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ABSTRACT 24 
 25 

Hydraulic dampers are widely implemented in railway vehicle suspension stages, especially in high-speed 26 

passenger trains. They are designed to be mounted in different positions to improve comfort, stability, and 27 

safety performances. Numerical simulations are often used to assist the design and optimization of these 28 

components. Unfortunately, hydraulic dampers are highly nonlinear due to the complex fluid dynamic 29 

phenomena taking place inside the chambers and through the by-pass orifices. This requires accurate 30 

damper models to be developed to estimate the influence of the nonlinearities of such components during 31 

the dynamic performances of the whole vehicle. This work aims at presenting a new parametric damper 32 

model based on a nonlinear lumped element approach. Moreover, a new model tuning procedure will be 33 
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introduced. Differently from the typical sinusoidal characterization cycles, this routine is based on 34 

experimental tests of real working conditions. The set of optimal model parameters will be found through 35 

a meta-heuristic iterative approach able to minimize the differences between numerical and experimental 36 

damper forces. The performances of the optimal model will be compared with the ones of the most 37 

common Maxwell model generally implemented in railway multibody software programs.  38 

1 INTRODUCTION 39 
 40 

Hydraulic dampers are one of the most diffused types of suspension components 41 

in railway vehicles. The hydraulic dampers are characterized by a dissipative effect 42 

caused by the liquid flowing through the internal orifices of the component. Dampers 43 

are generally implemented in both primary and secondary suspension stages of 44 

passenger vehicles [1] and are oriented in different directions. Different experimental 45 

approaches have been developed to support the design of new suspension components, 46 

such as field tests or Hardware-In-the-Loop (HIL) simulations. The HIL experimental 47 

technique has been adopted in many works to investigate the performances of 48 

prototype suspensions [2] due to its lower cost respect to field tests. 49 

Nowadays, in order to further reduce the design cost, the development of new 50 

hydraulic dampers for railway vehicles is largely supported by virtual simulations and 51 

laboratory experimental tests. These procedures aim at evaluating the effects of the 52 

studied component on the dynamic performances of the vehicles. In railway 53 

engineering, the virtual simulations are generally based on the multibody approach, 54 

which allows to represent the dynamic coupling between the vehicle subsystems 55 

(wheelsets, bogies, carbodies, etc.) through the implementation of several suspension 56 
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elements. The multibody approach proved to be very effective in simulating the 57 

dynamics of railway vehicles, but, according to Evans and Berg [3] and Bruni et al. [4], 58 

there are still several challenges, especially in implementing the correct modelling 59 

approach of the different suspension components.  60 

The modelling of hydraulic dampers through accurate virtual models is 61 

fundamental to obtain reliable numerical results. The damper numerical models must 62 

be simple and fast in order to reduce the computational effort of multibody analysis, 63 

especially considering that a railway vehicle contains a large amount of suspension 64 

components to be modelled. Moreover, the use of damper models with low 65 

computational effort is a requirement for the design of vehicle models able to be run in 66 

real time during HIL tests. For these reasons it is important to obtain the maximum 67 

accuracy from simple suspension models before considering switching to more complex 68 

approaches.  69 

The dynamics of hydraulic dampers is not trivial due to their nonlinear nature. 70 

For instance, in the most common solution, the damping force, strongly related to the 71 

damper elongation speed, is limited by a blow-off valve which avoids extreme force 72 

development. Furthermore, railway dampers present an asymmetric behavior between 73 

rebound and compression strokes. Asymmetry is generally more relevant in vertical 74 

devices [5]. The damper modelling approach cannot exempt from considering also that 75 

the dynamic behavior of the component is strongly influenced by its overall flexibility. 76 

Indeed, hydraulic dampers are not purely dissipating elements. Oil compressibility, 77 

elasticity of piston and cylinder are the most important contributions to the device 78 
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flexibility. Moreover, the presence of resilient rubber mounts at the damper-vehicle 79 

interfaces, also known as silent blocks, increases the complexity of the system due to 80 

their nonlinear elastic and dissipating contributions. Several studies investigated the 81 

relevance of a correct damper flexibility modelling. For example, according to [4, 6, 7, 8], 82 

the influence of the yaw damper flexibility is fundamental to correctly estimate the 83 

stability of railway vehicles. Stability assessments performed without considering an in-84 

series stiffness tends to overestimate the performances of the vehicle [6, 8]. According 85 

to [9, 10], an accurate modelling of the yaw damper is crucial to assess the vehicle 86 

dynamics. The correct estimation of the damper stiffness is also important in the 87 

evaluation of ride comfort performances: different studies [11, 12, 13] considered this 88 

effect when modelling yaw or vertical dampers. 89 

In this context, this work aims at introducing a damper model based on lumped 90 

parameters able to represent the nonlinear dynamics of a physical damper prototype. 91 

This model has been developed in Simulink to be co-simulated with a vehicle model in 92 

multibody environment and to be implemented in real time on a HIL test bench. 93 

Together with the parametric model, an optimal identification procedure is presented. 94 

Previous works focused applied Genetic Algorithm or Particle Swarm Optimization [14, 95 

15, 16] to tune lumped element models on real damper prototypes by comparing 96 

numerical and experimental forces obtained by applying sinusoidal characterization 97 

cycles. Moreover, large attention has been given to the application of optimal 98 

identification procedures to numerical models representing magnetorheological 99 

dampers. Rodríguez-Torres et al. [17] tuned nonlinear models for benchmark purposes 100 
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by considering Genetic Algorithm and Particle Swarm Optimization. Several works 101 

focused their attention on the identification of the best parameters of Bouc-Wen model 102 

for calculating the force provided by magnetorheological dampers [18, 19, 20]. 103 

