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Abstract
HfO2-based resistive switching memory (RRAM) combines several outstanding properties, such as
high scalability, fast switching speed, low power, compatibility with complementary
metal-oxide-semiconductor technology, with possible high-density or three-dimensional
integration. Therefore, today, HfO2 RRAMs have attracted a strong interest for applications in
neuromorphic engineering, in particular for the development of artificial synapses in neural
networks. This review provides an overview of the structure, the properties and the applications of
HfO2-based RRAM in neuromorphic computing. Both widely investigated applications of
nonvolatile devices and pioneering works about volatile devices are reviewed. The RRAM device is
first introduced, describing the switching mechanisms associated to filamentary path of HfO2

defects such as oxygen vacancies. The RRAM programming algorithms are described for
high-precision multilevel operation, analog weight update in synaptic applications and for
exploiting the resistance dynamics of volatile devices. Finally, the neuromorphic applications are
presented, illustrating both artificial neural networks with supervised training and with multilevel,
binary or stochastic weights. Spiking neural networks are then presented for applications ranging
from unsupervised training to spatio-temporal recognition. From this overview, HfO2-based
RRAM appears as a mature technology for a broad range of neuromorphic computing systems.

1. Introduction

A major challenge in neuromorphic engineering is the design and development of novel devices which mimic
the behavior of biological elements of a neural network, such as spiking neurons and learning synapses [1–3].
In this regard, the class of resistive (or memristive) devices, such as the resistive switching random access mem-
ory (RRAM) has attracted a good deal of interest for the simple structure, the low-power operation and the
easy integration with the complementary metal-oxide semiconductor (CMOS) process flow [4–7]. The ability
of controlling the device conductance by electrical stimuli, similar to the neuronal spikes causing potentiation
and depression of a biological synapse, has spurred the development of artificial synapses based on RRAM
devices [8–10].

The neuromorphic research has focused on two main directions, namely (i) the development of artificial
neural networks (ANNs) aiming at high-accurate recognition of image, video and audio data [11], and (ii) the
engineering of spiking neural networks (SNNs) to closely mimic the adaptability and high-energy efficiency
of the human brain [12].

The good scaling behavior of RRAM devices in terms of both device area [13] and 3D integration [14]
enables the implementation of high density of synapses needed in both deep learning architectures and brain-
inspired circuits with high connectivity between neurons and synapses. As biological synapses weight the
communication among neurons, in the same way, resistance states of nonvolatile RRAMs can modulate the
connection among artificial neurons. Furthermore, RRAM devices can play the role of both memory and

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2634-4386/ac9012
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2386-7953
https://orcid.org/0000-0001-7293-7503
https://orcid.org/0000-0002-1853-1614
mailto:sabina.spiga@mdm.imm.cnr.it
mailto:daniele.ielmini@polimi.it


Neuromorph. Comput. Eng. 2 (2022) 042001 Topical Review

computing devices, thus allowing in-memory computing (IMC) where data are processed in situ within the
memory array [15]. This is in line with the co-location of neurons and synapses in the human brain, which is
a fundamental asset to achieve ultra low power consumption [16, 17]. More pioneering is the employment of
volatile RRAM devices to implement, through their switching transients, the various dynamical components
typically present in neural, in SNNs and in human brain [16, 18].

A significant challenge, however, is the identification of a mature RRAM technology which combines high
flexibility of neuromorphic functions, e.g., spike integration in a neuron or analog potentiation/depression in
a synapse, with good compatibility with the CMOS process flow to enable large scale integration of neuromor-
phic systems.

