
12

Enforcing Resilience in Cyber-physical Systems via
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Cyber-physical systems often operate in dynamic environments where unexpected events should be

managed while guaranteeing acceptable behavior. Providing comprehensive evidence of their dependability

under change represents a major open challenge. In this article, we exploit the notion of equilibrium, that

is, the ability of the system to maintain an acceptable behavior within its multidimensional viability zone

and propose RUNE2 (RUNtime Equilibrium verification and Enforcement), an approach able to verify at

runtime the equilibrium condition and to enforce the system to stay in its viability zone. RUNE2 includes

(i) a system specification that takes into account the uncertainties related to partial knowledge and possible

changes; (ii) the computation of the equilibrium condition to define the boundaries of the viability zone;

(iii) a runtime equilibrium verification method that leverages Bayesian inference to reason about the ability

of the system to remain viable; and (iv) a resilience enforcement mechanism that exploits the posterior

knowledge to steer the execution of the system inside the viability zone. We demonstrate both benefits and

costs of the proposed approach by conducting an empirical evaluation using two case studies and 24 systems

synthetically generated from pseudo-random models with increasing structural complexity.
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1 INTRODUCTION

Cyber-physical systems (CPSs) are software-intensive systems that are embedded in the physical
world. They monitor, control, and coordinate processes in both the physical and the digital world.
They are characterized by the need to interact with both humans and changing environments
as well as the need to be able to deal with unexpected events and uncertainties that permeate
today’s world [1]. To this end, CPSs are often augmented with self-adaptive capabilities, in which
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a feedback control loop helps the system to adapt to new situations (e.g., the MAPE-K loop [2, 3]).
CPSs are widespread, with applications in several domains, such as health care, automotive, and
aircraft avionics systems [4–6]. For this reason, the ability to design and engineer CPSs that
are resilient [7, 8], being able to function even during changes and/or unexpected events, is of
paramount importance.

In the following, we conform to Laprie’s definition [9] of resilience: the persistence of depend-

ability when facing changes. Thus, the notion of dependability represents a key concept elaborated
by the dependable computing community [9] as the ability to deliver service that can justifiably be

trusted.
Ideally, the resilience of CPSs should be verified by assessing dependability properties across

all possible environmental scenarios and configurations. However, exhaustive exploration of all of
these dimensions to guarantee resilience by design is often unfeasible [7]. This entails taking into
account (and enumerating), for instance, internal systems sources of uncertainty, such as different
configurations or different software or hardware faults and failures, as well as external sources
of uncertainty, such as uncertain and changing environments or unexpected situations related to
human behavior [10]. Additionally, due to the sensing limitations of their hardware, CPSs need to
reason and respond with only partial knowledge of the environment, adding another dimension
of uncertainty.

For this reason, a resilient CPS must be able to recognize and (possibly) mitigate unexpected
behaviors arising from any of these sources of uncertainties. Borrowing the terminology adopted
in [7], a system should be in equilibrium, able to maintain a behavior within its multidimensional
viability zone. This last concept is defined as the set of possible states in which the system operation
is not compromised [11], that is, the set of states in which the system’s dependability requirements
are satisfied.

In this article, we introduce RUNE2 (RUNtime Equilibrium verification and Enforcement), an
approach that extends our prior work presented in [12]. RUNE2 aims to verify at runtime whether
a system satisfies the equilibrium property and to enforce the system to stay in its viability
zone.

The approach exploits the well-known conceptual framework about the world and the machine

introduced in [13] and more recently applied in the context of dependability assurance [14]. The
system (or the machine) can provide the solution to the problem that exists in the environment (or
the world). This is feasible only because there exists an interaction between the machine and the
world through participation in the so-called shared phenomena. The specification S of the shared
phenomena will satisfy the requirements R under the domain knowledge D that formalizes the
assumptions made on the environment behavior. Formally, the following entailment relation must
be satisfied:

S,D |= R. (1)

The proposed method builds on this conceptual framework and augments the domain knowl-
edge by considering uncertainty and the notion of the system’s multidimensional viability zone
explicitly. This last concept is defined as the set of possible states in which the dependability re-
quirements R are satisfied. This is characterized in terms of relevant context attributes and cor-
responding desired values [15] for the variables of interest of the variability dimensions. Since
the viability zone of a target system varies with and along adaptation dimensions, changes in the
environment may take the system outside its viability zone. To verify that a newly entered state
is still within the boundaries of the system viability zone (possibly after a trajectory of transient
states that crosses these boundaries), a finite set C of equilibrium constraints (derived from R) that
characterize the boundaries of such a viability zone are necessary. We formalize these notions by
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means of Equation (2), henceforth referred to as the main equilibrium argument:

S,D〈Δ〉 |= C (R), (2)

indicating whether S with the domain knowledge D satisfies the equilibrium constraints C in the
presence of possible changes Δ affecting the assumptions D.

RUNE2 includes the three main activities of RUNE [12] and adds a resilience enforcement
mechanism as the fourth one. The main steps of RUNE2 are then as follows: (i) specification of
the shared phenomena between environment and implementation using parametric Markov deci-
sion processes that factor in the uncertainties related to partial knowledge and possible changes;
(ii) computation of the equilibrium condition that accounts for dependability requirements to
define the boundaries of the viability zone; (iii) runtime equilibrium verification that leverages
Bayesian inference to reduce the uncertainty under the required threshold and quantitatively rea-
son on the system’s ability to remain inside the boundaries of the viability zone; and (iv) a resilience
enforcement mechanism that exploits the posterior knowledge to steer the execution of the system
by maximizing the probability of enforcing the boundaries, thus staying inside the viability zone.

To show the applicability and benefits of RUNE2, we have conducted an empirical evaluation to
study feasibility, effectiveness, and costs using two different established case studies from the liter-
ature: the first from the robotics domain [16] and the second dealing with an autonomous team of
Unmanned Aerial Vehicles [17, 18]. We synthesize 24 systems from pseudo-random specifications
having increasing structural complexity to study the scalability of our approach.
This article extends our previous work, presented in [12], as follows.

(1) We enhance the runtime verification framework with the introduction of an enforcement
mechanism that constrains the system in its viability zone.

(2) The empirical evaluation has been completely redesigned by including two additional
research questions, one additional case study, and a scalability study involving synthetic
specifications.

(3) We extend the related work section by including a qualitative comparison with existing
approaches.

(4) We include a discussion of the major strengths and limitations of the proposed method.

The rest of this article is structured as follows. In Section 2, we introduce a running example in
the robotics domain (the search and rescue robot) as well as a preview of our approach. In Section 3,
we introduce background notions we use in the rest of the article. All stages of RUNE2 are then
detailed in Section 4. In Section 5, we discuss our empirical evaluation. We present related work
in Section 6. In Section 7, we discuss the major strengths and limitations of our approach as well
as threats to validity. We present our conclusions in Section 8.

2 PRELIMINARIES

This section introduces preliminary concepts detailed in the following sections. We introduce a
running example (Section 2.1) and then a preview of our approach RUNE2 (Section 2.2).

2.1 A Running Example: The Search and Rescue Robot

To illustrate our approach, we use a self-adaptive search-and-rescue robotic system inspired by an
existing case study [16]. The system aims at supporting emergency circumstances such as fire, hur-
ricanes, or earthquakes. Figure 1 shows a high-level overview of its main architecture components
using informal notation. The managed software includes proper abstractions of the physical inter-
faces (sensors and actuators), and key functions to carry out the rescue tasks, such as navigation
as well as obstacle/human detection. The sensors (e.g., camera, LiDAR, ultrasonic range finder)
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Fig. 1. Main components of the self-adaptive robotic system and its semantic space.

feed the component obstacle detector, which detects and classifies obstacles or human beings. This
information is used by the navigator to plan the steering angle, acceleration, and braking, which
are then put into effect by the controller.

The main components of the robotic software system can be configured at runtime to adapt
the mode of operation in the presence of uncertain changes in its environment (e.g., available
bandwidth) and resource variability (e.g., estimated battery life). These configuration changes are
enacted by engineering the controller with an adaptation layer embedding a feedback control
architecture responsible for changing the system’s operation mode and meeting dependability re-
quirements at runtime. The configuration space of the system includes multiple dimensions. For
instance, power is a discrete configuration dimension for the controller that may operate from
0 (energy-saving mode) to 100 (full-power mode). The cruise speed represents a continuous con-
figuration dimension for the navigator. The set of configuration and environment dimensions is
referred to as semantic space. For our illustrative example, they are roughly depicted in Figure 1,
while Table 1 lists all the dimensions that collectively compose the semantic space in our case
study. The semantic space is defined by a set of variables, each having a space (either configura-
tion or environment), type, and domain. For instance, power is an integer configuration variable
that ranges in the interval [0, 100] percentage level. Illuminance represents instead a continuous
environment variable ranging from 40 lux (for sunset/sunrise) to 120k lux (for brightest sunlight).

