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1. INTRODUCTION

Neural networks (NNs), and especially recurrent neural
networks (RNNs) (Bonassi et al., 2022), have gained in-
terest, in the last years, for control applications. In fact,
they can be efficiently used, not only to identify unknown
systems, but also to design feedback controllers from data.

Data-based methods addressing the control design without
previosly identifying the plant model are denoted as direct,
e.g., virtual reference feedback tuning (VRFT) (Campi
and Savaresi, 2006), iterative learning (Gunnarsson et al.,
1999), or model-free techniques (Tange et al., 2019).
The use of VRFT to tune controllers in the form of NNs
has been marginally investigated, e.g., in (Esparza et al.,
2011; Yan et al., 2016; Radac and Precup, 2018). However,
these works do not focus on specific properties of NNs,
e.g., their stability. In (D’Amico et al., 2022a), VRFT is
used for the design of regulators with echo state network
(ESN) and long short-term memory (LSTM) structures,
devoting specific attention to the stability of the RNN-
based controller and to the possibility of enforcing input
constraints. Nevertheless, the investigation of the closed-
loop stability properties was left to future work.

Despite the increasing popularity and the large poten-
tialities of RNNs in control, few works have been ded-
icated to their theoretical properties. For example, suf-
ficient conditions ensuring stability-related properties for
RNNs are presented in (Miller and Hardt, 2019; Stipanović
et al., 2021; Hu and Wang, 2002; Bonassi et al., 2021b,a).
The latter works focus on open-loop RNNs, and they do
not address the design of stabilizing RNN-based feedback
controllers. A fundamental property in this framework,
being RNNs nonlinear systems, is incremental input-to-
state stability (δISS), (Angeli (2002); Tran et al. (2016)).

A δISS condition for a class of discrete-time RNNs is
derived in (D’Amico et al., 2022b). This condition is also
suited for guaranteeing stability to control systems where
the system and the feedback controller are RNNs. Regard-
ing control systems, in (Yin et al., 2021) the stability is

analysed in case of feedforward NN (FFNN) controllers
and assuming a linear controlled system. Design conditions
for FFNN controllers are also provided in (Vance and
Jagannathan, 2008) considering specific classes of second-
order nonlinear systems under control. Also model pre-
dictive control has been investigated as a method for the
design of controllers applicable to RNNs, e.g., (Seel et al.,
2021; Bugliari Armenio et al., 2019; Terzi et al., 2021).

In this paper we combine the VRFT approach and the
conditions derived in (D’Amico et al., 2022b) to confer
performances but, at the same time, stability properties to
the control system. We will show that this can be achieved,
for specific controller classes (e.g., ESNs) through the
solution to a computationally lightweight linear matrix
inequality (LMI) problem. Note that the proposed ap-
proach combines the advantages of a direct approach (i.e.,
VRFT) with stability constraints requiring the system
model (obtained in a data-based fashion), as typically done
in indirect approaches. In our opinion, the advantage of
using VRFT despite the knowledge of a system model is
that VRFT provides a very general framework for a com-
putationally lightweight performance-oriented controller
design, while analytic approaches are not available for
general classes of nonlinear systems.

2. NOTATION AND PRELIMINARIES

The ij-th entry of a matrix A is denoted as aij . The i-th
entry of a vector v is indicated as vi. Given a symmetric
matrix P , we use P ⪰ 0, P ≻ 0, P ⪯ 0, and P ≺ 0 to
indicate that it is positive semidefinite, positive definite,
negative semidefinite, and negative definite, respectively.
Given a sequence of square matrices A1, A2, . . . , An, D =
diag(A1, A2, . . . , An) is a block diagonal matrix having
A1, A2, . . . , An as main-diagonal blocks. Moreover, ∥v∥
denotes the 2-norm of a column vector v and ∥v∥Q=√
vTQv denotes the weighted Euclidean norm of v, being

Q ⪰ 0. Also, idn(·) denotes a column vector of dimension
n with all elements equal to the identity function id(·).
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I and 0 denote identity and zero, respectively, matrices,
whose dimensions are clear from the context.
Consider the following discrete-time nonlinear system

x(k + 1) = f(Ax(k) +B u(k)) , (1)

where k ∈ Z≥0 is the discrete-time index, x(k) ∈ Rn is
the state of the system, and u(k) ∈ Rm is the exogenous

variable, f(·) = [f1(·) . . . fn(·)]T ∈ Rn is a vector function
applied element-wise, A ∈ Rn×n, and B ∈ Rn×m.
For the definitions of ∥u∥∞ of a sequence u=u(0), u(1), ...,
KL and K∞ functions, and δISS, we defer the reader to
(D’Amico et al., 2022b), where we show how the latter
property can be enforced to (1) in case f(·) satisfies the
following assumption.

Assumption 1. The functions fi(·) are such that fi(0) = 0,
i = 1, . . . , n, and they are either globally Lipschitz contin-
uous, with Lipschitz constant Lpi, or identity functions.

