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Abstract— Coaching aims to unlock the human’s potential,
self-awareness and responsibility, improving the professional
performances and the personal satisfaction. Its effectiveness
is known to depend on the degree of bonding and mutual
engagement of the coaching relationship. In this exploratory
study we recorded synchronised EEG and SC data from both
coach and coachee during 36 individual sessions, performed
following 2 different coaching methods. Our principal aim
was to investigate the temporal evolution of the bonding
and the mutual engagement along the different steps of a
session, by means of a “similarity” metric based on the DTW
distance between signals (namely, S-TVM). We found significant
differences between session phases for the EEG-related S-TVMs
(BAR, BATR and AWI), with maximum values (defined as
“tuning”) all in the same phase, but differentiated between the
two experiments. The results suggest a temporal concurrency of
the engagement and emotional tunings, whose specific location
seems to be a function of the coaching approach.

I. INTRODUCTION

Nowadays, coaching is a widespread technique with about
47,500 professional coaches worldwide [1] operating in
several different contexts, such as healthcare, sports, edu-
cation and corporate groups [2]. Coaching can be defined
as an helping relationship between a facilitator (coach)
and a participant (coachee). Using a Socratic-type method
(i.e. a cooperative dialogue, based on open questions), the
coach aims to unlock the coachee’s potential, self-awareness
and personal responsibility, improving, consequently, his/her
professional performances and personal satisfaction [3].

Professional coaches can follow either a well-defined
theoretical model (e.g. the positive psychology- and the
systemic-based coaching) or mix different models (the so-
called eclectic coaching) [4]. An example of eclectic coach-
ing is the core coaching. It consist on a face-to-face dialogue
were coach and coachee are positioned on a conformable
armchair. During the session the coach puts some questions
to the coachee about his/her problematic events. The related
answers are investigated by the coach using kynesiologic
tests [5], in order to assess their (underlined) emotional
content.
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An example of systemic-based coaching is the systemic
costellation. It consists on a scenic representation of prob-
lematic events, localised in both the space and the time.
Basically, the coachee identifies a specific objective and 5
different ways to reach it. These steps are first represented
on 5 papers and then physically positioned on the floor
to form a so-called costellation. Finally, the coachee put
himself/herself on each paper and start describing what
he/she is feeling [6].

Besides the different available approaches, some authors
reported that the effectiveness of the whole coaching process
strongly depends on the overall coach-coachee relationship,
in terms of bonding and mutual engagement [7]. These
features have been mainly detected using indirect measures
(self reports and psychometric assessments) at the end of
the sessions, but there are also few examples of direct
measurements. In [8], they used the functional Magenetic
Resonance Imaging (fMRI) to test the effects of 2 different
coaching styles on Blood Oxygen Level Dependent signal,
while in [9] they collected in a pre-post experimental design
several Electroencephalographic (EEG) metrics to assess the
effectiveness of a coaching journey.

By the best of our knowledge, no studies have explored
so far the evolution of a coaching session using bioelectric
measures, in terms of continuously measuring the above
mentioned bonding and mutual engagement during the time.

In this exploratory study, we recorded synchronized EEG
and Skin-Conductance (SC) data of both coach and coachee
during several coaching sessions, performed following two
different approaches: the systemic costellations and the core
coaching. Our principal aim was to investigate the temporal
evolution of a “similarity” measure between coach’s and
coachee’s bioelectric signals, as a possible indicator of a mu-
tual engagement and bonding. In fact, resonance mechanisms
and synchronized bioelectrical patterns have been previously
observed during social interactions - expecially those that
produce a sort of “bonding” between the subjects [10].

II. METHODS

A. Study population and experimental design

The study comprised of two different experiment: the
first focused on the core coaching, while the second on the
systemic constellations. All the coachees were students just
exiting the university and approaching the labour market.
Two professional coaches (A. G. and G. S., for, respectively,
the first and the second experiment) led them during an
exploration of their future objectives, their ambitions, their
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plans to reach them and the ways to overcome the possible
obstacles.

The study protocol was approved by the ethical committee
of Università IULM and informed written consent was ob-
tained from each participant before starting the experiment.

