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Modelling the Global Price of Oil:  
Is there any Role for the Oil Futures-spot Spread?

Daniele Valentia

abstract

This paper illustrates the main benefits of accounting for the oil futures-spot spread 
in a Structural Vector Autoregressive model of the international market for crude 
oil. To this end, we replace the proxy for global above-ground crude oil invento-
ries with the spread, which is derived by Brent crude futures prices with maturity 
3-months. This model can be motivated on the basis of several economic consid-
erations. First, the spread exploits the price discovery role in the crude oil futures 
markets. Second, the spread-based model alongside a proper set of identifying 
assumptions accounts for the presence of informational frictions and it allows for 
the feedback effect from futures to spot markets. Finally, the inventory proxy is 
affected by measurement error. The dynamic response functions show a positive 
relationship between the spread and the real price of oil, triggered by speculative 
shocks to financial markets. Moreover, this study provides a clear picture of the 
historical dynamic of the real price of oil and the spread during some of the exog-
enous events in the oil markets.
Keywords: Crude oil, Futures-spot price spread, Sign-restricted SVAR models, 
Oil price speculation
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1. INTRODUCTION

This paper investigates the main economic and financial drivers of the real price of oil and 
it relates to the strand of the literature explaining oil prices by supply and demand shocks. The em-
pirical approach is based on a revised version of the Structural Vector Autoregressive (SVAR) model 
developed by Kilian and Murphy (2014).

Our main idea is to retrieve the forward-looking expectations of oil traders by replacing 
a physical proxy for global above-ground crude oil inventories with the oil futures-spot spread 
(henceforth, spread). In this work, the spread is defined as the ratio of oil futures prices over the rela-
tive oil spot prices minus one and the free-risk interest rate, after accounting for the time to maturity 
of the futures contract. According to the theory of competitive storage, the spread is a proxy for the 
net-convenience yield of oil stocks, although expressed with an opposite sign.1 Therefore the spread 

1. The spread with maturity h-months can be computed as follows: ( )
1
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tf  denote the spot 
and the futures prices of crude oil for delivery at time h, respectively. Moreover, ,t hr  is the nominal free-risk interest rate earned 
between period t and t h+ . According to the theory of storage, , , ,=t h h t h t hs k ψ ψ− −  where hk  is the per-unit cost of physical 
storage and ,t hψ  is the marginal net-convenience yield. The former can be considered constant (see Kaldor, 1939;  Fama E., 
1987). The latter is a net-convenience yield and it can be seen a decreasing and possibly nonlinear function of inventories (see 
Gorton et al., 2013).
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accounts for a stream of implicit benefits to the holder of the commodity inventory during periods of 
oil market stress and it is highly informative about the slope of the term structure of the oil futures 
curve. The latter provides intertemporal price signals for all traders participating to the financial and 
the physical markets for crude oil.

Relative to the existent literature on modelling the real price of oil, our analysis provides 
three main contributions.

First, our study proposes a spread-based SVAR model of the international market for crude 
oil. The spread is derived by crude oil Brent futures prices with maturity 3-months, since about 
two-thirds of oil purchases at world level use Brent as a reference price. This suggests that the Brent 
market is exposed to worldwide oil price shocks and it represents a natural choice for examining the 
dynamics of the convenience yield at the global level. Moreover, the time to maturity of the spread 
plays a crucial role in the economic properties of the SVAR model since it contains information 
about short-term and long-term convenience yields, respectively. Thus, the short-maturity spread 
reflects the perceived relative importance of the amount of inventory that is available in the near 
future (see Alquist et al., 2014). In contrast, the long-maturity spread is less sensitive to oil price 
shocks, consistent with the view that consumers and producers have more time to make consump-
tion decisions and adjust production in the long period (see Lee and Zeng, 2011).

In our analysis, the benefits of using the spread as a measure of market expectations can 
be motivated on the basis of several economic considerations. First, the spread exploits the price 
discovery role in the crude oil futures markets. Second, the spread allows for a feedback effect from 
futures to spot markets and it accounts for the presence of informational frictions faced by the mar-
ket participants (see Singleton, 2014;  van Huellen, 2020). Third, the proxy for global above-ground 
crude oil inventories is affected by measurement error (see Baumeister and Hamilton, 2019). Our 
model provides empirical evidence that the spread responds to oil price shocks differently, depend-
ing on the economic motivations behind each shock. On average, oil supply disruptions and positive 
shocks to global business cycle cause a large and persistent drop in the spread, consistent with the 
fact that inventories are used for consumption and production smoothing, respectively. Conversely, 
shocks to the demand for storage driven by fears of production shortage cause a small decline in the 
spread. Therefore, we document a negative relationship between the impact responses of the price 
of oil and the spread to global oil market-driven shocks.

Second, our work provides fresh evidence on how the spread-based model helps to identify 
the speculative component of the real price of oil triggered by the oil futures markets. Therefore, the 
empirical approach used in our paper allows us to provide an economic interpretation of the residual 
structural shock, namely the financial market shock. The latter implies that an unanticipated rise in 
the spread might be interpreted as a market signal of higher future oil spot prices. In this context, oil 
producers have the incentive to defer production, causing the spot price of oil to rise. This last type 
of shock induces an increase in the demand for below-ground crude oil inventories because the spot 
price of oil is expected to rise.

It is also important to highlight that, in presence of asymmetric information, the specula-
tive activities in the futures markets can drive up the spot price of oil without necessarily reducing 
the aggregate consumption and boosting inventories, as discussed by Sockin and Xiong (2015). 
The temporary distortion between spread and inventories is a function of the elasticity of arbitrage, 
which in turn depends on physical and financial constraints faced by the arbitrageurs (see Eder-
ington et al., 2020; Acharya et al., 2013;  Etula, 2013).

Third, our study provides a clear picture of the historical dynamic of the real price of 
oil and the spread. To illustrate this point, we focus on four exogenous events in global crude oil 
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markets: the 1990–1991 Persian Gulf War, the 2003–2008 oil price surge, the 2008–2009 global 
financial crisis and the 2014–2016 oil price slump.

The rest of the paper is organized as follows. The next section provides a review of the rel-
evant literature. Section 3 discusses the economic motivations, which support the use of the spread 
in the SVAR models. Section 4 describes the data. Section 5 illustrates the econometric approach. 
Empirical results are presented in Sections 6. Finally, Section 7 concludes.

2. LITERATURE REVIEW

The traditional literature explaining oil prices by supply and demand shocks is vast, see 
for example Kilian (2009), Kilian and Murphy (2012), Baumeister and Peersman (2013) and Lut-
kepohl and Netsunajev (2014). Previous studies rely on a different set of identifying assumptions 
of SVAR models of the global market for crude oil. In these works, the oil demand shocks play the 
most important role in accounting for the historical oil price movements. However, given the lack 
of a forward-looking measure in the set of endogenous variables, these models cannot identify the 
speculative component of the real price of oil. Kilian and Murphy (2014) contribute to the issue of 
a measure of traders’ expectations by proposing a proxy for global crude oil inventories above the 
ground.2 The latter is designed to capture the expected demand and supply conditions that are not 
contained in the past data available to the econometrician. Therefore, the crude oil inventory plays a 
crucial role in the identification of the speculative component of the real price of oil.

The SVAR model proposed by Kilian and Murphy (2014) shows that shocks to the aggre-
gate demand (likely driven by a strong growth in the economy) were the main factors in driving up 
the real price of oil, from early 2003 until mid-2008. These results are robust to changes in the proxy 
for global above-ground crude oil inventories, as discussed by Kilian and Lee (2014). Moreover, 
Herrera and Rangaraju (2020) show that the dynamic effect of oil supply shocks on the real price 
of oil is mainly related to the methodology for the identification of the structural shocks and the 
bounds of the implied price elasticities of oil demand and oil supply. Finally, Zhou (2019) proposes 
a refined version of the inventory-based detection strategy, developed by Kilian and Murphy (2014). 
The identification of the structural shocks is obtained by means of the narrative sign restrictions, as 
discussed by Antolín-Díaz and Rubio-Ramírez (2018).