HfO2 has been soon identified as a promising material for RRAMs, due to the controllable resistance
switching arising from the oxygen exchange between the metallic electrode and the metal oxide layer [19].
HfO2 based stacks have been proposed and optimized toward nonvolatile RRAM since more than 15 years
[4, 6, 13, 19]. In addition, HfO2 possesses a set of key properties, including (i) high dielectric constant for
scalable CMOS technology, both for logic and charge trap memory devices [20, 21], (ii) controllable ferroelec-
tricity/antiferroelectricity behavior for high density memory and for synaptic devices [22, 23], and (iii) high
compatibility with the CMOS process. HfO2 thus appears as a dielectric material of choice for microelectronic
systems encompassing logic, memory and neuromorphic functions on the same chip. For this reason, HfO2-
based RRAM has been one of the most popular technology for early demonstrator of neuromorphic devices
and circuits [8]. More recently, also HfO2 based ferroelectric memories are gaining interest for novel compu-
tation schemes [22, 24]. It is worth mentioning that despite the use of HfO2 for both technologies, there are
substantial differences between HfO2-based RRAM and ferroelectric memories in terms of real implemented
complete material stacks and thermal budget needed during fabrication, integration strategy, as well as the
programming conditions and working principle. Therefore, also depending on future advancements, they can
be used to target different applications or functions, in different areas of the same chip.

This review article provides an overview of HfO2-based RRAM devices and circuits for neuromorphic
computing. The review is organized as follows: section 2 introduces the RRAM device structure and operation,
addressing the defect formation mechanism, the electrically-induced switching and the impact of the electrode
material in determining the nonvolatile or volatile behavior of the device. Section 3 illustrates the programming
schemes for both off-line training, where high precision weights are mapped into the synaptic memory array,
and on-line training for what concerns nonvolatile devices. Examples of use of volatile devices are reported
in the same section. Section 4 addresses the computing schemes, including various types of ANNs and SNNs
where HfO2-based RRAMs serve the role of neuromorphic synapses. Section 5 discusses the current challenges,
possible solutions and perspectives of HfO2-based RRAM.

2. RRAM device operation and material stacks

2.1. Nonvolatile devices
Nonvolatile RRAMs are two terminals devices whose resistance can be reversibly changed between two or
more values by application of electrical stimuli [6, 27]. The programmed resistance states are stable for a long
retention time after the stimulus has been released. Both 1 resistor (1R) or 1 transistor–1 resistor (1T1R)
configurations (see figure 1(a)) are used for characterization and implementation into memory or computing
systems. The memory cell (1R) is based on a two terminal configuration where a switching medium (also
composed by various materials) is sandwiched between two electrodes. The switching event can occur locally
in a filament region shorting the two electrodes (filamentary switching) or over the entire cross-section of the
cell (interface-type switching) [27, 28]. The switching mechanism of HfO2 based RRAMs is usually reported
as filamentary switching and the resistance change is ascribed to ionic movement and local redox reactions
[28–31].

Regarding device operation, a preliminary forming operation is often required to activate the reversible
switching in a fresh device, i.e. to create the filament shorting the two electrodes. The forming voltage is usu-
ally larger than the following switching voltages. The switching from high resistance (HRS) to low resistance
state (LRS) is called set transition, while the reverse operation is called reset transition. The device resistance
state can be read at voltages lower than those typically required for switching, so that the device resistance
is not modified. In set and forming operations (usually performed at the same polarity), the current under-
goes a rapid increase that may irreversibly damage the device. For this reason, a current limitation is applied
through the measurement system or through the transistor of the 1T1R configuration operated in its satura-
tion regime. The value of the maximum current allowed during the set operation determines the value of the
reached LRS, enabling multilevel storage, as shown by different colors in figures 1(b) and (c) for the 1R and
1T1R configurations, respectively. It must be mentioned that any increase of the current compliance results
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Figure 1. Types of RRAM devices and their operation. (a) Schematic for the 1R and 1T1R configuration. (b) Examples of set and
reset operations in a 1R TiN–20 nm HfOx –TiN RRAM device as a function of current compliance applied through the
semiconductor device parameter analyzer. (c) Examples of set and reset operations in a 1T1R TiN/Ti/HfO2/TiN-based RRAM
cell. The current compliance Ic is applied by varying the gate voltage of the select transistor. (b) © 2012 IEEE. Reprinted, with
permission, from [25]. (c) © 2021 IEEE. Reprinted, with permission, from [26].

in an increase of the energy consumption per programming operation. Moreover, the use of the 1T1R con-
figuration (especially using an integrated transistor during device fabrication) provides a better control of the
current compliance during forming and set operations, due to the limitation of parasitic capacitance effects
[32], and thus allowing low power operation with respect to the use of 1R configuration only. In addition,
the 1T1R configuration is beneficial for large array integration density since the transistor provide a selector
limiting sneak path problems. Therefore the use of 1T1R configuration for HfO2 RRAM has lead to the best
device performance. Recently, nonvolatile HfO2 RRAM have shown large endurance [33], retention up to 10
years [34, 35], multilevel operation [26, 36], excellent scalability down to 10 nm or less [13] demonstrated at
single device level, integration in 1T1R large arrays and in combination with scaled CMOS technology nodes
[26, 35, 37, 38], and possibility of integration in 3D arrays [7, 39].