1) Experiment 1: Sixteen students, (8 Males, mean age
24±0.96 years, range 23−26) were enrolled. A professional
coach (A. G.) led the experiment following the core coaching
approach. The sessions were approximately 90 minutes long
and consisted of 3 main phases. In phase 1 the relationship
between coach and coachee is created. In phase 2 the coach
assesses the road to reach the objectives using kynesiologic
tests. In phase 3 the coachee discusses his/her feelings after
the session.

2) Experiment 2: Sixteen students (8 Males, mean age
23.25± 1.48 years, range 20− 26) were enrolled. A profes-
sional coach (G. S.) led the experiment following the sys-
temic constellations approach. The sessions, approximately
45 minutes long, consisted of 4 phases. In phase 1 the
relationship between coach and coachee is created and the
choices to be assessed are listed and represented on paper.
In phase 2 the papers are placed to form the constellation.
In phase 3 the coachee moves inside the constellation to
reach the goal in the preferred way. In phase 4 the coaching
session is evaluated and the action to reach the coachee’s
goal discussed.

B. Instrumentation

Each coaching session was video-taped using two web-
cams (LifeCam Studio by Microsoft, Inc.).

The EEG was recorded using a 14 channels Epoc (Emotiv
Inc.) device, with a sample frequency of 128 Hz and a resolu-
tion of 14 bits. The device was in-house modified in order to
improve its signal quality and mechanical stability, according
to [11]. The original water-based electrodes were replaced
with gel-based Sn electrodes, embedded in a medical grade
EEG cap (Taomed, s.r.l.). Reference and ground electrodes
were replaced with two earclips at the left and right earlobes.

SC signal was recorded using a Shimmer GSR+ (Shimmer
Sensing, Ltd.) with a sample frequency of 128 Hz and a
resolution of 12 bits. According to the literature [12], SC
was measured using the constant-voltage mode (0.5 V) from
2 Ag/AgCl electrodes placed on the index and ring finger of
the non-dominant hand.

Coach and coachee recordings were temporal aligned
using their UTC timestamps and the events corresponding
to the session phases were manually placed looking at the
video recordings. The duration of each event was set to 120
s.

C. EEG processing

EEG signals were processed using Matlab (The Math-
owrks, Inc.) and the EEGLab toolbox [13], according to the
following pipeline:

• Band-pass filtering between 2 and 48 Hz (−6 dB cut-off
at 1 and 49 Hz);

• Notch filtering at both 50 and 100 Hz, in order to reduce
the powerline noise;

• Rejection of extreme sample points using an amplitude
threshold (±100 µV ) and a gradient threshold (±10
µV/s);

• Independent Component Analysis (ICA) decomposition
using SOBI algorithm that exhibits the best performance
with respect to the majority of artefact types [14];

• Classification of Independent Components (ICs) using
the 7-classes neural-network classifier ICLabel [15] that
gives for each IC the probability (Pr) to be expression
of brain, muscle, eye, hearth, line noise,
channel noise or other electrical activities.

• Identification of not-artifactual ICs using the decision
rule: Pr(brain)>0.70 OR (Pr(brain)>=0.50
AND Pr(brain)+Pr(other)>=0.70.

• Rejection of artifactual ICs and back-projection to the
original sensor space to obtain a filtered EEG signal;

• Epoching according to the session phases.
Due to the rejection of extreme points, homologous epochs

related to each pair of coach and coachee could have different
lengths. From each epoch, the Beta over Alpha Ratio (BAR),
Beta over Alpha plus Theta Ratio (BATR) and Approach-
Withdrawal Index (AWI) were computed.

In order to compute the metrics, various EEG channels
were filtered in different bands and their instant power
was computed. Given an individual alpha frequency (IAF )
conventionally set at 10 Hz, Theta (θ), Alpha (α) and Beta
(β) bands are defined as: θ = [IAF − 6; IAF − 2], α =
[IAF−2; IAF+2] and β = [IAF+2; IAF+16] [16]. Then,
we applied a time-frequency approach: from each channel
we estimated the spectrogram using a Short-time Fourier
transform (STFT) with a 1 s long hamming window and
50% overlapping. Spectral bins corresponding to the selected
band (either θ, α or β) were summed (obtaining the channel
instant power) and selected channels were averaged together
(obtaining the group instant power). Finally, a logarithm
transformation was applied in order to mitigate the skewness
of the power values [17].

