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Abstract

Tactical decisions on the location of recycling drop-off stations and the asso-

ciated collection system are essential in order to increase recycling amounts while

keeping operational costs at a minimum. The conflicting nature of the objectives

of the problem can be modelled as a bi-objective location-routing problem. In this

paper, we address the location-routing problem of recycling drop-off stations by

solving the Maximal Covering Tour Problem. To this aim, we propose a heuristic

inspired by a variable neighbourhood search. The heuristic is tested on a set of

benchmark instances from the TSPLIB and applied to a set of real-life instances

from both urban and rural areas in Denmark. Based on the results of the real-life

cases, we provide insights on the trade-off between recycling rates and transporta-

tion costs.

Keywords: Location; Recycling; Maximal Covering Tour; Heuristics

6.1 Introduction

In this paper, we study a location problem motivated by the situation in which the

locations of recycling drop-off stations must be selected in order to increase recycling

rates while maintaining low collection costs. The problem is formulated as a Maximal

Covering Tour Problem (MCTP), first proposed by Current and Schilling (1994). With

this approach, we maximize the covering level of p drop-off stations while minimizing

the collection costs estimated as the length of the tour that visits all the stations. We

propose a heuristic for solving this problem for large instances, and present results based

on real-life data from Denmark.

The collection of materials for recycling is usually performed either via on-site collec-

tion or through the use of bring systems (Beullens et al., 2004). The collection policy
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depends on the area of service, and it is usually decided by local governments at a munici-

pality level. In Denmark, local governments independently decide on the collection policy

in terms of sorting (e.g., separating glass, paper, or plastic) and collection system (on-site,

bring in, or mixed). On-site collection systems, where the material is collected directly

from the households, are typically modelled as arc routing problems and are described in

Ghiani et al. (2015), Mourão and Pinto (2017) and Kiilerich and Wøhlk (2018). In bring

systems, the residents bring their waste to containers at predefined drop-off stations, from

where it is collected. In such bring systems, there are two main decisions to take. At the

tactical level, the number and locations of the drop-off stations must be determined, and

at the operational level, routes for the collection vehicles must be planned.

In bring systems, the amount of materials to be collected for recycling is largely af-

fected by public policies and recycling programs. Recycling programs that increase the

availability and accessibility of drop-off stations have been reported to significantly in-

crease recycling rates (Kannangara et al., 2018). Hence, to maximize recycling amounts,

many drop-off stations are preferred over few. However, increasing the number of drop-off

stations involves equipment investment and an increase in operational costs of transporta-

tion. Therefore, it is important that the drop-off stations are located carefully in order

to balance the quantity of recyclable materials collected and the operational costs.

The balance between the amount of recyclable materials and the related collection

costs can differ immensely between rural and urban planning areas. In rural areas, dis-

tances tend to be long and households are concentrated in small villages, making col-

lection costs more sensitive to location decisions. In Fig. 6.1, we illustrate the location

of drop-off stations for two, rural and urban, postal districts in Denmark. The red tri-

angles indicate the potential locations, the blue triangles show the locations selected in

the solutions, the red circles indicate the covered households, and the blue lines show

an approximated collection tour between them. The figure shows that with the same

number of drop-off stations, the number of covered households and the distances between

the stations change significantly from one area to the other. One of the aims of this pa-

per is to provide insights into these differences, measuring the effect of different location

decisions.

There are two main factors that should be taken into consideration when deciding

on the locations of a given number of recycling drop-off stations. Firstly, the distance

between households and the drop-off stations is one of the most important factors de-

termining the willingness of citizens to adopt recycling behaviours (Lange et al., 2014).

Hence, the drop-off stations should cover as many households as possible by being located

close enough to them. Secondly, the operational cost incurred in relation to collection

should be kept at a minimum. Balancing these two objectives results in a location-routing
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(a) (b)

Figure 6.1: Example of a selection of 15 stations from 50 potential locations in (a) rural
and (b) urban areas in Denmark.

problem.

In location-routing problems considering recycling drop-off stations, the proximity of

the drop-off stations to the citizens is usually modelled using a cut-off distance as the

maximal distance within which a citizen is willing to use the station. If a household is

within this cut-off distance, then it is covered, and the material brought to the station

is processed. Considering that the covering distances used in the literature vary between

150 and 350 meters (Gautam and Kumar, 2005; Lin and Chen, 2009; Rahim and Sepil,

2014), we adopt 200 meters as the covering distance of a drop-off station in our real-life

application.

In terms of operational costs, the drop-off stations should be located in a way that

leads to efficient collection routes once the system starts operating. From conversations

with various municipalities in Denmark, we note that operational decisions vary signifi-

cantly among them. In some municipalities, sensors in the recycling containers provide

information on current fill levels, and an automated system plans daily routes based on

this information. Other municipalities use their gut feeling about the filling at each lo-

cation and manually plan a daily route. Yet other municipalities use periodic routes.

Considering the different collection schemes and considering the location problem as a

tactical decision, we use an approximation of the collection costs to study the impact of

different location decisions.