HfO2 RRAM devices have also been optimized through material engineering of the stack with the aim of
improving electrical performances and, more recently, with the aim of achieving analog switching. Regarding
the used material stack for HfO2 based RRAM devices, the basic structure usually consists of a HfO2 layer as
switching medium (with thickness in the 5–30 nm range), and bottom and top electrodes formed by metals or
nitrides, such as Pt, Au, W, Ni, TiN, TaN. One of the most used optimized stack includes the us of a Ti (or Hf)
scavenging layer, between the HfO2 layer grown by atomic layer deposition (ALD) and the top TiN electrode
[13, 19, 33, 40, 41]. As shown in figure 2 in the case of Ti, the metal layer is easily oxidized by oxygen exchange
between Ti and HfO2, possibly also promoted by an additional post-deposition annealing. This phenomenon
leads to the formation of a TiOx layer which serves as oxygen exchange layer during the following switching
operation, as well as to the formation of a sub-stochiometric HfOx layer close to the top electrode and an
asymmetrical oxygen vacancy profile in the oxide layer. Various scavenging metal layers have been studied in
combination with HfO2 grown by ALD. Ti or Hf scavenging layers and the created asymmetric oxygen vacancy
profile in the oxide layer are beneficial in terms of reduction of the forming voltage [13, 42, 43], as shown in
figure 2(c). Independently from the RRAM cell size (1 μm or 40 nm) the increase of Hf cap thickness leads to
a decrease of the forming voltage.

Moreover, the insertion of Ti and Hf interlayers is also beneficial for the subsequent switching properties. In
particular, the use of TiN/Ti/HfO2/TiN or TiN/Hf/HfO2/TiN (top electrode/scavenging metal/oxide/bottom
electrode) stacks leads to the best results in terms of device endurance and retention. For instance, Chen
et al [33] reported 1010 pulse endurance in TiN/10 nm Hf/5 nm HfO2/TiN 1T1R RRAM devices. The ener-
getic of oxygen vacancy creation and migration can be modified by HfO2 doping with a trivalent metal
[45, 46]. For instance, Al doping has been reported to influence uniformity, retention and resistance fluctua-
tions [34, 47, 48]. All these effects may help implementing high precision multilevel storage useful for some
kind of neuromorphic computing schemes as we will discuss in sections 3 and 4 [49–51].

Overall, the attempted materials science solution are many but a clear framework to optimize RRAM device
toward a specific application has not been devised yet. We can notice that, recently, the use of multilayers
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Figure 2. Effect of the inclusion of a scavenging layer at one metal/HfO2 interface. (a) Transmission electron microscope image
and (b) XPS depth profile of TiN/Ti/HfO2/TiN stack. (c) Relationship between the forming voltage and the thickness of the Hf
scavenging layer for TiN/Hf/5 nm HfO2/TiN RRAM cells. The Hf layer is inserted between the HfO2 film and the top TiN
electrode. (a) © 2009 IEEE. Reprinted, with permission, from [44]. (b) © 2008 IEEE. Reprinted, with permission, from [19].
(c) © 20011 IEEE. Reprinted, with permission, from [13].