This class of systems is representative of several RNNs,
e.g., ESNs, shallow neural nonlinear auto-regressive exoge-
nous models (NNARX), or the general RNNs considered
in (Sontag, 1992), as discussed in (D’Amico et al., 2022b).
Under Assumption 1, we can define the set L = {i ∈
{1, . . . , n} | fi(·) ̸= id(·)} , the diagonal matrix
W = diag(Lp1, . . . , Lpn) ∈ Rn×n, where Lpi = 1 for all

i /∈ L, and the matrix Ã = WA. We are in the position to
recall the following result from (D’Amico et al., 2022b).

Theorem 1. (D’Amico et al. (2022b)). Consider system (1)
under Assumption 1. Then, the system is δISS if ∃P =
PT ≻ 0 such that pij = pji = 0 ∀i ∈ L, ∀j ∈ {1, . . . , n}
with j ̸= i, and it holds that ÃTPÃ− P ≺ 0 .

3. PROBLEM STATEMENT

We consider a nonlinear discrete-time system S defined by
the following model class

xS(k + 1) = fS(ASxS(k) +BSuS(k)) , (2a)

yS(k) = CSxS(k) , (2b)

uS(k) ∈ RmS is the exogenous variable, yS(k) ∈ RlS is
the output vector, xS(k) ∈ RnS is the state vector,

fS(·) = [fS,1(·) . . . fS,nS (·)]
T ∈ RnS is a vector function

applied element-wise, AS ∈ RnS×nS , BS ∈ RnS×mS , and
CS ∈ RlS×nS . The model (2) can be obtained through an
identification procedure. We also assume that (2a) is in
the class of systems defined by Assumption 1.

We consider the control scheme depicted in Figure 1. It
includes a closed-loop regulator R, a discrete-time integra-
tor “

∫
” (to ensure zero steady-state error), a feedforward

compensator C (to enhance the dynamic performances),
and a state-observer O, being the states of RNN-based
systems not commonly measurable. To make the problem
solvable with a lightweight LMI optimization one, the
feedback regulator R and the feedforward compensator C
are selected in the class of ESNs, with equations

xℓ(k+1)=ζℓ(Wxℓ
xℓ(k)+Wuℓ

uℓ(k)+Wyℓ
yℓ(k)), (3a)

yℓ(k) = Wout1ℓ
xℓ(k) +Wout2ℓ

uℓ(k) , (3b)

where subscript ℓ ∈ {C,R} is used to refer to the com-
pensator C and the regulator R, respectively. As discussed
in (Bugliari Armenio et al., 2019), the design of R and C
consists of the tuning of the matrices Wout1ℓ

and Wout2ℓ
,

for ℓ ∈ {R, C}, whereas Wxℓ
, Wuℓ

, and Wyℓ
are fixed.

S
∫+

−

e ySv uSr

x̂S

yC

yR +

+

O

R

C

Fig. 1. Control scheme.

In (3), uR(k) =
[
v(k)T x̂S(k)

T
]T

, uC(k) = r(k), the func-
tions ζℓ,i(·) of ζℓ(·) are nonlinear globally Lipschitz con-
tinuous ∀i = 1, . . . , nℓ, WuC ∈ RnC×lS , Wout2C

∈ RmS×lS ,

Wxℓ
∈ Rnℓ×nℓ , Wyℓ

∈ Rnℓ×mS , and Wout1ℓ
∈ RmS×nℓ .

Let us define WuR = [WuRv
WuRx ], and Wout2R

=[
Wout2Rv

Wout2Rx

]
, where WuRv

∈ RnR×lS , WuRx
∈

RnR×nS , Wout2Rv
∈ RmS×lS , and Wout2Rx

∈ RmS×nS .

Also, the discrete-time integrator block “
∫
” has equation

η(k + 1) = η(k) + e(k) , (4a)

v(k) = η(k) + e(k) , (4b)

where e(k) = r(k)− yS(k).
Finally, the block O denotes a state observer defined by

x̂S(k+1)=fS(AS x̂S(k)+BSuS(k)+L(yS(k)−ŷS(k))) ,

ŷS(k) = CS x̂S(k) , (5)

where ŷS(k) ∈ RlS is the predicted output vector, x̂S(k) ∈
RnS is the predicted state vector, and the observer gain
L ∈ RnS×lS is a design parameter.

In this work we propose a novel data-based control design
technique for the design of C, R, and O so as to: i) provide
global asymptotic stability guarantees for the equilibria
of the control system; ii) achieve asymptotic tracking of
constant reference signals r; iii) make the control system
as similar as possible to a reference model M.
To do so, the proposed procedure is the following: based on
the identified system model (2) and on a dataset of input
and output data uS(k), yS(k), for k = 0, . . . , Nd, we design
the observer O, the regulator R, and the feedforward
compensator C by enforcing matrix inequality constraints
for the δISS of O, of the closed-loop system, and of C, while
minimizing a VRFT-based cost function to optimize the
performance of the control system.

4. CONTROL DESIGN

4.1 Observer design

We first deal with the design of a δISS observer O defined
in (5). The observer gain L is designed by solving the
optimization problem specified in the following lemma.