The behavior of such a search-and-rescue robot comprises different execution scenarios. Let us
consider the navigation scenario in which the robot must stop close to a still human body and then
send an alarm message. System-level dependability requirements for this scenario may include,
for instance, R1 stating that a violation of the protective human–robot distance will happen in less
than 5% of the runs. Nonetheless, changes in the semantic space affect the ability of the system
to stay viable, that is, meet the equilibrium constraint derived from R1. Low video quality, as well
as high cruise speed, can result in issues for the visual perception component that might lead to
invalidating R1 in the case of hostile environmental conditions such as heavy rain or the presence
of smoke.
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Table 1. Semantic Space of the Search-and-Rescue Robotic System

Variable Space Type Domain

Power Configuration Discrete [0, 100] %
Cruise speed Configuration Continuous [0, 5] m/s
Bandwidth Configuration Continuous [10, 50] Mbit/s
Quality Configuration Categorical {low, mid, high}

Illuminance Environment Continuous [40, 120000] lux
Smoke intensity Environment Categorical {none, thin, thick}
Obstacle size Environment Continuous [0, 120] ft3

Obstacle distance Environment Continuous [0, 10] m
Moving obstacle Environment Boolean Yes/No

Fig. 2. RUNE2 approach overview.

2.2 Preview of the Approach

In this work, we deal with the verification and enforcement of the main equilibrium argument. We
developed a specific interpretation of this abstract framework using the parametric Markov Deci-
sion Process (pMDP) formalism [19] to specify with partial knowledge the shared world-machine

phenomena [13, 14] and Probabilistic Computation Tree Logic (PCTL) [20] (briefly described
in Section 3) to formalize system-level dependability requirements from which equilibrium
constraints are derived.

The approach we propose follows four steps as illustrated in Figure 2. In stage (i ), the engineer
specifies the shared phenomena of interest as well as the system-level requirements. Stage (ii )
is a partial evaluation step. It takes as input the partial specification, the set of desired require-
ments, and a set of variables with initial beliefs. Variables are model parameters whose value is
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uncertain and becomes known at runtime, which may change over time due to changes in the
semantic space. The output is a partially evaluated set of equilibrium constraints that represents
a verification condition identifying the viability zone based on the requirements. In this stage,
our approach uses parametric model checking algorithms known to be computationally expensive
since they require an exhaustive exploration of the state space to analyze arbitrarily complex prop-
erties [21]. Since the computational cost of model checking may be prohibitive for online usage,
we relegate this phase to design time and apply computationally inexpensive operations at run-
time. The constraints are then evaluated in stage (iii ) by collecting evidence and binding concrete
values to variables. Here, we use Bayesian inference to quantify the uncertainty and spot viola-
tions of the main equilibrium argument caused by changes in the semantic space. The outcome
of the verification step is the equilibrium condition indicating whether the constraints are satis-
fied or not along with the variables responsible for the negative outcome. With this information,
step (iv ) calculates the so-called optimal equilibrium policy that is then enacted by the decision
maker. This latter component makes on-the-fly choices of actions according to the optimal pol-
icy whose aim is to avoid the regions violating the constraints, thus enforcing the equilibrium
property.

3 BACKGROUND

This section explains the necessary background concepts and notation used in the rest of the
article. The theoretical background includes the pMDP formalism (Section 3.1), the PCTL language
(Section 3.2), and Bayesian inference (Section 3.3).

3.1 Parametric Markov Decision Processes

Given a set of variables θ and the set of all rational-coefficient polynomial functions (i.e., a sum of
terms in which each term is given by a coefficient and a monomial)Q[θ], a pMDP [19]M is a tuple
(S,θ ,A, s0,δ ,AP ,L), where S is a (finite) set of states; θ is a finite set of parameters;A is an alphabet
of actions; s0 ∈ S is the initial state; and δ : S × A × S → Q[θ] ∪ [0, 1] is the partial probabilistic
transition function; AP is a set of atomic propositions; L : S → 2AP is a labeling function that
associates to each state the set of atomic propositions that are true in that state. State transitions
occur in two steps: a nondeterministic choice among available actions; and a stochastic choice of
the successor state according to δ . In the rest of the article, the notation pa

i, j will be used as the

short form for δ (si ,a, sj ). The function A(si ) is used to denote the actions in A available from the
state si .

Note that a parameter-free pMDP coincides with the standard MDP as defined in [19]. An MDP
can be obtained from a pMDP by assigning values to parameters. Formally, we need to create an
instantiation function val : θ → R such that the δ is well defined, that is,

∑
sj ∈S p

a
i, j = 1 for all

si ∈ S and a ∈ A(si ). In the following, we useM[val] to denote the MDP obtained from the pMDP
M with instantiation val .

Both MDP and pMDP models can be augmented with rewards to quantify a benefit (or loss) due
to the occurrence of certain transitions. A reward usually represents nonfunctional aspects such as
average execution time, power consumption, or usability. Rewards are formally specified by using
the notion of reward structure, that is, a function r : S × A × S → R. Given a standard MDP and
a reward structure r , a deterministic policy π specifies for each state si the action π (si ) ∈ A(si )
chosen by a decision maker to solve nondeterminism.

The decision maker takes actions using π and receives rewards according to r . The value function

V π is defined as the expectation of the cumulative reward Dπ given that the decision maker acts

ACM Transactions on Autonomous and Adaptive Systems, Vol. 18, No. 3, Article 12. Publication date: September 2023.



Enforcing Resilience in Cyber-physical Systems via Equilibrium Verification at Runtime 12:7

according to that policy:

V π (si ) = E[Dπ (si )] = E
⎡⎢⎢⎢⎢⎣

∞∑
t=0

γ trt |s0 = si ,at = π (st )
⎤⎥⎥⎥⎥⎦
, (3)

where γ ∈ [0, 1] is a discount factor that alleviates the contribution of future (long-term) rewards
in favor of present (short-term) rewards.

Using the linearity of the expected value, this expression can be formulated in a recursive form,
known as the Bellman equation [22]:

V π (si ) =
∑

j

pa
i, j · (ra

i, j + γV
π (sj )). (4)

The notion of optimal policy π ∗ is defined as the policy that maximizes the value function at
the initial state, as follows:

π ∗ = arg max
π

V π (s0). (5)

For any standard MDP, there exists an optimal policy π ∗ (no worse than any other policy for
that MDP) that maximizes the expected cumulative reward over a potentially infinite horizon. The
value of the optimal policyV ∗ satisfies the Bellman optimality equation and the optimal policy π ∗

can be always computed using, for instance, dynamic programming, as described in [19].

3.2 Probabilistic Computation Tree Logic

Requirements of interest can be defined by using the PCTL language [20]. The syntax supports the
definition of state formulas ϕ and path formulasψ , which are evaluated over states and paths of a
pMDP, respectively. Formally, a formula is defined as follows:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P��p[ψ ]; ψ ::= Xϕ | ϕ U ϕ, (6)

where a ∈ AP and a path formula ψ is used as the parameter of the probabilistic path operator

P��p[ψ ], such that �� ∈ {≤, <, ≥, >} and p ∈ [0, 1] is a probability bound. The symbol X represents
the next operator; U is the until operator. The operators G (i.e., globally) and F (i.e., eventually)
can be derived from the previous ones as for CTL. A state s ∈ S satisfies P��p[ψ ] if, under any
nondeterministic choice, the probability of taking a path from s satisfying ψ is in the interval
specified by ��p.

Parametric model checking [20] is a verification technique able to analyze the parametric vari-
ability of a pMDP model M and determine how such a variability affects the satisfaction of
a set of target PCTL properties. Formally, the outcome of the model checker is a mapping be-
tween hyper-rectangles and truth values, where a hyper-rectangle is a multidimensional rectangle
h =×x ∈θ [lx ,ux ] with lx ,ux ∈ R lower- and upper-bound for parameter x , respectively. Intuitively,
for each true hyper-rectangle h, the modelM[val] satisfies the properties iff val (x ) ∈ [lx ,ux ] for
all x ∈ θ .

3.3 Bayesian Inference

The main goal of Bayesian inference [23] is to learn one or more uncertain/unknown param-
eters θ affecting the behavior of a stochastic phenomenon of interest. The prior knowledge
(i.e., initial hypothesis or belief) of θ is incrementally updated based on a collected data sample
y = (y1,y2, . . . ,yn ) describing the actual behavior of the target phenomenon. By using Bayes’s
theorem, we obtain the posterior distribution f (θ |y) describing the best knowledge of θ given the
evidence y.

f (θ |y) ∝ f (θ ) · f (y |θ ) (7)
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The density f (y |θ ) is referred to as the likelihood function and represents the compatibility of the
data with the hypothesis. The hypothesis is often available from external sources such as expert
information based on past experience or previous studies. This information is encoded by the prior
f (θ ).

The posterior distribution can be used, in turn, to perform either point or interval estimation.
Point estimation is typically addressed in the multivariate case by summarizing the distribution
through the mean, as follows:

E[f (θ |y)] =

∫
θ · f (θ |y) dθ . (8)

In this case, the parameters θ are estimated through individual values by discarding the notion
of confidence encoded into the posterior distribution. Interval estimation provides further infor-
mation by accounting for the notion of confidence. In Bayesian statistics, this is achieved by cal-
culating the highest density region (HDR), that is, the region of the sample space that contains
100(1 − α )% of the posterior distribution. Thus, HDR[f (θ |y)] = C , such that

P (θ ∈ C |y) =

∫
C

f (θ |y) dθ = 1 − α (9)

typically using α = 0.05. If f (θ |y) is multivariate, the HDR encodes a set of credible intervals.
According to the Bayesian perspective, each interval represents the region within which each
variable value falls with probability 1−α . As described in [24], the magnitude of the HDR yields the
highest possible accuracy in the estimation of θ and is usually adopted as a measure of confidence
in the inference process (i.e., the smaller the region, the higher the confidence).