Figure 3. Volatile RRAM device scheme and operation. (a) Schematic of the Pt/Ag nanodots (top electrode)/HfO2/Pt (bottom
electrode) device, and (b) its representative measured DC IV characteristics. (c) Ag (top electrode)/HfO2/Pt (bottom electrode)
1R volatile device: IV characteristics as a function of the current compliance. (a) and (b) reproduced from [66] CC BY 4.0. (c)
reproduced from [55] CC BY 4.0.

has empirically demonstrated successful for the improvement of the analog modulation of the conductance
in several works [11, 52–54]. In particular, some examples of successful realization of multilevel of analog
RRAMs make use of multilayers stacks like Pt/HfOx/TiOx/HfOx/TiOx/TiN [52], Al/AlOx/HfO2/Ti/TiN [53],
TiN/HfAlOx/TaOx/TiN [11] or TiN/TaOx/HfOx/TiN [54].

2.2. Volatile devices
Another class of RRAM devices, named also volatile memristors or diffusive memristors, is the one for which
the retention of the LRS can span various time scales from ultra short time (ns) up to tens of ms or seconds
[18, 55]. These devices are based on cation migration [28] and the device stacks are usually based on one active
electrode (Ag or Cu), a solid electrolyte as switching medium (HfO2, TiO2, TaOx, SiOx) and an inert electrode
(Pt, Au, W, TiN, Pd, carbon) [18, 56–59]. The use of symmetrical stacks like Ag/electrolyte/Ag [60, 61] or
Pt/Ag-doped material/Pt [62] have been also proposed. Even if HfO2 is not the only materials of choice for
volatile devices, HfO2-based volatile RRAM devices have been recently demonstrated by various groups and
proposed for neuromorphic and computing applications [18, 55, 57, 61, 63].

Regarding the device operation, initially the cell is in the pristine HRS and the application of a voltage to
the active electrode leads to the formation of a Ag (or Cu) conductive filament connecting the two electrode
(LRS) thanks to the injection of cation from the active electrode material into the solid electrolyte. The filament
self-dissolve once the applied voltage falls below a hold value [64, 65]. After the initial formation of a filament,
which may be associate to a forming process, the volatile switching is achieved by applying a voltage over a
threshold value (usually lower than forming voltage) for filament formation.

Figure 3(a) shows a transmission electron microscopy section image of Pt/Ag nanodots (top
electrode)/HfO2/Pt (bottom electrode) stack, while figure 3(b) reports the corresponding measured current-
vs-voltage (IV) curves. Another example of volatile switching is reported in figure 3(c) for the Ag (top
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electrode)/HfO2/Pt (bottom electrode) device. The IV curves show an abrupt and volatile switching, and
the final LRS value can be controlled by the imposed current compliance. Usually symmetric stack struc-
tures (Ag/switching medium/Ag) show bi-directional volatile switching, while non-symmetric stack structure
(Ag/switching medium/Pt) shows uni-directional volatile switching. On the other hand, bi-directional switch-
ing has been observed also for non-symmetric structures [55, 56, 66] and ascribed to residual Ag filament close
to the inert electrode after forming operation. An example for the latter case is indeed reported in figure 3(b).
Finally, it is possible to observe both volatile and nonvolatile switching in Ag- or Cu-based RRAMs espe-
cially if the device is operated at large compliance currents leading to the formation of a large and stable
filament [57].

3. Programming schemes for nonvolatile and volatile RRAMs

The main usage of nonvolatile RRAMs in neuromorphic hardware is as synaptic weight. Weights can be stored
in multiple conductance levels, described by non-overlapping distribution of values. In this case, we speak
about multilevel operation. We refer to analog devices, instead, in case their conductance can be modulated
through a continuum of values without identifying levels and corresponding distinct distributions. The pro-
gramming methodology of nonvolatile synaptic weights is different in case the training is performed either
on-line or off-line. Indeed, in case the training is performed off-line, weights have to be uploaded to the
synaptic array as conductance values with high accuracy. In particular, for off-line training, it is possible to
take advantage of program verify schemes, especially for 1T1R structures. On the contrary, in case of on-line
learning, program verify schemes are hardly implemented. Furthermore, most of the training protocols and
learning rules do not indicate absolute weight values (i.e. conductance values), but, in turn, prescribe weight
changes relatively to the current value. Therefore, for on-line training, programming schemes devised to apply
relative conductance changes instead of absolute conductance values are needed and they will be referred to as
weight or conductance update, in the following. Both multilevel and analog programming can be implemented
as weight updates. Despite multilevel or analog conductance modulations are generally considered as the best
options for highly accurate ANN or SNN implementations, neural networks with binary weight demonstrate
great computing potential and ease of implementation as discussed in details in the next section. For on-line
training, binary weight can be also programmed in a stochastic manner.