Differently from the previous works, this paper applies the meta-heuristic Firefly 104 

algorithm [21] to identify the optimal parameters of the proposed damper model. This 105 

paper focuses its attention on hydraulic dampers, widely adopted on railway vehicles. 106 

This approach has been designed to optimize an objective function by simulating the 107 

evolution of a set of candidates (in this case, several numerical damper models). This 108 

iterative method can identify the set of parameters able to optimize the accuracy of the 109 

damper model. Differently from the previously works, the procedure proposed in this 110 

paper is based on a set of experimental tests which are similar to the strokes imposed 111 

on railway dampers during the real operating conditions of the vehicles. This approach 112 

differs from the use of simple sinusoidal cycles. Indeed, differently from the typical 113 

sinusoidal tests this approach aims at introducing a tuning of the damper model based 114 

on the experimental reproduction of real maneuvers. The real scenarios will be first 115 

simulated with a multibody vehicle model to obtain the significative strokes able to 116 

characterize the damper in typical conditions (curved or straight track negotiation). 117 

Then, an experimental test rig will impose these reference strokes on the real damper 118 

and will measure the force provided by the prototype. The optimization procedure will 119 

compute the set of model parameters able to minimize the difference between the 120 

measured damper forces and virtual forces provided by the damper model during the 121 

different operating conditions. 122 
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This paper is organized as follows: section 2 will introduce the damper 123 

parametric model together with the tuning procedure and the experimental setup to 124 

evaluate the benchmark damper forces. Moreover, the parameter identification 125 

procedure will be presented. Section 3 will report the performances of the optimal 126 

damper model and will compare it against a linear Maxwell model, a common damper 127 

modelling approach found in railway dynamics. Section 4 will discuss and conclude the 128 

paper. 129 

2 MATERIALS, METHODS AND MODELS  130 

2.1 Damper model 131 

This work introduces a damper model that aims at reproducing the dynamics of 132 

a generic passive hydraulic damper. The lumped elements approach has been chosen to 133 

design the model. This choice reduces the computational effort required, making it 134 

compatible with multibody vehicle simulations and real time procedures, such as HIL 135 

approach. 136 

In railway dynamics, numerical simulations require to properly model the 137 

components of the vehicle suspension stages according to a trade-off based on model 138 

accuracy and computational time. The linear dashpot is the simplest modelling approach 139 

for a generic damper. As a matter of fact, this single element can not represent the 140 

complex dynamic of a shock absorber. Indeed, despite dampers are generally defined as 141 

purely dissipative elements, their behavior is also related to an elastic contribution. The 142 

damper virtual model proposed in this paper is reported in figure 1. The model 143 

describes the effects of the silent blocks by means of two sub-models composed by 144 
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parallel linear terms, 𝑘஻ and 𝑐஻. They represent respectively the elastic and dissipative 145 

actions of the resilient silent blocks. Between the two silent blocks, a main sub-model is 146 

inserted to simulate the damper structure. In this sub model, three mass elements 𝑀஼, 147 

𝑀ை and 𝑀௉ are introduced to account for the inertial terms. Generally, such elements 148 

are neglected in the lumped parameters damper modelling [12]. Nevertheless, they are 149 

introduced here to allow the general damper model to simulate device layouts 150 

characterized by very soft damping action where the inertial terms become more 151 

relevant. Between the mass element, two nonlinear forces are inserted. The 𝐹௞,ை force is 152 

introduced to model the elastic contribution, related to both oil compressibility and 153 

internal structure flexibility. The second force 𝐹௖,ை  aims at describing the nonlinear 154 

dissipative action due to the oil flow through the piston orifices. 155 

The dynamics of the damper model is described by a set of ordinary differential 156 

equations (ODEs):  157 

𝑀஼𝑥̈ସ + 𝑘஻𝑥ସ + 𝑐஻𝑥̇ସ + 𝐹௞,ை = 0 (1) 158 

𝑀ை𝑥̈ଷ + 𝐹௞,ை + 𝐹௖,ை = 0 (2) 159 

𝑀௉𝑥̈ଶ + 𝐹௖,ை + 𝑘஻(𝑥ଶ − 𝑥ଵ) + 𝑐஻(𝑥̇ଶ − 𝑥̇ଵ) = 0 (3) 160 

𝐹 = 𝑐஻(𝑥̇ଶ − 𝑥̇ଵ) + 𝑘஻(𝑥ଶ − 𝑥ଵ) (4) 161 

derived by imposing the equilibrium conditions to the elements of the system. The 162 

presence of 𝐹௞,ை and 𝐹௖,ை, which are respectively a function of the relative displacement 163 

(𝑥ସ − 𝑥ଷ) and of the relative speed (𝑥̇ଷ − 𝑥̇ଶ), makes the system strongly nonlinear 164 

[22]. Moreover, these parameters are designed to be asymmetric to represent the 165 
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differences between compression and rebound strokes. This property is particularly 166 

relevant both in stability [23] and in ride comfort evaluations [5]. 167 

2.2 Experimental tests based on numerical simulations 168 

In this work, we focused our attention on a yaw damper prototype (twin-tube, 169 

spool-valves Type 06, manufactured by Koni). The choice of a yaw damper has been 170 

made considering that such devices are the most challenging dampers to be modelled in 171 

railway dynamics. The virtual model must accurately reproduce the force of the damper 172 

prototype. For this reason, experimental tests are performed to measure the 173 

benchmark damper force to be used in the tuning of the parametric damper model.  174 