Several approaches can be considered to approximate the collection cost. In the case

of highly fluctuating filling rates at each drop-off station, Elbek and Wøhlk (2016) and

Bogh et al. (2014) argue that the collection of recyclable material is best modelled as an

inventory-routing problem. Several algorithms and meta-heuristics have been developed
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to solve inventory-routing problems, within a rich area of applications (Coelho et al.,

2014). However, at a tactical level of planning, determining the involved costs as a sub-

problem of an inventory-routing problem is computationally too expensive. On the other

hand, if filling rates at the stations have low variability, the collection can be modelled

as a Periodic Routing Problem, and if filling rates do not vary much from one station to

another, the collection can be modelled as a Vehicle Routing Problem (VRP) (Toth et al.,

2014). To use such approximations of costs, assumptions regarding recycling amounts and

vehicle capacities have to be decided upon such that the tactical location problem is not

the focal point. For this reason, and in order to keep our contribution as generic as

possible, we approximate the collection costs by the Travelling Salesman Problem (TSP).

Although it does not provide exact collection costs, this approach enables us to assess

the cost effect of selecting near or distant locations, without entailing a need to solve the

complex inventory-routing problem as a sub-problem.

Since we are interested in solving real-life sized problems with thousands of households

and several potential locations, it is not tractable to solve the TSP sub-problem of the

MCTP to optimality. An alternative is to consider the continuous approximation of the

TSP tour cost proposed by Daganzo (2005). However, this approximation assumes that

the stations are uniformly distributed and, therefore, that the costs only depend on the

number of locations and the size of the area considered. By using that approach, the

collection cost would be fixed and independent of the actual locations for a given number

of stations, failing to consider the impact of selecting different locations on the total cost.

We therefore choose to approximate the collection cost by heuristically solving the TSP

of the tour that visits all the stations to be located.

To summarize, we study an application of the MCTP where we need to determine

the location of a set of p recycling drop-off stations in such a way that the number of

citizens covered is maximized, and the total distance of the TSP tour connecting the

selected locations is minimized. As this is a bi-objective problem, we use a weighted

objective function. The contribution of this study is twofold. Firstly, we propose a

heuristic for solving the MCTP for real-life sized problems and validate its performance by

comparing the heuristic solutions to optimal solutions obtained by CPLEX for a total of

324 different problem instances based on benchmark instances from the TSPLIB (Reinelt,

1991). Secondly, we use our heuristic to study the problem of locating recycling drop-off

stations using real-life data from Denmark. For the real-life case, we propose a procedure

to select potential locations, study the trade-off between recycling and collection costs,

and compare results by considering urban and rural areas.

The rest of this paper is organized as follows. We first review the related literature in

Section 6.2. Section 6.3 presents the model formulation of the MCTP, and in Section 6.4,
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we propose our solution method. In Section 6.5, we present the numerical results using

benchmark data to assess the performance of our heuristic. In Section 6.6, we use real-life

data from different areas in Denmark, and we discuss the implications of our results on

the recycling problem. Finally, Section 6.7 concludes.

6.2 Literature review

The Maximal Covering Tour Problem (MCTP) is a bi-objective location-routing problem

and it was first proposed by Current and Schilling (1994). In the problem, a tour must

visit p nodes out of n potential locations in a network. The two objectives are to minimize

the total length of the tour and to maximize the covered demand. In order to address

the bi-objective nature of the model, Current and Schilling (1994) propose a heuristic to

generate an approximate set of efficient optimal solutions. In spite of the large application

potential of the MCTP, related works have focused on variants of the problem rather than

on solving the original problem.

Gendreau et al. (1997) propose a single-objective variant of the MCTP referred to as

the Covering Tour Problem (CTP). In the CTP, the covering objective of the MCTP is

replaced with a constraint that requires complete covering of a given subset of the nodes.

The constraint of having exactly p locations to be placed is replaced by the construction

of two subsets of nodes: one subset of nodes that must be visited in the tour, and another

for which the visit is optional. The authors propose an exact branch-and-cut algorithm

and a heuristic to solve the problem. A limitation of the CTP is that it is restricted

to problems in which several assumptions about the nodes have to be made, namely,

the mandatory demand that must be covered, and the nodes in the tour that must be

visited. In our problem, this is not the case since there are no predetermined households

that must be covered, and there is an ample range of potential locations where stations

can be placed.

Berman et al. (2003) propose a variant of the MCTP that considers a gradual decay

covering function. The authors define two critical distances, a lower distance in which a

location is fully covered and a larger distance where locations are not covered. In between

the two distances, a gradual coverage decreasing from full coverage at the lower distance

to no coverage is assumed. Jozefowiez et al. (2007) propose a bi-objective variation of the

MCTP where the covering part of the objective function is replaced by the largest distance

between a node of some given set and the nearest visited node. The authors propose a

two-phase cooperative strategy that combines a multi-objective evolutionary algorithm

with a branch-and-cut algorithm to find sets of efficient optimal solutions. Tricoire et al.

(2012) formulate a variant of the MCTP considering stochastic demand where the two
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objectives are given by cost (opening and routing costs) and expected uncovered demand.

They propose a branch-and-cut algorithm within an epsilon-constraint algorithm to find

optimal sets. For a general overview of location-covering problems see Laporte et al.

(2015) and Church and Murray (2018).

The field of applications of the MCTP and its variants has mainly focused on emer-

gency supply and disaster relief problems. Hodgson et al. (1998) propose a CTP model

for planning mobile health care facilities. The model minimizes a mobile facility’s travel

while serving all population centers within range of a feasible stop depending on weather

conditions. Doerner et al. (2007) propose a three-objective covering tour model for mobile

health care units in a developing country and solve it by using Genetic Algorithms and

Ant Colony optimization. Nolz et al. (2010) formulated the problem of the delivery of

drinking water to the affected population in a post-disaster situation as a multi-objective

covering tour problem. Naji-Azimi et al. (2012) propose a generalization of the Covering

Tour Problem by considering split delivery for the location of satellite distribution centers

to supply humanitarian aid and propose a local search heuristic to solve large sized in-

stances efficiently. Finally, Abounacer et al. (2014) propose an exact solution approach to

generate the set of efficient solutions of a three-objective covering tour model for disaster

response.