4 THE RUNE2 APPROACH

In this section, we detail the main steps of the RUNE2 approach: (i) specifying with partial knowl-
edge in Section 4.1, (ii) offline computation of equilibrium constraints in Section 4.2, (iii) runtime
equilibrium verification in Section 4.3, and (iv) runtime equilibrium enforcement in Section 4.4.

4.1 Specifying with Partial Knowledge

As shown in Figure 2, our methodology leverages the design-time partial specification of the shared
phenomena of interest of the target CPS by using a pMDP. Such a modeling formalism is widely
accepted for specification and verification for software system dependability [19]. Its adoption here
is justified by the need for modeling both nondeterminism (i.e., stimuli or events) and stochastic
behavior (i.e., outcomes in response to the events). Nondeterministic stimuli are initiated either by
the environment or the system itself. In the former case, events are observable. In the latter case,
we have instead controllable events. In our modeling approach, we partition the set of states into
observable and controllable according to the type of available stimuli, as follows:

S = {s ∈ S : ∀a ∈ A(s ),a observable} � {s ∈ S : ∀a ∈ A(s ),a controllable} (10)

Given the current state of the system si and a stimulus a (either controllable or observable),
the system evolves into another shared state sj according to pa

i, j . This probability value may be

underspecified by means of a model variable. As anticipated in Section 3, the set of all model
variables θ represents the uncertain parameters that affect the shared phenomena of interest.

Example 1 (Partial pMDP Specifications). The pMDP in Figure 3 specifies the robotic system
introduced in Section 2. While navigating, the robot can encounter still human bodies or other
obstacles (observable event). Here, depending on the environment conditions and the internal
configuration of the system, the visual perception may succeed or fail according to probabilities
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Fig. 3. Partial pMDP specifications for the search-and-rescue robotic system describing human detection

and obstacle avoidance scenarios.

that may be hard to specify due to internal/external uncertainty. In this case, we leverage variables.
For instance, x3 is the probability of misclassification, whereas x1 is the likelihood of a contact due
to detection failures that leads, in turn, to safety issues.

Definition 1 (Uncertain Model Region). Given a state–action pair (s,a) in the pMDP specifica-
tion, an uncertain model region θi is defined as the set of variables attached to edges (s,a, s ′) with
δ (s,a, s ′) > 0. The region θi is modeled by a k-dimensional categorical distribution, where k is the
number of states reachable from s when a is selected.

Example 2 (Uncertain Model Region). The region θ1 in Figure 3 is modeled by the categorical
density function Cat (x1,x2,x3) that describes the uncertain model parameters pa

0,1, pa
0,2, and pa

0,4.
These parameters govern the probability of observing a contact, a detection, or a misclassification
event, respectively, where the stimulus a initiated by the environment represents the presence of
a human body within the visual perception site.

The modeler can express prior knowledge (i.e., beliefs) of transition probabilities by means of the
natural conjugate prior1 of the categorical distribution, that is, a Dirichlet prior density function,
or simply prior f (θi ), as described in [25]:

f (θi ) ∼ Dir (α1, . . . ,αk ), (11)

1In Bayesian statistics, if both the prior and the posterior are in the same probability distribution family, they are called

conjugate distributions. The prior is called a conjugate prior [24].
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Table 2. System-Level Dependability Requirements of the Search-and-Rescue Robot

Requirement Scenario Natural Language Statement PCTL Property

R1 Human detection Violations of the protective distance between the
robot and human beings will occur in less than
5% of the runs.

P<0.05[F protective distance violation]

R2 Human detection Contacts between the robot and human beings
will occur in less than 1% of the runs.

P<0.01[F contact]

R3 Obstacle avoidance Whenever an obstacle has been detected, a crash
between the robot and the obstacle will occur in
less than 1% of the runs.

P≥1[G(obstacle detected →
P≥0.99[¬crash U obstacle avoided])]

R4 Obstacle avoidance Whenever an obstacle has been detected, it will
be avoided without reaching a critical distance
in more than 95% of the runs.

P≥1[G(obstacle detected →
P>0.95[¬critical distance U obstacle avoided])]

with αi > 0 concentration parameters, each one for each category in the corresponding categorical
distribution. As described in [24], a prior can be either determined from past information, such as
previous observations of the phenomena of interest, or crafted from the purely subjective assess-
ment of a domain expert. When no information is available, an uninformative prior can be created
to reflect a balance among outcomes. In this latter case, the modeler can adopt concentration pa-
rameters αi = 0.5 for all i = 1, . . . ,k .

As anticipated in Section 3, to formalize dependability requirements of interest we make use of
the PCTL syntax. This choice is motivated by the practical need for verifying properties of interest
upon the pMDP specification by using off-the-shelf model checking tools, such as PRISM [26].
With the aid of this language, engineers can express properties about the system that are typically
domain dependent. In our context, we express properties that can be instanced by using either
unbounded or constrained reachability properties adapted to the PCTL syntax.

Example 3. PCTL dependability requirements for the human detection scenario are reported in
Table 2. R1 and R2 are expressed in terms of simple unbounded reachability properties preceded
by the P operator. which is used to reason about the probability of an undesired event. In this
scenario, we verify that the probability of eventually reaching a failure state (i.e., either distance

violation or human–robot contact) is acceptable (i.e., below specific thresholds).

4.2 Offline Computation of Equilibrium Constraints

This stage aims at studying the parameter space of the pMDP model in order to pre-compute
the equilibrium constraints that guarantee the satisfaction of dependability requirements under
changes in the semantic space. Since the specification admits parametric variability of the uncer-
tain regions, this pre-computation is necessary to build the basis for efficient runtime verification
methods. To achieve this goal, we exploit the parametric model checking functionality of PRISM
to analyze how the actual values of θ parameters affect the satisfaction of PCTL requirements
(e.g., dependability properties in Table 2). Formally, given a PCTL property p, the outcome of the
model checker is a mapping between hyper-rectangles Hp and truth values {True, False}, where
a hyper-rectangle h is a multidimensional rectangle defined as follows:

h =
∏
x ∈θ

[lx ,ux ], (12)

with lx ,ux ∈ [0, 1] lower- and upper-bound for the model parameter x , respectively. Intuitively,
given an instantiation function val and a hyper-rectangle h mapping to True, the MDPM[val]
satisfies p iff val (x ) ∈ [lx ,ux ] for all x ∈ θ .

We define the ability to meet dependability requirements under changes in the semantic space
by instantiating the notion of equilibrium constraints C (R) introduced in Equation (2).
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Fig. 4. Visualization of the equilibrium conditions for the uncertain region θ1.

Definition 2 (Equilibrium Constraints). Given a pMDP specification M, a number of PCTL re-
quirements p1, . . . ,pm , and the set of true hyper-rectangles H T

pi
for the requirement pi , the equi-

librium constraints are defined as a set of hyper-rectanglesH∗ as follows:

H∗ =
⎧⎪⎨
⎪
⎩
h1 ∩ · · · ∩ hm : (h1, . . . ,hm ) ∈

∏
i

H T
pi

⎫⎪⎬
⎪
⎭
. (13)

The constraintH∗ defines all possible val functions, such thatM[val] satisfies the requirements
p1, . . . ,pm .

Example 4 (Equilibrium Constraints). Figure 4 represents the equilibrium constraints. In this
example, the constraints yield the boundaries for the variables in θ1. Essentially, they encode ver-
ification conditions that will hold in order to meet the target dependability properties R1 and R2,
even under changes in the semantic space.

It is worth noting that model checking can be computationally expensive [21]. Since its online
usage may be prohibitive, we keep this pre-computation separated as an offline phase, where we
can execute demanding activities without interfering with the system’s operation.

4.3 Runtime Equilibrium Verification

In this stage, we aim to verity at runtime the behavior of the target CPS embedded in a closed-
loop setting with the surroundings. We check whether the system in operation is able to keep
equilibrium in order to meet the required dependability properties under change.

Example 5 (Execution Context). A concrete execution context for our robotic system can be de-
fined by means of a valid assignment to semantic space variables in Table 1 (e.g., power = full,
cruise speed = 5, illuminance = 1, 000, smoke intensity = none). Sudden changes in this context
might occur. For instance, very high luminous flux incidents on the camera sensor combined with
unexpected thick smoke intensity could lead to fooling the visual perception component of the
robotic software. Even under such changes, the system will meet the dependability requirements
(e.g., R1 and R2) to achieve resilience.

As shown in Figure 2, to quantitatively reason about the effect of changes, we collect runtime
evidence to conduct belief monitoring. We apply an adaptive observation aging mechanism to filter
out old information when changes occur to alleviate the negative effect of historical data. Belief
monitoring is carried out by using Bayesian inference in order to incrementally update the prior
knowledge expressed by the Dirichlet distribution for all uncertain model regions θi . Formally,
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given the prior in Equation (11), the posterior f (θi |y), with y = n1, . . . ,nk , can be obtained by
applying the following very efficient updating rule:

f (θi |y) ∼ Dir (α1 + n1, . . . ,αk + nk ), (14)

where nj is the number of occurrences of the associated model transitions in the region θi (i.e.,
categories in the corresponding categorical distribution).