In contrast to previous studies, Juvenal and Petrella (2015) use a Factor Augmented VAR 
model with a different set of structural assumptions. The authors find that speculative shocks were 
responsible of a large increase in the price of oil between 2004 and 2008. However, their results 
suggest that oil consumption demand shocks were the most important factors in explaining the fluc-
tuations in the real price of oil, during the period of interest. Finally, a recent work by Baumeister 
and Hamilton (2019) provides some relevant contributions in this literature, which are summarised 
as follows. First, oil supply shocks appear to be more important in explaining the path of the real 
price of oil compared to earlier studies. Second, oil supply disruptions cause a reduction in the 
economic activity after significant lags, while a rise in the real price of oil triggered by oil con-
sumption demand shocks are not responsible of a large drop in the global economic activity. Finally, 
the traditional proxy for the global above-ground crude oil inventories is considerably affected by 
measurement error.

2. The inventory proxy is calculated by multiplying data of the U.S. crude oil stocks by the ratio between the OECD and 
the U.S. petroleum stocks. Data for petroleum stocks are provided by the U.S. Energy Information Administration (EIA) and 
include crude oil as well as strategic petroleum reserves, unfinished oils, natural gas plant liquids and refined products.
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3. REVISITING THE ROLE OF THE SPREAD

Understanding the speculative component of the real price of oil is not a simple endeavour. 
Most of the oil market VAR models use an inventory-based detection strategy to identify the specu-
lative demand for crude oil.3 In contrast, our study provides several economic reasons to consider 
the spread as a reliable measure of oil market expectations.

First of all, the spread accounts for the price discovery role in the futures market (see Gar-
bade and Silber, 1983;  Gospodinov and Ng, 2013). For example, a work by Alquist et al. (2014) 
shows that the first-two principal components extracted from a panel of oil futures-spot spreads 
(with different maturities) have predictive power for the future path of the real price of oil. More-
over, according to the theory of competitive storage, the spread plays an important role in explaining 
the value of holding crude oil stocks, as conveyed by the futures markets. For example, a post-shock 
increase in the spot price of oil causes a reduction in the level of inventories and a rise in the con-
venience yield. The crude oil stocks are drawn down in an effort to smooth production (or demand), 
resulting in a reduction of the spread. Alternatively, a drop in the spread arises as a positive response 
of the value of storage to an increase in oil market uncertainty (see Alquist and Kilian, 2010). The 
reduction in the spread is consistent with the view that the oil futures market is in backwardation 
and it suggests that the spot price of oil is expected to decline.4 In contrast, when oil inventories are 
plentiful and it is costly to hold and carry forward oil stocks, the convenience yield is low, resulting 
in a rise of the spread.

In this study, three are the main reasons to not consider a direct measure of the net-conve-
nience yield. First, the spread can be computed from observed time-series and it follows a stationary 
process. Second, the use of the net-convenience yield requires the estimation of the cost of storage at 
the global level, which might be difficult to obtain. Finally, an estimate of the net-convenience yield 
adds an error component in the model, resulting in a source of potential bias of the impulse response 
estimates (see Carriero et al., 2015). However, the choice of the spread in the oil market SVAR 
model is not without shortcomings. As discussed by Kilian and Murphy (2014), a potential weak-
ness of the spread is that, the starting date of the analysis is dictated by the creation of the oil futures 
markets, which in turn excludes some of the major exogenous events in oil markets prior to 1988. 
Moreover, futures contracts of longer maturities narrow significantly the length of the sample.5

3. Standard arbitrage arguments imply that the financial variables (e.g. spread, oil futures prices) are redundant in SVAR 
models, which rely on the inventory-based detection strategy. According to Kilian and Murphy (2014), the Giannone-Reichlin 
test reveals that the inventory proxy is informationally adequate. However, the Giannone-Reichlin test relies on a Grang-
er-causality test, which is not without shortcomings. The direction of the causality tends to be sensitive to the specification 
of the model and to the choice of the sample period. Therefore the results provided by the Giannone-Reichlin test should 
be taken with cautions, since they do not provide a clear indication of the type of forward-looking variable to include in the 
model. Instead, our study offers some important arguments in support of the spread, which are grounded on theoretical and 
empirical reasons irrespective of the Giannone-Reichlin test results (see Sockin and Xiong, 2015; Figuerola-Ferretti et al., 
2019;  Ederington et al., 2020). The on-line Appendix provides the Giannone-Reichlin test applied to our study.

4. In this work, the definition of contango (backwardation) market is based on the relationship between the spot and 
the futures price. Specifically, the market is in contango when futures prices are higher than spot prices, resulting in an up-
ward-sloping futures curve (or positive spread). Conversely, a market is said to be in backwardation, when futures prices are 
lower than spot prices, resulting in a downward-sloping futures curve (or negative spread).

5. It is important to bear in mind that, the reduction of the estimation window does not invalidate the results and the in-
ference of our analysis. Moreover, the time to maturity of the spread contains information about the traders’ behaviours. The 
on-line Appendix provides results based on Brent-spread with maturities 6 and 12 months and WTI-spread with maturity 3 
months.
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3.1 The informational frictions and the limits to arbitrage in the oil markets

It is widely accepted that, the statistics from emerging economies lack of transparency. As 
discussed by Singleton (2014), the informational frictions arise naturally in a global crude oil mar-
kets, since data on production, inventories and real extracting costs are fairly difficult to measure. 
Therefore, the uncertainty around oil market data leads to disagreements about the interpretation of 
public information (see Cao and Ou-Yang, 2008; Banerjee and Kremer, 2010). In this context, the 
inventory-based SVAR models use data on oil stocks to identify the speculative component of the 
real price of oil. Their identification strategy implies that, unobservable changes in the expected 
spot price of oil must be reflected by shifts in the demand for storage, in a way consistent with the 
absence of arbitrage opportunities. As discussed by Sockin and Xiong (2015), these models ignore 
the presence of informational frictions faced by the market participants and rely on the unrealistic 
assumption that the agents can observe and recognise perfectly different types of structural shocks.

As opposed to most of the empirical analysis based on a perfect arbitrage condition, our 
paper emphasises the benefits of using the spread to examine the role of oil price speculation by 
accounting for possible frictions, which may limit arbitrage activity in the global market for crude 
oil.6 The key point is that the spread reflects the information set available to the oil traders at the 
period they make their production, consumption and investment decisions, hence it accounts for 
the feedback effect from futures to spot markets. It is also important to highlight that, in presence 
of informational frictions, the speculative activities in the futures market can drive the spot price 
of oil with no effects on the level of stocks, as discussed by Sockin and Xiong (2015). This is con-
sistent with the fact that the arbitrage is hindered. For example, Ederington et al. (2020) find out 
that, arbitrage might be constrained by the lack of available space as storage approaches capacity. 
The authors show that, changes in crude oil inventories away from Cushing are mostly explained 
by operational purposes, consistent with the view that not all U.S. storage locations are arbitrage 
hubs.7 Finally, other types of arbitrage impediments typically arise when financial traders are not 
able to exploit riskless strategies since they are constrained in their access to capital (see Acharya et 
al., 2013 and Etula, 2013). 

3.2 Measurement error in the proxy for global above-ground crude oil inventories

A recent work by Baumeister and Hamilton (2019) shows that the proxy for global 
above-ground crude oil inventories presents a number of shortcomings. First, data on OECD crude 
oil stocks are not available. Consequently, the inventory proxy is constructed from data on OECD 
petroleum product inventories, which are ready for use since 1988.8 Second, there are no data on 
crude oil stocks in transit via pipelines and stored at sea in the so-called “supergiant” oil tankers. 
Third, there are no even data for the management of crude oil reserves. The latter are particularly 
important for oil-producing countries that rely on unconventional oil extraction, as discussed by 

6. A growing volume of studies emphasises the role of limits to arbitrage and informational frictions in the commod-
ity markets, see for example, Singleton (2014); Cheng and Xiong (2014); Sockin and Xiong (2015); Cheng et al. (2015); 
Figuerola-Ferretti et al. (2019); Ftiti and Jawadi (2019); van Huellen (2020).

