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A B S T R A C T

Explicit solvers are commonly used for simulating fast dynamic and highly nonlinear engi-
neering problems. However, these solvers are only conditionally stable, requiring very small
time-step increments determined by the characteristic length of the smallest, and often most
distorted, element in the mesh. In the Lagrangian description of fluid motion, the computational
mesh quickly deteriorates. To circumvent this problem, the Particle Finite Element Method
(PFEM) creates a new mesh (e.g., through a Delaunay tessellation, based on node positions)
when the current one becomes overly distorted. A fast and efficient remeshing technique is
therefore of pivotal importance for an effective PFEM implementation in explicit dynamics.
Unfortunately, the 3D Delaunay tessellation does not guarantee well-shaped elements, often
generating zero- or near-zero-volume elements (slivers), which drastically reduce the stable
time-step size. Available mesh optimization techniques have limited applicability due to their
high computational cost when runtime remeshing is required. An innovative possibility to
overcome this problem is the use of the Virtual Element Method (VEM), a variant of the finite
element method that can make use of polyhedral elements of arbitrary shapes and number
of nodes. This paper presents the formulation of a 3D first-order Particle Virtual Element
Method (PVEM) for weakly compressible flows. Starting from a tetrahedral mesh, poorly shaped
elements, such as slivers, are agglomerated to form polyhedral Virtual Elements (VEs) with a
controlled characteristic length. This approach ensures full control over the minimum time-step
size in explicit dynamics simulations, maintaining stability throughout the entire analysis.

1. Introduction

In Lagrangian finite element approaches to fluid dynamics problems, the computational mesh moves with the fluid particles
providing an effective framework for handling rapidly evolving fluid domains, such as those in free-surface flows and fluid–structure
interactions. Additionally, Lagrangian methods avoid the complexities associated with the nonlinearity of the convective term.
However, one of the primary challenges in these methods is controlling mesh distortion [1], particularly in large-deformation
problems like fluid flows, where the mesh can quickly deteriorate, leading to reduced computational accuracy and efficiency.
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Among the Lagrangian mesh-based techniques for fluid modelling, the Particle Finite Element Method (PFEM) addresses mesh
istortion during runtime by creating new ones through modifications of nodal connectivities, while preserving nodal positions.
he PFEM has been successfully applied to a wide range of engineering applications, including free-surface flows [2,3], fluid–

structure interaction problems [4–6], granular [7,8], multi-fluid flows [9,10], industrial forming processes [11,12] and thermal
oupled simulations [13,14].

To maintain good mesh quality, PFEM employs continuous remeshing using a combination of Delaunay tessellation and the
alpha-shape’ method [15]. However, the issue of mesh distortion becomes particularly intricate when employing an explicit time
integration scheme, which is usually preferred in fast dynamics analyses. While in implicit methods, thanks to the unconditional
stability, large time steps can be used even in the presence of poorly shaped elements, in conditionally stable explicit time integration
schemes, small time steps, estimated by the smallest element characteristic length, are required. As a result, distorted elements can
drastically reduce the stable time step, making the efficiency of runtime remeshing crucial. Unfortunately, while the 2D Delaunay
tessellation guarantees optimal geometrical properties of the created triangles, the 3D version is less robust as it allows for the
generation of zero- or almost zero-volume elements (slivers), leading to vanishing time-step increments.

Several mesh optimization algorithms have been proposed in the literature for the treatment of badly shaped elements
(e.g. see [16–18]). While these methods have been successful in many applications, they are often computationally expensive when
applied to runtime remeshing and are less effective when handling constrained boundary nodes. To overcome these difficulties,
this work combines the PFEM with the Virtual Element Method (VEM) [19,20] resulting in a mesh of finite elements that includes,
where needed, Virtual Elements (VEs) characterized by a larger characteristic length. The VEM can be interpreted as an extension
of the classical Finite Element Method (FEM) allowing for the adoption of elements with an arbitrary number of nodes and shapes
(polygons in 2D and polyhedra in 3D), possibly non-convex, conferring high flexibility to the meshing process.

The VEM was originally proposed by Beirão Da Veiga et al. [19,20] for the solution of Poisson’s equations. Soon after, it has
been extended to the analyses of linear elastic and inelastic problems [21–25]. Moreover, the VEM has been successfully adopted
in a vast range of engineering applications such as elastodynamics [26–28], contact [29–32] and crack propagation [33,34], finite
elasto-plastic deformation [35,36], incompressible solids [37–39] and Navier–Stokes problems [40,41].

The idea of exploiting the agglomeration capability of the VEM, originally proposed in [42] for solid problems, is here applied
to fluid problems. Starting from an initial mesh of standard linear tetrahedral finite elements, larger polyhedral VEs with triangular
faces are obtained through the agglomeration of badly shaped tetrahedra, achieving a good mesh quality to be used in explicit
dynamics. This method offers a computationally efficient alternative to other smoothing techniques, effectively removing slivers
and ensuring an optimal time step. The resulting mesh consists of standard tetrahedra and polyhedral VEs with triangular faces
where needed. This variant of the PFEM, referred to as the Particle Virtual Element Method (PVEM), significantly increases the
critical time-step size with minimal agglomeration cost, reducing the overall computational burden. By controlling the number of
agglomerated elements, the method ensures a prescribed minimum characteristic length, enabling a nearly constant time-step size
throughout the analysis. In particular, by tuning the number of elements to be agglomerated, a prescribed minimum characteristic
length of the resulting agglomerated VE can be obtained, allowing for an almost constant time-step size throughout the analysis
duration.

The paper is organized as follows. The governing equations for weakly compressible fluids are recalled in Section 2, together
with the space and time discretization, whereas the PFEM is briefly introduced in Section 3. The VEM for fluids, formulated in
the mixed velocity–pressure framework is discussed in Section 4, while the proposed PVEM agglomeration technique is presented
in Section 5. The PVEM agglomeration is validated in Section 6 through 2D and 3D numerical examples. Finally, conclusions are
drawn in Section 7.

2. Governing equations of weakly compressible fluids

Let 𝒗 = 𝒗(𝒙, 𝑡) be the velocity field, 𝑝 = 𝑝(𝒙, 𝑡) the fluid pressure, 𝝈 = 𝝈(𝒙, 𝑡) the Cauchy stress tensor and 𝜌 the fluid density,
constant in time and uniform in all the domain. Being 𝜌𝒃 the fluid external body force per unit of volume and 𝐾 the fluid bulk
modulus, the Lagrangian Navier–Stokes equations in the time interval [0, 𝑇 ] for an evolving fluid domain 𝛺𝑡 are written as:

𝜌𝑑𝒗
𝑑 𝑡 = ∇𝑥 ⋅ 𝝈 + 𝜌𝒃 in 𝛺𝑡 × [0, 𝑇 ] (1)

𝑑 𝑝
𝑑 𝑡 +𝐾(∇𝑥 ⋅ 𝒗) = 0 in 𝛺𝑡 × [0, 𝑇 ] (2)

where ∇𝑥 is the gradient operator. Eq. (2) establishes a linear relation between the pressure rate and the rate of the fluid infinitesimal
olumetric strain, consistent with the assumption of a weakly compressible fluid. The Cauchy stress tensor 𝝈 can be decomposed
nto its isotropic and deviatoric parts:

𝝈 = −𝑝𝑰 + 𝝉 (3)

where 𝑰 denotes the identity tensor and 𝝉 the deviatoric stress tensor. 𝝉 is related to the deviatoric strain rate 𝝐̇, defined as

