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Abstract: This study aims to develop an adaptable home energy management system capable of inte-
grating the bidirectional smart charging of electric vehicles. The final goal is to achieve a user-defined
objectives such as cost minimization or maximizing renewable self-consumption. Industrialwise,
the present work yields valuable outcomes in identifying operational frameworks and boundary
conditions. Optimal scheduling benefits both users and the electric network, thus enhancing grid
utilization and increasing renewable energy integration. By coordinating power interactions with
dynamic time-of-use tariffs, the energy management system minimizes user costs and aids the
grid by cutting peak hour energy consumption. Charging and discharging operations in electric
vehicles comply with energy level constraints outlined by bidirectional charging protocols. The
proposed approach ensures the scheduling of cycles that minimize detrimental effects on battery
health when evaluating an economically ageing mechanism. Compared to uncontrolled charging,
optimal scheduling resulted in a significant reduction in the total operational cost of the dwelling.
Trade-off conditions between renewable integration and potential savings are identified and numeri-
cally evaluated by means of multiobjective optimization. In contrast to scheduling-based models,
the proposed architecture possesses the ability to iteratively adapt decision variables in response to
system changes, thus responding effectively to external stochastic uncertainty.

Keywords: home energy management systems; mixed integer linear optimization; electric
vehicles; bidirectional charging; predictive control

1. Introduction

Climate change is undoubtedly one of the most urgent issue of the current century. Its
causes are deeply embedded in modern habits, comforts, and lifestyle. Emissions’ mitiga-
tion translates differently across sectors, thus imposing substantial changes. Transportation
and energy sectors are among the most emitting nowadays in terms of Greenhouse Gas
(GHG). They contribute, respectively, to 24% and 41% of the CO2 released [1], and therein
lies the reason for the structural changes they are undergoing. The first sector sees as an
undisputed protagonist of its revolution the spread of Electric Vehicles (EVs) [2]. Low-duty
electrification provides a valid alternative for a partial decarbonization of the sector and
has been mainly catalyzed by a huge policy support, incentives, environmental concerns
and technological improvements [2]. The EV’s market is expanding rapidly, thus tripling
sales volumes in three years globally [2]. This trend is at the same time well received by
industries that, with policies of accelerating electrification and increasing sales volume,
were able to meet the demand while decreasing costs. The same speed and readiness for
change is also required of the infrastructure for charging, transmitting, and dispatching of
electricity. The large-scale integration of EVs into the grid will greatly increase both the total
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electricity consumption, by transferring part of the demand from fossil fuels to electricity,
and the peak power, by posing significant stresses on the grid [3]. Although globally the
trend is growing, regionally the situation is strongly fragmented. Limiting the scope to
Europe, the second-largest market after China, there are countries with peak penetration in
new sales of 88%, like Norway, and at the same time markets where the number of sales
from the previous years is unchanged, such as Italy or Austria [2]. However, as a result
of increasing policy pressure (e.g., the “Fit for 55” policy [4] in EU), economical advan-
tages, and technical improvements, EV share is expected to keep increasing worldwide.
In parallel, the energy sector is also profoundly changing its structure and the entities
that are part of it. A historically centralized sector now conceives actors referred to as
Distributed Energy Resources (DERs): small scale modular generation technology (e.g.,
wind, photovoltaic, fuel cells, gas turbines, batteries, and flywheels) that are generally lo-
cated near the electricity use [5,6]. Renewable Energy Sources (RESs) are experiencing high
growth rates worldwide due to rising interest in green energy and a decline in investment
costs [7]. Limiting the discussion to the most popular sources of renewable generation [8],
solar and wind, it is reasonable to point out that, disregarding the enormous benefits in
terms of decarbonization, the large penetration of these intermittent resources may cause
negative impacts on the power grid, including an increase in reactive power flows, voltage
fluctuations, unbalances, and congestions [9].

Combining all the dynamics mentioned above, a particularly stressful condition for the
entire transmission and dispatching system is outlined. This condition can realistically be a
limiting factor to the ultimate large-scale deployment of a smarter and cleaner framework
for electrification. The bright side of the coin is embedded in EV adoption: the potential
availability of a massive and decentralized energy storage [8] that, if wisely operated,
may contribute to decoupling the generation from the consumption profile, minimizing
renewable curtailment, and potentially saving costs for the car’s owner. EV charging piles
can be utilized to integrate PV output, thus enhancing PV generation penetration, reducing
network losses, and simultaneously meeting travel needs [10]. Moreover, bidirectional
energy exchange will contribute to the full exploitation of EVs’ batteries. Interest in this
type of application is high: bidirectional home board chargers are a mature technology,
and pilot projects are rapidly growing in popularity and interest. The present work is
aimed at developing intelligent strategies to operate EVs bidirectionally. A Home Energy
Management System (HEMS) is modeled; it is capable of managing multiple actors in a
distributed, digitized, and sustainable framework. The optimization procedure is integrated
into a Model Predictive Control (MPC)-based architecture, with the aim of enhancing its
robustness against unexpected changes in external boundary conditions. This work is
structured as follows: Section 2 provides an extensive overview of the relevant literature,
including the key theoretical frameworks and relevant studies. Section 3 describes the
methodology, thereby detailing the mathematical formulation of the optimization problems,
constraints, and battery and degradation models. Section 4 provides the description of
the case study and presents data sources to enable comparisons. Section 5 evaluates the
case study and the results obtained from the numerical simulations performed. Finally,
Section 6 gives some conclusions based on the study’s outcomes.

2. Literature Review

In this section, a deep bibliographical review is performed. In Section 2.1, a careful
analysis is carried out concerning HEMS structure, specifically those conceiving EVs as
controllable loads; in Section 2.2, a focus is provided on Model Predictive Control (MPC)-
based EMS aimed to successfully handle uncertainty.

2.1. Electric Vehicle Integration in Energy Management System

EMS coupled with the presence of EV has been extensively investigated in the scientific
literature. The relevance of those systems has been enabled by recent advances in commu-
nication techniques [11], the large-scale integration of EVs into the grid [1,3], smart sensing,
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and smart metering [12]. Energy management problems can include a wide variety of enti-
ties and sizes. The management operated by this type of model can affect small domestic
systems, which are eventually provided with local generation units [3,13], systems with
stationary storage, MGs with renewable penetration, diesel generators, and turbines [14]
up to medium–large scale systems. From a user perspective, interests are wide-ranging
but generally directed toward the economic optimization of the charging [8], managing
the charging and discharging operation to minimize the total energy cost [1,3,11,13], maxi-
mizing the produced renewable energy utilization, and reducing the CO2 emissions [15].
Clusters are variable in size, ranging from a single EV owner to multiple building schedul-
ing [3] and large-scale distribution systems optimization [10]. Private users’ perspective is
not the only possible approach: in [16], an optimal EV charging strategy was calculated
for one charging station; in [17] optimal sizing and energy management strategy were
conducted for a grid-connected EV workplace charging stations considering PV sources
and flywheel energy storage system. Modelingwise, EMS archetypes can be mainly broken
down into rule-based, optimization [1,8,11–14], and heuristics [3]. It is commonly agreed
that optimization techniques can be used to solve scheduling problems in EMS and can
provide accurate solutions; they are normally time-consuming, especially when solving
complex optimization problems [15]. Moreover, real-time applications are limited mainly
due to the dependency and uncertainty of future events. On the other hand, suboptimal
control laws, especially in the presence of Dynamic Time of Use (DToU) tariffs, are resulting
from the two remaining modeling techniques.

