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Mechanical properties of the wood have great impact on the design of musical instruments. As a mat-
ter of fact, luthiers accurately select tonewoods according to some desired elastic features. Typically,
their choices are based on the longitudinal wave speed. In order to avoid direct parameter estimation
techniques which can bring wood specimens to rupture, either empirical rules of thumb or expen-
sive equipment with high sampling frequency are customarily employed. In this paper we propose a
methodology for speed estimation starting from impulse responses acquired by accelerometers placed
at the block edges. The technique relies on the definition of the Delay And Sum (DAS) beamformer,
where instead of steering the beamformer to different Directions of Arrival (DOAs), we evaluate the
filter output varying the wave speed. The proposed method is non-invasive, low-cost and it requires
only basic expertise on hammer testing. We assessed the accuracy of the estimation using both simu-
lated signals and measures on actual tonewoods. We compared the resulting performance with that of
another state-of-the-art technique working at the same sampling frequency and with the same setup.
Results show the effectiveness of the beamformer also in the case of low sampling frequency and high
speeds.

Keywords: material properties estimation, speed measurement, beamforming, tonewood, matched
field processing

1. Introduction

The analysis of the mechanical parameters of materials represents a relevant study in the field of
musical acoustics and, in particular, in acoustic instrument building. As a matter of fact, the dynamic
behavior, and consequently the generated sound of musical instruments [1, 2, 3, 4], is driven also by
relevant mechanical parameters of the wood. For example, the Young’s modulus of a wood piece can
be directly estimated by means of tensile test [5, 6, 7], or indirectly from the longitudinal wave speed
i.e., waves travelling along the wood grains. The latter procedure is preferred, since differently from the
tensile test, the estimation of the wave speed is easily repeatable and not destructive.

In general, the problem of the estimation of the wave speed in a medium has been solved through
the so-called matched field processing in different domains e.g., microphone array processing [8, 9, 10],
underwater acoustics [11, 12, 13, 14] and seismology [15].

As regards makers, two main techniques are commonly adopted for the estimation of the longitudinal
wave speed. Traditionally, luthiers estimate the longitudinal wave speed in tonewood through a procedure
known as tap tone [16]. This technique computes the wave speed from the resonance frequency of the
wood piece under the assumption that the specimen can be described as a bar. Therefore, the tap tone
requires great skills in order to estimate the resonance frequency by tapping the wood piece manually.

1



x

z
y

F (t, r′)

Lx

Ly
Lz

• •

Figure 1: Geometrical representation of a tonewood plate with axial load F (t, r′) and sensors placed at
marked locations.

As an alternative, the Time Of Flight (TOF) estimation [17, 18] has been widely adopted among
luthiers. In this case, the wave speed is computed from the measurement of the time required by an
impulsive wave to travel between the endpoints of the wood piece. With the TOF estimation, no specific
skills are required, at the cost of adopting expensive instrumentation. As a matter of fact, in order to
correctly measure the TOF, ultrasound sampling rate is required due to the high speeds characterizing the
medium. A second drawback of the TOF technique concerns its sensitivity to measurement errors since
the estimation is limited to the direct wave.

Recently, in order to overcome the main limitations of the aforementioned techniques, a novel method-
ology for the wave speed estimation has been presented in [19]. Differently from the TOF estimate, the
analysis of the signals has been extended from the direct wave to a larger portion of the impulse response.
Therefore, [19] allows to work with accelerometers in the audio bandwidth. The wave speed is estimated
in a practical rake receiver approach [20], where only a limited number of reflections is considered; this
leaves room for improvement towards techniques employing the whole signals.

In this paper, we introduce a beamformer-based technique for the estimation of the longitudinal wave
speed in tonewood. Beamforming is a well-known operation in sensor array processing [21]. It can
be thought as a spatial filtering operation where the filter is designed in order to obtain a “bandpass”
response for a target direction of arrival, also known as spatial frequency. Therefore, beamforming is
typically employed for estimating the direction of arrival of sources or the extraction of the signal thereof
[21, 22, 23]. Here, we show how the problem of estimating the longitudinal wave speed can be rephrased
in terms of a beamforming operation, processing the signals acquired by a impact hammer test on the
wood piece. Since the setup used in this work is akin to the one in [19], the performance of the proposed
technique is assessed through a comparison with the rake receiver method. Such comparison is devised
using both synthetic and measured data.