Lemma 1. Let the system (2) satisfy Assumption 1. As-
sume that there exist σ > 0, HO, and PO = PT

O such
that, by defining LS = {i ∈ {1, . . . , nS} | fSi(·) ̸= id(·)} ,
pij = pji = 0 ∀i ∈ LS , ∀j ∈ {1, . . . , nS} with j ̸= i, and
such that the following optimization problem is solved.

min
HO,PO,σ

σ (6a)

subject to[
σPO−ÃT

SPOÃS+CT
SH

T
OÃS+ÃT

SHOCS −CT
SH

T
O

−HOCS PO

]
≻0 ,

(6b)

σ ≤ 1 , (6c)
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I and 0 denote identity and zero, respectively, matrices,
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where k ∈ Z≥0 is the discrete-time index, x(k) ∈ Rn is
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i = 1, . . . , n, and they are either globally Lipschitz contin-
uous, with Lipschitz constant Lpi, or identity functions.
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the output vector, xS(k) ∈ RnS is the state vector,
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T ∈ RnS is a vector function

applied element-wise, AS ∈ RnS×nS , BS ∈ RnS×mS , and
CS ∈ RlS×nS . The model (2) can be obtained through an
identification procedure. We also assume that (2a) is in
the class of systems defined by Assumption 1.

We consider the control scheme depicted in Figure 1. It
includes a closed-loop regulator R, a discrete-time integra-
tor “

∫
” (to ensure zero steady-state error), a feedforward

compensator C (to enhance the dynamic performances),
and a state-observer O, being the states of RNN-based
systems not commonly measurable. To make the problem
solvable with a lightweight LMI optimization one, the
feedback regulator R and the feedforward compensator C
are selected in the class of ESNs, with equations

xℓ(k+1)=ζℓ(Wxℓ
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In (3), uR(k) =
[
v(k)T x̂S(k)

T
]T

, uC(k) = r(k), the func-
tions ζℓ,i(·) of ζℓ(·) are nonlinear globally Lipschitz con-
tinuous ∀i = 1, . . . , nℓ, WuC ∈ RnC×lS , Wout2C

∈ RmS×lS ,

Wxℓ
∈ Rnℓ×nℓ , Wyℓ

∈ Rnℓ×mS , and Wout1ℓ
∈ RmS×nℓ .

Let us define WuR = [WuRv
WuRx ], and Wout2R
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Wout2Rv

Wout2Rx

]
, where WuRv

∈ RnR×lS , WuRx
∈

RnR×nS , Wout2Rv
∈ RmS×lS , and Wout2Rx
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Also, the discrete-time integrator block “
∫
” has equation

η(k + 1) = η(k) + e(k) , (4a)

v(k) = η(k) + e(k) , (4b)

where e(k) = r(k)− yS(k).
Finally, the block O denotes a state observer defined by

x̂S(k+1)=fS(AS x̂S(k)+BSuS(k)+L(yS(k)−ŷS(k))) ,

ŷS(k) = CS x̂S(k) , (5)

where ŷS(k) ∈ RlS is the predicted output vector, x̂S(k) ∈
RnS is the predicted state vector, and the observer gain
L ∈ RnS×lS is a design parameter.

In this work we propose a novel data-based control design
technique for the design of C, R, and O so as to: i) provide
global asymptotic stability guarantees for the equilibria
of the control system; ii) achieve asymptotic tracking of
constant reference signals r; iii) make the control system
as similar as possible to a reference model M.
To do so, the proposed procedure is the following: based on
the identified system model (2) and on a dataset of input
and output data uS(k), yS(k), for k = 0, . . . , Nd, we design
the observer O, the regulator R, and the feedforward
compensator C by enforcing matrix inequality constraints
for the δISS of O, of the closed-loop system, and of C, while
minimizing a VRFT-based cost function to optimize the
performance of the control system.

4. CONTROL DESIGN

4.1 Observer design

We first deal with the design of a δISS observer O defined
in (5). The observer gain L is designed by solving the
optimization problem specified in the following lemma.

Lemma 1. Let the system (2) satisfy Assumption 1. As-
sume that there exist σ > 0, HO, and PO = PT

O such
that, by defining LS = {i ∈ {1, . . . , nS} | fSi(·) ̸= id(·)} ,
pij = pji = 0 ∀i ∈ LS , ∀j ∈ {1, . . . , nS} with j ̸= i, and
such that the following optimization problem is solved.

min
HO,PO,σ

σ (6a)

subject to[
σPO−ÃT

SPOÃS+CT
SH

T
OÃS+ÃT

SHOCS −CT
SH

T
O

−HOCS PO

]
≻0 ,

(6b)

σ ≤ 1 , (6c)

where AS = WSAS , and WS = diag(LpS1, . . . , LpSnS ),

LpSi > 0 ∀i. Then, by setting L = W−1
S P−1

O HO,

∥ê(k + 1)∥2PO
< σ∥ê(k)∥2PO

→ 0 (7)

as k → ∞, where ê(k) = xS(k)− x̂S(k).

Proof. By following the same steps in (D’Amico et al.,
2022b, Proposition 12), from (6b) we can show that
ATPO A−PO+(1−σ)PO ≺ 0, where A = WS(AS−LCS).