One of the fundamental challenges of these systems is certainly that of wisely man-
aging the switching on of loads. In this framework, EVs, according to [18], belong to
the group of controllable load, differing from critical loads, because of the possibility of
reducing, shifting, and delaying the demand levels of power. Schedulable loads are able
to provide flexibility to the demand and to reduce the peak-to-average ratio (PAR) of the
load profile. Fotouhi et al. [13] addressed this issue with a two-stage real-time EMS with
the final purpose of minimizing the total cost of operation. Hybridization of the thermal
utility, which can be served either by natural gas or by machines driven by electricity, e.g.,
heat pumps, increases the complexity of the problem. The aforementioned two layers are
necessary to handle two distinct and different issues: firstly, a deterministic problem is
solved, aiming at minimizing the peak power. This is aimed at limiting the cost on the
bill resulting by a fixed fee solely as a function of the peak power recorded in the pricing
interval, e.g., one month. Keeping satisfied the demand of the building and assuming
that it is possible to shift part of the load within a deterministic time span, the optimized
demand peak is computed and provided to the second layer. This, structured as Mixed
Integer Linear Programming (MILP), enables the possibility to operate EVs bidirectionally
and shut down units with the inclusion of binary variables. MILP modeling, among the
optimization-based models, resulted as the state of the art [3,7]. The objective function is
the overall operational cost, given by the sum of the electricity and natural gas bills. The
minimization problem is subject to the power and heat balances for each time interval. The
EV battery, on the other hand, is characterized by a maximum capacity and a constant
charge and discharge efficiency. A similar approach for the inclusion of a hybrid heating
system in the EMS has been proposed by Mojtaba et al. in [11]. Although this study was
also addressing unit commitment problem, the focus was on the role of the vehicle as
the enabler for more efficient house management. The objective function was enriched
by a term accounting for a fictitious battery cost. In fact, while increasing interactions
with the vehicle, the battery deteriorated faster as the overall energy throughput increased.
The relative weight of the described two terms in the overall cost was regulated by the
coefficient λ in a multiobjective optimization function. Systemwise, the heat balance was
substituted by the assumption of a complete electrified heating system and the consequent
inclusion of a thermal dynamic model of the building. From the control point of view,
the heat pump requested power can vary within a specific interval in order to meet user
comfort conditions.
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Pure economic optimization in [3,8,13,15,19] can be expanded, including additional
merit parameters. In [1], Van Kriekinge et al. proposed a multiobjective function, including
an additional term accounting for the absolute difference between the grid power at each
time step and the average power requested to the grid. The purpose was to flatten the
power grid curve and hence to reduce the peak power filling in the valleys. In line with
the economic transposition of physical phenomena, as developed for the fictitious battery
cost in [11], a penalizing cost for thermal discomfort was proposed in [12] for a large-scale
application. This was calculated on the basis of the customer’s desired temperature and
represented a term to minimize in the optimization function.

The integration of EVs in the HEMS requires the energetic and temporal character-
ization of the asset. The State of Charge (SoC) and arrival and departure time can be
deterministic: these values can be inferred and considered as average value for a specific
user type [3]. A similar approach was implemented in [15], where behavioral and sea-
sonal differences between working days and holidays were modeled. The arrival SoC
was calculated based on different ranges of km driven by the user though the use of a
probability distribution of daily family travel distance in Shanghai and an energy efficiency
coefficient. Complexity is added if the state and arrival’s conditions of the car are unknown.
This is as in [16], where assuming to be known the departure and arrival time is highly
unrealistic. These specifications indeed can vary stochastically on the basis of the user
behaviours and lifestyle. A possible solution is the one proposed by Van Kriekinge et al. [1]:
the state probability, arrival SoC, and other vehicle’s specification were inferred based on
preprocessing recorded charging events in 2019 from a charging location inside the car park
of a hospital located in Brussels. It consisted of six chargers containing two Type 2, hence, a
maximum of 12 connectors, delivering up to 22 kW. A similar approach was developed
in [11]; vehicle characterization was put in place through the definition of three parameters:
plugged-in time, plugged-out time, and EV battery energy at plugged-in time. The trip
time (the first two parameters in the previous list) was obtained using a Markov chain in
order to capture the intrinsic stochasticity. Transient probabilities from the plugged-out and
plugged-in states were extracted from a 3197-day data-set of the habits of ten university
employees. For the last parameter, the authors underline that it can be affected by many
factors, such as the plugged-out battery energy level, driving distance, driving styles, and
traffic. In order to be able to include part of the aforementioned factors in the battery energy
level at plug in, the conditional probability dependent on the plugged-out energy in the
battery was used.