𝝐̇ = 1
2
(∇𝑥𝒗 + ∇𝑥𝒗𝑇 ) − 1

3
(∇𝑥 ⋅ 𝒗)𝑰 (4)

by the fluid viscosity 𝜇(𝝐̇):
𝝉 = 2𝜇(𝝐̇)𝝐̇ (5)
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To complete the problem definition, the set of Eqs. (1) and (2) have to be complemented with appropriate initial and boundary
onditions. Denoting 𝛤 𝑡 = 𝜕 𝛺𝑡 the fluid boundary at time 𝑡, subdivided into non-overlapping Dirichlet 𝛤 𝑡

𝐷 and Neumann 𝛤 𝑡
𝑁 parts,

he following conditions are imposed:

𝒗(𝒙, 𝑡) = 𝒗̄(𝒙, 𝑡) on 𝛤 𝑡
𝐷 (6)

𝝈(𝒙, 𝑡) ⋅ 𝒏 = 𝒉(𝒙, 𝑡) on 𝛤 𝑡
𝑁 (7)

being 𝒗̄(𝒙, 𝑡) a given velocity function, 𝒉(𝒙, 𝑡) the applied surface tractions and 𝒏 the outward normal to the boundary 𝛤 𝑡
𝑁 . The initial

onditions can be expressed as:

𝒗(𝒙, 𝑡 = 0) = 𝒗0(𝒙) in 𝛺0 (8)

𝑝(𝒙, 𝑡 = 0) = 𝑝0(𝒙) in 𝛺0 (9)

where 𝒗0 and 𝑝0 are given functions defining the values of velocity and pressure at the initial time.

2.1. Space discretization

A Galerkin finite element approach is adopted for the space discretization of Eqs. (1)–(2). Let 𝑆𝑣 and 𝑆𝑝 be the spaces of
admissible functions for velocities and pressure satisfying homogeneous boundary conditions on 𝛤 𝑡

𝐷 and 𝛤 𝑡
𝑁 , respectively. The weak

orm of the momentum conservation can be obtained by multiplying Eq. (1) by a vector of test functions 𝒘 ∈ 𝑆𝑣. Integrating the
obtained equations and exploiting Green’s formula, the following expression is obtained:

∫𝛺𝑡
𝜌𝒘 ⋅

𝑑𝒗
𝑑 𝑡 𝑑 𝛺 = ∫𝛺𝑡

𝑝(∇𝑥 ⋅𝒘)𝑑 𝛺 − ∫𝛺𝑡
∇𝑥𝒘 ∶ 𝝉𝑑 𝛺 + ∫𝛺𝑡

𝒘 ⋅ 𝜌𝒃 𝑑 𝛺 + ∫𝛤 𝑡
𝒘 ⋅ 𝒉𝑑 𝛤 ∀𝒘 ∈ 𝑆𝑣 (10)

Denoting by 𝑞 a scalar test function, with 𝑞 ∈ 𝑆𝑝, the weak form of the pressure Eq. (2) is written as:

∫𝛺𝑡
𝑞
𝑑 𝑝
𝑑 𝑡 𝑑 𝛺 + ∫𝛺𝑡

𝑞 𝐾𝑓 (∇𝑥 ⋅ 𝒗)𝑑 𝛺 = 0 ∀𝑞 ∈ 𝑆𝑝 (11)

The unknown velocity and pressure fields are modelled over each finite element in terms of their nodal values, gathered in vectors
𝑽 (𝑡) and 𝑷 (𝑡), respectively:

𝒗(𝒙, 𝑡) = 𝑵𝑣(𝒙)𝑽 (𝑡) (12)

𝒑(𝒙, 𝑡) = 𝑵𝑝(𝒙)𝑷 (𝑡) (13)

where 𝑵𝑣(𝒙) and 𝑵𝑝(𝒙) contain linear shape functions. At a given instant 𝑡, the semi-discretized momentum and pressure equations
ead:

𝑴𝑣
𝑑𝑽
𝑑 𝑡 = −𝑲𝜇𝑽 +𝑫𝑇𝑷 + 𝑭 𝑒𝑥𝑡 (14)

𝑴𝑝
𝑑𝑷
𝑑 𝑡 = −𝐾𝑫 𝑽 (15)

where 𝑴𝑣 is the fluid mass matrix, 𝑴𝑝 is a volume-like matrix, 𝑲𝜇 is the viscosity matrix, 𝑫 is the matrix discretization of the
divergence operator and the vector 𝑭 𝑒𝑥𝑡 contains equivalent nodal external forces.

The use of equal order interpolation for velocity and pressure violates the LBB (Ladyzhenskaya–Babuška–Brezzi) condition,
leading to possible spurious pressure oscillations. Therefore, the formulation has to be properly stabilized. In the present work,
ollowing the Direct Pressure Stabilization (DPS) method [43,44], a new term based on the L2 projection of the linear pressure field

onto a constant has been added to Eq. (2)

∫𝛺𝑡
𝑞
𝑑 𝑝
𝑑 𝑡 𝑑 𝛺 + ∫𝛺𝑡

𝑓

𝑞 𝐾𝑓 (∇𝑥 ⋅ 𝒗)𝑑 𝛺 + ∫𝛺𝑡
(𝑝 − 𝛱̃𝑝)(𝑞 − 𝛱̃𝑞)𝑑 𝛺 = 0 ∀𝑞 ∈ 𝑆𝑝 (16)

where the projection operator 𝛱̃ is defined by the following condition:

∫𝛺𝑡
𝛱̃𝑞(𝑝 − 𝛱̃𝑝)𝑑 𝛺 = 0 (17)

The projection operator applied to the linear pressure field provides a constant value in each element:

𝛱̃𝑝 = 𝑵̃𝑝𝑷 𝑒 (18)

where 𝑵̃𝑝 are constant shape functions over the element. Applying the pressure spatial discretization, the stabilizing term in Eq. (16)
evaluated for each element 𝑒 reads:

∫𝛺𝑡
(𝑵𝑝𝑇 𝑵𝑝 − 𝑵̃𝑝𝑇 𝑵̃𝑝)𝑑 𝛺 𝑷 𝑒 = 𝑺𝑒𝑷 𝑒 (19)
𝑒
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When a 2D 3-nodes triangular element 𝑒 is considered, 𝐍̃𝑝 is defined as 𝑵̃𝑝 = [1∕3, 1∕3, 1∕3] leading to a stabilization matrix 𝑺𝑒
defined as follows:

∫𝛺𝑡
𝑒

(𝑵𝑝𝑇 𝑵𝑝 − 𝑵̃𝑝𝑇 𝑵̃𝑝)𝑑 𝛺 𝑷 𝑒 = 𝑺𝑒𝑷 𝑒 =
𝛺𝑒
36

⎡

⎢

⎢

⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎥

⎥

⎦

𝑷 𝑒 (20)

𝛺𝑒 being the element area. Finally, the mass conservation Eq. (15) is rewritten as

𝑴𝑝
𝑑𝑷
𝑑 𝑡 = −𝐾𝑓𝑫 𝑽 − 1

𝜔
𝑺 𝑷 (21)

where 𝜔 is a stabilization parameter with the dimension of a time, typically chosen as the current time-step size.