Dampers for rail vehicles are typically characterized by imposing sinusoidal cycles 175 

with stroke, speed, and frequency defined according to the EN 13802 standard. 176 

Nevertheless, sinusoidal displacements are far away from the working conditions 177 

experienced in real operating scenarios. Indeed, it is important to consider that tuning a 178 

parametric virtual model on experimental data representing unrealistic conditions might 179 

reduce the capability of the model to accurately reproduce the damper dynamics during 180 

real maneuvers. For this reason, in the tuning procedure proposed in this paper, 181 

experimental force signals have been obtained by imposing on the damper prototype a 182 

set of displacement time histories able to emulate the working conditions of the 183 

damper. The damper forces obtained from the prototype will also be considered as 184 

benchmark to evaluate the accuracy of the virtual damper model.  185 

Figure 2 shows the block diagram of the overall tuning procedure, divided into 186 

the upper identification branch and the lower validations stage. The damper strokes 187 
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during the vehicle maneuvers have been obtained through a single-wagon multibody 188 

model developed with the Simpack software. The model is composed of seven rigid 189 

bodies: a carbody, two bogies, and four wheelsets. The simulated vehicle represents a 190 

generic high-speed train. Besides the four nonlinear yaw dampers, the suspension 191 

components have been modelled with a linear approach. The reference damper strokes 192 

have been obtained from the front-right yaw damper. The damper stroke time histories 193 

are then imposed on the damper prototype to obtain a set of experimental reference 194 

force signals (FExp,Id and FExp,Val). For each experiment, one of the reference strokes 195 

obtained by the multibody model is imposed on the damper prototype through a servo-196 

controlled MTS® actuator (MTS, Type 248.05, rating force: 50 kN), managed by a 197 

SpeedGoat® Real Time Computer. The damper force provided by the prototype is 198 

measured by a load cell (Hottinger Baldwin Messtechnik, Type U10M/50, sensitivity 199 

2.1021 mV/V, adjusted range 50 kN). Figure 3 shows the experimental test bench with 200 

the MTS® Control Unit and the SpeedGoat Real Time Computer. 201 

The experimental damper forces of the identification scenarios (FExp,Id) are used 202 

as a benchmark for the identification of the optimal parameters of the damper model, 203 

while the force signals obtained from the tuned damper model simulating the validation 204 

scenarios (FNum,Val) are compared to their experimental equivalent (FExp,Val) to estimate 205 

the accuracy of the tuned damper model. 206 

In the identification scenario we simulated three different maneuvers to obtain 207 

the reference strokes. The first two scenarios are characterized by track irregularity 208 

profiles defined stochastically considering the superimposition of harmonics with 209 
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wavelengths between [3 m, 200 m]. The harmonics are characterized by random phases 210 

and deterministic magnitude obtained from the analytical Power Spectral Density (PSD) 211 

functions able to replicate the typical frequency contents of a track irregularity, 212 

according to [1, 24]. The polynomial formulation of the track irregularity PSD is 213 

implemented according to the report B176 of the European Rail Research Institute [25]. 214 

The three identification scenarios describe: 215 

 Identification 1: a straight track running in high-speed condition: this test aims 216 

at simulating the vehicle dynamics at speed equal to 250 km/h, with track 217 

irregularity. 218 

 Identification 2: a low-speed negotiation of a sharp curve: the railway vehicle 219 

simulates the negotiation of a curved track segment composed by a transient 220 

curve entry, a constant curvature segment and a transient curve exit, with 221 

track irregularity. The curve radius is 400 m. The track has been negotiated at 222 

72 km/h. 223 

 Identification 3: a very low-speed negotiation of a switch: the test is based on 224 

the S-curve maneuver reported in Annex F of EN 14363. The vehicle speed is 225 

set at 43 km/h.  226 

The reference damper strokes obtained from the multibody model running the 227 

identification scenarios are reported in figure 4.  228 

The selection of the three different scenarios aims at representing the most 229 

important working conditions related to the prototype under investigation (a yaw 230 

damper). The straight running in high-speed conditions is characterized by high 231 
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frequency oscillations with small amplitudes. In this condition, the yaw dampers are 232 

expected to improve the stability by suppressing the tendency of the vehicle to show 233 

hunting motion [6]. In the negotiation of the curved track, at the constant curvature 234 

gradient of the curve entry, an exit transient can be observed, together with the 235 

constant curvature track segment. Here, yaw dampers provide a negative steering 236 

resistance effect which is responsible for a deterioration of the curving performances of 237 

the vehicle [26]. This negative effect is further amplified during the negotiation of 238 

switches or crossing [13], as shown by the last scenario. The negotiation of the switch is 239 

an interesting condition due to the low-frequency high-amplitude displacement 240 

imposed on the yaw dampers. The damper dynamics in these conditions is significantly 241 

different from the high-frequency low-amplitude oscillations of high-speed running [27].  242 

Beside the identification scenarios, a second set of maneuvers, known as 243 

validation, is defined with the aim of verifying in different conditions the accuracy of the 244 

damper model tuned by the optimization procedure. The track irregularities of the 245 

validation scenarios are described obtaining new profiles characterized by harmonics 246 

with magnitude obtained from the same PSD analytical description reported in [25] but 247 

with different random phases. This approach generates irregularity signals that are 248 

different between identification and validation scenarios but with frequency contents 249 

that are aligned to the ones observed in real rail tracks. The validation scenarios can be 250 

listed as: 251 
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 Validation 1: a straight track running in high-speed condition. This test aims at 252 

simulating the vehicle dynamics at speed equal to 250 km/h, with a different 253 

track irregularity profile with respect to the identification scenario 1. 254 

 Validation 2: a high-speed negotiation of a large radius curve with track 255 

irregularity. The curve radius is set equal to 6000 m, while the vehicle speed is 256 