For what concerns volatile devices, the research about their implementation in neuromorphic systems is
still at its infancy. In the following, some possible uses are described which take advantage of short term internal
or resistance evolution of the devices to emulate dynamical features of neural network or dynamical elements
present in human brain.

3.1. Multilevel programming
For ANN with off-line training, accurate program-verify techniques are needed to store high-precision weights
for running the network. In fact, the application of a single programming pulse typically results in a relatively
large variation of conductance [9, 68, 69]. In addition, the conductance can also change after the programming
pulse due to random telegraph noise (RTN) [34, 47, 70, 71], 1/f noise [72] and random walk effects [73],
all contributing to the broadening of the conductance distribution. Finally, the weights stored in the array
might be affected by a device-to-device variation, due to the physical differences in the device structures and
geometries [74]. As a result, single-pulse programming operations are not suitable for synaptic weight storage
in RRAM arrays. In general, 1R devices can be programmed in a multilevel fashion, as well, for instance by
modulating the voltage applied either during the RESET or during SET operation in case of devices that do not
require current limitation [10, 75, 76]. However, such programming method results in a higher variability than
the programming through the current compliance provided by an integrated transistor. Therefore the use if
1T1R configuration is usually employed for an efficient multilevel programming as discussed in the following.

Figure 4 shows two program-verify techniques for RRAM devices with 1T1R structures [67]. In the incre-
mental step program-verify algorithm (ISPVA, figure 4(a)), voltage pulses with incremental amplitude are
applied at the top electrode terminal of the 1T1R structure, while the gate voltage is maintained fixed to con-
trol the compliance current [77]. As a result, the device can be gradually set to the desired level, the latter
being selected via the gate voltage. On the other hand, the top electrode voltage is kept to a constant value
in the incremental gate-voltage verify algorithm (IGVVA), while the gate voltage, hence the compliance cur-
rent, is increased until the desired conductance level is reached [26]. Figure 4(c) shows the measured standard
deviation σG of conductance as a function of the average conductance, 〈G〉. The programming variation σG

is significantly decreased by the IGVVA technique with relatively small incremental voltage ΔVG = 10 mV,
namely the IGVVA10 technique, which results in a σG between 2 μS and 5 μS for LRS. Further mitigation of
the cycle-to-cycle and device-to-device variations of conductance can be achieved by redundancy and bit slicing
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Figure 4. Sketches of (a) ISPVA and (b) IGVVA. (c) reports the standard deviation of the conductance value variation as a
function of the average conductance for different correction code algorithms. © 2021 IEEE. Reprinted, with permission, from
[67].

Figure 5. RRAM multilevel programming. (a) Multilevel programming through reset operations with different applied gate
voltages in 1T1R structures. (b) Multilevel programming through set operations with different applied gate voltages through the
use of a weight update protocol. (a) reproduced from [79] CC-BY 4.0. (b) © 2020 IEEE. Reprinted, with permission, from [80].

techniques in multiple arrays, with an overhead in terms of memory area and associated power consumption
and latency [78].

The previous programming algorithms refer to set operation, which is conventionally controlled through
a current compliance by a transistor. Recently, the use of the compliance current has been investigated also
during the reset operation [79]. Usually the reset operation is performed by applying a transistor gate voltage
that is larger than those applied during the set, so that the transistor do not act as a current limiter and the
voltage drop across the transistor is minimized. On the contrary, if a gate voltage smaller than that used for
set is applied for reset, the voltage divider allows programming intermediate states, even though with limited
reliability. Dalgaty et al [79] report this programming strategy for TiN/Ti/HfO2/TiN 1T1R devices as shown
in figure 5(a) and apply it to Bayesian neural network as described in the next section.