2.2. Time discretization

The discretization in time of Eqs. (10)–(11) is obtained by dividing the time domain [0, 𝑇 ] into 𝑁 time steps 𝛥𝑡𝑛+1 = 𝑡𝑛+1 − 𝑡𝑛,
such that 𝑇 =

∑𝑁
𝑛=1 𝛥𝑡

𝑛. Adopting an explicit time integration with the Central Difference Scheme (CDS), the mid-step velocity 𝑽 𝑛+ 1
2

s computed as:

𝑽 𝑛+ 1
2 = 𝑽 𝑛 + 1

2
𝑨𝑛𝛥𝑡𝑛+1 (22)

being 𝑨𝑛 the vector of nodal accelerations computed at the previous step. Using the mid-step velocity, the nodal displacements 𝑼
are then evaluated:

𝑼 𝑛+1 = 𝑼 𝑛 + 𝑽 𝑛+ 1
2 𝛥𝑡𝑛+1 (23)

and the coordinates of the nodes are updated. Once the new configuration at 𝑡𝑛+1 is known, pressures can be obtained by solving
he pressure equation:

𝑴𝑝𝑷 𝑛+1 = 𝑴𝑝𝑷 𝑛 − 𝑺𝑛𝑷 𝑛 − 𝛥𝑡𝑛+1𝐾𝑓𝑫 𝑽 𝑛+ 1
2 (24)

where 𝑺𝑛 is the stabilization matrix defined in the previous section and the stabilization parameter 𝜔 in (21) has been set equal
o 𝛥𝑡𝑛+1. Then the vector of nodal resultant forces 𝑭 𝑛+1 (the right-hand side of Eq. (14)) and the diagonal mass matrix 𝑴𝑛+1

𝑣 are
computed in the updated configuration, allowing for the solution of the momentum equation to find the new nodal accelerations

𝑛+1:

𝑨𝑛+1 = (𝑴𝑛+1
𝑣 )−1𝑭 𝑛+1 (25)

Finally, the end-step velocities can be computed as:

𝑽 𝑛+1 = 𝑽 𝑛+ 1
2 + 1

2
𝑨𝑛+1𝛥𝑡𝑛+1 (26)

Due to the conditional stability of the CDS, the time-step size 𝛥𝑡𝑛+1 is defined adaptively to guarantee the respect of the
Courant–Friedrichs–Lewy (CFL) condition [45]:

𝛥𝑡𝑛+1 = 𝐶𝑁 min
𝑒

(

ℎ𝑛+1𝑒
𝑐

)

(27)

where ℎ𝑒 denotes the characteristic length (e.g. radius of the circumcircle in 2D or circumsphere in 3D) of the 𝑒th element, 𝑐 is the
speed of the dilatational wave in the fluid and 𝐶𝑁 represents the Courant number, assumed to be 𝐶𝑁 = 0.9.

3. Particle Finite Element Method (PFEM)

The PFEM is a Lagrangian mesh-based finite element method particularly effective for solving fluid flow problems characterized
by free surfaces, breaking waves and evolving interfaces [1–3,46]. Thanks to its ability to inexpensively track free surfaces and
nterfaces throughout the analysis, the method is particularly appealing for fluid–structure interaction problems [4–6]. In the

Lagrangian description, the finite element mesh follows the movements of the fluid so that the PFEM requires the generation of
 new mesh whenever the current one becomes too distorted. The remeshing process has to be fast since it is performed frequently
uring the analysis. Moreover, it has to be accurate to provide a correct description of the fluid domain, tracking the rapid evolution
f the boundaries. Remeshing is performed through application of the Delaunay tessellation [47], which changes continuously the

nodal connectivities preserving nodal positions. All physical properties and variables are stored at nodal level so that no information
s lost when the current mesh is deleted. To avoid expensive mapping from the old mesh to the new one, linear elements (triangles

in 2D and tetrahedra in 3D) with vertex nodes are used [1]. Fig. 1-b shows an example of 2D Delaunay tessellation of the cloud of
points in Fig. 1-a. However, the Delaunay algorithm generates the convex hull containing a given set of nodes, see Fig. 1-b, which
generally does not correspond to the real fluid domain. To overcome this issue, the alpha-shape method, a technique to remove the
4 
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Fig. 1. Mesh generation in 2D PFEM. Starting from a cloud of fluid particles (a), a convex domain is created by Delaunay tessellation (b). The correct fluid
domain is then recovered through the application of the alpha-shape method that removes non-physical/distorted elements (c).

unphysical elements, is applied [1,3,15]. According to the alpha-shape method, a geometrical distortion index 𝛼𝑒 is introduced at
the element level:

𝛼𝑒 =
𝑅𝑒

ℎ𝑚𝑒𝑎𝑛
(28)

where 𝑅𝑒 denotes the radius of the circumcircle (2D) or circumsphere (3D) to the element 𝑒, whereas ℎ𝑚𝑒𝑎𝑛 represents the mesh
characteristic length, chosen as the average of the minimum element edges in the initial mesh. To remove the distorted elements
from the Delaunay mesh, a threshold value 𝛼̄ is introduced. An element is considered overly distorted if it has a distortion index
larger than the user-defined threshold, that is:

𝛼𝑒 ≥ 𝛼̄ or 𝑅𝑒 ≥ 𝛼̄ ℎ𝑚𝑒𝑎𝑛 (29)

Elements satisfying relation (29) are deleted from the mesh, see Fig. 1-c. A proper choice of the parameter 𝛼̄ plays a key role in
the definition of the correct fluid domain. When 𝛼̄ assumes a high value, a larger number of elements is preserved. This can lead to
an inaccurate fluid profile and in the extreme case, it restores the Delaunay mesh. Conversely, if 𝛼̄ is excessively small, only a few
elements are retained, resulting in a loss of smoothness in the fluid profile or in the appearance of unphysical voids. For a more
flexible identification of the fluid domain, different threshold values may be defined in different mesh regions, e.g. 𝛼̄𝑖𝑛𝑡 for inner
portions and 𝛼̄𝑠𝑢𝑟𝑓 for free surfaces. The former is employed to control distortion within the fluid bulk and it is typically assigned
a higher value to prevent the formation of non-physical voids inside the domain. The latter is used instead to eliminate unrealistic
elements at the free surface and it is usually assigned a smaller value to ensure a more accurate fluid profile. In the numerical
examples analysed in Section 6, the two 𝛼̄ parameters are chosen as 𝛼̄𝑖𝑛𝑡 = 2 and 𝛼̄𝑠𝑢𝑟𝑓 = 1.2.

4. Particle Virtual Element Method (PVEM) for weakly compressible fluids

The Virtual Element Method (VEM) is a variant of the finite element method designed for the solution of differential problems
on polytopal meshes (polygons in 2D and polyhedra in 3D). The main idea of the VEM is the implicit definition (hence the term
virtual) of the space of the local shape functions in each element. In the present Lagrangian weakly compressible fluid context, a
first-order VEM is considered. The obtained method will be referred to as a Particle Virtual Element Method (PVEM).

Following [19,20], the key idea of the VEM is to replace the functions 𝒗 and 𝑝 with their projections 𝒗𝜋 and 𝑝𝜋 , onto a polynomial
space. However, the projected parts lead to a rank-deficient problem and a stabilization has to be included in the formulation.