From (6c), it follows that ATPO A−PO ≺ 0. Hence, the ob-
server dynamics (5) fulfills the assumptions of Theorem 1
and is δISS. For notational compactness we denote with
x̂S(k, x̂S(0),uS ,yS) the evolution of the observer state
when the initial condition is x̂S(0) and when it is fed
by the input and output sequences uS and yS , respec-
tively. Note that xS(k) is a possible observer motion,
i.e., x̂S(k, xS(0),uS ,yS) = xS(k) for all k. In view of
the δISS of the observer, there exists β ∈ KL such that
∥xS(k) − x̂S(k, x̂S(0),uS ,yS)∥= ∥ê(k)∥ ≤ β(∥xS(0) −
x̂S(0)∥, k) → 0 as k → +∞. In particular, using a sim-
ilar line of reasoning as in the proof of (D’Amico et al.,
2022b, Theorem 2), it can be shown that ∥ê(k)∥2PO

is
the δISS Lyapunov function of (5), and that, from (6b),
∥ê(k + 1)∥2PO

≤ ∥ê(k)∥2ATPO A< σ∥ê(k)∥2PO
. □

Note that (6b) is not an LMI since both σ and PO are
optimization variables. One way to proceed is to remove
σ from the set of free variables and to solve the feasibility
problem (6b), (6c) for σ = 1 first. If the solution exists,
then we can solve (6b), (6c) by reducing the value of σ,
until infeasibility is met, e.g., by bisection.

4.2 Stability guarantees

Here we provide the conditions for the δISS of the control
scheme in Figure 1, obtained by conferring, with two
separated LMIs, δISS to both C and the closed-loop system
obtained discarding C. This follows from the properties
of the cascade of δISS systems, which can be proved by
extending to discrete-time systems (Angeli, 2002, Propo-
sition 4.7), provided for continuous-time systems.

Stability of the closed-loop system. Consider the feed-
back control system in Figure 1, where C is discarded, con-
sidering yC(k) as an independent exogenous variable. Note
that x̂S(k) = xS(k)− ê(k) and that, in view of Lemma 1,
we can account for ê(k) as an asymptotically vanishing per-
turbation. By jointly considering (2)-(4) and by recalling
that uS(k) = yR(k)+yC(k) and e(k) = r(k)−yS(k), we can
write the closed-loop system as in (1), where Assumption 1

is satisfied, and x(k) =

xR(k)T η(k)T xS(k)

T
T

, u(k) =
r(k)T yC(k)

T ê(k)T
T

, f(·) =

ζR(·)T idlS (·)T fS(·)T

T
.

We compute that A = FR +GRKR, being

FR=


WxR WuRv

WuRx
−WuRv

CS
0 I −CS
0 0 AS


, GR=


WyR
0
BS


,

KR =

Wout1R

Wout2Rv
Wout2Rx

−Wout2Rv
CS


=

Wout1R
Wout2R


E, where

E =


I 0 0
0 I −CS
0 0 I


.

Also, let us introduce

B=



WuRv

+WyRWout2Rv
0 −WuRx

−WyRWout2Rx

I 0 0
BSWout2Rv

BS −BSWout2Rx


.

At this point we can apply Theorem 1 to enforce the δISS
of the control scheme, as proved in the following lemma.

Lemma 2. If ∃PR = PT
R ∈ Rñ×ñ block diagonal such that

pij = pji = 0 ∀i ∈ L, ∀j ∈ {1, . . . , ñ} with j ̸= i and
ñ = nS + nR + lS , and ∃HR, QR such that

PR FRQR + GRHR
( FRQR + GRHR)T QR +QT

R − PR


≻ 0 , (8)

where FR = WRFR, WR=diag(LpR1, . . . , LpRnR , I,WS),

and GR = WRGR, then the closed-loop system is δISS by
setting KR = HRQ−1

R . □

Proof. If (8) holds then, as in (De Oliveira et al., 1999,
Theorem 1), and since HR = KRQR,

PR − ( FR + GRKR)PR( FR + GRKR)T ≻ 0 .

In view of the Schur complement, this is equivalent to

P−1
R − ( FR + GRKR)TP−1

R ( FR + GRKR) ≻ 0 . (9)

Note that P−1
R = P−T

R ≻ 0 is block diagonal with the same
structure of PR. From (9) the assumptions of Theorem 1
hold, and the closed-loop control system is δISS. □

Stability of C. Note that (3) is in the class defined by
Assumption 1. For reasons related to the fact that the
tuning gain matrix KC =


Wout1C

Wout2C


has nC + lS

columns, the state of the compensator is extended with a
fictitious variable xC ∈ RlS evolving as xC(k + 1) = 0 1 .
In this way we write the compensator equation (3) as

in (1) where x(k) =

xC(k)

T xC(k)
T
T

, u(k) = r(k),

and f(·) =

ζC(·)T idlS (·)T


satisfies Assumption 1. The

dynamic system matrix is A = FC +GCKC , being

FC=


WxC 0
0 0


, GC=


WyC
0


, B =


WuC +WyCWout2C

0


.