The posterior distributions are then exploited to summarize the updated knowledge for each
region θi , by computing the region HDR reported in Equation (9). The HDR encodes the set of
credible intervals for all variable x ∈ θ as follows:∏

x ∈θ
[qx ,q

′
x ] : P (x ∈ [qx ,q

′
x ]) ≥ 1 − α . (15)

Compared with point estimates, the credible intervals yield quantified uncertainty (or estimation
errors). As reported in [27], with point estimates, the uncertainty propagates in ways that are
unknown but likely to be significant for the verification outcomes. This raises concerns about
the validity of decisions based on this latter approach. Thus, we leverage the credible intervals
in Equation (15) to overcome this major limitation. The HDR magnitude allows our verification
procedure to determine whether the collected evidence is enough to reduce the uncertainty under
acceptable levels and produce valid outcomes, as detailed in the following.

The outcome of the runtime verification procedure is based on the two mutually exclusive con-
ditions that make the main equilibrium argument operational. Essentially, we distinguish between
success and failure (i.e., Equation (2) holds or not) by means of the notion of equilibrium and dise-

quilibrium, respectively.

Definition 3 (Equilibrium). Given the posterior f (θi |y) for each θi and the equilibrium con-
straintsH∗, we say that the equilibrium condition holds iff:

∃
∏
x ∈θ

[lx ,ux ] ∈ H∗ : ∀x ∈ θ , [qx ,q
′
x ] ⊆ [lx ,ux ]. (16)

Definition 4 (Disequilibrium). Given the posterior f (θi |y) for each θi and the equilibrium con-
straintsH∗, we say that the disequilibrium condition holds iff:

∀
∏
x ∈θ

[lx ,ux ] ∈ H∗,∃x ∈ θ : [qx ,q
′
x ] ∩ [lx ,ux ] = ∅. (17)

In the case that none holds, we say that the system has transient behavior in which changes in
the equilibrium condition are detected but the degree of uncertainty is substantial. Thus, further
evidence must be collected in order to reduce the size of the credible intervals.

The formal notions of the equilibrium, disequilibrium, and transient behavior can be explained
by Figure 4, which contains three different snapshots of the credible intervals computed by moni-
toring the region θ1 of the specification in Figure 3. Figure 4(a) shows an equilibrium condition. In
this case, all of the uncertainty is below the required level since we can see that all of the credible
values for θ parameters fall inside the bounds of the equilibrium constraint. Figure 4(b) shows a
disequilibrium condition. In this latter case, the credible intervals for x1 and x2 exclude all valid in-
stantiationsM[val] according to the equilibrium constraint. Figure 4(c) shows instead a condition
in which the uncertainty is higher than the required level since the credible intervals admit both
valid and non-valid instantiations according to the equilibrium constraints. In this latter scenario,
we recognize that the equilibrium is subject to changes due to variations in the semantic space.

Example 6 (Runtime Verification). Figure 5(a) shows an example of runtime verification by con-
sidering a single variable x1 in the region θ1 of the pMDP in Figure 3. We assume that the equilib-
rium constraints yield the bounds [0.0, 0.06]. From 0 to 90 observations, the behavior of the system

ACM Transactions on Autonomous and Adaptive Systems, Vol. 18, No. 3, Article 12. Publication date: September 2023.



Enforcing Resilience in Cyber-physical Systems via Equilibrium Verification at Runtime 12:13

Fig. 5. Online verification examples.

is transient since the uncertainty is substantial; therefore, more evidence is required. From the ob-
servation 90, the credible interval falls into the constraint by satisfying the equilibrium condition
in Equation (16).

It is worth noting that uncertain parameters θ are prone to dynamic changes due to changes
in the semantic space (affecting the shared phenomena). On the one hand, Bayesian inference in
Equation (14) gets slower to detect changes as the number of observation increases. This might
even lead to failures in detecting them when they are short-lived [28]. On the other hand, the
equilibrium conditions in Equations (16) and (17) require a reduction of the uncertainty that can
be achieved only by collecting more observations. Such a trade-off implies that traditional static

observation aging mechanisms [28] do not fit our context. To overcome this issue, our observa-
tion aging mechanism follows the Lightweight Adaptive Filtering approach introduced in [29]. Our
monitoring process produces interval estimates that show a certain degree of dispersion around
the actual values. Then, for each incoming measurement, we decide whether it can be reasonably
explained under this assumption or not. The quantification of this dispersion is given by the mag-
nitude of the credible interval [qx ,q

′
x ] for all x ∈ θ that we use to define the boundaries able to

detect changes. At the core of the adaptive mechanism, there is the Bayesian inference process,
which enables the online dynamic correction of the boundaries computed through the HDR (see
Equation (9)) of the marginalized distribution fx (·) for all x ∈ θ . In addition to this machinery, we
carry out point estimates by considering only the observations ŷ in a small timestep.2 We compute
a new point estimate e according to Equation (8), as e = E[fx (θ |ŷ)]. A new estimate outside the
boundaries is likely assumed to be a bad smell of undergoing changes. In this latter case, we filter
out the history up to the latest timestep in order to provide a quick response to changes. If the
new estimate does not contradict the hypothesis, we keep the full history in order to increase the
accuracy of the inference process.

We denote a new point estimate e inside the boundaries of a regionAusing the indicator function
1A (e ) = 1 if e ∈ A, 0 otherwise. Thus, given k timesteps, the observations ŷ in the k-th timestep,
the full history of observations y, and the two credible intervals HDRx,y = HDR[fx (θ |y)] and
HDRx,ŷ = HDR[fx (θ |ŷ)], we compute the boundaries [qx ,q

′
x ] for all x ∈ θ at timestep k , as

follows:

qx = inf HDRx,y · 1HDRx,y (e ) + inf HDRx,ŷ · (1 − 1HDRx,y (e ))

q′x = sup HDRx,y · 1HDRx,y (e ) + sup HDRx,ŷ · (1 − 1HDRx,y (e ))
(18)

2Following the guideline in [29], we adopt a timestep of 75 observations.
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According to Equation (18), the indicator function is equal to 1 if and only if the estimate in
the last timestep k does not contradict the hypothesis made with 95% credibility according to
the evidence y. Larger (inaccurate) credible intervals reduce the ability to detect small changes,
whereas very small (and accurate) intervals increase the sensitivity. Whenever a change is detected
(i.e., the outcome of the indicator function turns from 1 to 0), the filter removes historical data older
than k by setting y = ŷ.

Example 7 (Adaptive Filtering). Let us consider the scenario in Figure 5(b). The point estimates
for x1 fall inside the boundaries of the credible interval until 303 observations. As the forthcoming
point estimates cannot be reasonably explained under the current credible interval, we consider
them as a bad smell of changes. The adaptive filtering mechanism is triggered. We keep only the
history of the last timestep and the dynamic boundaries [qx ,q

′
x ] change according to Equation (18).

The verification process detects a transient behavior that eventually leads to a disequilibrium con-
dition (from observation 329).

4.4 Runtime Equilibrium Enforcement

According to our methodology in Figure 2, this step occurs after evaluating the equilibrium at
runtime. If the equilibrium condition does not hold, the enforcement mechanism is triggered. In
this case, the outcome of the verification stage is used as input to calculate the optimal policy
aiming at maximizing the probability of enforcing the equilibrium.

To describe the enforcement mechanism, we first introduce the notion of equilibrium reward

structure, motivated by the practical need to identify the controllable actions that maximize the
probability of avoiding the model regions exceeding the boundaries of the viability zone.

Definition 5 (Equilibrium Reward Structure). Given a pMDP specification, the set of uncertain
model regions θi and the posterior f (θi |y) for all i , the equilibrium constraints H∗ and c,C , con-
stant values such that C � c , the equilibrium reward structure re is defined as follows:

re (s,a, s ′) =
⎧⎪⎨
⎪
⎩

c [qx ,q
′
x ] ∩ [lx ,ux ] = ∅, with x attached to (s,a, s ′) and [lx ,ux ] ∈ H∗

C otherwise
. (19)

The rationale of the reward structure in Equation (19) is as follows. We assign a low reward
c to model transitions associated with variables that, according to the posterior knowledge, fall
outside the corresponding boundaries defined by the equilibrium constraints. Instead, we assign
a high reward C � c to transitions associated with variables that, according to the posterior
knowledge, meet the corresponding constraint.

Given this reward structure re , the enforcement mechanism calculates the optimal exploration
policy π ∗ maximizing the expected cumulative reward in the long run by using the Value Iteration

algorithm [19]. The optimal policy is then given as input to the decision-maker component that
makes on-the-fly choices according to π ∗ to steer the execution and, if possible, avoid those regions
violating the equilibrium (i.e., regions associated with low rewards). The decision maker selects
the action a = π ∗ (s ) for all s ∈ S , such that s is controllable.

It is worth noting that the equilibrium reward structure is stationary, that is, it does not change
as long as the outcome of the verification step remains the same. As shown in Figure 2, there exists
a loop between the two latter runtime stages. A change in the equilibrium condition triggers the
(re)computation of the optimal policy that, in turn, feeds the decision maker.

Example 8 (Equilibrium Enforcement). Let us consider the pMDP specification in Figure 3. By
carrying out the equilibrium verification step, we may discover that the uncertain region θ3 does
not meet the equilibrium condition, for instance, by breaking the system-level requirement R3
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stating that a crash between the robot and an obstacle will occur in less than 1% of the runs. In
this case, the enforcement mechanism computes the equilibrium policy by assigning a low reward
to transitions in θ3 and a high reward to transitions in other regions. Thus, whenever the robot
recognizes a critical distance (i.e., controllable state S10), the decision-maker component can steer
the execution by forcing the action brake, thus hitting θ4 rather than θ3.