4.1. Projection step

In the PVEM, the variables 𝒗 and 𝑝 are collected in a vector 𝜱 defined as:

𝜱 =
{

𝒗
𝑝

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑥
𝑣𝑦
𝑣𝑧
𝑝

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(30)

The variables in 𝜱 are split into the projected part 𝜱𝝅 and a remainder (the error between the discrete approximate solution and
its polynomial approximation):

𝜱 = 𝜱𝜋 + (𝜱 −𝜱𝝅 ), 𝜱𝜋 = {𝒗𝜋 , 𝑝𝜋} (31)
5 
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Within the projection step, the variables are mapped onto a polynomial space of degree 𝑘. In the present work, linear ansatz functions
re used, so that only 𝑘 = 1 is considered. At the elemental level, the 𝜱𝜋 assumes the form:

𝜱𝜋 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑥𝜋
𝑣𝑦𝜋
𝑣𝑧𝜋
𝑝𝜋

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 𝒂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑥
𝑦
𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑥
𝑦
𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(32)

where 𝑥, 𝑦, 𝑧 are element local coordinates. Let 𝜱̂ be the vector of nodal degrees of freedom

𝜱̂ =
{

𝑽
𝑷

}

(33)

The projection 𝜱𝜋 is fully defined once the matrix 𝒂, containing the virtual parameters, is known in terms of the nodal degrees of
reedom 𝜱̂. To determine 𝒂, the following orthogonality condition between the gradient of an arbitrary first-order polynomial 𝜱̃,
nd the gradient of the ansatz remainder [26] is imposed

∫𝛺𝑒

∇𝜱̃(∇𝜱𝜋 − ∇𝜱) 𝑑 𝛺𝑒 = 0 (34)

When employing linear shape functions, both ∇𝜱̃ and ∇𝜱𝜋 are constant at the elemental level, leading to
∇𝜱𝜋 = 1

𝛺𝑒 ∫𝛺𝑒

∇𝜱 𝑑 𝛺𝑒 (35)

Since 𝜱 is not known inside the element 𝑒, the integral on the right-hand side is not computable and, hence, it is transformed
into a boundary integral as:

∇𝜱𝜋 = 1
𝛺𝑒 ∫𝜕 𝛺𝑒

𝜱⊗ 𝒏 𝑑 𝛤𝑒 (36)

where 𝒏 represents the outward normal to the boundary 𝛤𝑒 = 𝜕 𝛺𝑒 of VE 𝑒. Since a linear polynomial space is considered, the
gradients of the projected velocity and pressure fields are constant within each element and, with a minor abuse of notation, ∇𝜱𝜋
becomes:

∇𝜱𝜋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎12 𝑎13 𝑎14
𝑎22 𝑎23 𝑎24
𝑎32 𝑎33 𝑎34
𝑎42 𝑎43 𝑎44

⎤

⎥

⎥

⎥

⎥

⎦

(37)

Eq. (36) allows for the computation of the virtual parameters related to the gradient of the projected variables, i.e. of the
coefficients of the linear part only of 𝜱𝜋 . To ensure the uniqueness of 𝜱𝜋 , the coefficients 𝑎11, 𝑎21, 𝑎31, 𝑎41 of the constant part
have also to be defined. A possibility is to impose that the average of the vertex values of the projection 𝜱𝜋 is equal to the average
of the vertex values of the virtual function 𝜱̂:

1
𝑛𝑉

𝑛𝑉
∑

𝐼=1
𝜱𝜋 (𝑿𝐼 ) = 1

𝑛𝑉

𝑛𝑉
∑

𝐼=1
𝜱̂𝐼 (38)

where 𝑛𝑉 is the number of element vertices, 𝑿𝐼 are the coordinates of node 𝐼 and 𝜱̂𝐼 is the vector of velocity and pressure at node
. By substituting Eq. (32) into Eq. (38) and noting that one can write

𝒂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11
𝑎21
𝑎31
𝑎41

∇𝜱𝜋

⎤

⎥

⎥

⎥

⎥

⎦

⇒ 𝛷𝜋 (𝑿𝐼 ) = 𝒂
{

1
𝑿𝐼

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11
𝑎21
𝑎31
𝑎41

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+ ∇𝜱𝜋𝑿𝐼 (39)

the remaining parameters can be evaluated as:

{𝑎11, 𝑎21, 𝑎31, 𝑎41}𝑇 = 1
𝑛𝑉

𝑛𝑉
∑

𝐼=1
(𝜱̂𝐼 − ∇𝜱𝜋 𝑿𝐼 ) (40)

Through Eqs. (36) and (40), the projected velocity 𝒗𝜋 and pressure 𝑝𝜋 of the VE 𝑒 are completely defined in terms of nodal values
𝜱̂ and 𝜱𝜋 can be expressed as

𝜱𝜋 (𝑥, 𝑦, 𝑧) =
{

𝑣𝜋
𝑝𝜋

}

=
[

𝛱𝑣 0
0 𝛱𝑝

] {
𝑽
𝑷

}

= 𝛱(𝑥, 𝑦, 𝑧)𝜱̂ (41)
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Fig. 2. Velocity modelling on boundary of 2D VE with 𝑛𝑉 nodes.

4.2. Computation of the boundary integral

In 2D problems, the right-hand side of Eq. (36) can be evaluated easily since the element boundaries are straight segments.
Using linear shape functions, velocities and pressures along edges of the element are explicitly computable through nodal values
𝑥1 , 𝑢𝑦1 , 𝑢𝑥2 , 𝑢𝑦2 , 𝑝1, 𝑝2:

𝜱𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑣𝑥
𝑣𝑦
𝑝

⎫

⎪

⎬

⎪

⎭𝑘

=

⎧

⎪

⎨

⎪

⎩

𝑁𝑘1𝑣𝑥1 +𝑁𝑘2𝑣𝑥2
𝑁𝑘1𝑣𝑦1 +𝑁𝑘2𝑣𝑦2
𝑁𝑘1𝑝1 +𝑁𝑘2𝑝2

⎫

⎪

⎬

⎪

⎭

(42)

Shape functions 𝑁𝑘1 and 𝑁𝑘2 related to node 1 and 2 of edge 𝑘 (see Fig. 2) are defined in function of local dimensionless abscissa
𝜉𝑘 as:

𝑁𝑘1 = 1 − 𝜉𝑘, 𝑁𝑘2 = 𝜉𝑘, 𝜉𝑘 =
|𝒙𝑘2 − 𝒙𝑘1 |

𝑙𝑘
with 0 ≤ 𝜉𝑘 ≤ 1 (43)

being 𝑙𝑘 and 𝒙𝑘 the length and coordinates of edge 𝑘, respectively.
In general, the evaluation of Eq. (36) in 3D problems is not straightforward since the boundaries of the element are polygonal

surfaces on which the displacement model is unknown. In the special case of VEs resulting from the agglomeration of tetrahedra, the
element faces are always triangular and the standard shape functions of linear triangles completely define the displacement model
over the face, so that the boundary integrals can be easily computed. The position vector 𝒙𝜏 in each triangle 𝜏 is formally defined
by application of the mapping

𝑵𝜏 = (𝜉 , 𝜂 , 1 − 𝜉 − 𝜂) (44)

to the vectors 𝑿𝜏
𝐼 of nodal coordinates of vertex 𝐼 of triangle 𝜏

𝒙𝜏 = 𝑵𝜏𝑿𝜏
𝐼 ∀𝐼 ∈ 𝜏 (45)

being 𝜉, 𝜂 local dimensionless coordinates. The velocity and pressure fields 𝜱𝜏 in each triangular face 𝜏 are defined as:

𝜱𝜏 = 𝑵𝜏𝜱̂𝜏
𝐼 ∀𝐼 ∈ 𝜏 (46)

where 𝜱̂𝜏
𝐼 are nodal degrees of freedom of triangle 𝜏 at node 𝐼 .