7. Ederington et al. (2020) conduct an empirical analysis of the crude oil WTI market over the period 2010–2017. The 
authors show that the arbitrage mechanism is price stabilizing consistent with the view that arbitrageurs lead to oil coming off 
the market when oil prices are relatively low and going back to the market when oil prices are relatively high.

8. Before 1988, the OECD petroleum products inventories are derived by the growth rate of U.S. petroleum product 
inventories.
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Bjørnland et al. (2019). Finally, data on crude oil inventories above the ground for the non-OECD 
economies are incomplete although they play an important role in the analysis of the global price 
of oil.9

A work by Kilian and Lee (2014) uses a proxy for the global crude oil inventories, which 
is provided by the Energy Intelligence Group (EIG). Despite the improvement on data accuracy rel-
ative to the measure of stocks proposed by Kilian and Murphy (2014), the EIG inventories are not 
available before January 1985 and they do not provide a precise measure for emerging countries. As 
a result, the inventory-based SVAR models can offer only a partial explanation of the price-invento-
ries relationship, as it is grounded on the theory of competitive storage. This is also consistent with 
the fact that data on non-OECD crude oil stocks can no longer be ignored by the inventory-based 
detection strategy.10

4. DATA AND VARIABLES

This analysis is based on monthly data spanning from June 1988 to November 2019.11 The 
set of endogenous variables includes the global crude oil production, a worldwide measure of real 
output, the real price of oil and the spread. Data on crude oil production are measured in millions of 
barrels of oil per day. We use the growth rate of crude oil production and we convert it into millions 
of barrels per month.

Following Baumeister and Hamilton (2019), the global measure of economic activity is 
the growth rate of the monthly OECD+6 world industrial production index (wip). This is a global 
indicator of real economic activity and it includes data for OECD and non-OECD countries, namely 
China, India, Brazil, Russia, South-Africa and Indonesia.12 Hamilton (2019) emphasises the benefits 
of using the wip index as a measure of global real output, compared to the real economic activity 
index (rea).13 A quantitative assessment of the two indicators reveals three important points. First, 
the wip indicator is more accurate in forecasting the real commodity prices compared to the rea 
index. Second, the cyclical component of the wip index has a higher correlation with yearly world 
real GDP than the rea index. Finally, the Augmented Dickey-Fuller test reveals that the rea index 
is not stationary.

According to the strand of the literature on dealing with the effects of oil price shocks on 
macroeconomic activity and countries’ trade patterns, the U.S. refiners’ acquisition cost for crude oil 
imports (rac) is considered the best proxy for the international price of oil (see Kilian, 2009).14 Our 
strategy of including the real price of oil in log-differences is consistent with the results of Figuero-

9. In February 2003, China announced a policy decision to support the creation of a strategic petroleum reserve. Nowa-
days, China represents the most important crude oil importer in the world, surpassing the United States in 2017.

10. Kilian (2019a) suggests that, satellite data on oil inventories can represent a new way of obtaining a more accurate 
measure of crude oil stocks.

11. The starting date is dictated by the availability of continuous monthly Brent futures prices with maturity 3-months.
12. The wip index is developed by Baumeister and Hamilton (2019) and it is constructed from the OECD Main Economic 

Indicators (MEI) dataset. Hamilton (2019) shows that, Chinese data on industrial production have been included in the wip 
index since 1999.

13. The rea index, (Kilian’s indicator) is derived from the Baltic Dry Index and it represents a proxy for the volume of 
international shipping in the commodity markets (see Kilian, 2009; Kilian, 2019b). Further details about the construction of 
the rea index are discussed in the on-line Appendix.

14. The rac can be defined as the average price paid by U.S. refiners for crude oil imports. This price refers to non-U.S. 
crude oil booked into the refiners in accordance with accounting procedures generally accepted and historically applied by the 
refiners concerned. The rac includes transportation and other fees paid by refiners.
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la-Ferretti et al. (2019) and it supports the assumption that crude oil prices are not stationary (see 
Fantazzini, 2016; Gronwald, 2016; Kruse and Wegener, 2020).

The spread with maturity 3-months can be computed as follows: ( )3
1
3

,3 ,31t

t

f
t tps r≡ − − , 

where 3
tf  denotes the price of Brent futures contract at the end of the day of month t (with maturity 

3-months), tp  is the corresponding daily spot price in period t and ,3tr  represents the three-months 
U.S. Treasury bill interest rate.15 The latter could be important in explaining the path of the oil prices 
by means of the cost of carry equation.16 In this respect, Rosa (2014) provides evidence of a small 
but statistically significant response of daily WTI crude oil prices to federal funds rates shocks. 
However, Kilian and Zhou (2019) show that the effects of exogenous variations in the U.S. real in-
terest rates on the real price of oil can be identified by aggregate demand shocks. Similarly, Alquist 
et al. (2020) show that monetary policy shocks affect real non-energy commodity prices primarily 
through their effect on global real activity. Therefore, the interest-adjusted spread does not invali-
date our model and it is consistent with the view that the effects of the interest rate on the real price 
of oil can be captured by shocks to the global business cycle.

5. METHODOLOGY

In this section we illustrate the structural representation of the model. The methodology 
is based on a revised version of the Bayesian sign-restricted SVAR model developed by Kilian and 
Murphy (2014). The vector of endogenous variables is ty  and includes the growth rates of global 
crude oil and industrial production, real price of oil and the spread. 

The SVAR model is the following:
24

0
=1

=t j t j t
j

B y B y vα −+ +∑  (1)

where 0B  is the matrix of contemporaneous structural parameters and α is the vector of constant 
terms. Moreover, jB  is the structural matrix of the lagged variables while tv  denotes a vector of 
structural shocks. The latter consists of four orthogonal structural innovations, where 1tv  denotes a 
shock to the flow supply of oil (oil supply shock), 2tv  denotes a shock to the flow demand for crude 
oil (aggregate demand shock), 3tv  is a shock to the demand for storage (precautionary demand shock) 
and 4tv  is a residual shock, which is designed to capture speculative activities in the futures market 
(financial market shock).

Imposing 24 months of lags allows the model to capture the long cycles in the real price of 
oil. This is consistent with the view that, the crude oil markets experience very slow moving cycles, 
therefore a low number of lag would fail to capture oil price shocks associated with gradual changes 
in the global business cycle, see for example Kilian and Lütkepohl (2018).17 The corresponding 

15. Financial data are sourced from the commercial data provider Bloomberg.
16. According to Frankel (2014), the relationship between the real price of oil and the real interest rates can be explained 

by three channels. First, high real interest rate encourages oil production. This allows producers to invest the proceeds at 
higher interest rates that were higher than the return to leaving crude oil below the ground. Second, higher real interest rates 
raise the cost to carry forward crude oil stocks and lower the speculative demand for storage. Third, contractionary monetary 
policies contribute to reductions in real price of oil. On the one hand, high real dollar interest rates cause a reduction in the 
demand for crude oil outside the Unites States. On the other hand, the U.S. dollar appreciation stimulates the supply of oil 
outside the United States.

17. The alternative way of this lag-augmentation procedure is testing the lag order using information criteria. However, 
the validity based on testing the goodness of fit using information criteria can be problematic, especially when there is a prior 
on the number of lags (see Leeb et al., 2006). Finally, Hamilton and Herrera (2004) show that, if the lag-order is too low, the 
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reduced-form VAR model is obtained by pre-multiplying equation (1) by the inverse of 0B , de-
noted as 1

0B−  and known as structural impact multiplier matrix. Thus, the reduced-form parameters 
are consistently estimated by OLS, while the structural shocks are recovered relying on a specific 
algorithm proposed by Rubio-Ramírez et al. (2010), which is applied to the reduced-form residual 
covariance matrix.18

5.1 Identification

Following Kilian and Lütkepohl (2018) the relationship between tv  and tu  takes the form:
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The set of sign restrictions collected in equation (2) identifies four structural shocks.19

A negative oil supply shock represents a shift to the left of the contemporaneous oil supply 
curve along the oil demand curve. This shock coincides with crude oil supply outages in the oil pro-
ducing countries (e.g. OPEC strategic decisions affecting the world production of crude oil). The oil 
supply disruptions cause oil production to fall, the real price of oil to increase, the word industrial 
production and the spread to decline, on impact. The drop of the spread implies that the inventories 
are drawn down for consumption smoothing, resulting in an increase in the value of storage.