In the last few years, there has been an increase in the application of location models

in multi-criteria optimization models for waste management problems (Coelho et al.,

2017). Those models mainly consider the problem of locating processing plants and

waste deposits (Khan, 1987; Antunes et al., 2008), but little attention has been paid to

the location of recycling drop-off stations (Purkayastha et al., 2015). Studies that address

the location problems in a recycling context have mainly used multi-objective approaches

combined with Geographical Information Systems (GIS), and only a few applications of

covering problems in the area of recycling have been published (see, for example, Valeo

et al. (1998); Gautam and Kumar (2005); Lin et al. (2010)). Regarding applications for

recycling drop-off stations, Chang and Wei (1999) propose a multi-objective evaluation

of the trade-off between the number and size of drop-off recycling stations, the citizens

covered in the service network, the average walking distance to the drop-off stations for

the citizens, and the distance travelled by collection vehicles.

Within facility location models used in relation to waste management, the concept of

covering has been applied in different problems. Bautista and Pereira (2006) formulate

the problem of locating waste collection sites using set covering formulations. They pro-

pose a genetic algorithm with four variations of the set covering formulation and show

results for real-life instances from Barcelona. In a different approach, Farhan and Murray

(2006) consider the location of both desirable and undesirable facilities simultaneously,
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where recycling stations are considered as undesirable facilities. They propose the Maxi-

mal/Minimal Covering-Distance Decay Problem to locate p = 38 park-and-ride facilities

and recycling facilities in Columbus, Ohio. The location of recycling facilities can be seen

from two different approaches depending on whether existing facilities are considered or

not. Ye et al. (2011) study the problem to reduce the number of existing recycling cen-

ters from 79 to 2 centers using a 2-stage location set covering–p-median problem. First,

they locate the recycling centers using set covering and then assign the collection depots

using a p-median model. They propose a greedy algorithm and present results for a case

study in Taiwan. One of the few studies that apply the location-routing problem using

maximal covering is the study by Rahim and Sepil (2014), which formulates a combined

maximal covering location problem in the presence of partial coverage and a selective

TSP to determine the location of bottle banks. The objective of the problem is to maxi-

mize the profit of a glass recycling company, and a nested heuristic based on a variable

neighbourhood search is proposed as a solution method. The authors present results

using p = 1 to p = 20 for TSPLIB instances, and a case study using p = 12 locations.

In Erfani et al. (2017), the location-allocation problem and capacitated vehicle routing

problem are solved using GIS. The ESRI ArcGIS network analysis extension was used

for the analysis on maximum walking distances and covered demand. Erfani et al. (2018)

propose a two-step model that first minimizes the number of facilities using set covering,

and then maximizes the demand covering using maximal capacitated covering with differ-

ent values of facility locations. They perform statistical analysis of the results analysing

total service covering, total attendance derived by maximize attendance analysis, and

surplus devoted capacity for 26 locations.

6.3 Model formulation

In order to formally define the MCTP, we consider a directed complete graph G = (N,A),

where, in our application, each node i ∈ N represents a household that produces a certain

amount of recycling material ai. Each arc (i, j) ∈ A is associated with a distance dij,

where dii = +∞.

A subset of the nodes, V ⊆ N , are potential nodes for the location of drop-off stations.

The objective is to find a subset V ′ ⊆ V of p nodes that minimizes the tour length and

simultaneously maximizes the covering of the nodes in N . A node i ∈ N is said to be

covered if the distance between i and any node j ∈ V ′ is less than a predefined maximal

covering distance S. For each node j ∈ V , we define the set Nj = {i ∈ N | dij ≤ S}, that

contains all nodes i that can be covered by j.

To model the problem, we define the following two types of variables. For all pairs
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i, j ∈ V , we define xij as a binary variable with a value equal to 1 if the arc from i to j

is in the selected tour, and 0 otherwise. For all nodes i ∈ N , we define a binary variable

yi, which is 1 if the node i is not covered by any node j ∈ V ′ in the selected tour, and 0

otherwise. Using this notation, we can formulate the MCTP as follows:

Min Z = (ZL,−ZC) (6.1)

Subject to ∑
i∈V

xij −
∑
k∈V

xjk = 0 for all j ∈ V (6.2)

∑
i∈Q

∑
j∈Q

xij ≤ |Q| − 1 for all Q ⊂ V such that 2 ≤ |Q| < p (6.3)

∑
i∈V

∑
j∈V

xij = p (6.4)

∑
l∈V

∑
j∈Ni

xlj + yi ≥ 1 for all i ∈ N (6.5)

xij ∈ {0, 1} for all (i, j) ∈ A (6.6)

yi ∈ {0, 1} for all i ∈ N (6.7)

where,

ZL =
∑
i∈V

∑
j∈V

dijxij

ZC =
∑
i∈N

ai(1− yi)

The two objectives, ZL and ZC , minimize the tour length and maximize the covered

demand, respectively. Constraint set (6.2) ensures that the tour leaves a node if it enters

it. Constraint set (6.3) eliminates subtours in the solution. These constraints are the

usual TSP subtour elimination constraints with the added limitation that the number of

nodes in Q must be less than p. Constraint (6.4) ensures that there are exactly p nodes

on the tour, and constraint sets (6.5) ensure that yi = 1, for all nodes i which are not

covered by the tour. Finally, constraints (6.6)–(6.7) are the domain constraints.