Finally, introducing Eq. (46) into Eq. (36), the following expression is obtained:

∇𝜱𝜋 = 1
𝛺𝑒 ∫𝜕 𝛺𝑒

𝜱⊗ 𝒏 𝑑 𝛤 = 1
𝛺𝑒

𝑛𝑓
∑

𝜏=1
∫𝛤𝜏

𝜱𝜏 ⊗ 𝒏𝜏 𝑑 𝛤 = 1
𝛺𝑒

𝑛𝑓
∑

𝜏=1

𝑛𝑔
∑

𝑔=1
𝜔𝑔𝑁

𝜏
𝜁𝜱

𝜏
𝑔 ⊗ 𝒏𝜏𝑔 (47)

where 𝑛𝑓 and 𝑛𝑔 denote the number of triangular faces and the number of Gauss points per triangle, respectively, and 𝑁𝜏
𝜁 is the

constant Jacobian of triangle 𝜏. Since linear triangles are considered, a one-point quadrature rule is sufficient. Therefore, the number
of Gauss points is assumed to be 𝑛𝑔 = 1 with weight 𝜔𝑔 = 1∕2. The subscript 𝑔 stands for quantities evaluated at a Gauss point of
the triangle 𝜏, with local coordinates 𝜉 = 1∕3 and 𝜂 = 1∕3. The Jacobian of the isoparametric mapping 𝑁𝜏

𝜁 and the normal vector
𝜏
𝑔 (constant in each triangle) are evaluated as follows:

𝑁𝜏
𝜁 = ‖𝒈𝜏𝜁‖ =

‖

‖

‖

‖

𝜕𝒙𝜏
𝜕 𝜉 × 𝜕𝒙𝜏

𝜕 𝜂
‖

‖

‖

‖

(48)

𝒏𝜏𝑔 =
𝒈𝜏𝜁

‖𝒈𝜏𝜁‖
(49)
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4.3. Virtual element stabilization

The expression (41) of 𝜱𝜋 = {𝒗𝜋 , 𝑝𝜋} and (47) of ∇𝜱𝜋 obtained in the previous paragraph can be used directly in the weak
orms (10)–(11). However, the formulation of VEs based only on these consistent terms would lead to a rank-deficient element if

the number of vertices is larger than three in 2D or four in 3D. When more vertices are considered, VEs have to be stabilized. It
is worth noticing that the VEM for 3-node triangles and 4-node tetrahedra coincides with the FEM with triangular and tetrahedral
finite elements with linear shape functions, respectively, and hence the entire formulation of Section 2 could be presented within
he VEM framework. However, employing a VE mesh is in general computationally more expensive than a finite element one of the
ame order and the use of the VEM is recommended only as a local countermeasure to improve element quality in specific regions
here it is needed (see Section 5). For this reason, we prefer to present the approach as a standard FEM, with VEs introduced

selectively only in localized parts of the domain.
In the literature, two different stabilization techniques are commonly used for VEs. The first stabilization is based on the degrees

f freedom and it introduces a pointwise error measure between nodal values 𝜱𝐼 and the projected variables 𝜱𝜋 computed at vertices
𝒙𝐼 [21–23]. The second stabilization method, developed by Wriggers et al. [37], consists of adding a new, positive definite strain
energy into the VEM framework. In the present work, the stabilization based on degrees of freedom has been adopted. Note that the
equal order interpolation violates the LBB condition allowing spurious oscillations in the pressure field. Therefore, not only does the
VE formulation has to be properly stabilized, but also unphysical pressure modes have to be removed by means of an appropriate
stabilization. For the former, following [38] the stabilizing term can be written as the difference between nodal velocities 𝒗𝐼 and
the projected ones at each node as (see, e.g., [21–23] for a detailed derivation):

𝛥𝒗𝐼 = 𝑽 𝐼 − 𝑽 𝜋 (𝑿𝐼 ) =
(

𝑰 −𝛱𝑣(𝑿𝐼 )
)

𝑽 𝐼 (50)

leading to the definition of a stabilization stiffness matrix 𝑲𝑠
𝑒 to be added to the consistent one 𝑲𝑐

𝜇 ,𝑒
𝑲𝑠

𝑒 =
𝛾
𝑛𝑉

𝑛𝑉
∑

𝐼=1

(

𝑰 −𝛱𝑣(𝑿𝐼 )
) (

𝑰 −𝛱𝑣(𝑿𝐼 )
)

(51)

being 𝛾 a scaling factor defined as follows:

𝛾 =

{

𝛾0 𝜌 𝑐 2D
𝛾0 𝜌 𝑐 ℎ𝑒 3D

(52)

where 𝛾0 denotes a tuning parameter introduced to match the magnitude of the consistent part (e.g. 𝛾0 = 0.001), whereas ℎ𝑒 represents
he characteristic length of the VE. Note that to guarantee the correct scaling, in two-dimensional cases the factor 𝛾 is set to be
onstant, whereas it depends on the element characteristic length in 3D problems.

The semi-discretized momentum conservation assumes the same form of Eq. (14) where the final stiffness matrix for each VE is
valuated by summing the contribution of the consistent and stabilizing parts, that is 𝑲𝑒 = 𝑲𝑐

𝜇 ,𝑒 +𝑲𝑠
𝑒

However, an additional stabilizing term is required since the LBB condition is not satisfied. In order to avoid the introduction of
urther stabilization techniques, the DPS (already introduced in Section 2.1 for standard PFEM, see Eq. (19)) has also been adopted

for the present VE framework using the projector 𝛱̃𝑝 defined in (18) with reference to triangular and tetrahedral elements. In
he more general case of polygonal or polyhedral VEs, 𝛱̃𝑝 collects the averages of element nodal pressure values, defined at the
lemental level as:

𝛱̃𝑝 = 𝑵̃𝑝𝑷 𝑒 (53)

being 𝑵̃𝑝 the vector having as dimension the number of vertices 𝑛𝑉 and defined as 𝑵̃𝑝 = 1
𝑛𝑉

[1,… , 1].

4.4. Mass matrix

In explicit methods, the mass matrix has to be diagonalized. Among the several available diagonalization techniques, the simplest
row-summing technique is here adopted:

𝑀𝑒,𝑖𝑖 =
∑

𝑗=1
𝑀𝑒,𝑖𝑗 (54)

As stated in [20], the stabilization of the mass matrix is required only when the problem is dominated by the reaction term. Moreover,
hanks to the diagonal structure and the fact that all entries are non-zero, the mass matrix is never singular. Therefore, it is sufficient
o consider the projection part for the evaluation of the mass matrix and no stabilization is needed. The central difference scheme is

also adopted as the time integration of the PVEM. As already pointed out, the conditional stability of the method poses a restriction
on the time-step size, requiring the respect of the CFL condition (27). In the present work, the characteristic length for a VE is
efined as

ℎ3𝐷𝑒 =
6𝑉𝑒
𝐴𝑒𝑥𝑡

ℎ2𝐷𝑒 = 4𝐴
𝑃 𝑒𝑟 (55)

where for the 3D case 𝑉𝑒 represents the VE volume and 𝐴𝑒𝑥𝑡 denotes its total external surface area, while in 2D 𝐴𝑒 is the element
area and 𝑃 𝑒𝑟 its perimeter. The coefficient 6 in Eq. (55) defines the diameter of the sphere inscribed in a tetrahedron. In the case
f a general polyhedron, it is not rigorous but it provides a reasonable estimate of the characteristic length. A similar consideration
olds also for the 2D case.
8 
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Fig. 3. Badly-shaped tetrahedra (slivers).