306 km/h.  257 

 Validation 3: a low-speed negotiation of a sharp curve. The railway vehicle 258 

simulates the negotiation of a curved track segment composed by a transient 259 

curve entry, a constant curvature segment and a transient curve exit. The curve 260 

radius is 500 m. The track is negotiated at 86 km/h and track irregularity is 261 

implemented.  262 

The damper strokes of the validation scenarios are reported in figure 5. The 263 

identification and validation scenarios are summarized in table 1. 264 

This procedure allows the definition of a set of experimental time histories of the 265 

damper force starting from the damper strokes obtained in the multibody analysis. It is 266 

worth remarking that the approach can be generalized and implemented with any kind 267 

of suspension component as long as it is possible to develop a multibody model of the 268 

vehicle able to simulate the stroke signals of the suspension component of interest in its 269 

most typical operating conditions. 270 

2.3 Optimal parameter identification 271 

Objective function  272 
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The identification procedure aims at defining the optimal set of model 273 

parameters (section 2.1) able to guarantee the best accuracy in modelling the damper 274 

force. The experimental procedure illustrated in the previous section gave as results 275 

three force measurements related to typical operating conditions: straight track, small 276 

radius curve, switch negotiation. The three damper strokes can be imposed on the 277 

damper numerical model to simulate the same scenarios in a virtual environment. 278 

Therefore, the accuracy of a generic damper model can be evaluated by comparing the 279 

virtual force with the experimental benchmark signals. The optimal damper model is 280 

then characterized by the set of parameters able to minimize the difference between 281 

experimental force measurements and correspondent virtual forces. 282 

Design variables 283 

The set of model parameters represents the design variables of the optimization 284 

problem. The damper model described in section 2 has five constant parameters, 285 

representing the three masses (MC, MO, MP) and the silent blocks elements (kB, cB). 286 

Moreover, the highly nonlinear behavior of the damper oil is represented by two 287 

variable quantities, Fk,O, Fc,O. They represent the nonlinear damping force related to the 288 

relative speed (𝒙̇𝟑 − 𝒙̇𝟐) and a nonlinear elastic force which is a function of the relative 289 

displacement (𝒙𝟑 − 𝒙𝟒). These functions are respectively described by 14 samples in 290 

the force-speed diagram and 10 samples in the force-displacement one (piecewise 291 

function). The speed and displacement coordinates are set before the optimization 292 

procedure considering the typical working range of the damper under analysis. 293 

Considering the yaw damper prototype, a higher number of points have been 294 
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introduced in low relative speed or displacement regions, and a larger refinement has 295 

been used in regions with higher relative speed or displacement. The 24 force values, 296 

required to fully describe the two nonlinear relationships, are considered as parameters 297 

to be identified. Therefore, the optimization problem aims at obtaining 29 modelling 298 

parameters.  299 

All the design variables have been constrained. The three concentrated masses have 300 

been defined in the range [1 – 20] kg. The bushing properties kB and cB, have been 301 

respectively constrained between [1e2 – 1e9] N/m and [1e2 – 1e7] Ns/m. The 14 302 

samples illustrating the nonlinear damping effect of the oil have been constrained by 303 

applying a limit to the maximum force values obtained from a preliminary quasi-static 304 

characterization test, performed on the prototype with sinusoidal mono-harmonic 305 

cycles. In this application, the maximum force is set to 3e4 N. The 10 samples related to 306 

the nonlinear elastic effect of the oil have been constrained by applying bounds around 307 

the expected elastic force of the typical linear spring which is implemented in yaw 308 

damper modelling (1.5e7 N/m). 309 

Optimization procedure 310 

The pursuit of the optimal model tuning has been based on a meta-heuristic 311 

iterative approach, the Firefly Algorithm (FA). This procedure, presented in [21], was 312 

inspired by the capability of fireflies to attract other individuals by producing a 313 

bioluminescence from their abdomen. Fireflies with lighter abdomens are more prone 314 

to attract other individuals and are characterized by a large fitness. FA starts with an 315 

initial population of model candidates which maintains a fixed number of individuals. FA 316 
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simulates the evolution of the population by modifying their parameters. For each 317 

iteration, the less bright candidates (low fitness individuals) are forced to emulate the 318 

settings of the shinier candidates (high fitness individuals). The fitness of a model 319 

candidate is calculated by imposing the three damper strokes to the model and 320 

comparing the provided virtual forces with the measured experimental forces. The 321 

experimental damper force 𝐹ா௫௣ and the numerical force 𝐹ே௨௠ are defined as discrete 322 

time series (length 𝑁) including the three operating conditions described in section 2. 323 

Similarly to [17], the fitness 𝐺 of a model candidate is calculated according to:  324 