The following lemma can be proved.

Lemma 3. If ∃PC diagonal and ∃HC , QC such that PC FCQC + GCHC
( FCQC + GCHC)

T QC +QT
C − PC


≻ 0 , (10)

where FC = WCFC , GC = WCGC , PC =diag(PC , I), and
WC =diag(LpC1, . . . , LpCnC , I), then the compensator C is

δISS by setting KC = HCQ
−1
C . □

Proof. Using the arguments used in the proof of Lemma 2,
the LMI (10) implies the δISS of the extended system.
This, in turn, implies the δISS of the compensator equa-
tion, since xC(k) = 0 for all k > 0. □

4.3 Tracking of constant signals

In this section we state the main convergence result.

Theorem 2. Assume that there exist σ, HO, PO, HR, PR,
QR, HC , PC , QC such that (6b)-(6c), (8), and (10) are

1 This extension does not take any role in the stability condition,
but allows us to cast the VRFT problem into an LMI one, which
would be otherwise impossible, as shown later in the paper.
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feasible. Set L = W−1
S P−1

O HO, KR = HRQ−1
R , and KC =

HCQ
−1
C . Then, for all initial conditions xC(0), xR(0), η(0),

xS(0), x̂S(0), for any constant reference signal r̄ ∈ RlS , if
we set r(k) = r̄, then yS(k) → r̄ as k → +∞ .

Proof. The proof requires a number of steps.
- In view of the δISS of the compensator C (provided by
Lemma 3) and of (Angeli, 2002, Proposition 4.2) 2 , there
exists a unique equilibrium x̄C obtained with r(k) = r̄ such
that xC(k) → x̄C as k → +∞ for all xC(0). This implies
that yC(k) → ȳC as k → +∞, where ȳC is the output
corresponding to the equilibrium.
- Considering the feedback control system, whose in-

put is u(k) =

r(k)T yC(k)

T ê(k)T
T

, if u(k) = ū =
r̄T ȳTC 0

T
, in view of the δISS (provided by Lemma 2)

and of (Angeli, 2002, Proposition 4.2), then there ex-

ists a unique equilibrium

x̄T
R η̄T x̄T

S
T

. Importantly, in
view of the fact that equation (4a) is also in equilibrium,
e(k) = r̄ − ȳS = 0 for all k, meaning that ȳS = r̄, where
ȳS is the output of S corresponding to the equilibrium.
- Given the δISS of the control system, by denoting

δx(k) =

xR(k)T − x̄T

R, η(k)T − η̄T , xS(k)
T − x̄T

S
T

and

δu(k) =

r(k)T − r̄T , yC(k)

T − ȳTC , ê(k)
T
T

, there exist
β ∈ KL and γ ∈ K∞ such that ∥δx(k)∥≤ β(∥δx(0)∥, k) +
γ(∥δu∥∞), where δu denotes the sequence of δu(k).
- Finally, note that r(k) = r̄ and that yC(k) → ȳC and
ê(k) → 0 as k → +∞, which imply that δu(k) → 0 as
k → +∞; by applying the same arguments used in the
proof of (Jiang and Wang, 2001, Lemma 3.8), there exists
a function γe ∈ K∞ such that

limk→+∞∥δx(k)∥≤ γe(limk→+∞∥δu(k)∥) = 0,

where lim denotes the limit superior (Jiang and Wang,
2001). This concludes the proof. □

4.4 VRFT cost minimization

To confer suitable dynamic performances to the control
system the VRFT approach (Campi and Savaresi, 2006)
is adopted. With reference to Figure 1, the problem ad-
dressed in this section consists of the design of the regula-
tor/compensator gains Wout1ℓ

and Wout2ℓ
, ℓ ∈ {R, C} such

that the system whose input is r(k) and whose output is
yS(k) be as close as possible to the reference one M. To
keep the problem linear, we split the design problem in two
parts: (i) the design of R and (ii) the design of C, which
are discussed in two separated sections.

VRFT-based design of R. In this section, we discard C
and set yC(k) = 0, ∀k. Consider the dataset uS(k), yS(k),
for k = 0, . . . , Nd. To apply VRFT we need to

- compute the virtual reference r∗(k) = M−1yS(k);
- compute the virtual error e∗(k) = r∗(k)− yS(k);
- compute the integrated virtual error according to the
recursive equation v∗(k) = v∗(k − 1) + e∗(k), with initial
condition v∗(0) = 0;
- compute the state estimate x̂S(k) using (5) with initial
condition x̂S(0) = 0.