2.2. Model Predictive Control-Based Architectures for EMS

The consolidation of a decentralized paradigm induced by DERs’ proliferation raises
the need for local management [20]. The latter includes both power management, which
results in real-time operation stability control, and energy management, which operates the
different units of the grid-connected system, thus generally optimizing operation from an
economic point of view [21]. The optimal management of grid-connected MGs constitutes
a difficult task, which is mainly due to the effective level of coordination to be achieved
between the various distributed energy resources available, which are characterized by
different technologies and operating constrains [14]. MPC represents a suitable approach
for optimal dispatch in a power system when seen from the twofold capability of including
real-time changes and accounting for uncertainties [22]. As reported in [18], it is based on
future predictions and the behaviors of the system. This is particularly relevant due to
the increasing share of renewable energy foreseen in domestic generation; robustness is
provided by the feedback mechanism embedded in the receding horizon. This strategy is
able to successfully handle deviation from forecasts, thus iteratively solving a constrained
Optimal Control Problem (OCP). The control law is computed at every sampling time for a
particular horizon on the basis of an updated forecast and measured state of the system;
the validity of this technique has been proven extensively in the literature for the EMS
in various contexts. In [7], an economic MPC was applied to schedule the EV charging
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scheduling. This specific solution is suitable for the system in object when seen from the ease
in the integration of price and demand varying forecasts. Linear MPC minimizes electricity
cost, thus generating at each interval an optimized scheduling. In [19], the operations
of a grid-connected MG were managed through the implementation of a stochastic MPC
(sMPC) algorithm. The system in the object included the presence of renewable production,
while the consumption profile was the result of the sum of the effects of critical and
controllable load. Continuous variables βk were introduced for each controllable appliance
to modulate the percentage of the power curtailed at every instant of time. sMPC provides
a probabilistic framework to the system and enables the integration of a probabilistic
description of uncertainty. An MG power dispatch was successfully handled in [23], where
a multienergy grid-connected MG consisting of a microhydropower plant, photovoltaic
plant, diesel generator, and stationary storage was successfully operated to aim at optimal
economic dispatch. The optimal control inputs for each step of the prediction horizon NP
were calculated as a result of the optimization: the first was put in place, the system states
were updated, and the horizon was shifted forward. An interesting approach for the same
problem was proposed by Cominesi et al. in [14]. The authors proposed a two-layer sMPC
based on two different timescales in order to deal with the uncertainty embedded in the load
and the PV generation profiles. Firstly, the system was solved on a 15 min discretization
step without considering uncertainty. The aim of this layer was to economically optimize
the operation of the microgrid, thus fulfilling the load and operational constraints of the
devices. Uncertainty was included at this point with a high granularity: the second layer,
running at a higher frequency (1 min), is responsible for satisfying the power balances in
the presence of unexpected events while trying at the same time to minimize the deviation
from the expected path. Since the charging and discharging power from the storage is not
inferiorly bounded, it may happen that a better solution is found in the second layer by
inverting the operational mode of the battery. In view of this, two distinct problems with
the two operational mode are solved in parallel, and the best solution in terms of deviation
is kept. Another solution for the grid-connected Skagerak Energilab MG was discussed
in [6]: while the sMPC exploited the probabilistic uncertainty descriptions in the form of
a chance–constraint formulation, Robust MPC (RMPC), implemented in [6], relied on a
bounded deterministic description of the uncertainties. The control input solution was
therefore generated based on the variability of the uncertainty. Clearly, RMPC and a large
set for the uncertainty can lead to conservative behavior resulting in nonoptimal control
input, as well as an unfeasible solution. Reducing the scale of the system, a two-stage
Rolling Horizon (RH)-based optimisation model was used to minimize the energy cost of
a multifamily residential building of 29 flats. As with the majority of studies regarding
HEMS, the time granularity was kept low in order to be able to enrich the model with
typical peak patterns of the present appliances. In this case study, as expressed by the
authors, the RH approach was included both for dealing with uncertainty and also to
promptly react to changes in the users’ requirements. A similar procedure was presented
in [24].

The computational time, which is typically a limiting factor for these models, can be
partially mitigated using explicit MPC, where a map function of the uncertain parameters’
magnitude is produced offline, thereby enabling the evaluation of a function instead
of an optimization procedure in online application. In [22], this technique was applied
in a charging station scenario in the presence of renewable generation and stationary
storage. The proposed solution includes the presence of uncertainty from five different
sources: the PV power production, the energy price of the grid, the CO2 emission level,
the consumption, and the arrival SoC of the EV. The mapping strategy was effectively
put in place by exploiting multiparametric programming in order to explicitly solve the
MPC problem. Practically, once online, the magnitude of the uncertainty will define the
system state, thus belonging to one of the modeled critical regions and the prescribed
control action.
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3. Materials and Methods

The main objective of this paper is to develop an EMS for a domestic application
capable of exploiting the presence of an EV and PV system and optimizing the operations
conceiving bidirectional interactions with the EV’s battery. The optimal control problem
is then included in a predictive framework to account for uncertainty, with unexpected
behaviors and changes in user input. The present work proposes a control-oriented archi-
tecture that combines an SH-MPC combined with an MILP to optimally dispatch power in
a household.

3.1. System Architecture and Use Cases

The work is tailored to a general domestic system equipped with a photovoltaic system,
a domestic electric load demand, an EV, and an EVSE capable of handling bidirectional
charging with a smart meter to monitor the power exchanged with the network.

Different boundary conditions will result in different scenarios. Computationally,
different frameworks of operations will impose or relax limitations and possibly force
changes in the objective function formulation. In the context of the HEMS, each different
scenario falls under the name of the Use Case (UC). An optimal control sequence is therefore
UC-dependant. Distinctions are made on the basis of the following aspects:

• The capability for the user to inject power into the grid, thus shifting from a V2H to
V2G paradigm. The latter includes many interactions with the grid, which are aimed
at different objectives: the present work is focused on energy arbitrage to maximize
user’s benefits;

• The economic value of the energy possibly injected into the grid: optimHome offers
the possibility to set the price of the power injected into the grid. As seen in Table 1,
options can range from the retail price or any fixed Feed-In Tariff (FIT);

• Operation purpose is not limited to economics: the scheduling can be aimed at
maximizing renewable self-consumption on site.

A schematic summary of the UC numbers and their corresponding qualitative charac-
teristics is proposed in Table 1.

Table 1. UCs summary.

UC Mode Objective Formulation Sold Electricity Price Bidirectional Capability

1 V2H Cost minimization Single Obj - EV
2 V2H Self-consumption Multi-Obj - EV
3 V2G Cost minimization Single Obj Retail price EV + GRID
4 V2G Cost minimization Single Obj FIT EV + GRID

3.2. One-Shot Optimal Scheduling

Given the car availability T in minutes and the duration of the discretization interval
∆t, it follows that the number of time steps NP to be considered within the problem is
reported by Equation (1):

NP =
T
∆t

(1)

3.2.1. Battery and Degradation Models

The EV battery model developed is formulated as a invariant discrete time state space
model in order to fit in the MPC framework:

xt+1 = A · xt + B · ut

yt = C · xt (2)

x0 given

where t ∈ T are the time intervals over which the model computes the resulting solution
of the control input; the internal state xt quantifies the SoC of the vehicle at time step t;
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the output yt coincides with xt; and x0 is the state variable at initial time step. A, B, and
C matrices are typically referred to as state, input, and output matrices. The dynamic is
controlled by the control input vector ut :

ut =

[
pEV,ch

t
pEV,dh

t

]
(3)

where pEV,ch
t and pEV,dh

t , both ≥ 0, are quantifying the charging and discharging power
in a specific time step. ut quantifies power flows at the house–EV charger interface (refer
to Figure 1). Changes will result based on the SoC, which is affected by the overall
charging/discharging efficiency. The state space matrices in Equation (2) are here reported:

A = 1 B =
[

∆t
CEV ηch,− ∆t

CEV ·ηdh

]
C = 1 (4)

Figure 1. System architecture.