5 EVALUATION

In this section, we report on the empirical evaluation of RUNE2. We introduce our research ques-
tions (Section 5.1), a second case study we used in the evaluation together with the rescue robot
system (Section 5.2), the design of the evaluation (Section 5.3), and then we present the major
results (Section 5.4).

5.1 Research Questions

The purpose of our empirical evaluation is to study the extent to which RUNE2 can detect violations
of the equilibrium argument, the effectiveness and latency of the detection and the enforcement
process, as well as the scalability of the approach. In particular, we aim to answer the following
research questions.

RQ1: What is the ability of our approach in detecting equilibrium violations due to changes in
the semantic space?

RQ2: What is the effectiveness of the equilibrium violation detection when adopting the credible
intervals compared with point estimates?

RQ3: What is the latency of the equilibrium violation detection when applying the adaptive
observation aging mechanism compared with no aging?

RQ4: What is the effectiveness of the resilience enforcement policy after detecting equilibrium
violations?

RQ5: What is the scalability of the resilience enforcement policy computation?

5.2 The Unmanned Aerial Vehicles System

In addition to the first case study introduced in Section 2.1, we evaluate RUNE2 using another
existing CPS benchmark, an autonomous team of unmanned aerial vehicles (UAVs) carrying out a
surveying mission in a hostile and unknown environment [17, 18]. While flying along the planned
route at a constant speed, the UAVs have to detect targets on the ground using downward-looking
sensors. Along the route, there might be threats that can damage the vehicles. For this reason, the
team uses forward-looking sensors to spot their location. The distance from the UVAs to exist-
ing threats affects the likelihood of detecting them, whereas the distance from the UVAs to the
ground affects the likelihood of detecting the targets but also the likelihood of being damaged by
a threat. Figure 6(a) shows a high-level view of the UAVs; Figure 6(b) shows a small extract of the
pMDP model partially specifying their behavior. At each route segment, the team can decide to in-
crease/decrease the altitude or sense the presence of targets/threats. As shown in the pMDP model,
the downward-sensing (controllable) action may lead to a successful mission (e.g., probability x2

from the altitude state Si ) or may lead to UAV detection by existing threats (e.g., probability x3

from Si ) with a substantial degree of uncertainty (i.e., uncertain region θi ). According to the PCTL
system-level requirements listed in Figure 6, the overall probability of eventually satisfying the
mission objective to find the targets will be higher than a given lower bound. At the same time,
the probability of eventually being detected by existing threats shall be lower than a given upper
bound. The ability of reasoning about this trade-off is complicated by the uncertainty about the
environment that, depending on the configuration of the vehicles, may affect the probability of
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Fig. 6. Overview of the UAV mission, an extract of the pMDP specifications, and the system-level require-

ments.

Table 3. Semantic Space of the UAV System

Variable Space Type Domain

Formation Configuration Categorical {tight, loose}
Flying speed Configuration Continuous [5, 50] mph
Electronic countermeasure Configuration Boolean Yes/No

Weather Environment Categorical {sun, clouds, rain, fog}
Time of day Environment Discrete [0:00 am, 11:59 pm]
Threat range Environment Continuous [0.9, 3.7] km
#threats Environment Discrete [1, 10]

detecting the targets as well as the probability of being eventually damaged by threats. The se-
mantic space (both configuration and environment dimensions) of the UAVs is reported in Table 3.
The environment and configuration variables affect the ability to satisfy the requirements. For in-
stance, a tight formation and the adoption of electronic countermeasures reduce the probability
of being damaged by a threat. Other examples are the weather condition and the time of the day.
The presence of fog combined with starlight during the night hours may reduce the likelihood of
being detected by threats but at the same time may reduce the likelihood of finding the target.

The total number of route segments and altitude levels affects the size of the pMDP specification
in terms of structural elements. In our experiments, we set 20 route segments and 20 altitude levels,
leading to a model with 482 structural elements.

5.3 Design of the Evaluation

We addressed the research questions RQ1 to RQ5 by conducting a number of controlled exper-
iments simulating our 2 case studies (the search-and-rescue robot and the team of UAVs) and
an additional 24 systems synthetically generated from pseudo-random pMDP models having
increasing structural complexity. Table 4 lists the systems used in our evaluation and summarizes
their structural complexity in terms of states, actions, and the total number of structural elements.
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Table 4. Case Studies and Their Structural Complexity

System #States #Actions #Structural Elements #Uncertain Regions

Case study 1: search-and-rescue robot 12 3 37 4
Case study 2: team of UAVs 42 6 482 8
Synthetic 1 – synthetic 24 50–1600 8–64 400–102400 8–1200

Table 5. Map of RQs to Systems, Factors, and Measurements

RQ Subject Systems Factors Measurements

1 Violation detection ability
Case study 1
Case study 2

Changes in semantic space
Magnitude of the change
Duration of the change
Equilibrium constraints
Adaptive aging: Yes/No

Point estimates
Interval estimates

2 Violation detection effectiveness
Case study 1
Case study 2

Changes in semantic space
Magnitude of the change
Duration of the change
Equilibrium constraints
Adaptive aging: Yes/No

#Violations detected

3 Violation detection latency
Case study 1
Case study 2

Changes in semantic space
Magnitude of the change
Equilibrium constraints
Adaptive aging: Yes/No

#Observations

4 Equilibrium enforcement effectiveness
Case study 1
Case study 2

Regions violating the equilibrium
Enforcement mechanism: Yes/No

#Hits regions

5 Equilibrium enforcement scalability

Synthetic 1
Synthetic 2
...
Synthetic 24

Structural complexity: states, actions
Regions violating the equilibrium

Execution time

Table 5 maps each research question to the systems as well as factors and measurements in our
controlled experiments.

In our experiments, we controlled for the factors of interest depending on the research question:
the semantic space (environment and configuration dimensions); the execution context that deter-
mines the changes occurring in the semantic space (magnitude and duration of the perturbations
occurring in the uncertain regions); the equilibrium constraints (lower- and upper-bounds for the
uncertain parameters); the technique used to filter historical data (lightweight adaptive filtering vs.
no filtering); the equilibrium enforcement mechanism (enforcement vs. no enforcement); and the
structural complexity of the pMDP specifications in terms of the number of structural elements
(order of magnitude from 10 to 105).

We repeatedly executed3 the runtime equilibrium verification and enforcement methods on our
case studies and carried out both point and interval estimates for all uncertain regions. Then, we
measured the ability to detect equilibrium violations, the number of violations detected, the num-
ber of observations required to detect them, the number of times regions violating the equilibrium
are executed, and the time required to compute the equilibrium enforcement policy.

All of the experiments have been conducted by using a commodity hardware machine equipped
with: 2.3 GHz Dual-Core Intel Core i5 CPU, and 8 GB 2133 MHz LPDDR3 RAM.

In the following, we discuss the most relevant results and refer the reader to our dataset for the
replicability of our results.4

3Each execution includes multiple runs of one or more scenarios according to the pMDP specifications (from the initial

state to an absorbing state) up to a given budget in terms of number of observations.
4Replication package publicly available at https://doi.org/10.5281/zenodo.4737491.
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Fig. 7. Equilibrium verification over time in the rescue robot system under different scenarios.

5.4 Results

5.4.1 RQ1 (Violation Detection Ability). To address the first question, we conducted a prelimi-
nary study in which we observed the results of our runtime equilibrium verification on our two
case studies (the search-and-rescue robot and the team of UAVs) under alternative execution con-
texts. We controlled the execution context by perturbing the actual value of the uncertain param-
eters to cause equilibrium violations. The injected violations have different magnitude (distance
from the actual value to the nearest bound of the equilibrium constraint) and duration (length of
the perturbation in terms of the number of observations). We created the following three scenarios
of interest for both case studies:

(1) Substantial magnitude (m = 0.1) and unbounded duration (d = ∞)
(2) Small magnitude (m = 0.01) and unbounded duration (d = ∞)
(3) Small magnitude (m = 0.01) and bounded duration (d = 25)

Case study 1 (search-and-rescue robot). Figure 7 shows an extract of the results for each context
by focusing on a single variable x1 in the uncertain region θ1.5 Here, we discuss major results of
the equilibrium verification without (and then with) the lightweight adaptive filtering mechanism.
Scenario (1) reproduces a sudden change of x1 from 0.02 to 0.11 occurring after 300 observations.
Figure 7(a) shows both point and interval estimates over time when the aging mechanism is not
adopted. Here, we can see the negative effect of historical data making the inference process very
slow. Even though the magnitude of the change is substantial, the violation of the equilibrium

5We let the reader refer to our dataset to access the data of all the uncertain regions.
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condition is not detected within the visible observation window (from 300 to 380). A similar sit-
uation occurs in scenario (2) illustrated in Figure 7(b). While the inference process is eventually
expected to converge in the long term, scenario (3) in Figure 7(c) shows a short-lived perturbation
that cannot be detected. Figure 7(d) shows scenario (1) but adopts the adaptive aging mechanism.
Here, we can see a large gap between point estimates from 303 to 310 observations. By monitoring
the credible interval, we are able to detect transient behavior from 310 to 329 observations. At this
stage, the point estimates already fall outside the equilibrium constraint, even though the uncer-
tainty is still higher than the required threshold. From observation 329 on, the credible interval
is small enough to detect the disequilibrium. Note that point estimates are not able to distinguish
between transient and steady states. This negative effect is even worse in scenarios (2) and (3), illus-
trated in Figures 7(e) and 7(f), respectively. Figure 7(b) shows that a number of point estimates fall
inside the equilibrium constraint, whereas the credible interval detects a transient behavior right
after the injection (from 310 on). Since the duration is not bounded, the point estimates eventually
converge to the actual value of x1. Thus, we can detect the equilibrium violations from observation
363. Figure 7(c) shows that, under a small and short lived perturbation, we are able to spot transient
behavior through interval estimates, whereas the point estimates do not exceed the equilibrium
constraint. In this latter case, the uncertainty of point estimates is significant and leads to wrong
verification outcomes.