A positive aggregate demand shock represents a shift to the right of the contemporane-
ous oil demand curve along the oil supply curve. This reflects a rise in the demand for immediate 
consumption of crude oil associated with fluctuations in the global business cycle (e.g. crude oil 
demanded by China and other emerging economies). A positive aggregate demand shock induces 
global oil production, world industrial production and the real price of oil to increase, on impact. 
Moreover, this shock is associated with an instantaneous reduction in the spread in an effort to 
smooth production.

A positive precautionary demand shock represents a shift to the right of the instantaneous 
oil demand curve along the oil supply curve, which is triggered by an upward shift of the demand 
for storage as an insurance against uncertainty about future oil supply shortfalls (e.g. geopolitical 
tensions in oil-exporting countries). This is also known as speculative demand shock and it is mostly 
related to the physical market. Positive shocks to precautionary demand raise the convenience yield 
of above-ground crude oil inventories, resulting in a negative spread. This leads to an increase in the 
real price of oil. The stocks build-up requires global oil production to increase and oil consumption 
to fall. The latter is associated with a decline in the world economic activity.

inference and the estimates might be misleading. The authors find out that, there are strong claims about selection lag-order 
criteria based on early studies of the crude oil markets and they show that the AIC information criterion estimate could be 
representative of a lower bound of the number of lags.

18. Further details about the implementation of the algorithm proposed by Rubio-Ramírez et al. (2010) are discussed in 
the on-line Appendix.

19. All shocks are normalized to obtain an increase in the real price of oil. Missing entry means that no sign restrictions 
on the elements of 1

0B−  is imposed.
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Finally, a positive financial market shock (sometimes referred to as speculative supply 
shock) is designed to capture a sudden rise in the spread that cannot be explained by the first-three 
structural shocks. This shock represents a shift to the left of the instantaneous oil supply curve along 
the oil demand curve and it is triggered by a speculative purchase of oil futures contracts.20

In our study, the financial market shocks are important factors in explaining how specu-
lative activities in the futures markets influence the expectation formation of the economic agents. 
Therefore, the positive spread can be interpreted as a market signal of higher future oil spot prices. 
This gives the producers the option of leaving oil below the ground, rather than extracting it, causing 
the oil production to fall and the spot price of oil to rise. As a result, if oil producers are interested 
in maximizing their future profits, an optimal production decision will be to reduce the output in the 
current period (increases in stocks below the ground) and hope to make more profits by raising pro-
duction in the near future. This last type of shock induces commercial traders to build up inventories 
not because of uncertainty about future oil supply disruptions (negative spread) but because future 
oil spot prices are expected to rise in the future (positive spread).

It is also important to notice that, speculative supply shocks are not observationally equiv-
alent to oil supply disruptions, for at least three reasons. First, negative shocks to oil supply contrib-
ute to reduce the spread in an effort to smooth consumption, resulting in a rise in the convenience 
yield of oil inventories. In contrast, positive financial market shocks lead to inventory accumulation, 
resulting in a gradual reduction in the convenience yield of oil inventories. This is consistent with 
the results of Dvir and Rogoff (2009) and it supports the idea that, during a strong growth in the 
economy, the market participants are willing to increase their inventories for speculative reasons at 
the expense of consumption smoothing. Second, under the assumption of asymmetric information, 
speculative activities in the futures markets can drive up the spot price of oil without necessarily 
reducing the current consumption of crude oil and increasing inventories (see Sockin and Xiong, 
2015). The key point is that, a positive spread in the futures markets can be interpreted as a market 
signal of strong global economic growth. Therefore the instantaneous effect of financial market 
shocks on the world industrial production is ambiguous. On the one hand, the structural identifi-
cation used in our model allows the real price of oil to co-vary positively with the real economic 
activity. On the other hand, a rise in the real price of oil induces a decline in the real output. Third, 
oil supply disruptions and speculative supply shocks are motivated on the basis of different eco-
nomic considerations. The former are linked to oil supply outages that are caused by exogenous 
geopolitical events in the global crude oil markets while the latter give the oil producers the option 
of leaving oil below the ground. In this last case, market participants voluntarily decide to destine a 
part of their production and refined products in the future, consistent with the theoretical results of 
Hotelling (1931) and the speculative argument of Smith (2009).

As discussed by Kilian and Murphy (2012), the SVAR models based only on sign restric-
tions are not able to identify the accurate magnitude of the impulse response of the real price of oil 
to each structural shock. Thus, it is common to use further restrictions on the ratio of the elements 
of 1

0B−  in order to pin-down the set of admissible structural models.
A popular view is to consider these restrictions as the impact price elasticities of oil de-

mand and oil supply. More precisely, we use an upper bound on the impact price elasticity of oil 

20. It is also important to notice that, a positive financial market shock could be accompanied by an upward shift of the 
demand for above-ground crude oil inventories. In other words, oil refiners purchase extra barrel of oil in the current period to 
deal with high operational costs caused by the possible high spot price in the future. As a result, the decrease of supply and the 
increase of demand cause the real price of oil to rise, as discussed by Juvenal and Petrella (2015).
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supply, which is equal to 0.0258.21 Our value of supply elasticity is identical to the benchmark re-
ported by Kilian and Murphy (2014). This value reflects the supply-side rigidities in the oil market, 
which are mainly motivated by the presence of adjustment costs of production for the oil industry 
and it is also consistent with the empirical estimates reported by Newell and Prest (2019). Following 
Kilian and Murphy (2014), we limit the short-run price elasticity of oil demand to lie between 0 
and –0.8. The latter represents the benchmark of the long-run price elasticity of oil demand, which 
is consistent with the empirical results of Yatchew and No (2001). Moreover, the identification of 
the financial market shock is based on additional restrictions on the impact responses of production 
and spread. More precisely, our identification allows for the oil supply disruptions to have larger 
impact on production compared to the financial market shocks. This is consistent with the fact that a 
reduction in the oil production is costly even for speculative purposes. Finally, we limit the average 
response of the spread to a positive financial market shock to be nonnegative for 12 months, consis-
tent with the fact that, the timing of the informational signal provided by futures markets must be 
realistic for the oil traders.

6. EMPIRICAL RESULTS

6.1 Impulse Response Functions

Figure 1 reports the impulse response estimates of global crude oil production, real price of 
oil, world industrial production and Brent-spread with maturity 3-months to each structural shock 
for any given horizon, together with posterior credibility set at 95% level.22 An unanticipated flow 
supply disruption reduces production by about 0.5 % and leads to an increase in the real price of 
oil, which rises by 2% on impact and it remains fairly stable over the subsequent months. On the 
real side, the impact response of the industrial production is negative and gradually declines up to 
–0.18%, after the seventh month after the shock. An unexpected positive aggregate demand shock 
induces an instantaneous increase in the world industrial production of about 0.35%. The response 
becomes even larger and more persistent in the subsequent periods. Moreover, this shock causes 
an instantaneous increase in the global oil production, accompanied by a hump-shaped response 
of the real price of oil, with a peak after three months. Finally, a positive precautionary demand 
shock yields a contemporaneous increase in the global oil production and in the real price of oil but 
it causes a reduction in the world industrial production. The dynamic responses of the oil physical 
market variables to supply and demand shocks are qualitatively similar to those reported by Kilian 
and Murphy (2014).

Figure 1 provides empirical evidence that the spread responds to oil price shocks differ-
ently, depending on the economic motivations behind each structural innovation. A disruption to oil 
supply is responsible of a large reduction in the spread, on impact. This shock induces a drop in the 
spread up to –1%. Its negative effect on the forward-looking variable declines gradually during the 
horizon of reference. A one-unit increase in the aggregate demand shock reduces the spread by about 
0.5%, on impact. The response remains persistent after the fifth month after the shock. Conversely, a 

21. It is worth noting that, the impulse response estimates to each structural shock are remarkably robust to imposing a 
less restrictive upper bound of 0.09.

