

An adaptive approach for the angular track estimation of resident space objects through surveillance radar system

M. F. Montaruli¹, **L. Facchini¹**, P. Di Lizia¹, M. Massari¹, G. Pupillo², G. Naldi², G. Bianchi²

PoliMi¹ INAF²

Luca Facchini Department of Aerospace Science and Technology

BIRALES - Bistatic Radar for Leo Survey

RFT (Sardinia)

Medicina Radiotelescope (Bologna)

Angular profile **Slant Range Doppler Shift** Multibeam NORTHERN RFT CROSS -6

Doppler Shift

Multibeam Orbit Determination [1]

- Lobe ambiguity
- Signal quality

Doppler Shift

Multibeam Orbit Determination [1]

- Lobe ambiguity
- Signal quality

New Approach: Direction of Arrival estimation

- Solution is unique if $d < \lambda/2$
- Presence of multiple peaks
- Ambiguity solving criteria needed

Nominal performances in uncatalogued case

- 899 LEO synthetic passages from 537 objects
- Gaussian noise consistent with sensor accuracy
- Assumed RCS = 1 m²

Method	Success %	RMSE (deg)
SNR with DS measurements	100%	1e-04
SNR with SR measurements	100%	1e-04

Case

Different station pointing	\checkmark	-
Signal interuption during the passage	\checkmark	
RCS fluctuations during the passage	\checkmark	
Mismatching between real and assumed RCS	\checkmark	
Signal from uncontrolled reentry	\checkmark	
Receiver channel bandwidth	\checkmark	

Case		
Different station pointing	\checkmark	
Signal interuption during the passage	\checkmark	
RCS fluctuations during the passage	\checkmark	
Mismatching between real and assumed RCS	\checkmark	
Signal from uncontrolled reentry	\checkmark	
Receiver channel bandwidth	\checkmark	

Different percentage of interruputions considered

▼ Success: 100% RMSE: 1e-03 deg

Case		Different dB RCS fluctuations	
Different station pointing	\checkmark	COnsidered	
Signal interuption during the passage	\checkmark		
RCS fluctuations during the passage	\checkmark		
Mismatching between real and assumed RCS	\checkmark		
Signal from uncontrolled reentry	\checkmark		
Receiver channel bandwidth	\checkmark	↓ Success: 100%	
		RMSE: 1e-03 deg*	

Case		Diffe
Different station pointing	\checkmark	
Signal interuption during the passage	\checkmark	
RCS fluctuations during the passage	\checkmark	
Mismatching between real and assumed RCS	\checkmark	
Signal from uncontrolled reentry	\checkmark	
Receiver channel bandwidth	\checkmark	

Different real RCS considered

Success: 100% RMSE: 1e-03 deg*

6 7

8

5

4

RMSE: 1e-02 deg

Time [s]

20

2

1

3

Sensitivity analysis on the uncatalogued case:

Case	
Different station pointing	\checkmark
Signal interuption during the passage	\checkmark
RCS fluctuations during the passage	\checkmark
Mismatching between real and assumed RCS	\checkmark
Signal from uncontrolled reentry	\checkmark
Receiver channel bandwidth	\checkmark

Case		Different bandwidth considered
Different station pointing	\checkmark	
Signal interuption during the passage	\checkmark	
RCS fluctuations during the passage	\checkmark	
Mismatching between real and assumed RCS	\checkmark	
Signal from uncontrolled reentry	\checkmark	
Receiver channel bandwidth	\checkmark	Success: 72,2%
🗸 Uncatalog	gued case	RMSE: 1e-01 deg* e

Real observation

- \checkmark
- Method works in a real scenario

Real observation

CZ-5B reentry (May 9, 2021)

- Backend not adapted
- Weak signal

Method works in a very challenging real scenario

Conclusions

- ✓ New processing method
- \checkmark High accuracy on synthetic data
- ✓ Successful tests on real scenarios

Acknowledgement

Work conducted in the European Commission Framework Programme H2020, Copernicus "SST Space Surveillance and Tracking" and ASI-INAF agreement "Support to IADC and SST activities 2019-2021"

References:

- 1. M. Losacco, Orbit Determination of Resident Space Objects Using Radar Sensors in Multibeam Configuration, Politecnico di Milano, 2020.
- 2. H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, John Wiley & Sons, Inc., 2002
- 3. J. Siminski, Techniques for assessing space object cataloguing performance during design of surveillance systems, 6th International Conference on Astrodynamics Tools and Techniques (ICATT), Darmstadt, Germany, 2016, 14-17 March
- 4. C. Yanez, F. Mercier, J. C. Dolado, A novel initial orbit determination algorithm from doppler and angular information, in: in Proc. 7th Conference on Space Debris, 2017

Thank you