𝐺 =
𝑁

∑ ൫𝐹ா௫௣,௝ − 𝐹ே௨௠,௝൯
ଶே

௝ୀଵ

 (𝟓) 325 

where the j index specifies the time sample of the two force time series, 𝐹ா௫௣ 326 

and 𝐹ே௨௠. Within each iteration, the FA modifies the parameters of an individual by 327 

moving it towards the brighter individuals. Once a i-esimal model candidate is 328 

selected, the method updates its 29 parameters of the i-model according to:  329 

𝑥ු௜
ே௘௪ = 𝑥ු௜ + 𝐴௜௝ = 𝑥ු௜ + ෍ ቈ

𝐺଴

1 + 𝜀𝑑௜௝
ଶ ൫𝑥ු௝ − 𝑥ු௜൯ + 𝜌𝑅௝቉ 

ெ

௝ୀଵ

 (𝟔) 330 

The new vector of scaled design variables 𝑥ු௜,௡௘௪ is obtained starting from the 331 

original scaled set 𝑥ු௜, where 𝑀 is the number of individuals showing a fitness 𝐺௝ 332 

higher than 𝐺௜. The design variables have been scaled with respect to their 333 

correspondent lower and upper bounds to avoid discrepancies due to different 334 

order of magnitude of their scalar values.  335 
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The second term of equation 6 describes the attraction 𝐴௜௝ of the brighter firefly 336 

𝑗 on the firefly 𝑖. This term forces the parameters of the model 𝑖 towards the 337 

correspondent values of the more accurate model 𝑗. The attractiveness coefficient 338 

𝐺଴ describes the tendency of the fireflies to be attracted by other brighter 339 

individuals. The attractiveness between fireflies is reduced by the relative distance 340 

between the two individuals in the design variable domain (𝑑௜௝). This term is based 341 

on the Cartesian distance between the normalized design variables (p) of the two 342 

models, 𝑥ු௜  and 𝑥ු௝: 343 

𝒅𝒊𝒋 = ඩ෍൫𝒙෕𝒋𝒑 − 𝒙෕𝒊𝒑൯
𝟐

𝟐𝟗

𝒑ୀ𝟏

(𝟕) 344 

The attractiveness is also conditioned by the absorption coefficient 𝜀, which 345 

weights the influence of the distance on the attractiveness across different fireflies. 346 

A greater value of 𝜀 brings to a more relevant reduction of attractiveness at higher 347 

distances. The coefficient 𝜀 has been set equal to 0.8. 348 

In FA, the modification of the population is also based on a random contribution that 349 

influences the variation of the design variables of the individuals. This casual effect 350 

allows the iterative method to better explore the domain of the design variables 351 

during the search of the optimal solution. Therefore, the random contribution is 352 

represented by a 29-dimension vector of random variables (𝑅௝). This vector is 353 

calculated for each modification of an i-esimal individual, while the domains of the 354 

29 random terms are restricted according to the vectors 𝐿ெ௜௡, 𝐿ெ௔௫, defining the 355 

lower and upper bounds for each p-esimal dimension. These limits are defined as: 356 
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𝐿ெ௜௡,௜ =

⎣
⎢
⎢
⎢
⎢
⎡
−𝑥ු௜,ଵ

ே௘௪

⋮
−𝑥ු௜,௣

ே௘௪

⋮
−𝑥ු௜,ଶଽ

ே௘௪
⎦
⎥
⎥
⎥
⎥
⎤

, 𝐿ெ௔௫,௜ =

⎣
⎢
⎢
⎢
⎢
⎡
1 − 𝑥ු௜,ଵ

ே௘௪

⋮
1 − 𝑥ු௜,௣

ே௘௪

⋮
1 − 𝑥ු௜,ଶଽ

ே௘௪
⎦
⎥
⎥
⎥
⎥
⎤

(𝟖) 357 

The vector 𝑅௝ is multiplied by an influence coefficient 𝜌 which weights the 358 

relevance of the random component on the evolution of the individuals. Random 359 

terms are very important in the first stage of the evolution of the population of the 360 

damper model. On the other hand, high random contributions reduce the 361 

convergence rate of the FA method. For this reason, we introduced a decrement 362 

logarithm law to define a variable influence coefficient 𝜌 according to the number of 363 

the iteration k: 𝜌 = 𝜌଴
௞ିଵ, where 𝜌଴ coefficient has been set equal to 0.9. This 364 

variation aims at preserving the advantages of high random influence in the first 365 

iterations without decreasing the capability of the FA procedure to converge in the 366 

following iterations.  367 

3 RESULTS AND DISCUSSION 368 

The results are presented in the following two sections. The first will report the 369 

optimal set of model parameters obtained from the FA, while the second will show 370 

the capability of the optimal damper model to replicate the experimental behavior 371 

among a new set of real maneuvers. The performances of the optimal model will be 372 

also compared with the ones of a Maxwell linear model. This comparative analysis 373 

aims at highlighting the differences between the accuracy of the proposed model 374 

and a damper modelling approach widely implemented in railway dynamics. The 375 



Journal of Computational and Nonlinear Dynamics 
 

18 
 

linear Maxwell model has been tuned with the same iterative procedure presented 376 

in section 2.  377 

3.1 Optimal damper model 378 

The FA procedure has been implemented with a population of 20 individuals. 379 

Figure 6 shows the progressive increase of the average population fitness (𝐺ெ௘௔௡). 380 