22. The impulse response functions are robust to changes in the proxy for global real economic activity. To this end, we 
estimate two separate models by replacing the wip index with the rea index and the Global Economic Conditions (GECON) 
indicator. The latter is developed by Baumeister et al. (2020). Further details of the robustness checks are reported in the on-
line Appendix.
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positive precautionary demand shock produces a small reduction in the spread, on impact. Its effect 
seems to be less persistent, indeed the response estimate shows a quick reversion to pre-shock level 
over the subsequent periods. A positive financial market shock causes an immediate, although tem-
porary, jump in the spread. After the impact, the decline in the spread is associated with a gradual 
increase in the real price of oil and a persistent reduction in the global oil production. Finally, a pos-
itive financial market shock causes a small increase in the world industrial production, on impact. 
Its effect on the real economy is negligible during the horizon of reference.

In our study, we find that shocks to economic fundamentals of the international market for 
crude oil cause a rise in the real price of oil and a reduction in the spread, on impact. Our empirical 
results can be motivated on the basis of the following considerations. First, in case of unexpected 
physical interruptions in supply, oil refiners are willing to release crude oil inventories to smooth 
consumption. Thus, a temporary drawdown of oil inventories is associated with a rise in the conve-
nience yield, accompanied by a reduction in the spread, on impact. The latter suggests that the flow 
of benefits that accrues to an owner of the physical commodity is expected to be high in the next 
three months. This is consistent with the view that, an oil supply shock affects the value to future 
inventories in anticipation of perceived declines in the level of stocks for consumption smoothing. 
Second, shocks to the global business cycle cause stocks to be drawn down in an effort to smooth 
production, causing the convenience yield of oil inventories to rise. This implies that the oil inven-
tories are expected to be scarce in the future in the face of fluctuating demand for crude oil. Third, 
both shocks to oil supply and aggregate demand cause a large decline in the spread. However, the 
reduction in the spread is less persistent in case of aggregate demand shocks and much of its initial 
drop is reversed within 12 months. Thus, on average, oil traders assign the highest value to future 
inventories in case of supply shocks consistent with the fact that, the inventory replenishment takes 
a long time. Fourth, a negative response of the spread to positive precautionary demand shocks is 
consistent with the theoretical results of Alquist and Kilian (2010). Thus, an exogenous increase in 
the uncertainty about future oil supply shortfalls (e.g. Gulf War in 1990), initially raises the demand 
for crude oil inventories above the ground, resulting in a positive convenience yield. Consequently, 
an upward shift of the demand for stocks causes the real price of oil to increase, since in the short-pe-
riod, the supply of storage is highly inelastic and the inventories cannot be immediately built. Inter-
estingly, a positive precautionary demand shock produces a small decline in the spread, on impact. 
This suggests that the overshooting response of the price of oil in the spot market is slightly higher 
than the overshooting response of the oil futures price, which in turn causes a small increase in the 
value of storage in the next three months. Moreover, a reduction in the spread is gradually reversed 
as the adverse effects of uncertainty on the supply side decline and the crude oil productions are 
added to future inventories. The confidence about the sign of the response of the spread to a precau-
tionary shock becomes unclear after the first month after the shock.

Finally, a positive financial market shock implies that, the oil futures prices are traded 
above the corresponding oil spot prices consistent with a speculative purchase in the futures market. 
This leads to a positive spread, which in turn affects the expectation formation of market partici-
pants. Thus, a gradual increase in the real price of oil is associated with a decline in oil production, 
since producers are willing to hold oil back from the market in anticipation of higher prices in the 
future (see Juvenal and Petrella, 2015).23 Moreover, the change in the spread represents valuable 

23. Some empirical studies based on micro data show that shale oil producers change flow supply in response to price 
signals (see Bjørnland et al., 2019; Bornstein et al., 2018). Moreover, a work by Miller and Zhang (1996) shows that oil field 
development decisions are affected even if rises in oil price are only temporary, consistent with the view that the current fluc-
tuations in oil prices have effects on future production of crude oil.
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information for all investors participating to the oil futures markets (see Figuerola-Ferretti and Gon-
zalo, 2010). A negative response of the spread to supply shocks, global business cycle shocks and 
precautionary demand shocks suggests that the crude oil futures market is in backwardation. This 
is consistent with the view that, the spot price of oil is expected to decline in the future. Moreover, 
investors use backwardation to make a profit through a rolling strategy. The latter is easily done by 
selling the expiring contract and use the proceeds to buy another futures contract for delivery at a 
more distant date (see Erb and Campbell, 2006; Valenti et al.; 2020).

6.2 Forecast Error Variance Decomposition

Table 1 presents the percentage contributions to each structural shocks arising the interna-
tional market for crude oil to the overall variability of the real price of oil and spread, based on the 
forecast error variance decomposition (FEVD) of the SVAR model at 1, 3,6 12 months, as well in 
the long run (denoted as ∞).24

Table 1:  Percentage contribution of each shock to the variability of real price of oil and Brent 
spread-3M

Panel (a) Variance decomposition of the real price of oil

Horizon Supply shocks
Aggregate demand 

shocks
Precautionary demand 

shocks
Financial market 

shocks

1 8.6 59.2 30.2 1.9 
3 7.6 54.5 30.6 7.3 
6 7.4 53.3 32.1 7.2 
12 7.6 50.4 34.0  8.0 
¥ 12.7 45.2 32.6 9.5 

Panel (b) Variance decomposition of the Brent spread-3M

Horizon Supply shocks
Aggregate demand 

shocks
Precautionary demand 

shocks
Financial market 

shocks

1 50.4 11.7 1.7 36.2 
3 42.4 26.3 4.0 27.3 
6 45.4 25.0 5.7 23.9 
12 47.9 24.2 5.7 22.2
¥ 48.9 22.8 7.3 21.0 

Note: Forecast error variance decomposition (FEVD) for the real price of oil and spread based on the SVAR model re-
ported in equation 1. FEVD at horizon “¥” is approximated by FEVD at horizon 500.

Panel (a) of Table 1 shows that the explanatory power of financial markets shocks for the 
real price of oil is, on average small. On impact, speculative shocks in the futures markets account 
only for a tiny percentage of the variation in the real price of oil, with 1.9%. In contrast, shocks to the 
aggregate demand and precautionary demand for crude oil account for 59.2% and 30.2%, respec-
tively. On impact, shocks to supply explain 8.6% of the variation of the real price of oil. In the long 
run, both shocks to financial markets and oil supply gain importance and explain 9.4% and 12.7% of 
the variation of the real price of oil. The explanatory powers of shocks from aggregate demand and 
precautionary demand for oil remain high and are equal to 45.2% and 32.6%, respectively.

Panel (b) of Table 1 shows that, 50.4% of the variation in the spread is driven by oil sup-
ply shocks, followed by financial market shocks with 36.2%. Moreover, the explanatory power of 

24. The long-run contribution of each shock is approximated by computing the FEVD at horizon 500 (i.e. 41 years from 
the shock)
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shocks from the global business cycle for the spread is 11.7%. Interestingly, precautionary demand 
shocks have negligible impact on the spread, with 1.7%. This finding casts doubts on the economic 
interpretation of the spread as an indirect measure of expectations shifts in the demand for storage, 
driven by precautionary purposes. In the long run, 48.9% and 21.0% of the variation in the spread 
can be attributed to oil supply shocks and financial market shocks, respectively.