At this point, we need to identify the regulator model R
2 Proposition 4.2 is stated for continuous-time systems but it can
be readily extended to the discrete-time case due to δISS.

whose input consists of u∗
R(k) =


v∗(k)T x̂S(k)

T
T

and
whose output is known, i.e., yR(k) = uS(k). This, thanks
to the fact that R is an ESN, boils down to a simple LS
problem, where the unknowns are Wout1R

and Wout2R
. To

do so, we compute x∗
R(k) according to (3a), with inputs

u∗
R(k), yR(k) = uS(k), and initial condition x∗

R(0) = 0.
The VRFT problem consists in the minimization of

JVR(Wout1R
,Wout2R

) = (11)

=
1

Nd

Nd−1
k=k0

uS(k)−

Wout1R

Wout2R

 x∗
R(k)

u∗
R(k)


2

where the initial instant k0 is considered to discard the
initial transient. However we cannot, at the same time,
directly minimize JV R and enforce the stability con-
straint (8) since the free variables of (8) are QR, HR, and
PR, and


Wout1R

Wout2R


= KRE−1 = HRQ−1

R E−1.
To find a unifying LMI problem, we need to define

UNd
= [uS(k0) . . . uS(Nd − 1)]

T
,

XNd
=




x∗
R(k0)

T u∗
R(k0)

T

...
...

x∗
R(Nd − 1)T u∗

R(Nd − 1)T




and XNd
= ET (XT

Nd
XNd

)−1XT
Nd

, and we introduce the
following “identifiability” assumption.

Assumption 2. Matrix XT
Nd

XNd
is invertible.

Along the lines of (D’Amico and Farina, 2022, Theorem 1),
it is possible to show that, under Assumption 2, the
following optimization problem

min
HR,ΦR

tr(ΦR) (12a)

subject to


ΦR−∆R HR

HT
R QR


≽0 (12b)

where

∆R = UT
Nd

XT
Nd

QR XNd
UNd

−HR XNd
UNd

− UT
Nd

XT
Nd

HT
R

is equivalent to minimizing (11) if, for any scalar γ > 0,

QR = γE−1XT
Nd

XNd
E−T . (12c)

VRFT-based design of C. The design of C is performed
as a second step, after the regulator R is obtained as
described above. Considering that the input-output data
sequences and R are available, to apply VRFT we need to

- compute y∗R(k) according to (3), with input u∗
R(k), and

initial condition x∗
R(0) = 0;

- compute y∗C(k) = uS(k)− y∗R(k).

At this point, we need to identify the compensator model C
whose input consists of u∗

C(k) = r∗(k) and whose output is
y∗C(k). This, thanks to the fact that C is an ESN, boils down
to a simple LS problem, where the unknowns are Wout1C
and Wout2C

. To do so, we compute x∗
C(k) according to (3a),

with inputs u∗
C(k) = r∗(k), y∗C(k), and initial condition

x∗
C(0) = 0. The VRFT problem consists of minimizing

JC
VR(Wout1C

,Wout2C
) =

=
1

Nd

Nd−1
k=k0

y∗C(k)−

Wout1C

Wout2C

 x∗
C(k)
r∗(k)


2

. (13)

As done in case of the regulator R we cannot, at the
same time, directly minimize JC

V R and enforce the stability
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feasible. Set L = W−1
S P−1

O HO, KR = HRQ−1
R , and KC =

HCQ
−1
C . Then, for all initial conditions xC(0), xR(0), η(0),

xS(0), x̂S(0), for any constant reference signal r̄ ∈ RlS , if
we set r(k) = r̄, then yS(k) → r̄ as k → +∞ .

Proof. The proof requires a number of steps.
- In view of the δISS of the compensator C (provided by
Lemma 3) and of (Angeli, 2002, Proposition 4.2) 2 , there
exists a unique equilibrium x̄C obtained with r(k) = r̄ such
that xC(k) → x̄C as k → +∞ for all xC(0). This implies
that yC(k) → ȳC as k → +∞, where ȳC is the output
corresponding to the equilibrium.
- Considering the feedback control system, whose in-

put is u(k) =

r(k)T yC(k)

T ê(k)T
T

, if u(k) = ū =
r̄T ȳTC 0

T
, in view of the δISS (provided by Lemma 2)

and of (Angeli, 2002, Proposition 4.2), then there ex-

ists a unique equilibrium

x̄T
R η̄T x̄T

S
T

. Importantly, in
view of the fact that equation (4a) is also in equilibrium,
e(k) = r̄ − ȳS = 0 for all k, meaning that ȳS = r̄, where
ȳS is the output of S corresponding to the equilibrium.
- Given the δISS of the control system, by denoting

δx(k) =

xR(k)T − x̄T

R, η(k)T − η̄T , xS(k)
T − x̄T

S
T

and

δu(k) =

r(k)T − r̄T , yC(k)

T − ȳTC , ê(k)
T
T

, there exist
β ∈ KL and γ ∈ K∞ such that ∥δx(k)∥≤ β(∥δx(0)∥, k) +
γ(∥δu∥∞), where δu denotes the sequence of δu(k).
- Finally, note that r(k) = r̄ and that yC(k) → ȳC and
ê(k) → 0 as k → +∞, which imply that δu(k) → 0 as
k → +∞; by applying the same arguments used in the
proof of (Jiang and Wang, 2001, Lemma 3.8), there exists
a function γe ∈ K∞ such that

limk→+∞∥δx(k)∥≤ γe(limk→+∞∥δu(k)∥) = 0,

where lim denotes the limit superior (Jiang and Wang,
2001). This concludes the proof. □

4.4 VRFT cost minimization

To confer suitable dynamic performances to the control
system the VRFT approach (Campi and Savaresi, 2006)
is adopted. With reference to Figure 1, the problem ad-
dressed in this section consists of the design of the regula-
tor/compensator gains Wout1ℓ

and Wout2ℓ
, ℓ ∈ {R, C} such

that the system whose input is r(k) and whose output is
yS(k) be as close as possible to the reference one M. To
keep the problem linear, we split the design problem in two
parts: (i) the design of R and (ii) the design of C, which
are discussed in two separated sections.