5. Agglomeration in PVEM

Being the PFEM based on a continuous remeshing process, a fast and efficient mesh generator constitutes the core of the method.
To this purpose, the Delaunay tessellation represents the tool of primary choice. In the 2D version, the algorithm generates triangular
meshes with optimal geometrical properties, such as the minimization of the maximum radius of a triangle circumcircle and the
maximization of the minimum angle among all triangles. However, these optimal properties are not guaranteed in the 3D tessellation
and badly shaped tetrahedra, called slivers, can be generated (see Fig. 3). Slivers are tetrahedra whose four vertices almost lie on the
same plane and their presence impacts the computational performance of the numerical solution. While implicit methods benefit
from their unconditional stability, enabling the use of larger time-step sizes despite the presence of poorly shaped elements, in
explicit time integration schemes the time-step size is limited by the CFL condition (see Eq. (27)). In principle, just one overly
distorted element is sufficient to drastically reduce the stable time-step size.

Mesh optimization techniques have been introduced to circumvent the problems created by badly shaped elements. They can
be classified either as static or dynamic mesh improvements [48]. Static methods are intended to be applied once, at the beginning
of the analysis, to optimize the quality of the initial mesh [48,49]. Dynamic techniques are conceived to maintain a good mesh
quality during the entire analysis through local improvements and mesh regenerations [50]. Among them, the smoothing technique
proposed by Meduri et al. [18] is specifically designed for the PFEM. It consists of the application of two algorithms: the first one
is based on the solution of a fictitious elastic problem with fixed boundary and imposed stress distribution, properly designed to
produce nodal movements that improve the geometric quality of the mesh; the second one consists of geometry-based operations
to solve particular cases in which the first algorithm is ineffective. This technique is very efficient in dealing with slivers inside the
fluid bulk. However, it may still encounter some difficulties in confined regions with fixed geometry, where badly shaped elements
are defined by boundary or interface nodes.

Very recently, Sukumar et al. [42] proposed an alternative technique to remove slivers from the computational mesh. The idea
exploits the possibility of VEM of using elements of arbitrary polyhedral shapes. It consists of merging slivers (or in general badly-
shaped elements) with their neighbouring elements to form a VE characterized by a larger characteristic length. The agglomeration
of badly shaped finite elements represents an efficient technique to increase the critical time-step size in explicit methods.
Agglomeration techniques for VEs have already been used in other contexts, see e.g. [51,52].

5.1. Agglomeration algorithm

Following the idea proposed by Sukumar et al. [42], the present work investigates the agglomeration of distorted linear triangles
(2D, see Fig. 4) and tetrahedra (3D, see Fig. 5) in the PVEM framework to form arbitrary-shaped VEs. The agglomeration process
is performed only in a limited portion of the fluid domain, i.e., only in regions characterized by the presence of poorly shaped
elements. The remaining part of the mesh is formed by regular linear tetrahedra, for which the virtual and finite element formulations
coincide.

The fluid domain 𝛺𝑡 is discretized, at each time instant 𝑡 ∈ [0, 𝑇 ], by a mesh  𝑡 =  (𝑡) composed of linear triangles in 2D or
linear tetrahedral elements in 3D. Within a Lagrangian framework, the mesh  𝑡 evolves in time following the domain 𝛺𝑡. In the
spirit of the PFEM, the connectivities of the mesh  𝑡 change only when the mesh is globally too distorted. At every time step, for
each element, the local stable time step is computed as:

𝛥𝑡𝑛+1𝑒 =

(

ℎ𝑛+1𝑒
𝑐

)

(56)

All the elements 𝑒 with a local stable time-step size lower than a reference value 𝛥𝑡 are grouped in a subset ̄ 𝑡:
𝑡 { 𝑡 }
̄ = ∀𝑒 ∈  ∶ 𝛥𝑡𝑒 < 𝛥𝑡 (57)
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Fig. 4. 2D agglomeration. Distorted 2D elements are agglomerated with their neighbours to form a VE.

Fig. 5. 3D agglomeration. Distorted 3D elements are agglomerated with their neighbours to form a VE.

where 𝛥𝑡 = 𝛽 𝛥𝑡𝑚 and 𝛽 ≤ 1 is a user defined parameter (e.g. 𝛽 = 0.6), which scales the mean stable time-step size 𝛥𝑡𝑚. Elements
belonging to the subset ̄ 𝑡 are considered excessively distorted, hence they have to be agglomerated with one or more neighbours
to form a VE characterized by a larger characteristic length.

Every element 𝑒𝑖 of ̄ 𝑡 is agglomerated with the neighbour element 𝑒𝑗 leading to the agglomerated element 𝑒𝑖𝑗 endowed with
the larger local stable time step. If, after the first agglomeration, the local stable time step is still smaller than 𝛥𝑡, the operation is
repeated, and a new element is agglomerated to the VE 𝑒𝑖𝑗 . This procedure is repeated until the obtained agglomerated VE guarantees
a stable time step larger than 𝛥𝑡. This element agglomeration allows for an effective and straightforward removal of slivers from
the computational mesh, leading to a significant increase in the stable time-step size. The proposed agglomeration technique is
illustrated in Algorithm 1.

It is worth noting that the parameter 𝛽 assumes a pivotal role in the agglomeration process, determining whether a standard
finite element is considered too distorted and, hence, to be agglomerated. As a consequence, a larger number of VEs are generated
if a higher value for 𝛽 is selected. In contrast, when a small value of 𝛽 is chosen, only a few highly distorted elements are involved
in the agglomeration procedure.

The proposed method is particularly efficient in addressing the mesh distortion problem, especially when traditional smoothing
algorithms yield limited improvements. Its main advantages are:

• it does not move the nodes, and therefore it is suitable also for handling slivers with nodes constrained on the boundary;
• it does not require the convection of nodal data from the old to the new mesh since nodes are not moved;
• it does not require the solution of additional equations (as it is the case in standard smoothing methods), thus the increase in

computational cost is minimal;
10 
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Algorithm 1 PVEM agglomeration
Define the reference time-step size 𝛥𝑡 = 𝛽 𝛥𝑡𝑚
Identify the subset ̄ 𝑡 of overly distorted elements with 𝛥𝑡𝑒 < 𝛥𝑡
for every 𝑒𝑖 ∈ ̄ 𝑡 do

Evaluate 𝛥𝑡𝑖 =
ℎ𝑒𝑖
𝑐

while 𝛥𝑡𝑖 < 𝛥𝑡 do
find the neighbour elements of 𝑒𝑖 and list them in the vector 𝑄𝑖
for every 𝑒𝑗 ∈ 𝑄𝑖 do

create a VE 𝑒𝑖𝑗 = 𝑒𝑖 ∪ 𝑒𝑗
compute 𝛥𝑡𝑖𝑗 of the agglomerated VE 𝑒𝑖𝑗

end for
find 𝑒𝑗 so that 𝛥𝑡𝑖𝑗 = max𝑗 𝛥𝑡𝑖𝑗
the VE 𝑒𝑖𝑗 replace 𝑒𝑖 and 𝑒𝑗
if 𝛥𝑡𝑖𝑗 ≥ 𝛥𝑡 then

exit
else

𝑒𝑖 ← 𝑒𝑖𝑗
end if

end while
end for

• the agglomeration is applied only where needed, hence, the created VEs represent only a small portion of the computational
mesh;

• the PFEM is based on continuous remeshing, hence, when a new mesh is created, all the VEs are removed and a mesh of
triangles (or tetrahedra) only is formed again.