The use of the transistor current limitation allows setting with some precision a absolute resistance value.
To turn such programming scheme into a weight update, i.e. applying relative resistance changes, or steps,
dedicated protocols must be elaborated. Payvand et al [80] propose a programming algorithm and circuits
to exploit current compliance control to set HfO2-1T1R devices in several resistance state (figure 5(b)). The
working principle consists in a continuous reset of the device to the highest resistance state and a following set
into the desired intermediate state. Furthermore, before applying the reset and set operation, the resistance of
the device is read and the new current compliance value and transistor gate voltage are evaluated on the basis
of the desired resistance change.

3.2. Analog weight update
The programming scheme described in this subsection is a rather unconventional programming investigated
in the last years and it consists in the stimulation of the devices through train of identical weak pulses to

6
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Figure 6. RRAM analog weight update. (a) and (b) 1R TiN/Ti/HfO2/TiN RRAM cell. Analog programming stimulated by trains
of identical set [(a) −0.7 V] and reset [(b), 0.9 V] pulses with various pulse widths. (c) Example of analog programming in the
TiN/HfAlOx/TaOx/TiN 1T1R devices. Six set/reset weight update cycles are shown. (d) Example of endurance test for analog
weight updates achieved in the same device of (a) and (b). (a) and (b) reproduced from [81] CC-BY 4.0. (c) reproduced from [11]
CC-BY 4.0.

get an analog weight update, sometimes called gradual programming. Figures 6(a), (b) and (d) report the
analog weight update in the TiN/Ti/HfO2TiN device stimulated by trains of negative (set) and positive (reset)
pulses, respectively. In the figures 6(a) and (b), we can observe that very short pulse widths at equal voltage
produce no conductance change. On the contrary, few long pulses are sufficient to drive a high conductance
change.

In general, conductance change of a RRAM device over time is fast or slow on the base of the strength of the
programming conditions. Strong (weak) programming conditions are achieved by a combination of relatively
high (low) voltages and/or long (short) pulses. A train of weak pulses, each of which induces slow switching
change, is able to produce a gradual conductance transition useful for analog weight update operations. Despite
a clear understanding of which are the factors allowing the implementation of an analog weight update is still
lacking, several works evidenced that interlayers at the metal/oxide interfaces and interface switching enable
such analog weight update [81, 82]. In other works, the doping of HfO2 has been engineered to obtain analog
conductance updates [50]. Materials engineering has been oriented on two aspects of the conductance update.
First of all, a linear evolution of conductance as a function of the number of pulses is highly desirable to have
a proper implementation of the training algorithms based on the back-propagation of the error. For instance
Woo et al [53] used a AlOx/HfO2 bilayer to demonstrate a linear conductance dynamics. Obviously, the number
of states that can be programmed is of primary importance for neuromorphic computing. However, it is not
straightforward to define a value for the number of levels or states especially when the conductance evolution
as a function of the number of pulses is not linear (see figures 6(a) and (b)), i.e. in case possible resistance state
are not evenly spaced. For this reason, a precise comparison among literature results is not straightforward.
However, best literature results may corresponds to few hundreds of effective resistance states, most of them
reported for HfO2-based devices [54, 83]. A mathematical definition of the effective number of states given a
certain conductance dynamics has been proposed in [84], which can be useful for a quantitative assessment
and device engineering.

Another aspect that requires a further device improvement for analog conductance update regards the
memory window, which is usually quite limited for HfO2 [28, 81]. As a matter of fact, resistance windows of
an order of magnitude have been only reported for either set [82] or reset operation [85], while the reverse
operation occurs always abruptly. Another evidenced issue of analog weight update is what has been named
switching noise [86] or stimulated telegraph noise [87]. Such noise is ubiquitous in all filamentary devices
and it was studied with reference to HfO2-based devices [84]. Such noise is particularly relevant for reset
and at high resistance values and results from a dynamical equilibrium between the processes of drift and
diffusion of oxygen vacancies [84]. Anyway, despite such analog weight update is unconventional with respect
to the standard memory programming, interestingly, it has already been demonstrated in TiN/Ti/HfO2/TiN
devices wire-connected to 350 nm CMOS technology node neurons [69] and in TiN/TaOx/HfAlyOx/TiN 1T1R
1 kbit array [11]. An example of repeated analog set and reset updates for the latter devices is reported in
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Figure 7. Stochastic RRAM programming. (a) Resistance as a function of the pulse number for stochastic programming.
Different runs (different colors) show the switching from high to low resistance after different number of pulses. (b) Endurance
test for weak programming conditions for set operation. (c) Circuital scheme of two synapses (B and C) constituted by several
1T1R blocks in a line. (d) Gradual set (or long term potentiation, LTP) and reset (or long term depression, LTD) operations
obtained from compound synapses each of them composed by 20 1T1R RRAM devices in parallel. Each of the 20 light gray lines
represents a measurement of one compound synapse. (a) and (b) reproduced from [85] CC-BY 3.0. (c) and (d) reproduced from
[88] CC-BY 4.0.