The rest of the paper is organized as follows. In Sec. 2 an interpretation of the signals observed
is given. In Sec. 3 we present the proposed beamformer-based solution for the longitudinal wave speed
estimation. In Sec. 4 we validate the proposed technique by means of both simulations and measurements
performed on actual wood pieces. Finally, Sec. 5 draws some conclusions.

2. Problem Formulation

Let us consider a wooden plate with length Lx and constant cross-section A = Ly × Lz, where Ly
and Lz represent the tonewood dimensions along the y and z axes, respectively. Fig. 1 shows a visual
representation of the aforementioned shape. Data are acquired with N = 2 accelerometers placed one
at each of the two sides orthogonal to the x axis, thus located at points rn = [xn, yn, zn]T such that
xn = {0, Lx}, yn = y′, zn = z′,∀n = 1, . . . , N . To excite the system, an axial load F (t, r′) is
applied, where r′ = [0, y′, z′]T . The application of loads in solids leads to the generation of elastic waves
propagating through the material [24]. Three types of waves can be identified, namely longitudinal,
transverse and bending, according to the direction in which the displacement of particles is observed.
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Assuming the setup presented, only longitudinal displacement is expected to be measured by sensors.
Therefore, the system vibration can be modelled by means of the one-dimensional longitudinal wave
equation, i.e.

∂2u(t, x)

∂t2
= c2∂

2u(t, x)

∂x2
, (1)

where u(t, x) represents the axial displacement of the specimen, either an elongation or a contraction,
and c is the longitudinal wave speed.

In general, the solution to Eq. (1) can be modelled as the convolution between the source signal given
by the axial load and the system response. A generalized solution in the frequency domain is

S(ω, rn) = H(ω, r′, rn)Γ(ω, r′) +B(ω, rn), (2)

where Γ(ω, r′) is the source signal, H(ω, r′, rn) is the Transfer Function (TF) of the block between
r′ and rn and B(ω, rn) represents additive white noise at the nth sensor. The TF takes into account
the direct path and the reflections at the block boundaries, thus the acquired signals can be seen as the
combination of attenuated and delayed replicas of Γ(ω, r′), whose delays depend only on speed c. The
longitudinal speed c is a good estimator for assessing the elasticity of a tonewood block, since it can be
expressed in terms of specific coefficients belonging to its material elasticity tensor [3]. In particular,
when considering thin plates, a slight expansion along the direction orthogonal to the wavefront occurs
performing a local alteration of the stiffness and leading to

c =

√
E

ρ(1− ν2)
, (3)

where E, ν and ρ are the Young’s modulus, the Poisson’s ratio and the density of the material, respec-
tively.

3. Beamformer-based wave speed estimator

In this manuscript, we propose to modelH(·) in Eq. (2) as the steering vector of a classical Delay And
Sum (DAS) beamformer [21], assuming the aligned sensors in the setup considered as a linear uniform
array. Moreover, since the direction of the plane wave is known and fixed along the longitudinal axis, the
beamformer definition can be evaluated assuming the wave speed as the parameter to estimate.

Let us consider a scenario where a narrowband source with carrier frequency ω and N > 1 sensors
with flat response are located over a 2D space. Assuming far-field and homogeneous propagation through
the medium [25, 26], Eq. (2) can be rephrased in matrix form as

s(ω) = a(c)Γ(ω) + b(ω), (4)

where s ∈ CN×1 is the vector of the signals Eq. (2), b ∈ CN×1 represents the noise component for the N
sensors and a(c) ∈ CN×1 is the propagation vector modelling the delays applied on a plane wave when
approaching each sensor.