6. Numerical examples

In this section, the proposed VEM approach for weakly compressible fluids is tested against an analytical solution. Then, the
PVEM agglomeration technique is applied to both 2D and 3D problems. In all the examples, a Newtonian fluid is considered under
the hypothesis of non-slip conditions at all boundaries.

6.1. Test with analytical solution

To validate the VEM (without remeshing) for weakly compressible fluids formulated in the considered mixed velocity–pressure
framework, the 2D test presented in [53] is here performed. This example consists of a 1 × 1 m square domain containing a

ewtonian fluid (𝜌 = 1 kg/m3, 𝜇 = 1 Pa s, 𝑐 = 3.16 ⋅ 104 m/s) subjected to the following prescribed body forces per unit volume:
𝑏𝑥 =(12 − 24𝑦)𝑥4 + (−24 + 48𝑦)𝑥3 + (12 − 48𝑦 + 72𝑦2 − 48𝑦3)𝑥2 + (−2 + 24𝑦 − 72𝑦2 + 48𝑦3)𝑥 + 1 − 4𝑦 + 12𝑦2 − 8𝑦3
𝑏𝑦 =(8 − 48𝑦 + 48𝑦2)𝑥3 + (−12 + 72𝑦 − 72𝑦2)𝑥2 + (4 − 24𝑦 + 48𝑦2 − 48𝑦3 + 24𝑦4)𝑥 − 12𝑦2 + 24𝑦3 − 12𝑦4 (58)

Under the given body forces, the solutions for horizontal, and vertical velocities, as well as pressure (𝑣𝑥, 𝑣𝑦, 𝑝, respectively) at the
steady state can be analytically obtained:

𝑣𝑥(𝑥, 𝑦) = 𝑥2(1 − 𝑥)2(2𝑦 − 6𝑦2 + 4𝑦3)
𝑣𝑦(𝑥, 𝑦) = −𝑦2(1 − 𝑦)2(2𝑥 − 6𝑥2 + 4𝑥3)
𝑝(𝑥, 𝑦) = 𝑥(1 − 𝑥)

(59)

Three VE meshes are considered: (i) a mesh of quadrilateral elements, (ii) a mesh of hexagonal elements and (iii) a mesh
f Voronoi elements. Velocity magnitude and pressure contour plots at the steady state (reached after approximately 0.1 s) are
llustrated in Figs. 6 and 7 with the computational meshes. The steady-state numerical solutions along the domain midlines obtained
ith the three different meshes are compared to the analytical values in Fig. 8, showing a perfect agreement for both pressure and

velocity fields.
Finally, a convergence analysis has been performed for five different quadrilateral meshes with mean sizes of 0.2, 0.1, 0.05, 0.025

and 0.01 m, leading to 36, 121, 441, 1681 and 10 201 nodes, respectively. The velocity error has been measured with a normalized 𝐿2

orm:

‖𝑣 − 𝑣ℎ‖
‖𝑣‖

=

√

∫𝛺(𝑣 − 𝑣ℎ)2𝑑 𝛺
√

2
∫𝛺 𝑣 𝑑 𝛺
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Fig. 6. Test with analytical solutions. Velocity contour plots at steady state for three different meshes.

Fig. 7. Test with analytical solutions. Pressure contour plots at steady state for three different meshes.

where 𝑣 and 𝑣ℎ are the exact and numerical solutions of the considered variable. The convergence analysis is reported in Fig. 9,
where the error measures at 𝑡 = 0.1 s are depicted for horizontal and vertical velocities (denoted as 𝑣𝑥, 𝑣𝑦, respectively).

6.2. 2D sloshing

The two-dimensional sloshing test proposed in [54] is used to test the PVEM agglomeration technique. The example consists of
a fixed rigid tank containing an inviscid Newtonian fluid characterized by the density 𝜌 = 1000 kg/m3, wave speed 𝑐 = 350 m/s
and bulk modulus 𝐾𝑓 = 1.23 ⋅ 108 Pa. The fluid configuration at 𝑡 = 0 s is illustrated in Fig. 10 where the initial profile of the free
surface, denoted as 𝐻(𝑥), is defined according to the following expression:

𝐻(𝑥, 𝑡 = 0) = 𝐴 − 𝑎 𝑐 𝑜𝑠[𝑘(𝑥 + 𝜆∕2)] (60)

where the constant 𝐴 is set to 𝐴 = 1 m, the wave amplitude 𝑎 is taken as 𝑎 = 0.1 A, the wave length is set to 𝜆 = 2 m and 𝑘 = 2𝜋∕𝜆.
The computational domain has been discretized with nearly 6000 nodes and approximately 11 000 elements. A comparison

between the exact solution proposed in [54] and the numerical ones for the vertical position in time at the midpoint 𝑃 (see Fig. 10) is
shown in Fig. 11a. The problem has been analysed with both the PVEM agglomeration and the standard Lagrangian PFEM (denoted
as PVEM and PFEM 2D in Fig. 11, respectively). The two approaches show good agreement with the analytical and reference
solutions in [54].

Fig. 11b shows the stable time-step size obtained with standard PFEM and with the proposed agglomeration technique with the
scaling factor 𝛽 = 0.6. A significant increment of stable time-step size can be observed, proving the effectiveness of the proposed
technique also in a 2D setting. Moreover, an almost constant stable time-step size, independent of the mesh evolution, can be
observed in Fig. 11b. The minimum and average time-step values for both methods are reported in Table 1. It can be observed that
12 
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Fig. 8. Test with analytical solutions. Horizontal, vertical velocities and pressure at steady state along the domain midlines 𝑥 = 0.5 m and 𝑦 = 0.5 m.

Fig. 9. Test with analytical solutions. Convergence graphs at steady state for quadrilateral mesh with different sizes.

Table 1
2D sloshing. Comparison of minimum and average time-step sizes.
Time-step size value Minimum [s] Average [s]
PVEM 2D 3.04 ⋅ 10−5 3.06 ⋅ 10−5

PFEM 2D 2.55 ⋅ 10−6 1.38 ⋅ 10−5

in this case, the agglomeration technique guarantees a minimum stable time step one order of magnitude larger than the standard
technique. In this example, small fluid movements are expected in the lower portion of the domain. Therefore, as shown in Fig. 12,
the agglomeration is performed only in correspondence with the free surface, creating only a few VEs (approximately 0.2% over
he total number of elements).
13 
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Fig. 10. 2D sloshing. Fluid configuration at 𝑡 = 0 s.

Fig. 11. 2D sloshing. Comparison of vertical position evolution at midpoint P (a) and variation of time-step size (b) obtained using different methods.

Fig. 12. 2D sloshing. Pressure contour plots and meshes at different times. Meshes composed of standard PFEM elements (triangles) and VEs (grey polygons).
14 
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Fig. 13. 3D Dam break. Fluid and geometrical parameters of the problem.

Fig. 14. 3D dam break. Variation of the time-step increment in the PVEM approach, standard PFEM with and without smoothing.