Case study 2 (team of UAVs). Figure 9 shows an extract of the results for each scenario, without
(and then with) the adaptive filtering mechanism, by focusing again on the variable x1. Overall, the
results are comparable to the previous case study. Without the aging mechanism, we can observe
a very slow inference process that leads in many cases to wrong verification outcomes. Scenario
(1) in Figure 8(a) introduces a long-lived perturbation with substantial magnitude. Here, we can
see that using credible intervals we detect a transient behavior from observation 375. Scenario (2)
in Figure 8(b) is even worse since the magnitude of the change is smaller. In this case, both interval
and point estimates remain inside the constraint. Equilibrium violations are also not detected in
scenario (3) in Figure 8(c). As shown in Figure 8(d), the adaptive aging mechanism makes the
inference process faster when the perturbation occurs. Here, we notice that a transient behavior
is detected from observation 308. In scenario (2) in Figure 8(e), we can see that the point estimates
detect the violation from observations 315 to 323. Nevertheless, the uncertainty is substantial and
after observation 323, the violation is no longer detected although the actual value of x1 remains
outside the constraint. In scenario (3) in Figure 8(f), we can see that even under a small and short-
lived perturbation, we are able to detect the presence of transient behavior right after the injection
by means of interval estimates (from observation 306).

RQ1 Summary: According to our results with the two case studies, our approach is able to
detect violations of the equilibrium constraint in all of the selected scenarios. The adaptive
aging mechanism makes the inference process able to promptly react to changes occurring in
the semantic space. The credible intervals quantify the uncertainty and avoid wrong verification
outcomes obtained through point estimates.

5.4.2 RQ2 (Violation Detection Effectiveness). To deepen the investigation carried out in the
context of RQ1, we carried out additional controlled experiments injecting different perturbations
into the uncertain regions by varying the magnitude and the duration. We controlled the magnitude

of the violations, from small (0.01) to substantial (0.12), and the duration, from short (25) to long
(100). For each perturbation, we executed our two systems 100 times; for each run, we measured
the detection effectiveness of the equilibrium verification, as follows.
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Fig. 8. Equilibrium verification over time in the UAV system under different scenarios.

Metric 1 (Detection Effectiveness). We measure the detection effectiveness as the rate of the es-

timates falling outside the equilibrium constraints during a perturbation (i.e., the higher the rate,
the higher the effectiveness).

Figure 9 shows the major results using a number of heat maps illustrating the average effective-
ness measured over 100 runs of the two case studies using point and interval estimates.

Case study 1 (search-and-rescue robot). Figures 9(a) and 9(b) illustrate the major results obtained
with point and interval estimates, respectively. Interval estimates yield higher effectiveness com-
pared with point estimates, that is, ∼35% higher rate with interval estimates on average. The shape
of the perturbation (i.e., magnitude and duration) has a strong impact on effectiveness when us-
ing point estimates. Specifically, small magnitude and duration are likely to decrease the rate. The
adoption of interval estimates alleviates this negative effect. We can observe that the usage of inter-
val estimates substantially improves the effectiveness, especially when the injected perturbation
has a small magnitude. On average, we measured an improvement from 25% to 43% when reducing
the magnitude of the perturbation from 0.12 to 0.01 (i.e., the smaller the magnitude, the higher the
effectiveness of interval estimates).

Case study 2 (team of UAVs). According to the measurements in Figures 9(c) and 9(d), the aver-
age detection effectiveness is higher with interval estimates (∼95%) compared with point estimates
(∼68%). Consistent with the previous results, the magnitude of the perturbation has a strong im-
pact on the effectiveness when using point estimates. Furthermore, interval estimates improve the
effectiveness, especially under small perturbations. By using interval estimates, we can observe
an average improvement from 18% to 56% when reducing the magnitude of the perturbation from
0.12 to 0.01.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 18, No. 3, Article 12. Publication date: September 2023.



Enforcing Resilience in Cyber-physical Systems via Equilibrium Verification at Runtime 12:21

Fig. 9. Detection effectiveness of interval versus point estimates.

RQ2 Summary: According to our experience with the two case studies, the average effective-
ness is consistently higher when using interval estimates, especially when the injected per-
turbation has a small magnitude. We observed that the smaller the magnitude, the higher the
effectiveness of the interval estimates compared with point estimates.

5.4.3 RQ3 (Violation Detection Latency). To address this question, we conducted additional con-
trolled experiments with our two case studies by injecting perturbations having unbounded du-
ration. We varied the magnitude factor from small (0.01) to substantial (0.12), as described in the
context of RQ2. Each scenario has been repeated 100 times for each case study. In each run, we
executed our runtime equilibrium verification method with and then without the adaptive obser-
vation aging mechanism (i.e., aging and no aging). For each run, we measured the latency of the
detection, as follows.

Metric 2 (Detection Latency). We measure the detection latency as the number of observations

required to detect equilibrium violations after the injection of a perturbation (i.e., the lower the
number of observations, the lower the latency).

Figure 10 shows the results of our experiments through a box plot illustrating the latency mea-
sured with and then without the adaptive aging mechanism.

Case study 1 (search and rescue robot). Figure 10(a) shows the results for the search-and-rescue
robot case study. We can observe that the latency measured without the aging mechanism is
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Fig. 10. Latency of the equilibrium verification in terms of number of observations (log scale).

always higher. The magnitude of the perturbation has a strong impact on the latency in the no-
aging case. In this latter case, the median latency ranges from ∼1600 (magnitude 0.01) to ∼200
(magnitude 0.12). According to the relative distance between median points in Figure 10, adaptive
aging decreases the latency from ∼94% to ∼99%.

Case study 2 (team of UAVs). The results for the team of the UAVs case study are reported in
Figure 10(b). The latency without the aging mechanism is always higher and the magnitude of the
perturbation has a strong negative impact in the no-aging case. We can observe a median latency
ranging from ∼600 to ∼100 when the magnitude changes from 0.01 to 0.12. In this case, the median
latency decreases from ∼88% to ∼98%.

RQ3 Summary: The results of our experiments show that the latency is always lower when
using the adaptive observation aging mechanism. The magnitude of the perturbations has a
strong negative impact on the latency in the no-aging case. We observed the following trend:
the smaller the magnitude, the better the aging option compared with no aging.

5.4.4 RQ4 (Equilibrium Enforcement Effectiveness). We addressed this question through exper-
iments in which we controlled the constraints, causing equilibrium violations in selected model
regions. As shown in Table 4, the specifications of the search-and-rescue robot contain 4 uncertain
regions, whereas the specifications of the UAVs contain 8 uncertain regions in total. For each case
study, we caused violations in 25%, 50%, 75%, and 100% of the uncertain regions. We then executed
each case study 100 times for each percentage with and then without the equilibrium enforcement
mechanism. In each run, we measured the enforcement effectiveness, as follows.

Metric 3 (Enforcement Effectiveness). We measure the enforcement effectiveness as the hit ratio

of the uncertain regions violating the equilibrium, that is, the number of times the regions violating
the constraints are executed divided by the total number of executed regions (i.e., the less the hit
ratio, the higher the enforcement effectiveness).

Figure 11 shows the results of our experiments through a box plot illustrating the hit ratio with
and then without the equilibrium enforcement mechanism.

Case study 1 (search-and-rescue robot). Figure 11(a) shows the hit ratio we measured with the
search-and-rescue robot case study executed 100 times with and then without the equilibrium
enforcement policy. Overall, we can observe that the hit ratio with the enforcement policy is always
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Fig. 11. Effectiveness of the equilibrium enforcement mechanism in terms of hit ratio (log scale).

lower, meaning that the enforcement mechanism is effective in avoiding those regions violating
the equilibrium. Intuitively, the number of regions violating the equilibrium is likely to affect the
hit ratio. Specifically, the higher the percentage, the higher the hit ratio. Without the enforcement
mechanism, the median hit ratio ranges from ∼0.23 to ∼0.46 when varying the percentage from
25% to 100%. The enforcement mechanism reduces the hit ratio up to three orders of magnitude.
In this latter case, the median ratio ranges from ∼0.0002 to ∼0.0063.

Case study 2 (team of UAVs). We replicated the same experiments with the second case study.
The hit ratio is reported in Figure 11(b). We can observe that the hit ratio is again lower when
using the enforcement policy. Without the enforcement mechanism, the median hit ratio ranges
from ∼0.13 (percentage 25%) to ∼0.29 (percentage 100%). Using the enforcement mechanism, the
median ratio ranges from ∼0.0002 to ∼0.015.

RQ4 Summary: The results of our experiments show that the enforcement mechanism is ef-
fective in reducing the likelihood of observing equilibrium violations. The hit ratio generally
increases with the percentage of regions violating the constraints. According to our results, the
enforcement policy reduces the hit ratio up to three orders of magnitude.