BAR is obtained as the ratio between the α and β group
powers, considering as a group all the channels. Likewise,
BATR is the ratio between β group power and the sum of
α and θ group powers. BAR has been previously associated
to emotional arousal [18], while BATR has been previously
adopted as Engagement Index [19]. AWI is obtained as the
difference between α-right and α-left group powers, consid-
ering as left group the left frontal electrodes (Fp1, F7, F3)
and right group the right frontal electrodes (Fp2, F8, F4). It
has been previously associated with the approach-withdrawal
behaviour that mostly correlates with the emotional valence
[20].

All metrics were z-score transformed according to the
mean value and the standard deviation of the entire signal,
as in [21].

Resonance mechanisms and synchronized bioelectrical
patterns have been previously observed during during social
interactions - expecially those that produce a sort of “bond-
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ing” between the subjects [10]. Since coach and coachee’s
recordings were temporal aligned in the pre-processing steps,
as a syncronization measure we proposed a “similarity”
measure between the corresponding aligned biosignals.

For each phase and each couple, we computed the “sim-
ilarities” between coach and coachee TVMs using the Dy-
namic Time Warping (DTW) technique. DTW is a shape-
based distance measure that finds the best similarity of
two signals applying a temporal warping (i.e. contraction or
dilatation). The temporal stretching allows to find an optimal
path (the non-linear mapping of the most common local
features) minimizing a proper distance metric between the
wrapped signals [22].

DWT distance is formally computed as follows [26]. Let’s
define the distance matrix D coresponding to the signals
X = {xi}mi=1 and Y = {yi}ni=1 as:

D = {dij}i=m,j=n
i=1,j=1 (1)

where the element dij = dist(xi, yj) is the proper distance
(e.g. Euclidean, Manhattan) between the points xi and yj .
Let’s define the warping path W = {wi}Ki=1 as a set of
elements wi ∈ D, such as K ∈ [max{m,n}, m + n − 1],
w1 = d11 and wK = dmn [22]. Additionally, let’s the wk

be adjacent in D, namely, the position of the elements in
D corresponding to each couple (wi, wi+1) have a unitary
Manhattan distance. The DTW distance is finally computed
as:

DWT = min


√√√√ K∑

i=1

wi

 (2)

In the present work, the chosen distance metric was the
Euclidean’s one. The application of DWT in EEG signal
processing is quite usual and its feasibility to identify EEG
waveform has been previously demonstrated [23]. As “simi-
larity” measure (S-TVM) we chose the inverse of the DTW
distance.

D. SC processing

SC signal was processed using Matlab. Since its maxi-
mum bandwidth is around 0.37 Hz [24], it was first down-
sampled to 1 Hz. Then, the artefacts correction and the Skin-
Conductance Level (SCL) decomposition were applied, as
previously described in [21]. We selected SCL because is
considered a robust estimation of the emotional arousal [25].

Similarly to EEG, S-TVM was computed for the SCL,
epoched and z-score transformed according to the entire
duration of the recording.

E. Statistical Analysis

The statistical analyses were performed in Matlab. Since
the assumptions of normality and homoschedasticity were
not met (as confirmed by the Kolmogorov-Smirnov and
Bartlett tests), for each S-TVMs, we computed a Kruskal-
Wallis test using the phase as factor to evaluate how the
“similarity” between coach and coachee changed along the
session. As post-hoc analsyis, we applied the Wilcoxon sign-
rank tests, Bonferroni-corrected for multiple comparisons.

III. RESULTS

After the processing steps, some subject were rejected due
to the excessive noise or for missing either the EEG or the
SC recordings.

The final population of experiment 1 comprised of 14
subjects with EEG data (7 males, mean age 23.43 ± 1.50,
range 20 − 26 years) and 7 with SC recordings (3 males,
mean age 22.57 ± 1.51, range 20 − 25 years). Significant
differences (p < 0.05) were found for all EEG-related S-
TVMs. Post hoc analysis confirmed significant (p < 0.05)
differences between all the phases for AWI, BAR and BATR
S-TVMs. No differences were found for the S-TVM of the
SCL.