Since the MCTP has two conflicting objectives, there is no single optimal solution.

Instead, a set of efficient solutions representing the trade-off between the two objectives

can be found. An efficient solution is one for which an improvement in one objective re-

quires a degradation of the second one. Since the number of efficient solutions can grow
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exponentially with the number of nodes in the network (Current and Schilling, 1994),

approximation methods for finding the trade-off curve must be applied. A well-known

approximation method for multi-objective problems that does not alter the structure of

constraints (6.2)–(6.7) is the weighting method (Zadeh, 1963). With this approach, the

two conflicting objectives are combined into a single objective by adding a positive pa-

rameter α, with 0 ≤ α ≤ 1, that defines a convex combination of the two objectives.

The model is then solved using different sets of relative weights to generate an approxi-

mate trade-off curve between the two objectives. In this study, we focus on presenting a

heuristic to solve the problem for fixed values of α rather than on finding the complete

set of efficient solutions. Using this approach, the objective function we minimize for the

MCTP is:

Min Z ′ = αZL − (1− α)ZC (6.8)

6.4 Solution approach

In our problem, the number of nodes in the network corresponds to the number of house-

holds for a recycling planning area, which may be a significantly large number. In our

experiments, we found that the model (6.2)–(6.8) can be solved optimally for small values

of the total number of nodes in the network and the number of nodes in the tour.

Considering the limitations of solving the MCTP to optimality for real-life size prob-

lems, we propose a heuristic solution approach inspired by a Variable Neighbourhood

Search (VNS). The key idea of the heuristic is to systematically diversify an incumbent

solution using a shaking step followed by a local search. These two steps are embedded

into a main step, which is repeated until a maximal number of iterations is performed.

The application of VNS approaches for location problems (Hansen and Mladenović, 1997;

Mladenović et al., 2003) and location-routing problems (Pérez et al., 2003; Rahim and

Sepil, 2014) has yielded good results previously. The pseudo-code of our heuristic is

presented in Algorithm 6.2, and it is explained in the following.

We represent a feasible solution as a subset V ′ ⊆ V containing p nodes, and an

associated vector x, of length p, dictating the order in which they are visited in the tour.

The heuristic is initialized with a solution x obtained by a greedy construction heuristic.

In the shaking step (line 5), k with 0 < k ≤ p nodes from the incumbent solution x are

randomly dropped and replaced with k nodes randomly selected from the set of potential

locations. This change of neighbourhood is intended to perturb the incumbent solution

to escape from local minima and provide a starting point for the local search. In the local

search (lines 7–16), we obtain the best objective value from all the neighbour solutions

reachable from the incumbent solution by performing a one-swap move. The local search
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continues as long as improvements are found.

The main step (lines 4–22) involves a systematic shake that changes k nodes in the

incumbent solution. This systematic change can be briefly described as follows. The

main step starts with k = kmin, the minimum size of the shaking. If a better solution is

found, we increase k ← k + 1 and repeat the shaking step. Otherwise, we set k ← kmin.

The process continues until k = kmax. Based on experiments for different parameters for

the main step, we selected kmin = 2/3 p and kmax = p. The latter means that the shake

can get as large as the total number of locations in the solution.

Each time a set of nodes V ′ has been identified, both the tour length and tour coverage

have to be computed. To compute the covering of the nodes in the tour is straightforward,

but determining the length of the tour is equivalent to solving a TSP, which is NP-hard.

After each shaking step where we drop k nodes from the solution, we solve the TSP to

optimality using CPLEX (line 6). This serves as a base for the local search (lines 7-16).

In order to reduce the number of times the heuristic has to solve a TSP to optimality,

we approximate the tour length in the local search step during our search for the best

neighbour, by using the nearest insertion rule for each potential node to be included (line

9). After identifying the best neighbour, we re-optimize the TSP tour using CPLEX in

order to proceed with the optimal tour in the next iteration of the local search (line 10).

6.5 Computational results for benchmark data

In this section, we present the computational results of the proposed heuristic and evalu-

ate the performance of the heuristic using benchmark instances. We compare the results

to the optimal solutions obtained by solving the model presented in Section 6.3 using

CPLEX. To the best of our knowledge, no benchmark instances exist specifically for the

MCTP. We therefore use a subset of instances from the TSPLIB as the basis for our com-

parison. This subset consists of four instances containing 100 nodes (kroA100, kroB100,

kroC100, and kroD100) and two instances with 200 nodes (kroA200 and kroB200). For

each of them, the subset V of potential locations was randomly selected using |V | = 25

and |V | = 50 nodes, resulting in 12 instances. Our heuristic was coded in Java 1.8.0 201

and run on a 3 GHz Intel X5450 processor, 24 GB RAM. Each result of our heuristic is

an average of 5 runs, and the exact solutions were obtained using CPLEX V12.8.0 with

a maximum run time of 2 hours.

