks. In Proc. 34th IEEE
Real-Time Systems Symposium, pages 268–277, Vancouver, British
Columbia, Canada, 2013.

[3] J. Chen, Q. Yu, Y. Zhang, H. Chen, and Y. Sun. Feedback-based
clock synchronization in wireless sensor networks: A control theoretic
approach. IEEE Transactions on Vehicular Technology, 59(6):2963–
2973, 2010.

[4] Y. Cheng, D. Yang, H. Zhou, and H. Wang. Adopting IEEE 802.11
MAC for industrial delay-sensitive wireless control and monitoring
applications: A survey. Computer Networks, 157:41–67, 2019.

[5] P.A.M. Devan, F.A. Hussin, R. Ibrahim, K. Bingi, and F.A. Khanday.
A survey on the application of WirelessHART for industrial process
monitoring and control. Sensors, 21(15):4951, 2021.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained network time syn-
chronization using reference broadcasts. SIGOPS Operating Systems
Reviews, 36(SI):147–163, 2002.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with Glossy. In Proc.
10th ACM/IEEE International Conference on Information Processing
in Sensor Networks, pages 73–84, Chicago, IL, USA, 2011.

[8] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync protocol
for sensor networks. In Proc. 1st International Conference on
Embedded Networked Sensor Systems, pages 138–149, Los Angeles,
CA, USA, 2003.

[9] S.M. Hassan, R. Ibrahim, N. Saad, V.S. Asirvadam, and T.D. Chung.
Predictive PI controller for wireless control system with variable
network delay and disturbance. In Proc. 2nd IEEE International
Symposium on Robotics and Manufacturing Automation, pages 1–6,
Ipoh, Malaysia, 2016.

[10] D. Kim, Y. Won, S. Kim, Y. Eun, K.J. Park, and K.H. Johansson.
Sampling rate optimization for IEEE 802.11 wireless control systems.
In Proc. 10th ACM/IEEE International Conference on Cyber-Physical
Systems, pages 87–96, Montreal, Quebec, Canada, 2019.

[11] L. Lanlan, W. Xianjv, C. Wenyan, and C.Z. Liew. Extensive survey
on networked wireless control. In Advances in Intelligent Systems
and Interactive Applications: Proc. 2nd International Conference on
Intelligent and Interactive Systems and Applications, pages 634–639,
Beijing, P.R. China, 2018.

[12] A. Leva and F. Terraneo. Low power synchronisation in wireless
sensor networks via simple feedback controllers: The FLOPSYNC
scheme. In Proc. 2013 American Control Conference, pages 5017–
5022, Washington, DC, USA, 2013.

[13] A. Leva, F. Terraneo, and S. Seva. A multitransmission event-based
architecture for energy-efficient autotuning wireless controls. IEEE
Transactions on Control Systems Technology, 30(4):1510–1524, 2021.

[14] W. Liang, M. Zheng, J. Zhang, H. Shi, H. Yu, Y. Yang, S. Liu,
W. Yang, and W. Zhao. WIA-FA and its applications to digital factory:
A wireless network solution for factory automation. Proceedings of
the IEEE, 107(6):1053–1073, 2019.

[15] R. Lim, B. Maag, and L. Thiele. Time-of-flight aware time synchro-
nization for wireless embedded systems. In Proc. 2016 International
Conference on Embedded Wireless Systems and Networks, pages 149–
158, Graz, Austria, 2016.

[16] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The Flooding Time
Synchronization Protocol. In Proc. 2nd international conference on
Embedded networked sensor systems, pages 39–49, New York, NY,
USA, 2004.

[17] F. Ren, C. Lin, and F. Liu. Self-correcting time synchronization
using reference broadcast in wireless sensor network. IEEE Wireless
Communications, 15(4):79–85, 2008.

[18] F. Terraneo, A. Leva, and W. Fornaciari. A high-performance, energy-
efficient node for a wide range of WSN applications. In Proc.
2016 International Conference on Embedded Wireless Systems and
Networks, pages 241–242, Graz, Austria, 2016.

[19] F. Terraneo, A. Leva, S. Seva, M. Maggio, and A.V. Papadopoulos.
Reverse flooding: Exploiting radio interference for efficient propaga-
tion delay compensation in WSN clock synchronization. In Proc.
IEEE Real-Time Systems Symposium, pages 175–184, San Antonio,
TX, USA, 2015.

[20] F. Terraneo, L. Rinaldi, M. Maggio, A.V. Papadopoulos, and A. Leva.
FLOPSYNC-2: Efficient monotonic clock synchronisation. In Proc.
35th IEEE Real-Time Systems Symposium, pages 11–20, Rome, Italy,
2014.

[21] S. Thube and P. Syal. Dynamic PIDPlus controller for wireless closed
loop control of lag and dead time dominant slower processes. In
Proc. 2021 International Symposium of Asian Control Association on
Intelligent Robotics and Industrial Automation, pages 215–221, Goa,
India, 2021.

[22] C.D. Tran, R. Ibrahim, V.S. Asirvadam, N. Saad, and H.S. Miya. In-
ternal model control for industrial wireless plant using WirelessHART
hardware-in-the-loop simulator. ISA transactions, 75:236–246, 2018.

[23] S. Yoon, C. Veerarittiphan, and M.L. Sichitiu. Tiny-sync: Tight time
synchronization for wireless sensor networks. ACM Transactions on
Sensor Networks, 3(2):8–40, 2007.

979

Authorized licensed use limited to: Politecnico di Milano. Downloaded on December 03,2023 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply. 