6.3 Historical Decomposition

Figure 2 plots the historical decomposition of the real price of oil and the Brent spread 
implied by the structural model (1). In order to understand the main forces that drive the movement 
of the real price of oil, it is useful to assess their relative importance during some of the exogenous 
events in the oil markets. To illustrate this point, we focus on four important episodes involving 
large changes in the oil prices: the Persian Gulf war of 1990–91, the 2003–2008 oil price surge, the 
global financial crisis in mid-2008 and the 2014–15 oil price slump.25

Figure 2 shows that the oil price spike associated with the Persian Gulf War of 1990–91 
was mainly related to supply shocks and precautionary demand shocks. The latter contributed to 
raise the real price of oil in August of 1990, when the Iraqi Army invaded and occupied Kuwait. In 
particular, unanticipated oil supply disruptions were responsible of a large increase in oil prices from 
July to August of 1990, as illustrated in the periods 2 and 3 in the left-most panel of Figure 2. At the 
same time, positive shocks to precautionary demand for oil associated with the threats to Saudi Ara-
bian oil production contributed to raise the real price of oil until December 1990. Throughout this 
period, our results suggest that the speculative activities in the futures markets play a marginal role 
in driving up the real price of oil. Figure 2 illustrates also that the large reduction in the real price 
of oil is mostly related to negative shocks to precautionary demand for oil. The latter are associated 
with the U.S. military intervention that contributes to restore confidence in the oil markets. Finally, 
there is no evidence that positive supply shocks contributed significantly to the reduction in the real 
price of oil.

From early 2003 until mid-2008, the aggregate demand shocks, likely driven by emerging 
Asia and OECD countries, contributed to raise the real price of oil, as shown in the second top 
left-most panel of Figure 2. Our analysis suggests that positive supply shocks contributed to lower 
the real price of oil, between 2003 and 2005, consistent with the fact that, OPEC production rose 
steadily after 2003, reaching a historic high of 31.11 mb/d in 2005.26 However, since 2006, the 
stagnant global oil production contributed to raise the real price of oil. Moreover, since 2005, the 
speculative activities have been important factors in explaining the rise in the real price oil. Over 
this period, the volume of futures trading started growing significantly and the futures markets have 
been in contango, consistently with the view that oil prices were expected to increase (see Hamilton 
and Wu, 2014; Singleton, 2014).27

25. For each panel, solid, dashed, dotted and dash-asterisk lines depict the historical contributions of oil supply, aggre-
gate demand, precautionary demand and financial market shocks to the real price of oil and the Brent spread with maturity 3 
months. The historical decomposition of the real price of oil is the cumulated values of the fitted growth rates (multiplied by 
100) from June 1990 to November 2019. The periods of the exogenous episodes are the following: the “Persian Gulf War” 
from June 1990 to February 1991; the “Oil Price Surge” from January 2003 to June 2008; the “Global Financial Crisis” from 
June 2008 to December 2009; The “Oil Price Slump” from June 2014 to March 2016.

26. See OPEC (2006) report: https://www.opec.org/opec_web/en/publications/338.ht
27. During the period of financialization of the commodity markets, we find that positive financial market shocks cause a 

reduction in global crude oil production. Therefore, positive spread in the futures market contributes to change the expectation 
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Our analysis attributes a nontrivial role in the rise of the price of oil to positive financial 
market shocks and it supports the idea that speculative activities in the futures markets represented 
the second most important factor in explaining the oil price surge from 2006 until 2008. Moreover, a 
work by Tsvetanov et al. (2016) document a significant evidence of bubble behaviour for WTI crude 
oil spot and futures price series, between 2004 and 2008. The authors show that the bubble duration 
increases along the yield curve suggesting a disconnection between the spot and the longer maturity 
contracts. During the period of financialization of the commodity markets Saporta et al. (2009) doc-
ument large forecast errors associated with the prediction of the future demand for crude oil mostly 
related to non-OECD and emerging countries. Finally, Singleton (2014) provides evidence of a 
positive correlation between the disagreement measure and the WTI spot price, consistent with the 
presence of severe informational frictions in the crude oil market over the period 2007–2008. Figure 
2 provides no indication that positive precautionary demand shocks played an important role in the 
oil price surge between 2006 and 2008, consistent with the empirical results of Kilian and Murphy 
(2014) and Kilian and Lee (2014). Moreover, the V-shape reduction of the real price of oil was 
largely explained by aggregate demand shocks, as shown in the third top left-most panel of Figure 2.

Finally, from mid-2014 until early 2016, the drop in the real price of oil was largely ex-
plained by both supply and demand forces. In particular, from June until November of 2014, the 
positive supply shocks (likely driven by unconventional oil supply and OPEC strategic decisions) 
contributed to lower the real price of oil, as shown in the upper right-most panel of Figure 2. The 
OPEC meeting in November 2014 represented also an important signal on the future expected 
global production of crude oil for the market participants, since the members decided to keep the 
production level of 30 million barrels per day.

Figure 2 shows that both negative shocks to financial market and precautionary demand 
for crude oil might be triggered by this change in policy. The former represent a downward shift in 
the demand for storage in the physical market, accompanied by a reduction in the uncertainty about 
future oil supply shortfalls. The latter is related to the speculative selling of oil futures contracts, 
driven by traders’ expectations on the global oil market conditions. In this respect, the speculative 
activities in the futures markets are associated with an increase in oil production in anticipation of 
lower prices in the future. Moreover our analysis corroborates the conclusions of Bataa and Park 
(2017) and Figuerola-Ferretti et al. (2019), that positive oil supply shocks contributed to lower oil 
prices. Finally, this model provides empirical evidence that the drop in the real price of oil after the 
OPEC’s announcement on November 2014 can be also explained by negative aggregate demand 
shocks, as discussed by Baumeister and Kilian (2016).

7. CONCLUSIONS

In this paper we have shown that the spread-based SVAR model can be considered a valid 
approach for modeling the real price of oil. The spread is a realiable variable about the oil market 
conditions as conveyed by the oil futures markets and it accounts for the presence of informational 
frictions faced by the market participants. The key point is that the spread is a real-time and for-
ward-looking variable, which accounts for how oil traders form their expectations based on public 
and private information. On average, we find that oil supply disruptions and positive aggregate 
demand shocks cause a rise in the real price of oil and a reduction in the spread in an effort to 
smooth consumption and production, respectively. A negative response of the spread to a positive 

formation of oil producers. The detailed results of the cumulative effect of financial market shocks on the global oil production 
are available from the author upon request.
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precautionary demand shock suggests a sudden increase in the market value of storage. A positive 
shock to financial market causes the spread and the real price of oil to rise. This shock is associated 
with a reduction in the oil production, since producers are willing to hold oil back from the market 
in anticipation of higher prices in the future. Finally, our model attributes a nontrivial role in the 
changes of the real price of oil triggered by supply and financial market shocks, during some of the 
exogenous events in the oil markets.
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APPENDIX

A.1 Identification strategy

This section reports a short description of the algorithm proposed by Rubio-Ramírez et al. 
(2010) for the estimation of the sign-restricted structural VAR model, reported in equation (1) of our 
paper. It is worth recalling that, the vector of endogenous variables is ty  and includes the growth 
rates of global crude oil and industrial production, real price of oil and the spread derived by crude 
oil Brent futures prices with maturity 3-months. Therefore, the SVAR model is the following:

24

0
=1

=t j t j t
j

B y B y vα −+ +∑

where 0B  is the matrix of contemporaneous structural parameters and α  is the vector of constant 
terms. Moreover, jB  is the structural matrix of the lagged variables while tv  denotes a vector of 
structural shocks. The latter consists of four orthogonal structural innovations, where 1tv  denotes a 
shock to the flow supply of oil (oil supply shock), 2tv  denotes a shock to the flow demand for crude 
oil (aggregate demand shock), 3tv  is a shock to the demand for storage (precautionary demand shock) 
and 4tv  is a residual shock, which is designed to capture speculative activities in the oil futures mar-
ket (financial market shock).

The corresponding reduced-form VAR model is obtained by pre-multiplying equation (1) 
by the inverse of 0B , denoted as 1

0B−  and known as structural impact multiplier matrix:
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where Cj is a matrix including the reduced form parameters of the model and ut is a vector of ze-
ro-mean white noise processes with variance-covariance matrix [ ] =t t uE u u′ Σ  such that (0, )t uu Σ 
. The reduced-form parameters are consistently estimated by OLS, while the structural shocks are 
recovered relying on a specific algorithm proposed by Rubio-Ramírez et al. (2010), which is applied 
to the reduced-from residual covariance matrix.