5.4.5 RQ5 (Equilibrium Enforcement Scalability). We conducted additional experiments to study
the scalability of the runtime stages by increasing the structural complexity of the pMDP specifica-
tions. As discussed in Section 4, model exploration at runtime is required only for the computation
of the optimal equilibrium policy that makes use of value iteration. Thus, in the following, we show
the extent to which the latter procedure is scalable.

As reported in Table 5, to answer RQ5, we used 24 synthetically generated pMDPs controlling
the structural complexity in terms of the number of states (from 50 to 1, 600) and actions per state
(from 8 to 64). The order of magnitude of the structural complexity varies from 102 to 105, as re-
ported in Table 4. We also controlled the percentage of the regions violating the equilibrium (from
25% to 75%). For each selected synthetic system and percentage value, we computed the equilibrium
enforcement policy 100 times and measured the cost in terms of wall-clock time. Figure 12 shows
the results of our experiments through a number of heat maps illustrating the average wall-clock
time (seconds). The results show that the cost is negligible even when increasing the structural
complexity. The measured wall-clock time is always less than 1 second up to 800 states and 32 ac-
tions per state (25, 600 structural elements). In the worst case,1, 600 states and 64 actions per state
(102, 400 structural elements), the time required is 6.67 seconds on average. The results obtained
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Fig. 12. Cost of computing the resilience enforcement policy in terms of average wall-clock time (seconds).

using different percentage values (25% in Figure 12(a), 50% in Figure 12(b), 75% in Figure 12(c)) do
not yield specific trends. This means that the percentage of regions violating the equilibrium is
not likely to affect the cost of calculating the equilibrium enforcement policy.

RQ5 Summary: Overall, we observed a negligible cost even when increasing the structural
complexity. According to our results, the wall-clock time is always less than 1 second up to
25, 600 structural elements, whereas it increases up to 6.67 seconds with 102, 400 structural
elements. The percentage of regions violating the equilibrium is not likely to affect the cost of
calculating the equilibrium enforcement policy.

6 RELATED WORK

The resilience property in CPSs and self-adaptive software has been studied in recent years to
increase the level of assurance of these systems, which are increasingly expected to continuously
exhibit acceptable behavior even in the case of unexpected events. Recent advances from the com-
munity of self-adaptive systems aim to model systems taking into account the sources of uncer-
tainty. Taxonomies describing common sources, types, occurrence, impact of uncertainty, and miti-
gating strategies include the work by Ramirez et al. [30] and Esfahani and Malek [16]. Other recent
taxonomies more focused on resilience assessment under uncertainty are presented in [7, 8]. Ac-
cording to these lworks, there exists a lack of resilience verification methods embedding systematic
approaches quantifying and mitigating existing sources of uncertainty.

In the following, we describe relevant related work by focusing on existing research aimed at
endowing self-adaptive software with continuous assurance mechanisms tailored to verification
and/or enforcement of dependability requirements in the presence of changes and uncertainty.
Table 6 summarizes the main approaches specifically targeting uncertainty and resilience of self-
adaptive systems by comparing them with RUNE2 according to the following characteristics:

• Formalisms adopted for system and requirements modeling, plus analysis techniques
• Software life-cycle phase applicability: design-time, development (or preproduction) when

the system executes in a testing environment, or operation while the system executes in its
final operational environment
• Target scope or purpose (diagnosis only, quantifying, policy enforcement, etc.)
• approach evaluation study (efficacy, effectiveness, scalability, performance, etc.).

Existing frameworks based on Petri Nets formalisms [31, 38] aim to specify and verify timed
robustness properties with different temporal semantics for mandatory and optional uncertain
timed events. These approaches support design-time verification of adaptation procedures and
are supported by software tools such as ZAFETY [31]. Calinescu et al. [27] introduced the
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Table 6. Qualitative Comparison of Related Approaches

Approach Formalisms and technique Phase Purpose Evaluation Study

ZAFETY [31] • Zone-based Time
Basic Petri nets

• Exhaustive explo-
ration of the Time
Reachability Graph

Design-time Verification of timed
safety, liveness, and
robustness properties

Efficacy and perfor-
mance

FACT [27] • Discrete-time PMC
with PCTL

• Frequentist statistics

Preproduction Quantitative verifica-
tion with synthesis of
confidence intervals for
reliability, performance,
and other QoS

Efficacy, effectiveness,
and performance

KAMI [32] • DTMC and CTMC
with PCTL

• Bayesian estimation

• Preproduction
• Operation

Continuous assur-
ance of reliability and
performance properties

Performance

COVE [33] • DTMC with PCTL
• Bayesian estimation

with aging mecha-
nism

• Preproduction
• Operation

Runtime verification of
nonfunctional proper-
ties

Effectiveness and
scalability

LAF [29] • DTMC with PCTL
• Bayesian estimation

with aging mecha-
nism

• Preproduction
• Operation

Runtime verification of
nonfunctional proper-
ties

Estimation accuracy
and time overhead

Cámara and de
Lemos [34]

• DTMC with PCTL
• Stimulus generation,

model generation,
probabilistic model
checking

• Preproduction
• Operation

pProvide levels of
confidence regarding
service delivery

Estimation accuracy

PLA [35] • MDP with prob-
abilistic reward
computation-tree
logic (PRCTL)

• Probabilistic model
checking

• Preproduction
• Operation

Proactive latency-
aware adaptation under
uncertainty

Adaptation latency

ENTRUST [36] • DTMCs and CTMCs,
MDPs and proba-
bilistic automata
augmented with
PCTL

• Synthesis of dynamic
assurance arguments,
probabilistic model
checking

• Preproduction
• Operation

Runtime verification of
assurance cases

Correctness, effective-
ness, efficiency, and
generality

METRIC [37] • MDP with PCTL
• On-the-fly model-

based testing,
Bayesian inference,
and point estimates

• Preproduction Runtime verification
of nonfunctional re-
quirements under
uncertainty

Accuracy and perfor-
mance

RUNE [12] • pMDP with PCTL
• Bayesian inference

• Preproduction
• Operation

Runtime verification
of the equilibrium
property

Efficacy, effectiveness,
and latency

RUNE2 (this work) • pMDP with rewards,
PCTL

• Bayesian inference,
credible intervals,
and optimal policy

• Preproduction
• Operation

Runtime verification
and enforcement of the
equilibrium property

Efficacy, effectiveness,
latency, and scalability

so-called Formal verificAtion with Confidence inTervals (FACT) approach to assure quality prop-
erties (reliability, performance, and others) of systems that exhibit stochastic behavior. This math-
ematical framework aims to establish confidence intervals for the quality properties of a software
system modeled as a Parametric Markov Chain (PMC) with uncertain parameters, that is, a Markov
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chain for which unknown transition probabilities are specified as variables and their observations
are considered by adopting frequentist statistics rather than Bayesian. The aforementioned meth-
ods are tailored to design-time or preproduction analysis using computationally intensive verifica-
tion techniques, whereas dynamically assured resilience requires the usage of models at runtime
as well as efficient runtime verification techniques that can be seamlessly deployed along with the
target system in production [7].

Bayesian reasoning to perform statistical inference and runtime calibration of the model’s tran-
sition probabilities (which may be unknown or subject to change) from the observation of a run-
ning system has recently gained high interest because it provides a natural and principled way of
combining prior information with observations. The approach KAMI defined by Epifani et al. [32]
applies Bayesian inference to calibrate the transition probabilities of a DTMC kept alive along
with the running system in production. Improvements have been proposed by Calinescu et al. [33]
with the approach COntinual VErification (COVE) and by Filieri et al. [29] with the approach Light-
weight Adaptive Filtering (LAF) to alleviate the negative effect of historical data on the estimation
by using aging mechanisms (e.g., Kalman filters [39]) to discard old information.

The approach proposed by Cámara and de Lemos [34] addresses the verification of nonfunc-
tional (resilience) properties for service-based systems. The approach aims to build a DTMC model
representing the system’s response to changes occurring in the environment. It relies on stim-
ulation and probabilistic model checking to provide levels of confidence regarding trustworthy
services delivered when the system undergoes adaptation as a consequence of changes.

Proactive latency-aware adaptation (PLA) [35] is an approach that addresses the limitations of
reactive adaptation by using a “look-ahead horizon” to proactively adapt, taking into account not
only the current conditions but also their possible evolution. Adaptation decisions in the model
are left underspecified through nondeterminism; a probabilistic model checker then resolves the
nondeterministic choices by taking into account latency and possible conflicts between them.

ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST) is another related approach
by Calinescu et al. [36] that uses dynamic safety cases to verify that a target self-adaptive software
continues to safely achieve its goals during the adaptation process.

Camilli et al. [37] have introduced a model–based hypothesis testing approach called METRIC
to quantify and mitigate software system uncertainty during testing by combining on–the–fly
model–based testing and Bayesian inference.

The applicability of these approaches to CPSs requires significant extension effort due to the
physical aspects of these systems and their equilibrium goals. The RUNE2 approach differs from
these previous approaches since it leverages a quantified uncertainty (given in terms of credible
intervals) for the runtime verification of equilibrium constraints of a CPS and provides a runtime
enforcement mechanism to ensure that the running system remains within the boundaries of its
viability zone.

7 DISCUSSION

In this section, we discuss the major strengths (Section 7.1) and limitations (Section 7.2) of RUNE2

as well as how threats to validity have been mitigated (Section 7.3).