In the case of a linear array of uniformly spaced sensors with spacing d (see Fig. 2(a)), each element
of the propagation vector a(c) can be defined as [21]

[a(c)]n = e−j
ωd sin θ

c
(n−1) = e−jFs(n−1), n = 1, . . . , N, (5)

where Fs is the so-called spatial frequency, namely

Fs ,
ωd sin θ

c
, (6)
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Figure 2: Linear uniform sensor array according to the proposed setup (a) and example of pseudospec-
trum P̂ (c̄) generated through simulations and averaged over multiple temporal frequencies ω (b). In the
setup proposed,N = 2 sensors are placed one at each specimen edge, with spacing d = Lx. According to
the array reference system with axes x̃ (y = y′) and ỹ (x = Lx/2), the plane wave has direction θ = π/2.
The desired longitudinal speed c̄∗ can be estimated from P̂ (c̄) as the location of its maximum.

with θ ∈ {−π
2
, π

2
} the direction of propagation of the plane wave and c the wave speed. Intuitively, we

can interpret the sensor array setup as a spatial sampling of the waves in Eq. (5) that corresponds to a
spatial frequency representation in Eq. (6). According to the setup proposed in Section 2 and depicted in
Fig. 2(a), the geometric parameters characterizing ωs in Eq. (6) are known and fixed (θ = π

2
and d = Lx,

respectively), thus leading to

Fs =
ωLx
c
, (7)

where Fs is expressed as a function of the unknown longitudinal wave speed c.
Given the signals s in Eq. (4), the DAS beamformer can be seen as a spatial filter whose weights

h(c) ∈ CN×1 are searched within the parameter space of velocity candidates in order to maximize the
output signal power in correspondence of a target value c̄. The corresponding optimization problem can
be formulated as [21]

arg min
h

E{|hHs|2} (8a)

subject to hH(c̄)a(c̄) = 1, (8b)

where p = hHs is the filtered signal. Assuming that the signal is spatially white, i.e. ssT = IN with IN
the N ×N identity matrix, the solution to Eq. (8a) leads to the optimal filter

h(c̄) =
a(c̄)

N
. (9)

Once the filter is defined, the desired longitudinal wave speed c̄∗ can be estimated by evaluating the
so-called pseudospectrum of the beamformer, defined as

P (c̄) = E{|p(c̄)|2} =
aH(c̄)a(c̄)

N2
, such that c̄∗ = arg max

c̄
P (c̄). (10)

In practice, we evaluate the pseudospectrum in Eq. (10) for a set of candidate velocities within a
range [cmin, cmax] defined accordingly to the material under analysis. It is worth noticing that both the
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signal in Eq. (2) and the beamforming in Eq. (5) assume a narrowband source signal, thus a fixed value of
the temporal frequency ω. However, the spatial frequency domain can be extended for wider frequency
intervals so that the Nyquist theorem is satisfied. In particular, since the motion of the longitudinal
waves implies bouncing at the plate edges, temporal frequencies ω are selected in order to consider only
wavelengths compatible to the block length, such that

ω

c
=

π

Lx
, with c ∈ [cmin, cmax]. (11)

Given the evaluation of the pseudospectrum over a set of K temporal frequencies P (c̄, ωk), an aver-
aged indicator P̂ (c̄) can thus be devised to increase the robustness of the estimate, namely

P̂ (c̄) =
1

K

K∑
k=1

P (c̄, ωk). (12)

Fig. 2(b) shows an example of P̂ (c̄) where the maximum and the corresponding optimal speed c̄∗ are
highlighted.

4. Validation

We tested the beamformer-based speed estimation both on simulated signals and data measured from
actual tonewood specimens. The first case study is analyzed with the aim to assess the accuracy of
the results knowing the target values. The second experiment presents the application of the proposed
method on a real case scenario to evaluate the variability of the estimates when obtained from multiple
independent acquisitions. The performance of the beamformer is compared to that of the rake receiver
technique [19].

A pre-processing step has been devised on input signals to improve the signal-to-noise ratio [27, 28],
similarly to [19]. Simulations, pre-processing and estimation have been implemented in MATLAB.

4.1 Simulations

We have simulated several blocks of homogeneous isotropic material with rectangular cross-section,
variable length Lx ∈ [0.5, 1]m, width Ly = 0.15 m and thickness Lz = 0.03 m. A set of aligned impulse
responses have been generated for each solid using the image source method [29, 30] to include multiple
reflections. The wave speed has been varied within the range c ∈ [1000, 8000]m/s with a step equal
to 500 m/s and the signals obtained have been sampled at a sampling frequency equal to 22.05 kHz.
Gaussian white noise has been added to model a signal-to-noise ratio equal to 60 dB. The estimation
accuracy has been evaluated in terms of the relative error

εrel(c) =

∣∣∣∣c− c̄∗c

∣∣∣∣ , (13)

where c is the actual longitudinal speed used during simulations and c̄∗ is the corresponding prediction
computed in (10).