figure 6(c). As a matter of fact, the use of weak programming pulse is expected to have a beneficial effect on
device endurance. As an example figure 6(d) reports repeated analog set/reset update cycles up to some tens
of thousand pulses in TiN/Ti/HfO2/TiN devices.

3.3. Stochastic programming
In some devices or programming conditions, the switching events are so fast that weak programming condi-
tions do not result in any gradual resistance modulation. Conversely, the switching can be considered stochastic
in the sense that only two distinct levels are obtained and weak programming pulses produce the switching
from one to the other and vice versa with some probability [28]. Stochastic programming has been employed
with success in neural networks as an alternative to multilevel or analog weight storage [9, 85, 89]. As stated
above, stochastic programming needs the use of weak programming pulses as in the case of gradual pro-
gramming. Yu et al [85] report a stochastic set operation for devices composed of a HfO2/TiO2 multilayer.
Figure 7(a) reports various set experiments (different colors) in which the switching occurs after different
number of weak programming pulses. Figure 7(b) reports an endurance experiment using weak programming
conditions for the set operation. Garbin et al [9] use the stochastic switching to obtain a gradual resistance
change of the parallel of many HfO2-based 1T1R devices, as shown in the circuital scheme of figure 7(c). The
resulting set and reset dynamics as a function of the number of pulses is reported in figure 7(d).

3.4. Programming and uses of volatile RRAMs
Volatile RRAM devices have been mainly explored as selectors for memory crossbars [60, 61], as well as for
hardware security [90]. Such applications will not be dealt with in the present review which will only con-
centrate the use of volatile devices enabling actual neuromorphic functionalities. In particular, the filament
self-dissolution after a programming event from HRS to LRS can extend from μs to seconds. The relaxation is
easily tracked by measuring the resistance of the devices by low applied voltages and opens the possibility to
emulate short term dynamical elements in neuromorphic chips. The longest reported relaxation times in litera-
ture for Ag or Cu-based volatile RRAM are in the range of tens of ms up to seconds [18, 55, 56]. Figures 8(a)–(c)
show some examples of relaxation dynamic in HfO2- or SiOx-based RRAMs and how the relaxation time (tR)
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Figure 8. Relaxation dynamics of volatile RRAMs. (a) Current response of the Ag/HfO2/Pt 1R RRAM device under applied
pulses at various voltage amplitudes V p and (b) corresponding relaxation behavior by reading the current at 0.1 V. tR is the
relaxation time. (c) Examples of the possibility to control the relaxation time (tR) with reading voltage V read, achieved in the 1T1R
Ag/SiOx/C device. (a) and (b) reproduced from [55] CC-BY 4.0. (c) reproduced from [56] CC-BY 4.0.

can be controlled by pulse voltage amplitude (figure 8(b)) and reading voltage (figure 8(c)). In figure 8(a),
programming pulses with different amplitudes, Vp, are applied to a Pt/HfO2/Ag device. The device switches to
a LRS whose resistance is related to Vp. In general the final current value is related to the programming voltage
amplitude (figure 8(a)) or time [55, 56]. After the pulse end, the low current states of the device is read at 0.1 V
to monitor the self-relaxation process. The device current is progressively restored to the initial value during a
relaxation time which is longer for higher initial current values (larger applied Vp) (figure 8(b)). Conversely,
figure 8(c) shows that the relaxation time, tR, is also controlled by the reading voltage [56]. The latter results
are achieved in the Ag/SiOx/C RRAM stack. As a matter of fact, Chekol et al [91] and Covi et al [56] showed
that the relaxation time can be controlled to some extent by changing the programming conditions, like pulse
width/amplitude and current compliance in 1T1R structures, respectively.