The problem parameters used for the comparison were selected according to three

criteria. First, S was selected such that each node in V covers at least two nodes in

N . This means that each potential location can cover at least two demand nodes in the

network. For the value of p, we selected values for which solutions can cover between
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Algorithm 6.2 Heuristic

1: x← Get greedy initial solution
2: for iter = 1 : MaxIter do
3: k ← kmin
4: while k < kmax do
5: x′ ← ShakeRandom(x, k)
6: x′ ← TSP exact solution of x′

7: improvement ← true
8: while improvement do
9: x′′ ← Get best approximate solution in the neighbourhood of x′

10: x′′ ← TSP exact solution of x′′

11: if f(x′′) < f(x′) then
12: x′ ← x′′

13: else
14: improvement ← false
15: end if
16: end while
17: if f(x′) < f(x) then
18: x← x′

19: k ← kmin
20: else
21: k ← k + 1
22: end if
23: end while
24: end for
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N/2 and N nodes. This criteria is intended to obtain non-trivial solutions. The weight-

ing parameter α was selected such that we can solve three scenarios: covering-oriented,

collection-oriented, and balanced. Three values for each parameter were selected in order

to analyse the impact of each of them in the heuristic performance. The selected values

are S ∈ {600, 700, 800}, p ∈ {4, 6, 8}, and α ∈ {0.001, 0.01, 0.1}. This selection and the

rest of the results consider euclidean distances between nodes in the network. Thereby,

we tested 27 problems for each of the 12 instances, resulting in a total of 324 problem

instances. Regarding the demands of the nodes, we considered them to be ai = 1 for all

nodes i ∈ N .

In Table 6.1, we show detailed results for a selected instance for each value of s, p

and α. The table shows the average objective value and average and maximal run times

in seconds for the heuristic over 5 runs, and in addition it shows the results obtained

by CPLEX as well as the gap % calculated as the percentage difference for our heuristic

and the optimal solutions, respectively. In the cases where the maximal run time of

CPLEX was reached, the upper and lower bounds of the solutions are reported, and no

optimality gap is reported. Table 6.2 presents a comparison of the aggregated results of

our heuristic and the optimal solutions obtained by CPLEX. Each line corresponds to

the average results of 27 variations of each instances as shown in Table 6.1. The gap %

is computed as the average gap of the instances for which CPLEX solved the problem to

optimality.

As can be seen in Tables 6.1 and 6.2, our heuristic can effectively find good quality

solutions. In addition, our heuristic shows lower average and lower variability in CPU

times. As shown in Table 6.1, the CPLEX results show a high variability in times

depending on the weighting parameter. In particular, increased run times were found

in the balanced scenario (α = 0.01) for all test problems, which reached the maximal

run time in most cases. These increases in run times indicate that the problem resulting

from the need to balance covering and travel cost is generally harder to solve than the

problem that focuses solely on either of the two objectives. In 6 of the 8 instances in which

CPLEX could not solve the problem to optimality within the time limit, the solution of

our heuristic was better than the best solution from CPLEX. When considering the total

324 test instances, in 50 instances CPLEX could not solve the problem to optimality, and

from those instances, our heuristic performed better in 36 cases. These results show that

our heuristic yields high quality results for the MCTP in short computation times.
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Heuristic CPLEX

S p α Avg. Obj. Val.* Avg. Time* Max. Time Obj. Val. Lower Bound† Time Gap(%)

600 4 0.001 45.1 3.4 4.1 45.1 - 1.7 0.0
0.01 83.6 6.4 10.3 83.6 - 5786.3 0.0
0.1 134.0 5.6 7.5 134.0 - 8.7 0.0

6 0.001 27.1 6.9 9.4 27.1 - 9.3 0.0
0.01 84.0 8.3 9.7 86.9 61.8 7204.8 -
0.1 169.2 12.0 15.1 169.2 - 8.8 0.0

8 0.001 15.6 9.0 13.7 15.6 - 8.6 0.0
0.01 84.0 10.2 12.8 90.3 56.2 7215.8 -
0.1 250.2 16.1 17.3 250.2 - 97.7 0.0

700 4 0.001 35.7 3.6 4.3 35.7 - 8.0 0.0
0.01 78.1 4.7 5.5 78.1 63.4 7212.1 -
0.1 131.3 5.5 6.3 131.3 - 21.0 0.0

6 0.001 17.2 6.8 8.1 17.2 - 12.7 0.4
0.01 76.9 9.7 11.7 81.2 47.7 7209.6 -
0.1 166.5 10.6 12.0 166.5 - 25.1 0.0

8 0.001 10.1 7.4 8.3 10.0 - 35.3 0.6
0.01 77.0 10.1 11.6 78.6 44.4 7209.3 -
0.1 248.4 15.4 18.5 248.4 - 139.9 0.0

800 4 0.001 25.7 3.6 4.6 25.7 - 7.3 0.0
0.01 72.1 4.5 5.3 72.0 52.1 7205.9 -
0.1 128.6 7.7 9.9 128.6 - 10.5 0.0

6 0.001 11.7 6.3 8.2 11.5 - 21.5 2.1
0.01 70.9 9.2 11.7 75.0 40.3 7208.4 -
0.1 165.6 10.7 12.5 165.6 - 20.2 0.0

8 0.001 8.7 8.2 8.9 8.7 - 4977.2 0.9
0.01 71.6 9.9 11.0 72.7 36.7 7208.7 -
0.1 247.5 16.3 17.9 247.5 - 117.5 0.0

Global average 93.9 8.4 10.2 94.7 - 2555.3 0.2

Table 6.1: Detailed computational results for the instance kroA100, |V | = 50. *Average
results over 5 runs of the instance. †A ’-’ indicates an optimal solution is obtained.