Table 2
3D dam break. Comparison of minimum and average time-step increment values.
Time-step size value Minimum [s] Average [s]
PVEM 1.27 ⋅ 10−6 1.33 ⋅ 10−6

PFEM-Smoothing 1.06 ⋅ 10−7 3.34 ⋅ 10−7

PFEM-NoSmoothing 1.69 ⋅ 10−10 1.61 ⋅ 10−8

6.3. 3D dam break

The PVEM agglomeration technique is tested on the classical three-dimensional dam break problem. It consists of a column of
 Newtonian fluid kept on the left of a container by a vertical barrier. The geometry is depicted in Fig. 13. At the beginning of the

analysis, the barrier is instantaneously removed leaving to the fluid the possibility to flow under the effect of gravity.
The problem has been analysed with a mesh of about 40𝑘 nodes, forming approximately 104𝑘 elements. The evolution of the

ime-step sizes obtained from the PFEM with agglomeration (i.e., PVEM), standard PFEM with the smoothing technique proposed
n [18] and standard PFEM without smoothing (denoted as PVEM, PFEM-Smoothing and PFEM-NoSmoothing, respectively) are

shown in Fig. 14. In this test, the scaling parameter has been set to 𝛽 = 0.4. The graph shows how the PVEM agglomeration technique
guarantees an almost constant and significantly higher value of the stable time-step size. Moreover, in Table 2 the minimum and
average time-step values are reported. It can be observed that the minimum stable time step is one order of magnitude larger
than the one obtained with the smoothing technique and four orders of magnitude larger than using Delaunay tessellation only.
This substantial improvement in the stable time-step size leads to a remarkable reduction in the total computational cost: the PVEM
approach simulated the test in 4 h, compared to the 14 h required by the solver using the previous smoothing method (test performed
on a standard workstation with 8 computing cores).

As mentioned, the PVEM technique is applied to a limited portion of the fluid domain, where badly shaped tetrahedra are
ncountered. Therefore, the created VEs represent a small portion of the computational mesh. This is confirmed in Fig. 15 where
15 
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Fig. 15. 3D dam break. Evolution of number of VEs with respect to total number of elements in PVEM.

Fig. 16. 3D dam break. Time evolution of non-dimensional wave front position.

the variation of the VEs percentage and the total number of elements are reported. The number of VEs ranges from 1% to a maximum
of 6%.

The numerical results, in terms of non-dimensional wavefront position, are compared to the reference values [55–57] in Fig. 16.
Good agreement is achieved between the different numerical results, and in particular between the PVEM and the standard PFEM
D. Despite the overall good accuracy, a small discrepancy between experimental and numerical results can be observed, showing
 faster wavefront advancement in the latter ones. This could be caused by the instantaneous removal of the vertical wall at the
eginning of the simulation, whereas a small but finite time is required for the removal in the experiment. Finally, Fig. 17 illustrates

snapshots of the PVEM simulation compared to the experimental results presented in [55] at synchronized time steps, showing a
good qualitative agreement.

6.4. Spherical water drop falling into a cylindrical tank

A spherical water drop falling into a cylindrical tank containing water at rest is considered (see [58]). The falling droplet collides
with the tank water, merging into it after the impact. The fluid properties and geometry of the problem are reported in Fig. 18.

The fluid domain has been discretized with 104𝑘 nodes and approximately 535𝑘 elements. The time-step sizes obtained from the
roposed agglomeration technique (with the scaling parameter 𝛽 = 0.4), standard PFEM with and without smoothing [18] (PVEM,

PFEM-Smoothing, and PFEM-NoSmoothing, respectively) are shown in Fig. 19. To prove the effectiveness of the PVEM agglomeration
in the removal of overly distorted elements, Table 3 reports the minimum and average time-step values for the three cases. As can
be observed, the aggregation allows for a notable increase in the time-step size, leading to a significant reduction in the overall
omputational burden. Also in this case, the substantial increase of the stable time-step size leads to a significant reduction in the

total computational cost: the PVEM simulated the test in 6 h, compared to the 14 h required by the solver employing the previous
smoothing method.
16 
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Fig. 17. 3D dam break. Comparison between snapshots of PVEM simulation at different time steps and corresponding experimental results [55]. Blue elements
relate to FEM and grey elements to VEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 18. Water drop. Fluid and geometrical parameters of the problem.
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Fig. 19. Water drop. Time-step variation in PVEM and standard PFEM 3D with and without smoothing.

Table 3
Water drop. Comparison of minimum and average time-step values.
Time-step size value Minimum [s] Average [s]
PVEM 4.81 ⋅ 10−6 5.17 ⋅ 10−6

PFEM-Smoothing 7.73 ⋅ 10−7 1.47 ⋅ 10−6

PFEM-NoSmoothing 1.23 ⋅ 10−9 2.41 ⋅ 10−8

Fig. 20. Water drop. Evolution of number of VEs with respect to total number of elements in PVEM.

Fig. 20 shows the variation of the VEs percentage and the evolution of the total number of elements during the analysis. For
a qualitative comparison between the numerical results, Fig. 21 depicts snapshots of the PVEM simulation at different time steps,
showing good agreements with those provided in [58].

7. Conclusions

The Particle Finite Element Method (PFEM) is a mesh-based Lagrangian finite element method (FEM) particularly suited for fluid
problems involving free-surface flows and breaking waves. However, a computationally effective application of the method in 3D
roblems using an explicit solver is challenging due to the presence of sliver elements created by the runtime remeshing process.
hen an explicit time integration scheme is adopted, a good mesh quality, with elements of homogeneous size, is fundamental to

achieving an acceptable stable time-step size.
In this work, we demonstrated how the VEM can be conveniently utilized to significantly enhance the mesh quality in PFEM

xplicit dynamic analyses. Combining PFEM and VEM allows the removal of slivers by merging them with one or more neighbouring
lements, thereby forming a bigger virtual element characterized by a larger critical time-step size. This technique represents a

natural and efficient alternative to mesh-smoothing operations, which are in general computationally expensive and may lead to
limited mesh improvements, especially when dealing with slivers that have nodes constrained on the boundary. Furthermore, the
18 
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Fig. 21. Water drop. Comparison between the PVEM simulation snapshots at different time steps and the corresponding reference results [58]. Blue elements
relate to FEM and grey elements to VEM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

proposed mesh improvement is executed exclusively in the localized regions of the mesh where severely distorted elements are
present. Virtual elements obtained by merging a badly-shaped element with one or more neighbours are therefore introduced only
locally, representing only a small portion of the total mesh. The method, developed through the combination of PFEM with the
VEM agglomeration, has been called PVEM. Compared to the standard PFEM, the PVEM enables a notable reduction in the overall
computational workload by allowing for substantially larger time steps.

The proposed PVEM is based on a mixed velocity–pressure VEM formulation for weakly compressible fluids. Standard techniques
have been implemented to stabilize the virtual elements and to rectify the violations of the LBB condition caused by the chosen
pressure model. These efforts result in a stable and robust formulation for the explicit dynamics of weakly compressible fluids within
a Lagrangian setting.

The proposed approach has been validated on 2D and 3D numerical tests. In all the examples, comparisons of the numerical
results with reference solutions have consistently demonstrated excellent agreement. Compared to standard PFEM without mesh
smoothing, adopting the PVEM technique has enabled an increase in time-step sizes of up to three orders of magnitude.

The PVEM formulation has been designed to increase the stable time-step size in explicit analyses. However, improving mesh
quality can also have a positive impact on implicit analyses. By eliminating sliver elements through the proposed agglomeration
technique, results accuracy will be enhanced, as typically expected in standard FEM-based solvers, and improves the conditioning of
the linear systems, making facilitating their solution and reducing the computational burden. Furthermore, in the PFEM framework,
agglomerating poor-quality elements with neighbouring ones may reduce the need for frequent remeshing via Delaunay tessellation,
with additional computational savings. A detailed study of the effect of the agglomeration technique in an implicit framework,
represents a natural development of the present work, to be pursued in a future study.
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