This algorithm is based on a set of static sign restrictions that are directly imposed on the 
elements of 1

0B− . Thus, the set of impact multiplier matrices that are consistent with the sign restric-
tions can be obtained by the product between matrices P and D. The former represents the Cholesky 
factorization of the reduced-form residual covariance matrix. The latter is any orthogonal square 
matrix derived from the QR decomposition of a matrix whose elements are random draws from 
independent standard Normal distributions, such that =D Q′.28

The implementation of the estimation algorithm proposed by Rubio-Ramírez et al. (2010) 
consists on two main steps. The first step is a repeated sampling by drawing the matrix X  from 
independent standard Normal distributions. Then, we derive the QR decomposition of X  such that 

=X QR where Q is an orthogonal matrix and R is upper triangular matrix with the elements on the 
main diagonal normalized to be positive. In the second step, D is set equal to Q′ and we derive the 
set of admissible impulse responses function from 1

0 =B PD− . If all the impulse response estimates 
satisfy the sign restrictions reported in equation (2) we collect D, otherwise we discard D.

Finally, the estimation of the uncertainty is conducted under Bayesian method specifying a 
Gaussian-inverse Wishart prior distribution for the reduced form parameters and a Haar distribution 
for the rotation matrix X . Thus, the credible set of the impulse responses function is constructed 
by applying the algorithm proposed by Rubio-Ramírez et al. (2010) to each draw of the posterior 
distribution for the parameters of the reduced-form VAR model.

A.2 Robustness checks

This section provides empirical evidence on whether the main results are robust to changes 
in the specification of the spread-based SVAR model, considered in equation (1). The first robust-
ness check relies on a change in the proxy for global economic activity. In the second robustness 
check, we replace the Brent spread with maturity of three months with the WTI spread of the same 
maturity. Thus, we illustrate the historical decompositions for the real prices of oil and the for-
ward-looking variables implied by both specifications. Finally, we provide a discussion of some 
important features of the impulse response estimates of the Brent spread with maturities of 3-, 6- and 
12-months to each structural shock.

A.2.1 Alternative measures of global economic activity

The first robustness check relies on two different proxies for measuring the global real eco-
nomic activity, namely, the corrected version of the rea index discussed by Kilian (2019b) and the 
Global Economic Conditions (GECON) indicator developed by Baumeister et al. (2020).29

The Kilian’s index relies on the cost of international shipping in the commodity markets. 
According to Kilian (2019b) the rea index provides some important advantages for the identification 
of shocks to the global business cycle, since it represents a monthly, direct and global indicator of 
economic activity. In this work we use the refined version of the rea index as proposed by Kilian 

28. The matrix P is the Cholesky factorization of uΣ , such that = uPP′ Σ  and 0.5=P TΛ , where Λ is a diagonal matrix in 
which the elements iλ ’s are the eigenvalues of uΣ  and the columns of the matrix T are the corresponding eigenvectors.

29. The monthly GECON index is available from https://sites.google.com/site/cjsbaumeister/research.
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(2019b).30 The Kilian’s index is derived from the residuals of a time-trend linear regression model, 
where the dependent variable is the cumulative equal-weighted average of the growth rates for 
each of the individual dry bulk cargo freight rates, having normalized January 1968 to unity. Since 
2008, the dependent variable was updated using the Baltic Dry Index of shipping costs and it was 
expressed in real terms using the U.S. consumer price index (see Kilian and Murphy, 2014). It is 
worth noting that, recently the rea index have exhibited some erratic behaviour that is hard to square 
with smooth fluctuations in the global business cycle. There are a number of possible factors such 
as the ship-building and scrapping cycle that might explain this increased volatility in the aftermath 
of the financial crisis.31

The GECON is an indicator for assessing the future tightness of global energy demand 
and it is based on eight different categories of variables, such as real economic activity, commod-
ity prices, financial indicators, transportation, uncertainty, expectations, weather and energy-related 
measures. Baumeister et al. (2020) emphasise the benefits of using the GECON indicator as a proxy 
for the global real output, compared to those measures derived from a single category of variables. 
A quantitative assessment of the GECON indicator reveals three important futures. First, the mul-
tidimensional approach used to obtain the GECON indicator reduces the potential exposure of the 
index to its idiosyncratic shocks. Second, the GECON indicator is more accurate in forecasting the 
real price of oil and the global petroleum consumption compared to the Kilian’s index. Third, the 
time-varying predictive content of the GECON indicator is preserved.

In this section we estimate two separate models by replacing the wip index with rea and 
GECON indicators, respectively. Figure 3 plots the impulse response estimates of the real price of 
oil and the Brent-spread together with posterior credibility set at 68%, for the model with rea and the 
model with GECON. Moreover, dashed red lines indicate the impulse response estimates implied 
by the model with wip.

In the model including rea, an oil supply disruption causes a simultaneous increase in the 
real price of oil and a reduction in the spread. The effects of an oil supply disruption on the real 
price of oil and Brent-spread are qualitatively similar to those reported by the specification with wip. 
Analogously, a positive financial market shock causes a jump of the spread in both specifications. 
Beyond the impact period, the models with rea and wip produce empirical results, which are con-
sistent with a decline in the spread and a gradual increase in the real price of oil. Moreover, after 
the impact, the responses of the real price of oil to a positive precautionary demand shock show 
a large increase. In particular, the specification with rea exhibits a more persistent increase in the 
price compared to the model with wip. However, the effect of this shock on the spread are similar in 
both models. Finally, a positive aggregate demand shock causes a similar drop of the spread, in both 

30. The original version of the rea index is developed by Kilian (2009) and it is derived by taking double logs, resulting 
in a time series, which is not robust to changes in the normalization date. In our analysis we use the revised version of the rea 
index which is available from the web site http://www-personal.umich.edu/ lkilian/

31. Some fluctuations in the shipping index do not seem to be correlated to changes in world economic activity. Accord-
ing to Hamilton (2019), the sharp drop in the Kilian’s index in early 2016 was due to an overbuilt shipping capacity rather than 
a global economic downturn, consistent with the view that the real shipping costs indicators might be affected by changes in 
the supply of market for shipping services. In contrast, Kilian (2019b) argues that the sharp drop in early 2016 represented an 
outlier that was quickly reversed. Further, the author highlights that the Kilian’s index is designed for modelling the business 
cycle in industrial commodity markets and it is a proxy for changes in the volume of shipping of industrial raw materials. 
Thus, it is not necessary that changes in the volume of trade coincide with fluctuations in real output. Moreover, Kilian 
(2019b) shows that the changes in the supply of bulk dry cargo carriers is quite smooth over time, consistent with the view that 
the fluctuations in the rea index are mainly driven by the demand side of the shipping market. As discussed by Kilian (2019b), 
the decline in the rea index in early 2016 can be driven by provisory reduction in the demand from China, even if the precise 
causes of this reductions are not known.
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specifications. Conversely, the specification with rea exhibits a less persistent increase in the real 
price of oil compared to the model with wip.

Moving to the specification with GECON, the response of the spread to a negative oil sup-
ply shock shows a persistent reduction, which is qualitatively similar to that reported by the model 
with industrial production. In the model including GECON, the dynamic response of the real price 
of oil to an oil supply disruption is slightly smaller than that implied by the specification with wip. 
Shocks to financial market cause a jump in the spread and a gradual raise in the real price of oil, in 
both specifications. We highlight also some differences that can be mainly attributed to the specific 
measures of economic activity. Specifically, the model including GECON, attributes a somewhat 
larger explanatory power of fluctuations in the real price of oil to precautionary demand shocks and 
less explanatory power to aggregate demand shocks. In both specifications the effects of precau-
tionary demand shocks are smaller and less persistent than those triggered by the aggregate demand 
shocks. Overall, the average behaviour of the spread is robust to changes in the proxy for global real 
economic activity.

