

# Fluid Dynamics of the Human Nose: An overview of clinical perspectives enabled by CFD

Maurizio Quadrio EFMC14, Athens, Sept 14, 2022



## The human nose: functions and anatomy





- At least 1/3 of the adult world population is troubled with nasal breathing difficulties<sup>1</sup>
- In 2014, the one-year (only!) cost of cronic rhinosinusits (alone!) in US (only!) was \$22bn<sup>2</sup>
- ► Certain nose surgeries have 50% failure rate<sup>3</sup>

## Huge room for improvement!

<sup>&</sup>lt;sup>1</sup>Stewart *et al.* Int J Gen Med 2010

<sup>&</sup>lt;sup>2</sup>Smith *et al.* The Laryngoscope 2015

<sup>&</sup>lt;sup>3</sup>Sundh & Sonnergreen, Eur Arch Otholaringol 2015

## The contribution of fluid mechanics

#### Scopus query: "CFD" + "nasal"



4

## Form and function





5

## The workflow: from CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)



## The workflow: from CT scan to...

- 1. Segment the CT scan
- 2. Build a volume mesh
- 3. Compute a CFD solution (DNS, LES, RANS, ...)



## Only academic?

#### Scopus query: "CFD" + "nasal"



7

Bringing CFD into the clinical setting requires:

- 1. Assess reliability through a solid benchmark
- 2. Extract CFD-derived information that is useful to surgeons

## The benchmark

- An unique Reynolds number does not exist
- Most authors use RANS, but the flow is not turbulent
- Most authors use steady RANS, but the flow is low-Re and unsteady
- Accuracy of discretization is critical

The major limiting factor is lack of reproducibility: anatomies are sensible information!

## Creating a benchmark: a tomo-PIV experiment

- ► Based at OTH Regensburg (D)
- Patient-specific phantom model from CT scan
- ► Tomo-PIV at 15Hz, reconstruction volume  $\approx 1000^3$  voxels





## An instantaneous snapshot of the flow



Currently, classic CFD (90% RANS, 9% LES) is too expensive for surgery planning:







#### An *ad-hoc* DNS solver

- Immersed-boundary, takes STL as input
- Verified II-order convergence
- ► 10-100x faster than OpenFOAM
- Speed compatible with a clinical setting
- ► (General interest?)



(b) STLIMB

How to extract useful information

CFD solution alone does not help surgeons to find the best surgery

- Main reason: lack of functionally normal reference nose
- Shape optimization problem, but an objective function is lacking
- Strong inter-subject anatomical variations with different functional significance

We pursue two approaches, without and with an objective function

## Big Data

#### Database of:

- ► CT scans
- rhinomanometry data
- ► ENT evaluation sheet

Open and labeled data: huge value!

| • • • • • • • • • • • • • • • • • • • | 4 <mark>α 48 α</mark> 86 ≠ 2 |     | ۹ 🌲         |
|---------------------------------------|------------------------------|-----|-------------|
| All files                             | ★ Assets Master < +          |     |             |
| ③ Recent                              |                              |     |             |
| ★ Favorites                           | Name -                       |     | Size        |
| < Shares                              | 0144                         | < . | •• 171.7 MB |
| Tags                                  | 0143                         | ς.  | •• 82.4 MB  |
| Shared to Circles                     | 0142                         | < - | •• 497.9 MB |
|                                       | 0141                         | ς   | •• 170.8 MB |
|                                       | 0140                         | ۲.  | •• 69 MB    |
|                                       | 0139                         | ۲.  | •• 53.2 MB  |
|                                       | 0138                         | ۷.  | •• 139.4 MB |
|                                       | 0137                         | ۲.  | •• 112.6 MB |
|                                       | 0136                         | ζ.  | •• 81.2 MB  |
|                                       | 0135                         | < . | •• 237.4 MB |
|                                       | 0134                         | < - | • 163.7 MB  |
|                                       | 0133                         | Κ.  | •• 76.6 MB  |
| Deleted files                         | 0132                         | ζ.  | •• 125.4 MB |
| 51.5 GB used                          | 0131                         | < · | •• 73.7 MB  |
| Settings                              |                              |     |             |

- Our approach: augment ML with CFD information
- ► Hypothesis: the flow field amplifies anatomic information
- Convection is exploited to "bring out" information (e.g. along streamlines)

## A neural network to predict pathologies

- A tree of deformations is built based on an orthogonal basis of primitive surgeries
- A number of healthy patients is given a combination of pathologies
- ► For ≈ 300 combinations, a hi-fi CFD solution is computed
- A neural network is trained to classify classes of pathologies
- ▶ Details in the talk by <u>A.Schillaci, Sess.6, Thu 12:15</u>





## Bringing physics into the picture

#### Example: warming of cold air during inhalation





## Bringing physics into the picture (physiology, but clinical importance)

#### Critical for septal perforations





## Exploiting physics to find an objective function

Geometric information is the major limiting factor

- Thickness of the nasal fossae is often 1-2 voxels (even less for pathologies)
- No less than the CT grid must be used (typically 512<sup>3</sup>)
- Explicit reconstruction, segmentation, meshing are avoided



## Nasal resistance is not telling the whole story

- Restoring a good Nasal Resistance is not enough
- ► Cfr. the "Empty Nose Syndrome"
- Heat transfer characteristics must be also considered!

#### Scan of an Empty Nose



## Computational speed is mandatory

- The nasal fossae are thin, non-planar channels
- Less than Navier–Stokes suffices to compute nasal resistance
- A quasi-1d approximation in the "narrow" direction: Hele–Shaw for a non-planar channel
- Local porosity computed for each voxel as a function of the wall distance



## An optimization problem (at last!)

Hypothesis: The functionally normal nose provides balanced heat transfer and hydraulic characteristics

- Analogy with heat exchangers
- An optimization problem is formulated and solved with adjoint techniques
- ► Lighting-fast code: 1 second on 1 core, all inclusive
- Currently under preliminary clinical test

## Concluding remarks

- Active research thread with great potential
- Clinically relevant
- Highly multi-disciplinary: CFD, turbulence, modeling, flow control, numerics, shape optimization, Machine Learning, etc

## Acknowledgment to the OpenNOSE gang!