The primary purpose of a battery in automotive applications is to provide the energy
needed for travel. However, cycling the battery for economic purposes can accelerate
battery degradation, thus making it essential to accurately evaluate the associated benefits.
BESS degradation can manifest as a loss of available capacity or an increase in the resis-
tance, with both factors are nonlinearly linked to various chemistry-dependent factors [25].
Battery aging typically occurs through two main processes: calendar and cycle aging. The
former is influenced by temperature and state of charge, while cycle aging is affected by
current rates, charge/discharge cut-off voltages, and previous factors [26]. Deterioration
due to battery aging can be seen as an indirect cost for the user, thereby arising from power
interactions within the EV [11]. Therefore, it is crucial to incorporate physical degradation
mechanisms into optimization procedures. Inspired by previous work [25], capacity loss
is translated into an economic scale, thereby allowing for comparison with other terms in
the objective function. The fictitious cost of battery degradation is quantified as the loss of
available capacity resulting from cumulative throughput. Considering a formulation pro-
posed in [27] and recognizing the differential methodologies when evaluating alternative
charging strategies, we focus solely on cycle aging mechanisms in the objective function.
Nevertheless, even under laboratory-controlled conditions, isolating temperature correla-
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tion proves to be complex, thus leading to a unique dependence of the aging mechanism
on the current rate [28]. Percentage capacity loss is estimated as follows:

q = B1 · exp(B2 · IC) ·
T

∑
t=0

(pEV,ch
t + pEV,dh

t ) · ∆t (5)

where the pre-exponential factor B1 and the exponential B2 are derived from the ex-
perimental campaign outlined in [27]; IC is the current rate, and it is multiplied by the
energy throughput.

To preserve linearity within the problem, IC is conceptualized as a parameter, thus
reflecting the average C rate throughout the entire charging session and aligning with the
methodologies observed in comparable studies [25]. This assumption is UC-sensitive: in
UC 1 and 2, the average C rate is determined by considering the average forecasted load
demand over the charging period. Since C cannot discharge more than the current demand,
this value represents a fair estimation of the average discharged power.

Pload =
∑NP

t=0 Pload
t

NP (6)

Pavg,IC = Pload

On the other hand, without the limitation in discharge and the capability to perform
V2G connection, typical discharge power is generally close to the infrastructure maximum
capacity in UC 3 and 4. Consequently, the average discharge power assumed corresponds to

Pavg,IC = min((Pgrid,max − Pload), (Plim,1 − Pload)) (7)

To be comparable with the potential revenues deriving from the bidirectional opera-
tions of the battery, the measure of capacity loss must be expressed as a homogeneous unit
of measure with respect to the cost of the supplied energy. This is achieved by considering
the specific cost coefficient ˆCB,0, battery size CEV , and the remaining battery capacity at
the end of life of the car φ. Explicit formulation of coefficient D, expressed in [e/kW], is
finally derived as follows:

Cdegradation =
ĈB · CEV

100 − φ
· B1 · exp(B2 · Pavg,IC

CEV ) ·
T

∑
t=0

(pEV,ch
t + pEV,dh

t ) (8)

D =
ĈB · CEV

100 − φ
· B1 · exp(B2 · Pavg,IC

CEV )

3.2.2. Conventional Constraints

Assuming negligible power losses within the control volume, the most comprehensive
real power balance constraint on the system in Figure 1 is enforced as follows:

Pload
t − PPV

t = pgrid,buy
t + pEV,dh

t − pEV,ch
t − pgrid,sell

t (9)

The above-mentioned formulation simplifies to Equation (10) for UC 1 and 2:

Pload
t − PPV

t + pexcess
t = pgrid,buy

t + pEV,dh
t − pEV,ch

t (10)

Note that the decision variables pexcess
t , pgrid,g

t , and pEV,b
t are implemented as a continuous

positive-defined variable. Specifically, pexcess
t is configured as an auxiliary variable capable

of monitoring only excess generation from the renewable. It assumes values greater than
zero only in the presence of overproduction and is defined for the sole purpose of including,
within the optimization criteria, the ability to maximize self-consumption.
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Binary variables, reported in Table 2 and coupled with the continuous power flow
variable, are introduced. For each single formulation, M and m can be assumed by con-
sidering the capacity limitation of the manipulated variables. These are mathematically
enforced by means of the following formulation [29,30]:

f : Rn 7−→ R and xi
t ∈ {0, 1} with i ∈ B,G

f (t) ≤ 0 ⇐⇒ xi
t = 1 is true if

{
f (t) ≤ M · (1 − xi

t)

f (t) ≥ ϵ + (m − ϵ) · xi
t

(11)

with M = max( f (t)) m = min( f (t)) ϵ ≈ 0

Table 2. Correspondence between binary and continuous variables in optimization problem formulation.

Set f (t) xi
t Use Cases

B pEV,ch
t xEV,ch

t All
pEV,dh

t xEV,dh
t All

G pgrid,buy
t xgrid,buy

t
3/4

pgrid,sell
t xgrid,sell

t
3/4

Real power operating limits on the variables pgrid,g
t and pEV,b

t must be enforced. For
UC 3 and 4, symmetrical capacity limitation is enforced on pgrid,sell

t by Equation (13) while
battery charging is bounded by Equation (14):

0 · xgrid,buy
t ≤ pgrid,buy

t ≤ Pgrid,max · xgrid,buy
t (12)

0 · xgrid,sell
t ≤ pgrid,sell

t ≤ Pgrid,max · xgrid,sell
t (13)

Pch,min · xEV,ch
t ≤ pEV,ch

t ≤ Pch,max · xEV,ch
t (14)

The parameter Pch,max embeds additional complexity: in Li-ion batteries, affirmed chemistry
for EVs, maximum admitted charging power is not constant. Pch,max is indeed the result of
the dependence of the C rate of the specific charging process and the actual SoC. Battery
management system regulates this limitation in order to prevent degradation and ensure
safety. However, the general trend is that batteries are able to charge with high power up to a
certain level of SoC, above which maximum power decreases. In this work, Pch,max presents
a dependency with the actual SoC of the vehicle. In accordance with the methodology used
in [1], the maximum power decreases linearly when a deterministic SoC limit is exceeded.
Specifically, as reported in Equation (16), SoChighP represents the limit after which the
battery management system must reduce the charging power to maintain the voltage
constant without exceeding the maximum imposed value. This linear decrease ranges
between the maximum charging power Plim,1 and Pch,min.The maximum charging power
at low SoC, Plim,1, is instead the result of capacity limits of the charging infrastructure and
the battery itself. The discussed conditions can be enforced through the following:

Plim,1 = min(PEV,max, PEVSE,max) (15)

Plim,2 = Plim,1 − (1 − SoChighP)−1(soct − SoChighP)(Plim,1 − Pch,min) (16)

Pch,max = min(Plim,1, Plim,2) (17)
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Figure 2. Energy threshold and SoC subregions as prescribed by the bidirectional charging protocol.

Concerning the discharge power from the battery, the limits are UC-dependent: for
UC 1 and 2, being a V2H application, the upper limit is a fixed net electric demand of the
dwelling while for the remaining UCs, higher power rates for the discharging are admitted:

0 · xEV,dh
t ≤ pEV,dh

t ≤ Pnet
t · xEV,dh

t for b = discharge (18)

0 · xEV,dh
t ≤ pEV,dh

t ≤ Pch,max · xEV,dh
t for b = discharge (19)

The maximum exchange related to the grid is limited by the fuse limit of the dwelling.
In parallel, the infrastructure also limits the interaction with the battery: here, the superior
limit is imposed by the capacity limit of the maximum admitted current by EVSE and
EV (Equation (16)), while the lower limit represents a technoeconomic trade-off condition
imposed by worsening performances of components at low powers. Lower bound in
discharge is instead neglected.