VRFT-based design of R. In this section, we discard C
and set yC(k) = 0, ∀k. Consider the dataset uS(k), yS(k),
for k = 0, . . . , Nd. To apply VRFT we need to

- compute the virtual reference r∗(k) = M−1yS(k);
- compute the virtual error e∗(k) = r∗(k)− yS(k);
- compute the integrated virtual error according to the
recursive equation v∗(k) = v∗(k − 1) + e∗(k), with initial
condition v∗(0) = 0;
- compute the state estimate x̂S(k) using (5) with initial
condition x̂S(0) = 0.

At this point, we need to identify the regulator model R
2 Proposition 4.2 is stated for continuous-time systems but it can
be readily extended to the discrete-time case due to δISS.

whose input consists of u∗
R(k) =


v∗(k)T x̂S(k)

T
T

and
whose output is known, i.e., yR(k) = uS(k). This, thanks
to the fact that R is an ESN, boils down to a simple LS
problem, where the unknowns are Wout1R

and Wout2R
. To

do so, we compute x∗
R(k) according to (3a), with inputs

u∗
R(k), yR(k) = uS(k), and initial condition x∗

R(0) = 0.
The VRFT problem consists in the minimization of

JVR(Wout1R
,Wout2R

) = (11)

=
1

Nd

Nd−1
k=k0

uS(k)−

Wout1R

Wout2R

 x∗
R(k)

u∗
R(k)


2

where the initial instant k0 is considered to discard the
initial transient. However we cannot, at the same time,
directly minimize JV R and enforce the stability con-
straint (8) since the free variables of (8) are QR, HR, and
PR, and


Wout1R

Wout2R


= KRE−1 = HRQ−1

R E−1.
To find a unifying LMI problem, we need to define

UNd
= [uS(k0) . . . uS(Nd − 1)]

T
,

XNd
=




x∗
R(k0)

T u∗
R(k0)

T

...
...

x∗
R(Nd − 1)T u∗

R(Nd − 1)T




and XNd
= ET (XT

Nd
XNd

)−1XT
Nd

, and we introduce the
following “identifiability” assumption.

Assumption 2. Matrix XT
Nd

XNd
is invertible.

Along the lines of (D’Amico and Farina, 2022, Theorem 1),
it is possible to show that, under Assumption 2, the
following optimization problem

min
HR,ΦR

tr(ΦR) (12a)

subject to


ΦR−∆R HR

HT
R QR


≽0 (12b)

where

∆R = UT
Nd

XT
Nd

QR XNd
UNd

−HR XNd
UNd

− UT
Nd

XT
Nd

HT
R

is equivalent to minimizing (11) if, for any scalar γ > 0,

QR = γE−1XT
Nd

XNd
E−T . (12c)

VRFT-based design of C. The design of C is performed
as a second step, after the regulator R is obtained as
described above. Considering that the input-output data
sequences and R are available, to apply VRFT we need to

- compute y∗R(k) according to (3), with input u∗
R(k), and

initial condition x∗
R(0) = 0;

- compute y∗C(k) = uS(k)− y∗R(k).

At this point, we need to identify the compensator model C
whose input consists of u∗

C(k) = r∗(k) and whose output is
y∗C(k). This, thanks to the fact that C is an ESN, boils down
to a simple LS problem, where the unknowns are Wout1C
and Wout2C

. To do so, we compute x∗
C(k) according to (3a),

with inputs u∗
C(k) = r∗(k), y∗C(k), and initial condition

x∗
C(0) = 0. The VRFT problem consists of minimizing

JC
VR(Wout1C

,Wout2C
) =

=
1

Nd

Nd−1
k=k0

y∗C(k)−

Wout1C

Wout2C

 x∗
C(k)
r∗(k)


2

. (13)

As done in case of the regulator R we cannot, at the
same time, directly minimize JC

V R and enforce the stability

constraint (10) since the free variables of (10) are QC , HC ,
and PC , and


Wout1C

Wout2C


= KC = HCQ

−1
C .To find a

unifying LMI problem, we apply again the arguments used
in (D’Amico and Farina, 2022). First we define UC

Nd
=

[y∗C(k0) . . . y∗C(Nd − 1)]
T
,

XC
Nd

=




x∗
C(k0)

T r∗(k0)
T

...
...

x∗
C(Nd − 1)T r∗(Nd − 1)T


 ,

and XC
Nd

= ((XC
Nd

)TXC
Nd

)−1(XC
Nd

)T , where the following
is assumed to hold.

Assumption 3. Matrix (XC
Nd

)TXC
Nd

is invertible.