7.1 Strengths

Our evaluation shows the extent to which RUNE2 can be effectively used to verify and enforce the
satisfaction of system-level dependability requirements under changes in the semantic space. In
our experience, we find that it has the following strengths.
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Efficient and scalable runtime procedures. It is worth noting that even though parametric model
checking requires exhaustive exploration of the state space to compute the equilibrium constraint,
we keep this activity separate from the runtime stages of RUNE2. The pre-computation of the
constraints occurs offline, where we can usually execute demanding activities without interfering
with the system’s operation. We keep instead all the online stages as lightweight as possible. In
particular, the Bayesian inference process is computationally inexpensive. Furthermore, the run-
time equilibrium enforcement exhibits good scalability: the computation takes a few seconds even
with 105 structural elements.

Uncertainty quantification using credible intervals. Our approach does not focus on average be-
havior through point estimates. Especially under changes in the semantic space, we show that
point estimates are likely to fail in capturing equilibrium violations. By computing the highest
density regions (i.e., the credible intervals) we essentially quantify the existing uncertainty so that
verification is always aware of the highest possible accuracy of the estimation process.

Asymptotic stability. Asymptotic stability of our inference process is defined in terms of the
relative distance between actual and estimated values for any given constant input, regardless of
the initial estimates. According to [39], the method is asymptotically stable if the limit of such a
difference converges to zero (within a convenient accuracy) as time tends to infinity. Under this
condition, the interval estimates will eventually include the actual values because of the asymp-
totic behavior of the posterior in the limit of infinite observations. That is, Bayesian inference is
consistent and the posterior converges to a distribution independent of the initial prior [40]. In this
case, the indicator function in Equation (18) is equal to 1; therefore, the filter reduces to Bayesian
inference summarized using credible intervals.

Fast detection of changes. A well-known issue in Bayesian inference is the possible negative ef-
fect of historical data. The inference process becomes slower to detect changes as the number of
observations increases. We mitigated this issue through a lightweight adaptive filtering approach
that discards old observations when it detects a high degree of dispersion around the estimated
values. On the one hand, we show that this aging mechanism reduces the latency of detecting
equilibrium violations. On the other hand, there is the risk of causing oscillatory behavior under
nonstationary input. Nonetheless, the extent to which our method detects changes depends on the
accuracy of the inference process (the magnitude of the credible intervals), that is, when the indi-
cator function in Equation (18) is equal to 0, the estimates in the last observation period contradict
the hypothesis made with 95% credibility according to the evidence. Very small intervals increase
the sensitivity. However, sensitivity does not mean instability [39]. Furthermore, when incoming
measurements cannot be reasonably explained under the current credible intervals, we decrease
the level of confidence (i.e., we adopt larger credible intervals). This reduces the risk of obtaining
oscillatory outcomes of the verification procedure under ongoing changes in the input.

Effective enforcement of the resilience property. RUNE2 exploits the outcome of the runtime equi-
librium verification to avoid future violations, thus enforcing the resilience property. Our exper-
iments show that the enforcement mechanism is effective in reducing the likelihood of hitting
violating regions. Specifically, the application of the enforcement policy reduces the likelihood up
to three orders of magnitude.

Fully automated runtime verification and enforcement. The runtime stages of RUNE2 are fully
automated by our software toolchain. The stages (iii) and (iv) work at runtime along with the
managed system (either for testing purposes or after the deployment in production).
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7.2 Limitations

In the following, we briefly summarize the main limitations emerging both from the evaluation
and from our experience.

Definition of the specifications and requirements. The offline stages of RUNE2 require manual ef-
fort by the engineers who specify the shared phenomena of interest through the pMDP modeling
formalism and the system-level requirements through the PCTL language. This requires modeling
skills as well as substantial knowledge of the formal notations adopted by our approach. Existing
approaches in model-driven engineering may be adopted to mitigate this concern. For instance,
model-to-model transformation allows engineers to specify higher-level source models (or meta-
models) as well as automated mappings to create one or more target lower-level models [25, 32].
As an example, the METRIC approach [25] transforms a UML activity diagram into a Markov De-
cision Process. It is also worth noting that large specifications usually model parametric problems,
meaning that a number of small portions of the specifications are automatically generated from
templates. As an example, the UAVs in Figure 6(b) is a parametric problem [17] instantiated by
generating and connecting smaller pMDPs depending on the number of route segments and alti-
tude levels. Another possible way to mitigate this limitation is the usage of existing user-friendly
modeling tools. To simplify the formulation of probabilistic properties, engineers usually make
use of property specification patterns (expressed in structured natural language) that can be then
customized by using off-the-shelf tools, such as PSPWizard [41].

Nontrivial definition of accurate priors. The absence of prior knowledge (i.e., uninformative pri-
ors) may slow down the detection of equilibrium violations, especially in a cold start. In this case,
RUNE2 recognizes the presence of transient behavior but could fail at detecting violations as long
as the credible intervals and constraints are not disjoint. The definition of accurate priors may
mitigate this limitation. This activity can be supported by existing tools for interactive (machine-
assisted) elicitation of prior density functions [42].

Lack of explanations. RUNE2 cannot be used to provide operators with human interpretable
explanations for the (dis)equilibrium condition. This may hinder the ability to trace unsuccessful
adaptations back to understandable root causes. Explainability in self-adaptation [43] is emerging
as a crucial aspect to achieve the ultimate goal of developing systematic engineering approaches to
overcome the lack of transparency, thus helping engineers better understand the failures, localize
them, and improve the system’s dependability.

7.3 Threats to Validity

In considering the work in [44], we took into account the traditional categories of validity threats:
construct, conclusion, internal, and external. Thus, potential threats to the validity of our approach
and our evaluation have been addressed as follows.

Construct validity. Threats in this category may arise due to assumptions made when modeling
the system from our case study. To mitigate these threats, we used models and system-level depend-
ability requirements based on established case studies from the research literature. We conducted
our evaluation using well-known representative systems in the community of software engineer-
ing for self-adaptive systems: the search-and-rescue robot [12, 16] and the team of UAVs [17, 18].

Conclusion validity. We mitigated conclusion validity threats by reducing the possibility of ob-
taining results by chance [45]. This threat exists as the behavior of the simulated systems is gov-
erned by probabilistic functions. Following the guideline in [46], each experiment executed to
answer our research questions has been repeated 100 times.
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Internal validity. Threats may be caused by bias in establishing cause–effect relationships in
our experiments. To limit these threats, we assessed RUNE2 through extensive simulation cam-
paigns and considering different verification scenarios by directly controlling a number of factors
of interest listed in Table 5 for each research question. Such a fine-grained access to factors in-
creases internal validity compared with observations without manipulation. Direct manipulation
of factors has been crucial to create the same experimental conditions within repeated runs, and,
therefore, systematically assess cause–effect relations emerging from our results.

External validity. Threats may exist if the characteristics of the system in our case study are
not indicative of the characteristics of other systems. We mitigated these threats by consider-
ing case studies from the literature with nontrivial semantic spaces including, a wide range of
multidimensional changes. In addition, RUNE2 supports the verification of systems whose behav-
ior is modeled using a pMDP with requirements specified in PCTL. Parametric Markov models
have been widely used in recent years to model uncertain conditions in different application do-
mains (e.g., [36, 47–49]). The PCTL language represents the de facto standard to specify properties
of discrete-time Markov models [36]. As described in [24], Bayesian inference is the statistical
framework of choice when uncertain assumptions need to be updated as more evidence becomes
available. Our experiments were conducted on a simulation basis. We designed a set of controlled
experiments using an open-source simulator.6 The simulator instruments both controllable and
observable events of a target Java program behaving according to a given pMDP specification.
Generalization of our results to real CPSs “on the field” (e.g., actual robotic systems) requires addi-
tional experiments that we postponed as future work. Another external validity threat may arise if
the considered software systems require the use of larger models than those used in our evaluation.
To mitigate this threat, we conducted a scalability study by considering synthetically generated
pMDP specifications with a number of states up to 1,600 and a total number of structural elements
up to 102,400.

8 CONCLUSION AND FUTURE DIRECTIONS

In this article, we presented RUNE2, a method tailored to runtime equilibrium verification and
enforcement for resilient CPSs. RUNE2 relies on a pMDP specification that captures uncertainties
whose source could be partial knowledge or possible changes in the environment. To verify the
resilience property, RUNE2 pre-computes the equilibrium constraints that collectively define the
boundaries of the viability zone for the system. Then, it applies a runtime verification step that
exploits Bayesian inference and credible intervals to quantitatively reason on the ability of the
system to remain inside such boundaries. Finally, it enacts a resilience enforcement mechanism
that enforces the system inside its viability zone by means of the optimal policy that maximizes
the notion of equilibrium reward in the long run.

We evaluated RUNE2 on two well-known case studies in the research community of software en-
gineering for self-adaptive systems (the search-and-rescue robotic system, and the team of UAVs)
as well as 24 systems synthetically generated from pseudo-random pMDP specifications with in-
creasing structural complexity. We demonstrated the ability in detecting equilibrium violations,
the effectiveness compared with standard inference methods based on point estimates, the capa-
bility in enforcing the system in its viability zone, and the scalability.

We are currently investigating methods able to provide strong, ideally provable, assurances for
resilient CPSs through extensive testing activities. We are developing an equilibrium falsification

technique that aims to minimize the equilibrium by changing the parameters in the semantic space.

6https://github.com/SELab-unimi/mbt-module.
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The testing process is driven by the specifications and uses metaheuristic optimization to find those
circumstances under which the behavior falsifies system-level PCTL dependability requirements.
We are also planning additional experimental campaigns using real robotic systems to further
generalize our findings.
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