Exploiting the binary variables given in Table 2, it is possible to prevent simultaneous
operations for the same unit (battery and power grid) in the same time interval t. This
consideration is enforceable on the system by means of Equation (20) in UC 1 and 2 and by
Equation (21) in UC 3 and 4.

xEV,dh
t + xEV,ch

t ≤ 1 (20)

xgrid,sell
t + xgrid,buy

t ≤ 1 (21)

The model’s strong adherence to the industrial development frontier recurs: unlike
other studies where the SoCtarget is typically calculated on the user’s driving habits, the
present work is focused on the single charging session optimization. SoCtarget is thus a
deterministic input of each simulation. Ideally, the user, once arrived at home, is only
in charge to plug in the vehicle and input when and at what SoC the EV will be needed
in the future. The inclusion of this condition is introduced into the model by means of
Equation (22). Note that this equality constraint is enforced only on the last instant of the
optimization: t = NP.

soct=NP = SoCtarget (22)

3.2.3. Condition Constraints

The growing attentiveness of large-scale implementation of bidirectional operations
is also evidenced by the increasing regulatory attention: ISO15118-20 [31] defines the
communication messages and sequence requirements for bidirectional power transfer.
Specifically, it prescribes the definition of four different static energy levels to include a
vehicle within a regulated bidirectional energy exchange (Figure 2). Motivation is twofold:
firstly, a minimum mileage of the EV must be always assured, thus mitigating user range
anxiety, and secondly, excessive deterioration of the battery’s health status must be assured.
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Practically, four static thresholds, SoCmin, SoCV2X,min, SoCV2X,max, and SoCmax, result-
ing in 5 SoC subregions were defined:

• Zone 1 represents a nonoptimized region in which cycling is not allowed. Practically,
this region can be entered only at the beginning of the charging process if the arrival
SoC is very low. If this is the case, the actual optimized scheduling will not start until
the safety value SoCminimum is reached. Operations in this region are governed by a
rule-based control algorithm:

Pav
t = Pgrid,max − Pnet

t (23)

pEV,ch
t =

{
0 if Pav

t < Pch,min

Pav
t otherwise.

(24)

• Zone 2 is an intermediate region in which cycling is still not permitted, but the
charging power can be the result of the optimization. In other words, the charging
can be postponed by waiting for a more convenient moment, but discharging is not
permitted even in the presence of a very convenient price. To enforce the condition, a
binary decision variable xzone2

t must be designed to be true when soct belongs to Zone
2 (refer to formulation in Equation (11)). Subsequently, direct implication is enforced
by means of Equation (25):

xzone2
t ∈ {0, 1} and xEV,dh

t ∈ {0, 1} (25)

xzone2
t = 1 ⇒ xEV,dh

t = 0 is true if xzone2
t − (1 − xEV,dh

t ) ≤ 0

• The core of optimization is represented by the operations in Zone 3, where cycling
aimed at maximizing objective function is admitted;

• Zone 4 covers the states between the upper level for cycling SoCV2X,max and SoCmaximum.
Zone 5, consequently, represents the remaining region between the size of the battery and
EV Maximum energy level. The protocol prescribes that in Zone 5, only discharging is
admitted, while you can only enter Zone 4 to reach the departure SoC target. Specifically,
in Zone 4, discharging is permitted to enter the cycling zone just once. In other words,
no cycling is admitted between Zone 3 and Zone 4. In real-life applications, the arrival
SoC is far from being comparable with the above-mentioned levels. As a result of these
considerations, Zone 5 has no interest in being defined, as this scenario only occurs
with extremely high SoC arrivals. For the purpose of this work, Zone 4 and 5 can
be condensed into a single zone, within which only charging is allowed. Clearly, this
simplifies what is described in the protocol, which, however, by its nature and given its
purposes, must include as many case scenarios as possible by establishing constraints
and conditions valid for even the most extreme circumstances. Similarly to Zone 2,
the condition is enforced by introducing a new binary variable, xzone4

t , thus referring to
Equations (11) and (25).

3.2.4. Objective Functions

The UCs, reported in Table 1, may differ explicitly for their final purpose or for the
enabled operations. In both cases, differences directly impact on the analytical formulation
of the objective function:

• The objective function of this first UC purely quantifies the cost of operations within
the control volume (Equation (26)). Total cost is given by the sum of two distinct
addends and is homogeneous in terms of unit of measurement: Firstly, the cost for
electricity is given by the scalar product between the variable that quantifies the
power bought from the grid and the parameter that collects the electricity tariff for
each considered time step. Secondly, in accordance with other related studies [11],
battery deterioration can be related to an economic cost and thus included in the
objective function to counterbalance discharge operations. It was chosen to assess
degradation under a differential perspective: charging the vehicle up to a target SoC



Energies 2024, 17, 1963 12 of 24

represents a benchmark, which is an inevitable deterioration of battery performance
induced by simple car use, and therefore, it should not affect the optimal scheduling.
For this reason, the optimal charging control sequence is affected, thus accounting
for two times the discharged energy considered as the deviation from the reference
unidirectional charging process.

min
p

NP

∑
t=0

pgrid,buy
t · Cel

t · ∆t︸ ︷︷ ︸
Cost for electricity

+ 2 · D ·
NP

∑
t=0

pEV,dh
t · ∆t︸ ︷︷ ︸

Cost for battery degradation

(26)

• A multiobjective function to maximize self-consumption is employed in UC 2 to deal
with heterogeneous terms. The quantification of renewable overproduction from PV
is the additional term to the total cost of operation already discussed for UC 1. pexcess

t
is an auxiliary variable that quantifies the excess of renewable energy.

min
p

α · (
NP

∑
t=0

pgrid,buy
t · Cel

t · ∆t + 2 · D ·
NP

∑
t=0

pEV,dh
t · ∆t)︸ ︷︷ ︸

Total cost of operation

+β ·
NP

∑
t=0

pexcess
t︸ ︷︷ ︸

Renewable surplus

(27)

• V2G operations enabled at retail price in UC 3 or FIT in UC 4. Objective functions for
the last two UCs are as reported in Equations (28) and (29). The only difference lies in
the economic valorization of energy injected into the grid.

min
p

NP

∑
t=0

pgrid,buy
t · Cel

t · ∆t︸ ︷︷ ︸
Cost for grid supplied energy

+2D ·
NP

∑
t=0

pEV,dh
t · ∆t −

NP

∑
t=0

pgrid,sell
t · Cel

t · ∆t︸ ︷︷ ︸
Revenues injected energy

(28)

min
p

·
NP

∑
t=0

pgrid,buy
t · Cel

t · ∆t︸ ︷︷ ︸
Cost for grid supplied energy

+2D ·
NP

∑
t=0

pEV,dh
t · ∆t −

NP

∑
t=0

pgrid,sell
t · FIT · ∆t︸ ︷︷ ︸

Revenues injected energy

(29)

3.3. Receding Horizon Optimization

The deterministic scheduling detailed above is incorporated in an iterative and pre-
dictive framework of operations. The frequency with which the optimal sequence of
commands is calculated represents a parameter, ∆ts, chosen a priori based on the dynamics
of the system, the degree of accuracy required, and the computing power.