Heuristic CPLEX

Name |V | Avg. Time Max. Time Avg. Time Max. Time # opt.* Gap(%)

kroA100 25 7.6 16.1 79.8 669.3 27 0.07
kroA100 50 8.4 18.5 2,555.3 7,215.8 19 0.15
kroA200 25 7.9 15.0 494.8 4,923.2 27 0.15
kroA200 50 8.4 19.0 3,044.1 7,210.1 16 0.04
kroB100 25 7.8 14.0 310.6 2,857.0 27 0.07
kroB100 50 8.7 19.0 2,677.9 7,216.1 19 0.19
kroB200 25 7.3 14.8 1,439.9 7,200.3 27 0.19
kroB200 50 8.5 20.1 2,760.3 7,216.3 20 0.04
kroC100 25 8.0 18.4 1,012.8 7,206.9 27 0.04
kroC100 50 9.4 23.7 2,486.9 7,208.0 19 0.30
kroD100 25 8.0 14.5 112.0 923.5 27 0.00
kroD100 50 8.5 17.7 2,523.4 7,211.5 19 0.70

Global average 8.2 17.6 1,624.8 5,588.2 22.8 0.2

Table 6.2: Aggregated computational results for the benchmark instances. *Number of
instances solved to optimality by CPLEX out of 27 instances.
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6.6 Results for real-life data

In this section, we apply our heuristic to large-scale real-life data. We first present the

data selected from five areas in Denmark in Section 6.6.1. In Sections 6.6.2 and 6.6.3, we

explain the procedure we use to select potential locations for the drop-off stations and

the scale used to compare urban and rural areas. Finally, Sections 6.6.4–6.6.6 present

results regarding the trade-off between covering and distance, sensitivity analysis on our

procedure to select potential locations, and managerial insights for urban and rural areas.

6.6.1 Data from Denmark

Herning

Ikast-Brande

Syddjurs

Odense

Copenhagen

Figure 6.2: Selected postal code areas from Denmark.

We selected one postal code area from each of five municipalities in Denmark: Copen-

hagen, Odense, Herning, Ikast-Brande, and Syddjurs. In Fig. 6.2, we show the map of

Denmark highlighting the selected postal code areas used in this study. The selected ar-

eas allow us to study the effect of different geographical layouts, namely urban and rural,

with a comparable number of households. In urban areas (Copenhagen and Odense),

household density is larger and distances between households are shorter. In the rural

cases (Herning, Ikast-Brande and Syddjurs), households tend to concentrate in small vil-

lages with larger distances between them. Our data consists of the coordinates of the

households for each of the selected areas. In Table 6.3, we provide the postal codes,

type of area (Urban/Rural), number of households (N), and the average and maximal

distances, in meters, between any pair of households in the data set.
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Name Postal code Type |N | Avg. dist. (m) Max. dist. (m)

Copenhagen 2200 Urban 5,186 1,015 3,066
Odense 5230 Urban 6,032 1,296 3,841
Herning 7480 Urban/Rural 3,395 3,352 14,994
Ikast-Brande 7330 Rural 4,816 4,183 21,321
Syddjurs 8410 Rural 4,853 4,683 17,610

Table 6.3: Description of the data sets from the five selected zones in Denmark.

6.6.2 Selecting potential locations

Figure 6.3: The process for selecting potential locations from the household data from
the selected area in Copenhagen.

Before solving the MCTP for these large instances, we need to determine the set of

potential locations (V ) for drop-off stations. We use a 2-step procedure to select a set

of well-dispersed potential locations chosen so as to maintain problem tractability. First,

we randomly sample a set of M ⊆ N , |M | = 1000 nodes from the total number of nodes.

Second, based on the sampling M , we determine the set V ⊆ M using an aggregation

demand method similar to Francis et al. (1999). In this step, we solve the Maximal

Covering Problem (MCP) (Church and ReVelle, 1974) for a large number of locations

(p = 50) using the set M as the set of nodes. The MCP is a maximization problem that

seeks to select a subset of p locations from |M | potential stations that maximizes the

total covering. That is, the MCP corresponds to the MCTP, but does not consider the

tour length.

We formulate the MCP as follows. For all i ∈ M we define the binary variable yi

with value equal to 1 if the node i is covered by any selected location. For all j ∈ M

the variable xj is equal to 1 if the node j is selected as a location. The MCP is then
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formulated as:

Max

|M |∑
i=1

yi (6.9)

Subject to ∑
j∈Ni

xj ≥ yi ∀ i ∈M (6.10)

∑
j∈M

xj = p (6.11)

xi, yi ∈ {0, 1} ∀ i ∈M (6.12)

The objective (6.9) maximizes the total demand covered by the selected p locations.

Constraints (6.10) define if a specific demand node i is covered or not. Constraint (6.11)

ensures that exactly p locations are selected, and constraints (6.12) are the binary domain

constraints. In our problem, we define p = 50 as the number of potential locations for

drop-off stations, a covering radius of S = 200, and the nodes with xi = 1 constitute

the set V of potential locations. In Fig. 6.3, we show the households (|N | = 5, 186), the

sampled locations (|M | = 1, 000), and the resulting potential locations (|V | = 50) for the

area of Copenhagen.