The approach simulated the evolution of the population during a maximum of 150 381 

iterations. As we can observe, the algorithm converges towards an optimal solution 382 

in the last iterations. However, besides the maximum number of iterations, a further 383 

stopping criterion, based on the gradient of the average fitness of the population, is 384 

considered starting from the 20th iteration. In particular, the algorithm is designed to 385 

stop when the average fitness of the k-esimal population is minor than a threshold 386 

defined on the mean of the last 20 average fitness values: 387 

𝑠𝑡𝑜𝑝 𝑖𝑓    𝐺௞ < 0.001
∑ 𝐺ெ௘௔௡,௧

௞
௧ୀ௞ିଶ଴

20
 388 

During evolution, the individual with the best fitness is always stored to obtain 389 

the best model at the end of the procedure. The storing of the overall best 390 

candidate avoids excluding eventual optimal solutions found during the initial stages 391 

of the procedure, where the strong influence of the random effect could lead to a 392 

loss of this candidate.  393 

Figure 7 compares the 5 constant parameters of the initial population (randomly 394 

defined) with the ones of the final population. As can be observed, the five 395 

parameters (MC, MO, MP, kB, cB) are randomly distributed in the initial population but 396 
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converge to an optimal value in the final population (green markers almost 397 

coincident).  398 

Similarly, the nonlinear behavior of the oil is represented in figure 8 by the 399 

elastic Fk,O and the dissipative Fc,O contributions. The two nonlinear relationships are 400 

compared for initial and final populations. We can observe how in the final 401 

population the curves tend to converge to an optimal nonlinear trend.  402 

In summary, the optimal parameters of the proposed damper model are reported in 403 

table 1. 404 

3.2 Performance of the optimal damper model 405 

As a final step the optimal damper model is simulated in real working conditions. 406 

The validation scenarios have been used to verify the performances of the optimal model 407 

in simulating the dynamics of the physical damper prototype in conditions different with 408 

respect to the dataset used during the identification procedure. To quantify the modelling 409 

accuracy of the proposed model, a linear Maxwell model has also been tuned with the 410 

same procedure. The linear Maxwell model is a common approach when simulating 411 

dampers of rail vehicles dampers [4] and it will be assumed as a reference case.  412 

Figure 9 compares the experimental forces obtained from the test rig with the 413 

numerical forces obtained by the proposed numerical model and the optimal tuned 414 

Maxwell linear model in the 3 validation scenarios.   415 

In figure 9a, the numerical force obtained by the optimal damper model shows a 416 

very good correlation with respect to the experimental force during the low-speed 417 

negotiation of sharp curves. Moreover, this simulation highlights a typical limitation 418 
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affecting the linear Maxwell model. Indeed, due to the constant damping ratio of the 419 

Maxwell model, the transient curve segments (seconds 2-8 and seconds 13-19) show poor 420 

performances. This issue is even more critical considering that the lower damper forces 421 

during curve negotiation leads to an overestimation of the curving performance of the 422 

vehicle [26]. On the other side, the use of the proposed model allows to significantly 423 

reduce the error. 424 

In figures 9b and 9c, high-speed conditions are analyzed. Both straight track and 425 

large radius curve show a good correlation between the experimental data and the 426 

proposed model. Also in this case, the Maxwell model provides lower damping forces. 427 

This would cause a reduction in the dynamic indexes related to the vehicle stability, such 428 

as bogie lateral accelerations [13]. The difference between the experimental damper 429 

force and the numerical forces obtained with the optimal model are reported in figure 430 

10. The presented results have been quantified in table 2, in which the Mean Squared 431 

Error (MSE) and the Absolute Mean Error (AME) between experimental and numerical 432 

forces, for both the models and all the simulations, are reported. The MSE and AME 433 

formulations reported in table 2 are based on the index i which defines the i-esimal time 434 

sample of the two force time histories.  The proposed damper model accurately simulates 435 

the forces during all the real operating conditions, with a maximum absolute error lower 436 

than 2400 N (when a peak force of 18 kN is found at 5.5 s of the second validation test). 437 

During negotiation of low radius curves the nonlinear model reduces the error up to 88% 438 

with respect to the Maxwell model and an AME with respect to experimental data lower 439 

than 350 N is observed. In high-speed conditions the AME rises to 500-550 N but a 440 



Journal of Computational and Nonlinear Dynamics 
 

21 
 

significant improvement of the nonlinear model with respect to the Maxwell one is still 441 

present (-67%). 442 

To better investigate the optimized model, the nonlinear elastic and damping 443 

terms Fk,O and Fc,O reported in table 2 are analyzed in figure 11 with the aim of quantifying 444 

their linearity and symmetry. The two terms have been fitted with both a 5th order 445 

polynomial and a linear function. The equations of the 5th order polynomial interpolators 446 

FkO,5th and FcO,5th are reported:  447 

𝐹௞ை,ହ௧௛ = −9.047e17(𝑥ସ − 𝑥ଷ)ହ + 1.149e14(𝑥ସ − 𝑥ଷ)ସ + 4.689e12(𝑥ସ − 𝑥ଷ)ଷ

−2.558e8(𝑥ସ − 𝑥ଷ)ଶ + 1.335e7(𝑥ସ − 𝑥ଷ) + 12.37 (𝟗)
 448 

𝐹௖ை,ହ௧௛ = 5.932e10(𝑥̇ଷ − 𝑥̇ଶ)ହ + 3.884e6(𝑥̇ଷ − 𝑥̇ଶ)ସ − 6.911e8(𝑥̇ଷ − 𝑥̇ଶ)ଷ

−1.170e5(𝑥̇ଷ − 𝑥̇ଶ)ଶ + 1.234e6(𝑥̇ଷ − 𝑥̇ଶ) + 57.96 (𝟏𝟎)
 449 

By comparing the identified nonlinear trends (green lines) with the linear 450 

interpolation function (dashed black lines), it can be observed that the damping term Fc,O 451 

is showing nonlinear behavior more relevant than the elastic term Fk,O. Nevertheless, by 452 

comparing Fk,O with the linear function, it is possible to observe its nonlinear trend, 453 

especially in the low displacement region (see figure 11c). The 5th order polynomial 454 

function is reported in figure 11 by dividing the even order terms (yellow cross) from the 455 

odd order terms (red plus). The even order terms can be related to the asymmetry of the 456 

nonlinear terms between compression and rebound phases. According to figure 11, it can 457 

be stated that the hydraulic damper under investigation presents a symmetric behavior. 458 