NS =
T

∆tS (30)

At each sampling instant, k is the optimal sequence of control action and is calculated
over the entire prediction time step. Note that the concept of prediction time step, intro-
duced in Equation (1), is enlarged: as sampling time progresses, the prediction window NP

k
is reduced (Equation (31)).

NP
k =

T − k · ∆tS

∆t
(31)

Consequently, acquisitions are also time-dependent with respect to the variable k. PPV
t|k

is then defined as the PV forecast obtained at the sampling time k for the time step t of
the prediction window NP

k . The same mathematical formulation will be applied to all
the time-dependent inputs and most importantly to each of the decision variables. As
shown in Figure 3, at each sampling time, the optimal control problem is solved only for
the subsequent time slots, thus keeping fixed the final limit. Consequently, the number of
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decision variables decreases as a result of the reducing time intervals considered for the
optimization, thus positively impacting the computational time. This peculiar iterative
control technique falls under the name of Shrinking Horizon MPC (SH-MPC).

PV & Load
Forecast

Price
Forecast

Forecast Module

PPV
t,k ,Pload

t,k ,Cel
t,k

SoCtarget
k , TkUser mobility needs

Optimal Scheduling:
control action ut

k

Car state SoCarrival
k

Real time compensation
during interval k

Sensing Feedback

Sensing Module

Figure 3. SH-based MILP optimization flowchart.

4. Case Study

A domestic household was considered as the main object of the investigation. The
grid-connected dwelling is provided with a wall-box and an EV, which are both capable of
managing bidirectional operations. The house is equipped with solar panels on the roof
(Figure 1). As anticipated, the inherent stochasticity in the SoCarrival and the arrival time
has been disregarded in the developed framework, which focuses solely on optimizing
individual charging processes. In line with practical scenarios, these aforementioned values
can be treated as deterministic once the car is at home. The testing conditions have been
designed based on typical routines and situations for an employed household user, such
as arriving home in the late afternoon with a low to medium SoC. In Table 3, numerical
assumptions for the parameters introduced in Section 3 are reported.

Table 3. Relevant numerical assumptions.

Relevant Parameters

Socmin [−] 0.2 1 SocV2X,min [−] 0.25 1 SocV2X,max[−] 0.8 1

Socmax [−] 0.97 1 ĈB [€/kWh] 100 2 CEV [KWh] 69 4

Plim,1 [kW] 11 Pch,min [kW] 2.3 SocV2X,min [−] 0.8
ηch [−] 0.97 ηdh [−] 0.97 ∆t [min] 15 3

References: 1 [31]; 2 [2,32]; 3 [1,13,33]; 4 [34].

4.1. Electric Load and PV Production Estimation

The creation of an electric load profile within this work relies on LoadProfileGener-
ator [35]. This tool provides an accurate, realistic, and well-discretized residential load
trends. Profiles are generated using a behavior-based load generator that simulates the ac-
tions and the connected electric consumption of each member of the considered household.
The 1 min discretized total load profile for a family with one child and with both midage
working parents, referred to as CHR03 in [35], was chosen. Clearly, this profile does not
account for the charging consumption of the EV. The solution’s robustness is reinforced by
the embedded seasonal and weekly characteristics, which continually evolve even within
corresponding times of the day.

Similarly, the yearly, hourly discretized renewable generation estimation, associated
with a solar array of 3 kW, south-oriented located in Gothenburg, relies on the commercial
software PVsyst 7.4 [36]. The software output consists of the net generation, thereby
accounting for losses associated with the inverters and perfectly aligning with the parameter
PPV

t present in Equations (9) and (10), as well as the convention in Figure 1.
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4.2. Electricity Tariff

The end users’ tariff is the assumed time variable: an hourly dToU was chosen in
order to enhance the optimization and highlight hidden potentials of this application.
Nevertheless, on- and off-peak power pricing, typical of sToU tariffs, still enable the
possibility for optimization, with a lower margin for the savings, and could easily be
considered in this simulation tool. In line with the methodology proposed in [13], numerical
values were taken from the Nordpool [37] day-ahead market price. Nordpool is a regional
energy market operator and power exchange that facilitates the trading of electricity in the
Nordic and Baltic countries. It provides a platform for buyers and sellers to trade electricity,
thus allowing market participants to engage in spot trading, futures contracts, and other
financial instruments related to energy. It is relevant to state that all prices are wholesale
and exclude any fees, charges, or taxes applied at a national level or by DSOs. The resulting
absolute charging cost may therefore differ from the real one paid by the final user. This
difference will not affect future considerations, as economic advantages are discussed and
derived in terms of percentage changes with respect to a benchmark. A comprehensive
illustration of the three introduced time series is provided in Figure 4.
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Figure 4. Forecasted time series for 30 h time window.

5. Results and Discussion

Optimal set points were calculated on a single charging process: the car returning
home is incorporated as a dynamic load within the more complex context of home power
flows, and an optimal charging schedule is computed. The user, subject to a dToU tariff
in terms of electricity pricing, can input the number of hours for which the vehicle will
remain connected and an indication of the desired departure SoC. Bearing this in mind,
optimization is performed iteratively over the remaining time windows, and the final
output is represented by the control action in terms of power supply to meet the demand
at each time step.

In Figure 5, a flowchart illustrating the architecture is depicted. It is relevant to
underline that forecasting algorithms were beyond the scope of this work, and for this
reason, the load and renewable production estimation were not progressively updated
at each iteration. In the present section, the forecast module is treated as deterministic,
thereby utilizing one-year static records. Referring to the flowchart, the EV and User
Module input are chosen a priori. The combination of the chosen boundary conditions
leads to the automatic selection of a UC (Table 1) and the consequent determination of the
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optimal charging set points for the car. As reported by Mazzola et al. [33], this represents
the most optimistic solution in economic terms, which is a valid reference benchmark
frequently referred to assess systems’ performances.

Solar production

Load estimation

Electricity prices

Forecast Module

EV current state

User mobility needs
Bidirectional Charging

Protocols & EV
Technical Specifications

EV module

UC determination

MILP optimization

Optimal set-point

User electricity tariff

Fuse limit

Installed PV power

EVSE

Grid injection

Location

Number of people

Objective

User Module

Figure 5. Simulation procedure flowchart.