Fig. 3 shows a comparison between the values of Eq. (13) obtained in a rake receiver fashion (Fig. 3(a))
and using the beamformer (Fig. 3(b)) for all the pairs (Lx, c) considered. In general, the proposed method
outperforms the competitor with εrel ≤ 0.016 (1.6 %) against the 5 % upper bound encountered in [19].
In particular, better estimations are provided with high velocities (4000 − 7000 m/s) and small lengths
(0.5− 0.65 m), which are reasonable values for actual tonewood blocks.
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Figure 3: Relative error of the estimation with respect to expected speed in simulated data. Comparison
between rake receiver-based (a) and proposed (b) techniques, varying the specimen length Lx and the
groundtruth c.

Inspecting Fig. 3(b), a slight worsening in the beamformer performance can be noticed for increasing
values of c. This behavior is expected, since the elements of the steering vector in Eq. (9) will tend to 1,
thus lowering the beamformer resolution capability. Although this can result in poorer predictions when
considering higher speed intervals, results are good in the range of interest for tonewood blocks.

4.2 Measurements

The responses of W = 8 rectangular spruce thin plates have been measured by means of impact
hammer testing. During the measurements, each specimen was suspended using rubber bands in order
to simulate free boundary conditions at its edges. Wood specimens are grouped in pairs, each belonging
to the same tree and thus sharing similar elastic properties. All the specimens are characterized by the
same shape, with Lx = 0.45 m, Ly = 0.19 m and Lz = 0.003 m. We have acquired a total of 5 impulse
responses for each wood block using a dynamometric impact hammer with light tip (086E80) and N = 2
uniaxial accelerometers (352A72) by PCB Piezotronics. Fig. 4(a) presents some of the signals acquired.
Signals have been sampled with sampling frequency equal to 48 kHz.

We have applied both the rake receiver-based technique and beamforming on single acquisitions and
we have assessed the robustness of the two estimators by analyzing the mean and the standard deviation
of the estimated speeds obtained for each wooden specimen.

Results are depicted in Fig. 4(b). It can be observed that all the predictions range between 5000 m/s
and 6000 m/s, which is in accordance with the values reported in the literature for spruce cuts selected
by makers. In general, wood blocks taken from the same tree show similar estimated values for the
longitudinal wave speed, except for specimens 3a and 3b where the rake receiver-based estimator shows
a 400 m/s difference and specimens 4a and 4b where the beamformer predictions differ by an amount of
300 m/s. It is noteworthy that the beamformer estimation is characterized by lower values of the standard
deviation, reaching a maximum of 1 % in the worst case, compared to a maximum of 7 % observed for
the competitor and thus proving to be a more reliable estimator.
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Figure 4: Speed estimation on actual rectangular plates made of spruce. Plates from the same tree belong
to the same pair. Examples of raw signals and the associated pseudospectrum (a) are reported along with
mean and standard deviation of the estimates using the rake receiver method, in blue, and the beamformer,
in red (b). A red line denotes a typical value of c estimated using Eq. (3) and spruce properties in [31].

5. Conclusions

This manuscript presents a modified version of a classical Delay And Sum Beamformer for the esti-
mation of the longitudinal wave speed in tonewoods. The proposed method performs spatial filtering on
a set of impulse responses measured by means of impact hammer testing, modelling the accelerometers
aligned along the longitudinal axis of the wood block as a linear uniform sensor array.

The accuracy of the technique has been assessed using synthetic data, for which the actual longitu-
dinal speed was known, and compared with another state-of-the-art method working with same setup
and sampling frequency. The beamformer showed comparable results with respect to the competitor for
low speeds while an improved estimation can be observed when considering higher values, in particular
within the range of interest for tonewoods. Moreover, we tested both the techniques on a set of 8 rect-
angular spruce plates to evaluate the robustness of the estimators over multiple acquisitions. Both the
methods gave coherent results, with the beamformer showing a better performance in terms of standard
deviation. In general, the application of beamforming on the proposed data model led to promising re-
sults, which can be further improved in terms of resolution by investigating more advanced algorithms.
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