A.2.2 The WTI spread with maturity 3-months

In this section we illustrate the results obtained by an alternative measure of the spread, 
which is derived by WTI crude oil futures prices with maturity 3-months. To this end, we estimate 
model (1) by replacing the forward-looking variable based on Brent spread with WTI spread. Al-
though, WTI futures and oil spot prices are specific to U.S. oil supply and U.S. oil demand the WTI 
market is exposed to global oil price shocks as well as the Brent market.32

Figure 4 plots the historical decomposition for the real price of oil and the spread implied 
by the structural models with WTI spread-3M (solid red lines) and Brent spread-3M (solid black 
lines), respectively. Both specifications produce empirical results, which support the view that oil 
supply shocks have been important to drive the path of the real price of oil over the last two de-
cades. For example, over the years 2006–2008, negative supply shocks were found to be important 
in explaining the rise in the real price of oil, consistent with the empirical results of Baumeister and 
Hamilton (2019). Moreover, Figure 4 provides evidence that, in both specifications, positive supply 
shocks played a crucial role in the mid-2014 oil price drop. However, the aggregate demand shocks 
contributed significantly to lower the real price of oil from late 2014 until mid-2015 (see Baumeis-
ter and Kilian, 2016; Baumeister and Hamilton, 2019). We point out that in both specifications, the 
aggregate demand shocks maintain their relevant role in explaining the historical fluctuations in the 
real price of oil compared to the other shocks, during the period 2003–2008.

We highlight also some differences that can be mainly attributed to the specific measure 
of the spread. The alternative specification tends to overstate the effect of precautionary demand 
shocks on the real price of oil, during the period March 2007-May 2008. Finally, the added explan-
atory power seems to come at the expense of smaller price response to financial market shocks. 
Overall, the cumulative effects of each structural shocks on the real price of oil is robust to changes 
in the spread and their primary roles across specifications are preserved.

32. In equilibrium the price of WTI should equal the price of Brent after accounting for the cost to carry and the quality 
discount. In principle, the difference between WTI and Brent prices depends on the quality differential of the two grades and 
it is affected by underlying factors that are specific to each market.



48 / The Energy Journal

All rights reserved. Copyright © 2022 by the IAEE.

Figure 4: Historical decompositions of the WTI spread-3M and the real price of oil

A.2.3 The Brent spread with maturities 3-, 6-, 12-months

Figure 5 reports the impulse response estimates of the spread with maturities of 3-, 6- and 
12-months to each structural shock.33

Figure 5: Impulse response functions of the Brent spread-3-, 6-, 12-M

Our results suggest that all response estimates of the spread are grounded on the economic 
theory. Moreover, spreads at shorter maturities are more affected by the effects of the structural 
shocks compared to those at longer maturities. This result is consistent with the view that the oil 

33. For each of the spread with maturities 3-, 6- and 12-months we estimate three separate SVAR models considered in 
equation (1) of our paper. Blue, red and green lines reported in Figure 5 indicate the response estimates of the Brent spread 
with maturities 3, 6, and 12 months, respectively.
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production and supply of storage are highly inelastic in the short period. Therefore the convenience 
yield from having access to inventory holdings of oil in the near future is higher compared to the 
convenience yields at longer maturities. The distance between different impulse response estimates 
at each point in time provides information about the slope of the term-structure convenience yield 
curve. Indeed, net-long investors benefit from trading oil futures contracts during oil supply disrup-
tions and positive shocks to the global business cycle, since they can exploit remunerative rolling 
investments strategies. Moreover, the response estimates of the spread-12M and the spread-3M can 
be interpreted as the back-end and the front-end of convenience yield curve, respectively.

We provide evidence that front and back ends of the term structure convenience yield 
curve exhibit different patterns. On the one hand, the front-end of the curve is more linked to the 
short-term fundamentals and it is mainly affected by the current and the expected fluctuations of 
oil demand and oil supply. On the other hand, the back-end of the curve is less sensitive to oil mar-
ket-driven shocks, consistent with the view that, consumers and producers have more time to make 
decisions in the long period. Finally, Figure 5 shows that, the variability of short-maturity spread is 
higher than that of long-maturity spread, consistent with the Samuelson effect.34

A.3 Testing the informational accuracy of the spread

We investigate whether the spread-based SVAR model is informationally sufficient to iden-
tify the truly structural shocks (see Giannone and Reichlin, 2006). To this end, we estimate the 
augmented reduced-form specification of the SVAR model to include the inventory proxy. The set 
of endogenous variables includes the growth rate of global crude oil production ( )tgop , the world 
industrial production index ( )twip  and the growth rate of the real price of oil obtained by deflating 
the U.S. refiners’ acquisition cost for imported crude oil ( )trac  by the U.S. consumer price index. 
Finally, the set of observables includes the spread ,( )t hs  with maturities = 3 ,6 ,12h − − − months and 
a proxy for global crude oil inventories above the ground ( )tN .35 Specifically, for each of the spread 
with maturities 3-, 6-, and 12-months we estimate three separate unrestricted VAR models and con-
duct Granger causality tests. If there were additional information in the spread that is not already 
contained in the inventory proxy, then the spread should Granger cause the remaining variables. 
Table 2 reports the p-values of Granger causality tests of this proposition and it highlights that the 
Brent-spreads with maturities of 3, 6 and 12 months fail to Granger cause all the remaining variables 
of the model. However, the same interpretation holds for the inventory proxies, as illustrated in Ta-
ble 3. It is worth noting that, the Giannone-Reichlin test relies on a Granger-causality test. The latter 
is not without shortcomings. For example, the direction of the causality tends to be sensitive to the 
specification of the VAR model and to the choice of the sample period.36 Moreover, it might be that 
the inventory proxy and the spread exhibit nonlinear features. In this case, linear Granger-causality 
tests applied to a nonlinear economic relationship of the variables of interest can result in low power 
testing (see Bekiros and Diks, 2008). Therefore the inclusion of the spread must be supported by 
economic motivations rather than relying only on the Giannone-Reichlin test results.

34. The Samuelson effects rely on the assumption that the volatility of oil futures prices decreases with the maturity of 
the contract (Alquist et al., 2014).

35. For the Granger causality tests, we use two proxies for global crude oil inventories above the ground, which are de-
noted by , 2014t KMN  and , 2019t BHN  respectively. The former is developed by Kilian and Murphy (2014) and the latter is proposed 
by Baumeister and Hamilton (2019).

36. The detailed results are available from the author upon request.
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Table 2: Granger Causality Tests—Brent Spreads 3-, 6-, 12-months
 Spread-3M Spread-6M Spread-12M 

Panel (a)

Null hypothesis

st,h  gopt 0.001*** 0.001*** 0.000***
st,h  wipt 0.199 0.293 0.177
st,h  ract 0.000*** 0.002*** 0.006***
st,h  Nt,KM 2014 0.023** 0.096* 0.436

Panel (b)

Null hypothesis

st,h  gopt 0.001*** 0.002*** 0.000***
st,h  wipt 0.244 0.324 0.177
st,h  ract 0.000*** 0.002*** 0.006***
st,h  Nt,BH 2019 0.016** 0.122 0.436

Note: This table reports the p-values of Granger causality tests on each of the spread. 
Boldfaces indicate a statistical significant result at 10% level (*), 5% level(**) and 1% 
level (***).

Table 3: Granger Causality Test—Inventory proxies
 Nt,BH 2019 Nt,KM 2014

Panel (a)

Null hypothesis

Nt  gopt 0.000*** 0.000***
Nt  wipt 0.205 0.235
Nt  ract 0.020** 0.022**
Nt  st,3 0.007*** 0.014**

Panel (b)

Null hypothesis

Nt  gopt 0.000*** 0.000***
Nt  wipt 0.501 0.454
Nt  ract 0.091* 0.078*
Nt  st,6 0.011** 0.023**

Panel (c)

Null hypothesis

Nt  gopt 0.000*** 0.000***
Nt  wipt 0.128 0.092*
Nt  ract 0.248 0.202
Nt  st,12 0.001*** 0.001***

Note: This table reports the p-values of Granger causality tests on 
each of the two proxies for the global crude oil inventories above the 
ground. Boldfaces indicate a statistical significant result at 10% level 
(*), 5% level(**) and 1% level (***).