5.1. Economic Profitability in Bidirectional Smart Charging

Bidirectional optimized charging offers potential economic savings for car owners.
By quantifying the monetary profitability, EV owners can assess the financial viability
and benefits of adopting such systems. In this study, UC 1 and UC 3, with respect to the
definition provided in Table 1, were compared to a selected benchmark representing typical
plug-and-charge (or “dumb charging”) processes. Assumptions in Table 4 were added to
Table 3. The SoC trends for each charging logic are compared in Figure 6. Notably, UC
1 and UC 3, both being price-optimized charging strategies, tended to operate charging
and discharging within the same time intervals. Conversely, plug-and-charge methods
impose greater stress on grid infrastructure in terms of peak demand and offer no economic
advantage for the user.

Table 4. Common input parameters for simulations.

Input Parameters

Time window [hours] 30 Pgrid,max 11
Arrival SoC [−] 0.35 Departure SoC [−] 0.7

Economically speaking, with respect to dumb charging, optimized scheduling ensures
relevant savings for the users (Table 5). The benchmark is identified by the time of plugging
in the car, and the results mentioned earlier represent a worst-case scenario where charging
is done during a peak period. Nevertheless, the simulation was conducted to evaluate
a typical weekday situation where car users typically arrive home after work (around
17:00/18:00), which often coincides with peak pricing.

Wrapping up, the economic benefits of bidirectional operations are unquestionable,
and their magnitude depends on the user’s previous charging habits.
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Table 5. Percentage variation of relevant aggregated performance indicators with respect to
dumb charging.

KPI Variation [%] UC 3 UC 1 Benchmark

Operational cost −205.3 −89.9 8.7 e
Total grid power demand 109.1 25.2 26.9 kWh
BESS energy throughput 193.1 37.2 24.2 kWh

Figure 6. Optimal charging schedule for a SoC evolution for 30 h time window.

Economic profitability significantly improves when constraints on the grid power
injection are relaxed, particularly between UC 1 and UC 3. In UC 1, the optimal economic
benefit from bidirectional operation requires a peak in price to coincide with substantial
load demand. Conversely, in UC 3, the presence of peak prices alone is enough to initiate
power discharge from EVs to the grid. This capability to discharge at higher rates allows for
full exploitation of the cycling region prescribed by the protocol. UC 3 fully utilizes the State
of Charge (SoC) boundaries outlined by the charging protocol, thus reaching both lower
and upper bounds during optimal charging. However, this increased energy throughput
can lead to higher stresses and performance degradation for battery capacity, which is a
concern that is growing in importance due to customer demand for reliable maximum
range over time. In essence, greater savings are directly correlated with increased battery
energy throughput and energy drawn from the grid.

The presented analysis thus far establishes a benchmark condition in which operations
are primarily constrained by economic factors encompassing the overall cost of the charging
process, thereby accounting for battery degradation effects. However, additional limitations
can also be imposed from the vehicle’s side to mitigate wear and tear. Extensive limitation
of the total energy discharged per each charging process, Udh, can be consequently imposed
as an incremental constraint:

T

∑
t=0

(pEV,dh
t ) · ∆t ≤ Udh (32)

The impact of this additional constraint on the solution is not linear: a nonintensive
solution in terms of battery cycling will not be impacted (UC 1), while a limitation on the
savings is imposed on UC 3. Only the most convenient price fluctuation will be exploited
(Figure 7).



Energies 2024, 17, 1963 17 of 24

Operational cost Grid energy Battery through ut
KPIs

−200

−150

−100

−50

0

50

100

150

200

Pe
rc
en
ta
ge
 v
ar
ia
tio

n 
[%

]

No upper bound for DH
10 kWh of upper bound in DH

Figure 7. Comparison of percentage variations with the added limitation in discharge for UC 3.

5.2. Maximization of PV Self-Consumption

Cost optimization is not the sole focus to which the optimal charging scheduling
should aim. The concept of self-consumption has emerged as a valuable objective to
facilitate small-scale nondispatchable RES penetration, thereby reducing at the same time
the impact on the grid and mitigating peak issues from a DSO’s perspective. Furthermore,
smart shifting of the load as a function of the forecasted local renewable energy represents
a key enabler for a sustainable future and a resilient renewable integration. A comparison
between UC 1 and UC 2 (Table 1) is here proposed.

Boundary conditions are common for the two and equal to those reported in Table 4,
with the only exception of SoCtarget = 0.6. This difference is in order to shed light on the
two different optimal charging trajectories without constraining too strictly the charging
schedules. In the presence of high overgeneration, a user may desire to take advantage of
this surplus power for charging rather than injecting it into the grid, which is generally
done at a fixed price. EVs, with their controllable load capacity, play a central role in
fulfilling this objective. The two alternative charging schedules and grid power trends are
reported in Figure 8.

Bearing in mind that most of the overproduction is located temporally in the middle of
the day, as shown in Figure 4, the charging session is shifted from the blue high-power cost-
optimized solution occurring in the middle of the day in correspondence of price minimum
to the green scheduling occuring at a minimum charging power over a longer time interval
in to accommodate all the solar excess. To accommodate the surplus energy that cannot be
dispatched elsewhere, the offset between Pch,min and the effective overproduction must still
be supplied by the grid in the presence of a nonoptimized price. Essentially, the inclusion of
an additional driver for optimal scheduling results as a deviation from the purely economic
optimum: recalling the analytical formulation of Equation (27), weight α and β require
being tuned according to the user awareness to sustainability and economics. The Pareto
front, representing the set of optimal solutions in a multiobjective optimization problem,
is reported in Figure 9. Nondominated solutions are reported, thus evolving towards
the lower right corner as β decreases: the two extreme solutions, highlighted by arrows,
correspond to the charging profile of Figure 8.
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Figure 8. Comparative charging schedules for UC 1 and UC 2.
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Figure 9. Normalized nondominated solution representations.

A trade-off condition is evident in Figure 9: as β increases, the relative weight of
the operational cost in the charging scheduling calculation becomes more central to the
expenses of the on-site renewable consumption. With respect to the Pareto optimal front, a
user may tune the coefficients informatively, thus understanding the potential savings of
more extreme choices. Hybrid decisions are therefore possible and can model the intention
of a user interested in including most of his local generation without foregoing financial
benefits. It is worth pointing out that while the normalized unused production ranges from
0 to 1, meaning that optimal solutions are able to fully abate the unused renewable share,
the cost associated with the solution corresponding to β = 1 (upper left corner) correspond
to 23.5% of the maximum cost. The solution reported in Figure 8, corresponding to the
lower right corner, was obtained for α = 0.5. The sensitivity analysis performed on the
weights is explicitly reported in Figure 10 up to β = 0.7. No explicit changes were taking
place in the optimal control actions.
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Figure 10. Operational cost and overproduced energy for 6 different weights (β = 0.6, 0.7, 0.8, 0.9,
0.95, 1).