Indeed, the optimal trends are almost completely defined by the odd order terms of the 459 

5th order polynomial. This last result is aligned to the expectation: the device under 460 
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investigation is a new yaw damper, designed to provide a symmetric action during both 461 

compression and rebound phases.  462 

4 CONCLUSIONS 463 

In this work, a new parametric nonlinear model for hydraulic dampers is proposed. The 464 

model, based on a lumped parameter approach, is designed to simulate a generic 465 

hydraulic damper in different operating conditions and guarantee good accuracy with 466 

reduced computational efforts. The model features two nonlinear terms which aim at 467 

representing the intrinsic nonlinear behavior of hydraulic dampers. 468 

The proposed methodology tunes the damper model on a physical prototype of a 469 

yaw damper. The training dataset for the model tuning has been obtained with a specific 470 

test rig designed to impose on the prototype different strokes and measure the damper 471 

force. These target strokes have been obtained from multibody analysis simulating real 472 

operating conditions of a high-speed rail vehicle.  473 

The tuning of the damper model has been performed by introducing an iterative 474 

optimization procedure based on the meta-heuristic Firefly Algorithm. This routine, 475 

focused on the minimization of the differences between virtual and experimental forces, 476 

gave as result an optimal set of model parameters.  477 

The performances of the optimal damper model have been compared with a best 478 

tuned Maxwell model, a typical damper modelling approach implemented in railway 479 

dynamics. The proposed nonlinear model has proved to be able at simulating the damper 480 

dynamics in very different conditions, simulating the maneuvers performed by rail 481 

vehicles. This model reduced by one order of magnitude the mean squared error of the 482 
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linear Maxwell models, returning an absolute mean error between numerical and 483 

experimental forces below 600 N.  Moreover, the optimal nonlinear terms of the damper 484 

model have been investigated though the use of polynomial interpolations. A nonlinear 485 

behavior has been identified on the dissipative nonlinear term while the elastic term is 486 

characterized by a smaller nonlinearity, localized in the low displacement region. This 487 

analysis also highlighted the symmetric behavior of the tested damper.  488 

As a conclusion, the nonlinear model proved to be a good solution for the 489 

simulation of the dynamics of a real damper prototype in different conditions. The 490 

optimal procedure demonstrated to be an interesting approach for optimizing the 491 

modelling capabilities of generic dynamic models. The definition of a training dataset 492 

based on real operating conditions maximized the capability of the damper model of 493 

simulating real working conditions. In suspension modelling the use of the proposed 494 

procedure represents a good solution to increase the model accuracy, both in straight 495 

track (stability) and curve negotiation (wheel-rail wear) analysis, preserving the 496 

computational effort.   497 
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NOMENCLATURE 503 
 504 

A୧୨ Attraction of the brighter firefly j on the firefly i 

𝑐஻ Linear damping related to the silent block 

𝑑 Distance between two fireflies 

𝐹௖,ை Nonlinear damping force acting between elements O, P 

FcO,5th Expression of the 5th order polynomial interpolator of Fc,O 

FExp,Id Time histories of the experimental damper forces measured from the 

damper prototype during the replication of the identification scenarios 

on the test bench 

FExp,Val Time histories of the experimental damper forces measured from the 

damper prototype during the replication of the validation scenarios on 

the test bench 

𝐹௞,ை Nonlinear elastic force acting between elements C, O  

FkO,5th Expression of the 5th order polynomial interpolator of Fk,O 

FNum,Id Time histories of the numerical damper forces obtained from the damper 

model in the identification scenarios 

FNum,Val Time histories of the numerical damper forces measured from the 

damper prototype during the replication of the identification scenarios 

on the test bench 

𝐺 Fitness of a single damper model candidate 
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𝐺଴ Attractiveness coefficient 

𝑘஻ Linear stiffness related to the silent block 

𝐿ெ௔௫  Design variable upper bound 

𝐿ெ௜௡ Design variable lower bound 

𝑀஼ Concentrated mass, element C 

𝑀ை Concentrated mass, element O 

𝑀௉ Concentrated mass, element P 

𝑅 Random contribution  

x1,Id Generic time history of the damper stroke during identification scenarios 

x1,Val Generic time history of the damper stroke during validation scenarios 

𝑥ු௜ Vector of the design variables of the i-esimal damper model candidate 

scaled on the proposed lower and upper bounds. 

𝜀 Absorption coefficient 

𝜌 Influence coefficient of the random term 

 505 
 506 

 507 

 508 

  509 
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 513 

Figure Captions List 514 
 515 

Fig. 1 Damper dynamic model: the overall device composed by a main structure 

and two silent blocks. 

Fig. 2 Block diagram of the overall tuning procedure of the damper model. 

Fig. 3 Experimental test bench: (a) MTS® actuator to impose the reference 

strokes obtained from the multibody model to the yaw damper prototype. 

The actual damper force is measured by the load cell on the right side of 

the bench; (b) The SpeedGoat® Real Time Computer to acquire the output 
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signal (damper force) and to send the input signal (reference stroke) to the 

actuator through the MTS® Control Unit. 

 

Fig.4 Damper stroke during the identification scenarios simulated with the 

multibody model (x1,Id). (a) Straight track running at 250 km/h; (b) Low-

speed negotiation of a sharp curve; (c) Switch negotiation. 