As done for the design of R it is possible to show that,
under Assumption 3, the optimization problem

min
HC,ΦC

tr(ΦC) (14a)

subject to


ΦC−∆C HC

HT
C QC


≽0 (14b)

where ∆C = (UC
Nd

)T ( XC
Nd

)TQC XC
Nd

UC
Nd

− HC XC
Nd

UC
Nd

−
(UC

Nd
)T ( XC

Nd
)THT

C is equivalent to minimizing (13) if, for
any scalar γ > 0,

QC = γ(XC
Nd

)TXC
Nd

, (14c)

4.5 Design procedure

Here we briefly sketch the overall design procedure.

1. Collect an input-output dataset from the plant.
2. Identify a model in the class (2).
3. Design the observer gain L by solving (6).
4. Design R by solving (12) subject also to (8). Note that,
setting QR as in (12c) may result in an infeasible problem.
In this case, (12c) can be relaxed by defining the matrix
QR as an optimization variable and replacing (12c) with

QR − γE−1XT
Nd

XNd
E−T + λRI ≽ 0 (15a)

−QR + γE−1XT
Nd

XNd
E−T + λRI ≽ 0 (15b)

where the scalar λR ≥ 0 has to be minimized together
with tr(ΦR), i.e., making the cost tr(ΦR) + cRλR, where
cR > 0 is a user-defined constant.

5. Design C by solving (14) subject also to (10). As in case
of R, (14c) can be relaxed by defining the matrix QC as a
free optimization variable and replacing (14c) with

QC − γ(XC
Nd

)TXC
Nd

+ λCI ≽ 0 (16a)

−QC + γ(XC
Nd

)TXC
Nd

+ λCI ≽ 0 (16b)

where the scalar λC ≥ 0 has to be minimized together with
tr(ΦC), i.e., making the cost tr(ΦC) + cCλC , where cC > 0
is a user-defined constant.

5. SIMULATION RESULTS

The system to be controlled is a simulated pH neutraliza-
tion process (see Bugliari Armenio et al. (2019) for details).
A noiseless dataset containing Nd = 100000 normalized
input-output data is collected with a sampling time Ts =
25 s from the simulated process. The input data consist
of a multilevel pseudo-random signal (MPRS), whose am-
plitude lies in [12, 16] mL/s. The identified model with
nS = 10 states is
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Fig. 2. Output trajectories. Black dashed line: reference
trajectory; grey line: reference model output trajec-
tory; light blue line: only R is used; yellow line: both
R and C are used.
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Fig. 3. Zoom of the output trajectories. Black dashed line:
reference trajectory; grey line: reference model output
trajectory; light blue line: only R is used; yellow line:
both R and C are used.

xS(k + 1)=ζS(WxSxS(k) +WuSuS(k) +WySyS(k)) ,

yS(k)=Wout1S
xS(k) , (17)

where ζSi
(·) = id(·) for i = 1, . . . , 5, whereas ζSi

(·) =
tanh(·) for i = 6, . . . , 10. The structure of the state equa-
tions, both nonlinear and linear, is such that the output
can take unbounded values, allowing us to the possible
inclusion of an explicit integral action, e.g., see (D’Amico
et al., 2022b, Proposition 15). The desired reference model
M is the first-order asymptotically stable and unitary-gain
LTI system y(k) = −ay(k − 1) + br(k − 1), with settling
time 10Ts = 250 s (being a = −0.6 and b = 0.4), whereas
the open-loop system settles in about 500 s.
The observer gain L is computed by solving (6b), where
the minimum value of σ for which we have feasibility is
0.28. The regulator R is designed with nR = 5 states
using YALMIP and MOSEK (Lofberg, 2004; ApS, 2019),
with cR = 0.01. The feedforward compensator C is de-
signed with nC = 5 states, where cC = 100. For both the
controllers R and C we set k0 = 500, γ = 1

Nd−k0
, and

ζCi
(·) = ζRi

(·) = tanh(·) for all i.
The control scheme in Figure 1 is tested on the physics-
based simulator, where a denormalization of the control
variable uS and a normalization of the output yS are car-
ried out upstream and downstream of the process, respec-
tively, with the same normalization parameters applied
in the model identification phase. A normalization of the
reference signal is also performed. In Figure 2 the reference
tracking results of the control system using the simulated
pH process and starting from 20 different random initial
conditions are represented in case onlyR is used or bothR
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and C are employed, respectively. The output trajectories
converge to the reference value. However, in the former
case the response is quite slow, whereas in the latter the
desired performance is achieved due to the feedforward
compensator, designed using the proposed VRFT proce-
dure. Figure 3 reports a zoom of the trajectories depicted
in Figure 2.

6. CONCLUSION

In this paper we proposed a novel data-based method for
the design of controllers for RNNs. Our method guarantees
stability properties of the closed-loop and desired static
and dynamic performances. This is done by applying the
VRFT approach for the data-driven design of the ESN-
based regulator and feedforward compensator. In future
work we will address the problem of guaranteeing stability
robustly, with possible model mismatches due to the noise
on the available data.
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