5.3. Fuse Limit Sensitivity

In the proposed study case, fuse limits are a limiting factor with respect to the potential
economic savings. Once the most convenient period to perform charging is identified,
we have that the higher the upper bound for power exchange with the grid, the faster
and cheaper are the operations that will result. Assuming a household as a three-phase
system, with each subject to a fuse limit, the correspondent power limitations are reported
in Table 6.

Table 6. Simulated current and resulting power limit.

Fuse Limits

Current Limit [A] Power Limit [kW]

16 11
20 13.8
25 17.25

A further assumption with respect to the previous paragraph concerns the capacity of
the charging infrastructure: Plim,1 was increased to 22 kW. The analysis does not include the
differential cost of the EVSE for two main reasons: Firstly, it constitutes a fixed investment
covered by the owner at the outset and does not entail significant differential operational
costs over the years. Secondly, this approach was chosen to explore the full potential of
harnessing greater fuse limit capabilities. In essence, this section aims to serve primarily as
a benchmark of the potential performance achievable with higher fuse limits. The results
for simulations conducted on UC 3 over 30 h with a SoCarrival and SoCdeparture of 0.3 and
0.65, respectively, are reported in Figure 11.

The fuse limit represents a further enabler for a greater exploitation of the admitted
region for V2X: wider cycling operations are possible given the faster interactions with the
battery. The total cost of operations varied non-negligibly (±10%) according to the overview
reported in [38] and imposed a trade-off condition between decreasing operational costs
and the additional fixed costs in bills imposed on the user for benefiting a higher power
availability. A parallel analysis was conducted for UC 1: by increasing the maximum
available grid power, the charging sessions were exactly located in the optimal time periods,
but the discharging operations were not impacted, as discharging capability is limited by
the grid limit to inject. The economic benefits do not allow for an open trade-off condition
as the one discussed above.
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Figure 11. Comparative SoC trends and charging schedules for different fuse limits.

5.4. Validation

The testing and validation phase revealed the enormous potential embedded in bidi-
rectional smart operations of EVs in a domestic framework. The results are in line with
the major findings within the related literature. In [39], the proposed economic MPC was
tested on a household in Denmark in the presence of the day-ahead electricity spot price.
The savings, with respect to dumb charging, stood at 60%. Halvgaard et al. evaluated
performance metrics over a one-year period. The slight difference in savings arises from
our approach, where we compared a single optimized charging process with uncontrolled
charging during peak price periods. However, over a year, these trends are averaged,
and charging during peak price periods may not always be the norm. On certain days,
the prices of the two strategies may be comparable, particularly when charging occurs
at lower prices. These factors contribute to a lower percentage of savings. A compari-
son with a non optimized-based controller has been investigated in [11] with comparable
economic performances.

6. Conclusions

Shrinking horizon-based control architecture has been introduced as a method for
integrating the EV charging in household energy management in the presence of a time
of use tariff. The flexibility of domestic entities will represent a crucial enabler for the
definitive establishment and proliferation of a smart interconnected distribution network.
The optimization-based approach has been found to be effective in the optimal scheduling
of operations within the household. An EV, considered as a controllable and bidirectional
load, has been successfully operated while aiming at minimizing user-defined objectives.
Moreover, the MPC-based technique has been proven valid when dealing with uncertainty
and user input variations over time. A simulation environment has been developed to
numerically assess the performances of complex interconnected systems in the presence of
different boundary conditions. The EV’s arrival SoC, charging limitations, departure time,
and desired SoC, included as deterministic parameters, have been identified as the most
relevant parameters to be communicated to perform the optimization. On the domestic
side, the current and forecasted net consumption represent the main input. optimHome
conceives different UCs deriving from different boundary conditions on the problem.
The present work has made relevant contributions in the formalization of a user-centric-
based HEMS, thus leading to the explicit derivation of various optimization problems that
incorporate architecture and protocol limitations as constraints. The study was conducted
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quantitatively; trade-off conditions were identified, discussed, and addressed through
numerical analysis. Moreover, the relevance of the work has also been proven using
commercial products launched on the market based on similar optimization structure and
principles [40,41].

Future work may address the inherent stochastic character of the net load demand,
thereby assessing performances that vary the exactness of the forecast. A parallel stream
will interest the inclusion of heat pumps as an additional controllable load and thermal
model of the household in the optimization procedure.
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Abbreviations
The following abbreviations are used in this manuscript:

EV Electric Vehicle
HEMS Home Energy Management System
EMS Energy Management System
EVSE Electric Vehicle Supply Equipment
DERs Distributed Energy Resources
DSO Distribution System Operator
dToU Dynamic Time of Use
FIT Feed-In Tariff
KPI Key Performance Indicator
OCP Optimal Control Problem
MILP Mixed Integer Linear Programming
MG Microgrid
LP Linear Programming
RH Rolling Horizon
RES Renewable Energy Sources
RMPC Robust Model Predictive Control
SoC State Of Charge
sMPC Stochastic Model Predictive Control
SH-MPC Shrinking Horizon MPC
sToU Static Time of Use
TSO Trasmission System Operator
UC Use Case
V2H Vehicle to Home
V2X Vehicle to Everything
V2G Vehicle to Grid
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Nomenclature

The following nomenclature is employed in this manuscript:

Sets:
T /t Set and index for time steps
G/g Grid modes buy or sell
B/b Battery mode charge or discharge
Variables:
pgrid,buy

t Power drawn from the grid [kW]
pgrid,sell

t Power injected into the grid [kW]
pEV,ch

t Charging power [kW]
pEV,dh

t Discharging power [kW]
pexcess

t Renewable overproduction [kW]
xgrid,buy

t Binary for power drawn
xgrid,sell

t Binary for power injected
xEV,ch

t Binary for charging
xEV,dh

t Binary for discharging
xzone2

t Binary for Zone 2
xzone4

t Binary for Zone 4
soct State of charge [−]
Parameters:
PPV

t PV production [kW]
Pload

t Load demand [kW]
Pnet

t Net demand [kW]
Pgrid,max Upper bound of the grid [kW]
PEV,max EV maximum charging power [kW]
PEVSE,max EVSE maximum charging power
Pch,min Minimum charging power [kW]
Pav

t Available power [kW]
SoChighP High SoC threshold [−]
SoCarrival Arrival SoC [−]
SoCtarget Target/Departure SoC [−]
SoCminimum Minimum SoC [−]
SoCV2X,min Minimum SoC for V2X [−]
SoCV2X,max Maximum SoC for V2X [−]
SoCmaximum Maximum SoC [−]
CEV EV battery capacity [kWh]
Cel

t Electricity price [e/kWh]
FIT Feed-In Tariff [e/kWh]
∆t Discretization time step [min]
NP Prediction time steps [−]
T Time for V2X [min]
α, β Weight coefficient [−]
D Degradation coefficient [e/kWh]
q Percentage capacity loss [%]
ĈB Specific cost of battery [e/kWh]
φ Remaining capacity at end life [−]
Cdegradation Degradation cost [e ]
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