6.6.3 Scaling urban and rural areas

The order of magnitude of the two objectives, distance and covering, varies depending

on the area. In rural areas, where distances between households are large, the distance

values in the objective function are increased compared to the urban areas. In the same

fashion, since households are more uniformly distributed in urban areas, the covering

values are greater in urban areas for the same covering radius. This means that in order

to compare results between urban and rural areas, we have to scale the weights in the

objective function accordingly with the balance between distance and covering. To scale

the two objectives, we determine an upper bound for the distance and the covering for

each area by solving the MCTP problem with α = 0, i.e. only maximizing covering. We

use the results of the upper bound case as an approximation of the order of magnitude

of the two objectives. In Table 6.4, we provide the upper bound results for distance and

covering for p = 15, and the proportion in the objective value of the covering (k), for

each instance, respectively. We can see that the relative proportion of the covering from

the total sum changes significantly between rural and urban instances. Thus, using the

same α to test similar scenarios can be misleading. Instead, we use a parameter β that
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Upper bound results (α = 0) β = 0.5

Name Cov.* Dist. Sum k (Cov./Sum) β α = 2kβ 1− α α Dist. (1− α) Cov.

Copenhagen 3,393 6,427 9,820 0.34 0.35 0.65 2,221 2,221
Odense 2,722 8,231 10,953 0.25 0.25 0.75 2,045 2,045
Ikast-Brande 1,713 7,444 9,157 0.19 0.5 0.19 0.81 1,392 1,392
Herning 1,748 18,175 19,923 0.09 0.09 0.91 1,594 1,594
Syddjurs 1,775 31,455 33,230 0.05 0.05 0.95 1,680 1,680

Table 6.4: Upper bound results (α = 0, p = 15) are used as an approximation of the
order of magnitude to scale α for the different instances. *Number of covered households.

accounts for the approximation of the proportion between distance and covering. We

compute the values of the weighting parameter α as:

α = 2kβ (6.13)

where k is the ratio of the covering results over the sum of covering and distance. To

illustrate this, Table 6.4 shows the corresponding values of α when considering the case

in which we want the distance and the covering to have the same value (β = 0.5) and

the effect on the two parts of the objective value. For the rest of the analysis, we obtain

results using β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

6.6.4 Covering and distance trade-off

We use our heuristic to obtain results on covering, tour distance, and the total run time

in seconds, for different weighting parameters, for each of our five instances. The covering

was computed as the number of households covered as a percentage of the total number

of households of the instance. In Table 6.5, we illustrate the trade-off between covering

and distance for the selected area in Copenhagen using p = 15 drop-off stations. In

addition, we present the percentage decrease from the upper bound solution (β = 0) to

compare the relative change of the solution when increasing the weighting parameter on

the distance.

From a managerial point of view, the number of recycling drop-off stations (p) reflects

the size and installation cost of the recycling network. At the same time, the tour distance

approximates the transportation costs, and the covering represents the recycling level.

Fig. 6.4 allows us to directly compare different configurations regarding installation costs,

operational costs, and recycling levels. For each value of p ∈ {10, 15, 20, 25}, we obtain the

trade-off between covering and tour distance. In all cases, our results show a non-linear

relationship between covering and distance with decreasing increments. This means that

an increase in covering for a fixed number of stations has a higher impact on distance
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Heuristic results % decrease from u.b.*

β α Dist. Cov. (%) Time (sec) Dist. (%) Cov. (%)

0 0 6,427 65.43 45.5 - -
0.1 0.06 6,427 65.43 98.5 0.00 0.00
0.2 0.13 5,884 64.58 106.2 8.45 1.30
0.3 0.19 6,047 64.85 108.3 5.92 0.88
0.4 0.25 5,361 61.24 112.0 16.60 6.40
0.5 0.31 4,675 56.48 114.7 27.26 13.68
0.6 0.38 4,154 51.08 116.6 35.38 21.93
0.7 0.44 3,539 43.27 168.3 44.94 33.86
0.8 0.50 3,453 41.79 200.5 46.28 36.13
0.9 0.56 3,453 41.79 173.7 46.28 36.13

Table 6.5: Results for Copenhagen using p = 15 drop-off stations for different values of β.
*Computed as the percentage difference compared with the upper bound case (α = 0).

when aiming at higher values of covering.

Although all results show similar trade-off trends between covering and distance,

there are differences when comparing urban and rural areas. In Fig. 6.5, we show the

percentage decrease from the upper bound case (β = 0), in both distance and covering,

for each instance. Each of the lines in Fig. 6.5 corresponds to the results of the last

two columns in the example given in Table 6.5. One main difference between the two

types of areas is that the range in which we obtain results for covering is smaller for rural

areas. This means that, independently on the weighting parameters and the number of

drop-off stations, different solutions have less impact on the total covering of the selected

locations. We illustrate this difference in Fig. 6.6, where we compare the solution for

the upper bound case (β = 0) and the balanced case (β = 0.5) for each area. Given

that rural areas have small villages in which most of the households are concentrated, a

solution adding a new village has a large impact on the distance. For example, in Herning

the upper bound case includes three villages, while increasing the weight of the distance

reduces the tour into a single village.

6.6.5 Stability of solution sets

From a managerial point of view, it is important to understand how the selected locations

change when considering different balances in the objective function and different areas.

From our experiments, we see that for rural areas, locations tend to change less when we

increase the weight on the distance (β > 0.3) compared to urban areas. To quantify this

difference, we used the Hamming distance to count the number of locations that differ

from the upper bound solution. In Fig. 6.7, we show the Hamming distance for each

instance using p = 15. The distance increases when increasing the weighting parameter
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Figure 6.4: Trade-off between distance and covering for different numbers of drop-off
stations (p = 10, 15, 20, 25) for each instance.

β, but the increase is greater and has more variability for urban areas. To illustrate

this location by location, we show two set of solutions, for Copenhagen (urban) and for

Syddjurs (rural) in Fig 6.8. In the figure, each row represents the selection of 15 locations

(in grey) over the 50 potential locations. As can be seen, the selection of locations is more

sensitive to changes in β for the urban case. In urban cases, potential locations cover

similar number of households making potential locations equally good in the solution.