Fig. 5 Damper stroke during the validation scenarios simulated with the 

multibody model (x1,Val). (a) Straight track running at 250 km/h; (b) High-

speed negotiation of large radius curve; (c) Low speed curve negotiation. 

Fig. 6 Evolution of the mean fitness of the population. 

Fig. 7 Comparison between the concentrated parameters of the initial and final 

population of damper models. 

Fig. 8 Comparison of the nonlinear elastic and damping contributes between 

initial and final populations. The small amplitude region has been zoomed 

in both graphs. 

Fig. 9 Comparison between experimental and optimal numerical force of the 

tested yaw damper. (a) Negotiation of sharp curve with radius 500 m. (b) 

Negotiation of large radius curve (6000 m) at 306 km/h. (c) Straight track 

high-speed running (250 km/h). 

Fig. 10 Differences between experimental and optimal numerical force of the 

tested yaw damper. (a) Negotiation of sharp curve with radius 500 m. (b) 
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Negotiation of large radius curve (6000 m) at 306 km/h. (c) Straight track 

high-speed running (250 km/h). 

Fig.11 Analysis of the nonlinear terms Fk,0 and Fc,0: the optimal terms (solid green 

line) are compared with a linear interpolation function (black dashed line) 

and with the even (yellow cross) and odd terms (red plus) of a 5th order 

polynomial function fitted on the data reported in table 2. 

    516 

Table Caption List 517 
 518 

Table 1  Summary of the main characteristics of identification and validation 

scenarios. The curvature and the rail cant are linearly variated along the 

clothoid transient segments. 

Table 2 Optimal set of model parameters obtained after the implementation of 

the Firefly Algorithm. 

Table 3 Numerical resume of the modelling performances of the proposed optimal 

damper model and the Maxwell linear model. 
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Figure 1521 
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Figure 2 525 
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Figure 3 528 
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Figure 4 531 
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Figure 5 534 
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Figure 6 537 
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Figure 7 540 
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Figure 8 543 
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Figure 9 546 
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Figure 10 554 
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Figure 11 558 
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Table1 560 
 561 

Scenario 
Vehicle 
speed 

[km/h] 

Track 
irregularity 

Track segments 

# Type 
Curve 

radius [m] 
Rail cant 

[m] 
Identification 1 250 km/h Present 1 Straight ∞ 0 

Identification 2 72 km/h Present 

1 Straight ∞ 0 

2 Clothoid transient curve 
From ∞ to 

400 
From 0 to 

0.06 
3 Constant curve 400 0.06 

4 Clothoid transient curve 
From 400 

to ∞ 
From 0.06 

to 0 
5 Straight ∞ 0 

Identification 3 43 km/h Not present 

1 Straight ∞ 0 

2 Constant curve 190 0 

3 Straight ∞ 0 

4 Constant curve 190 0 

5 Straight ∞ 0 

Validation 1 250 km/h Present 1 Straight ∞ 0 

Validation 2 306 km/h Present 

1 Straight ∞ 0 

2 Clothoid transient curve 
From ∞ to 

6000 
From 0 to 

0.09 
3 Constant curve 6000 0.09 

4 Clothoid transient curve 
From 6000 

to ∞ 
From 0.09 

to 0 
5 Straight ∞ 0 

Validation 3 86 km/h Present 

1 Straight ∞ 0 

2 Clothoid transient curve 
From ∞ to 

500 
From 0 to 

0.084 
3 Constant curve 500 0.084 

4 Clothoid transient curve 
From 500 

to ∞ 
From 0.084 

to 0 
5 Straight ∞ 0 
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 563 
Table 2 564 

Parameter Value E.I. 

MO 16.5 [kg] 

MC 15.8 [kg] 

MP 17.3 [kg] 

kB 4.08e8 [N/m] 

cB 4.17e6 [Ns/m] 

ൣF୩,୓൧ [−34 −17 −11 −7.7 −3.4 0 3.6 7.5 11 17 36] [kN] 

[xସ − xଷ] [−2 −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1 2] [mm] 

ൣFୡ,୓൧ [−26 −20 −16 −12 −9.2 −6.1 −2.2 0 2.3 6.6 9.1 12 16 20 25] [kN] 

[ẋଷ − ẋଶ] [−100 −30 −15 −10 −7.5 −5 −2.5 −0 −2.5 5 7.5 10 15 30 100] [mm/s] 

 565 
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Table 3 567 

 
Maxwell 

model 
Proposed 

model 
Error Percentage 

Variation 
Maxwell 

model 
Proposed 

model 
Error Percentage 

Variation 

Index 𝑀𝑆𝐸 =
∑ ൫𝐹ா௫௣,௜ − 𝐹ே௨௠,௜൯

ଶே
௜ୀଵ

𝑁
 

𝑀𝑆𝐸௉௥௢௣ − 𝑀𝑆𝐸ெ௔௫

𝑀𝑆𝐸ெ௔௫
100 𝐴𝑀𝐸 =

∑ ห𝐹ா௫௣,௜ − 𝐹ே௨௠,௜หே
௜ୀଵ

𝑁
 

஺ொುೝ೚೛ି஺ொಾೌೣ

஺ொಾೌೣ
100 

Test 1 5.88e6 N2 2.18e5 N2 -96.3 % 1.80e3 N 346 N -80.8 % 

Test 2 5.05e6 N2 5.32e5 N2 -89.5 % 1.73e3 N 569 N -67.1 % 

Test 3 4.07e6 N2 4.19e5 N2 -89.7 % 1.55e3 N 526 N -66.1 % 
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