The following Table I reports the descriptive statistics
(mean ± standard deviation) for the EEG-related S-TVMs.

TABLE I
MEAN AND STANDARD DEVIATION OF THE EEG-RELATED S-TVMS

Phase1 Phase2 Phase3
AWI 0.003±0.003 0.001±0.000 0.008±0.013
BAR 1.156±1.685 0.086±0.036 10.260±22.222
BATR 0.832±0.933 0.096±0.042 3.853±5.439

The final population of experiment 2 comprised of 8
subjects with EEG data (5 males, mean age 23.43 ± 1.50,
range 23−25 years) and 11 subjects with SC data (3 males,
mean age 23.91 ± 0.83, range 23 − 25 years). Significant
differences were found for all S-TVMs (p < 0.05). Post
hoc analysis confirmed a significant difference (p < 0.05)
between phases: 1 VS 2, 1 VS 3 and 1 VS 4 for AWI; 1 VS
2, 1 VS 3 and 1 VS 4 for BAR; 1 VS 2, 1 VS 3 and 1 VS
4 for BATR. No differences were found for the S-TVM of
the SCL.

The following Table II reports the descriptive statistics
(mean ± standard deviation) for the EEG-related S-TVMs.

TABLE II
MEAN AND STANDARD DEVIATION OF THE EEG-RELATED S-TVMS

Phase1 Phase2 Phase3 Phase4
AWI 0.011±0.006 0.001±0.002 0.001±0.003 0.002±0.003
BAR 2.287±2.010 0.123±0.349 0.278±0.787 0.240±0.444
BATR 2.017±1.917 0.129±0.365 0.131±0.371 0.209±0.390

IV. DISCUSSION

In this exploratory study, we investigated the strenght of
bonding and mutual engagement between coach-coachee dur-
ing a coaching session. We evaluated two different coaching
methods in two different experiments: the core coaching
method (experiment 1) and the systemic constallations (ex-
periment 2). As a measure of the strength of the coaching
relationship, we proposed the S-TVM, namely the inverse
DTW distance between EEG- and SC-related TVMs. EEG
and SC correlates to emotional valence, emotional arousal
and engagement are summarised in Table III.

In both experiments, the BAR S-TVMs showed significant
differences between phases, while the SCL S-TVMs did
not. This result seems inconsistent, since both SCL and
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TABLE III
EMOTIONAL AND ENGAGEMENT CORRELATES OF SC AND EEG

VARIABLES

Variable EEG/SC Correlate
SCL SC Emotional Arousal
AWI EEG Emotional Valence
BAR EEG Emotional Arousal
BATR EEG Engagement

BAR estimate the emotional arousal. A possible explanation
could be found in the different sensibility of CNS (Central
Nervouse System) and ANS (Autonomous Nervouse System)
to the arousal. In fact, as an EEG-related metric, BAR is
related to the CNS, while SCL is related to the ANS.

In experiment 1, the emotional “tuning” (that we defined
as the highest similarity) of both valence and arousal com-
ponents was found in the last phase, while in the experiment
2 (systemic costellations) in the first phase.

The BATR S-TVMs showed, similarly, a coherent be-
haviour: in experiment 1 the tuning was found in the last
phase, while in experiment 2 in the first phase.

Both experiments showed a temporal concurrency between
the emotional and the engagement tuning, but their position
within the phases was different. This suggest that in experi-
ment 1 the coach needed more time (i.e. both the phase 1 and
2) to finally reach the tuning, differently from experiment 2
where it was reached at the beginning of the session (phase
1).

These results need to be further investigated by a fu-
ture confirmatory study, using different coaches, following
the same coaching approaches, in order to exclude the
confounding variable of the coach as such. Additionally,
hyperscanning techniques would allow a finer analysis (e.g.
sample-by-sample) of the proposed S-TVMs, in order to
find possible tunings within each session phase. Finally, the
correspondence between the tunings and the real perceived
emotional/engagement similarities should be investigated us-
ing psychometric techniques.
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