In the rural case, where rather few locations concentrate most of the covering in small

villages, the impact of changing β is lower. Finally, this visualization allows us to identify

the locations that are chosen independently of the choice of β, which can serve as a criteria

for location selection.

6.6.6 Sensitivity analysis on sampling

In order to validate the robustness of our results, we perform sensitivity analysis on the

parameters for the process for selecting the potential locations. We analyse the effect

of three different parameters: random sampling, number of random samples, and the

number of potential locations. First, we analyse the impact of the sampling process by

comparing the results for each instance. We replicate our results for 10 different random
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Figure 6.5: Trade-off between percentage decrease in covering and percentage decrease in
distance, computed as the decrease from the upper bound case (β = 0), for p = 10, 15, 20,
and 25.
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Figure 6.6: Comparison of the solution of the upper bound case (β = 0) and the balanced
case (β = 0.5), for p = 15 recycling drop-off stations.
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Figure 6.7: Hamming distance from the solution set of the upper bound case (β = 0) to
the solution set depending on β, for p = 15. Solution sets for rural areas differ less from
the upper bound solution when increasing the weight on distance.

Figure 6.8: Representation of the selection of p = 15 drop-off stations from the total
of |M | = 50 potential locations, for different values of β for Copenhagen (urban) and
Syddjurs (rural).
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samples, for each area. Table 6.6 shows the mean, standard deviation, and coefficient of

variation (C.V.), computed as the percentage of the standard deviation on the average,

for both covering and distance. The results show a low variability for all cases, but

increased variability can be found for specific values of β. In Fig 6.9, we disaggregate the

results to show the coefficient of variation of the absolute value of the objective value.

The results show that the variability of the solution remains within 5% in the majority

of the instances, which is in accordance with Table 6.6. However, an increased variability

can be seen in urban areas in more balanced problems, a fact that can be attributed to

the increase in the complexity of the solution rather than to the sampling selection.

Covering Distance

Instance Mean St. dev. C.V. (%)* Mean St. dev. C.V.(%)*

Copenhagen 53.5 3.5 9.3 4983 353.4 9.5
Syddjurs 34.7 1.1 3.3 10734 663.9 7.5
Odense 42.9 1.1 2.8 6338 243.8 4.0
Ikast 36.3 0.9 2.6 6616 261.5 4.4
Herning 46.8 0.9 2.0 6579 300.4 4.8

Table 6.6: Summary statistics of the average results (p = 10, 15, 20, 25, β = 0.1 to 0.9),
using 10 different random samples in the selecting potential locations step. The sampling
phase has a low impact on the variability of both distance and covering results. *Average
coefficient of variation (%).

To have a measure of the impact of the sample size, we use the aggregation error

definition similar to Francis et al. (1999). We define the distance error as the euclidean

distance between the household location and the location of the closest potential location.

With this measure we compare the level of sparsity of our potential locations. In Fig.

6.10, we present the average distance error when varying (a) sample size, (b) number of

potential locations, and (c) the covering radius, using p = 15 and β = 0.5. Fig. 6.10a

shows the average distance error obtained by varying the size of the random sample |M |,
from |M | = 500 to |M | = 2000 points. For this range, we observe that on average, the

sample size has no significant impact on the average distance error. The different levels

for each area correspond to the scale of distances between households, which are shorter

for urban zones. These results confirm that the selection of a sample size of |M | = 1000

is an adequate value.

An important parameter in the decision of the location of drop-off stations is the

size of the set of potential locations. We use the distance error to measure the impact

of the number of potential locations on their spatial distribution. In Fig. 6.10b, we

present the average distance error when varying the number of potential locations from

N = 10 to N = 100, with steps of 10 locations. In general, the error decreases quickly

when increasing the number of locations from 10 to 50, and then the error stabilizes.
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Figure 6.9: Coefficient of variation (%) of the objective value (p = 10, 15, 20, 25, β = 0.1
to 0.9, and its corresponding α), using 10 different random samples in the selecting
potential locations step. Variability is increased in balanced scenarios of the objective
function for urban areas.

Given these results, we conclude that a selection of N = 50 potential locations is an

adequate value that balances computational complexity and satisfactory distribution of

the locations on the map. Finally, in Fig. 6.10c, we show the effect of the covering radius

parameter (S). We see that S has little effect on the distance error for urban areas,

whereas for rural areas the error stabilizes when we consider values greater than S = 200,

which is the selected value for the results in Section 6.

6.7 Conclusion

In this paper we presented a heuristic approach to solve the problem of deciding on the

locations of recycling drop-off stations. The problem is motivated by the situation in

which recycling rates must be increased by strategically locating drop-off stations while

maintaining low installation and collection costs. We formulated the problem as an

MCTP and presented a heuristic approach inspired by a VNS. Computational results

were presented for a set of benchmark instances and compared to the optimal solutions.

Results show that the proposed heuristic can effectively find good quality solutions for

the MCTP. Finally, we used our heuristic to solve a set of real-life instances to provide

insights into the trade-off between covering and collection costs for both urban and rural
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(a) (b)

(c)

Figure 6.10: Sensitivity analysis on parameters for selecting potential locations. Average
distance error for (a) Sample size, (b) Number of potential locations, and (c) Covering
radius, using p = 15 locations and β = 0.5.
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scenarios.
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