The existence of a relaxation dynamics enables the possibility of reaching a cumulative or integrative effect
to repeated pulses. In particular, in case pulses are repeated with a period shorter than the typical relaxation
time, the effect of each pulse is summed up to that of the previous pulses, thus leading to a LRS value lower
that what achieved by single pulse [57, 62, 92], possibly leading to an extension of the relaxation time with
continuous pulse stimulation. This effect is exploited to emulate the so called pulse paired facilitation observed
in biological synapses [57, 62, 92] and the synaptic metaplasticity [93].

4. Computing schemes

Thanks to in situ data processing where data movement is virtually suppressed, IMC can accelerate a broad
range of computing processes in both the digital and analog domains. These may include ANNs for deep
learning [94] and SNNs which aim at mimicking the human brain particularly regarding its ability of learning
and adaptation [12]. Both fully-connected networks [11, 77, 95] and convolutional neural networks (CNNs)
[9, 54, 96] have been implemented with HfO2-based RRAMs. Synaptic weights are generally quantized to a
certain number of levels [26, 77] including the extreme case of binary weights (e.g. LRS and HRS) in bina-
rized [97, 98] and ternary neural networks (TNNs) [99]. In addition to ANNs, other types of networks have
been considered, e.g., decision trees and random forests implemented in ternary content addressable memory
(TCAM) arrays. [100] Various type of SNNs have been implemented with HfO2 RRAM devices, with the aim
of supporting spike-based learning [101] and spatio-temporal recognition [63].

The following is a summary of the main demonstrations of IMC primitives with HfO2 RRAM devices for
machine learning and SNNs.

4.1. Acceleration of machine learning algorithms
A strong benefit of IMC derives from the one-step, parallel matrix vector multiplication (MVM) operation
which provides the backbone of the fully-connected ANN in figure 9(a) [77]. Here, each neuron input contains
the summation of the input signals multiplied by a synaptic weight Wij, which is readily expressed by the MVM
operation. Figure 9(b) shows the crosspoint array which can execute the computation of the MVM in one step:
the application of a voltage Vi at the ith row of the array results in a current Ij = ΣWij · Vi, which is equivalent
to the MVM operation. In particular, the synaptic weight Wij is implemented as the difference between two
conductance values, namely

Wij = G+
ij − G−

ij , (1)
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Figure 9. Implementation of neural network layers by HfO2-based RRAM arrays. (a) Schematic illustration of a two-layer neural
network for MNIST recognition. (b) Implementation of a single layer on a crosspoint array of synaptic memory devices, where
each synaptic weight is represented by a differential pair of devices. (c) Distribution of measured read currents for HfO2 RRAM
devices programmed with multilevel states L1, L2, L3, L4 and L5. (d) Confusion matrix for RRAM-based recognition of the
MNIST dataset. (a), (c) and (d) reproduced from [77] CC-BY 4.0. (b) reproduced from [102] CC-BY 3.0.

where the minus sign can be obtained by subtraction of the currents in the two adjacent columns in figure 9(b)
[102]. Figure 9(c) shows the distributions of individual device currents measured at V read = 0.5 V in a 4 kb
array of HfO2-based RRAM [77]. The conductance Gij of each device in the array was obtained by the ISPVA
program-verify technique, as described in the previous section [77]. A total number of 5 levels were pro-
grammed in the array, including the HRS (L1) and four LRS levels (L2 to L5) with increasing conductance.
These quantized conductance levels were used in equation (1) to describe the synaptic weights calculated from
the back-propagation algorithm, which is a typical supervised off-line training technique [94]. Figure 9(d)
shows the confusion matrix of the implemented hardware two-layer fully-connected ANN, namely the prob-
ability of a certain output response by the network as a function of the class of the input pattern. While on
average the network gives a correct response, the accuracy is only around 83% compared to a software-level
accuracy of 92%. This is due to two main limitations of the conductance matrix, namely (i) quantization of
the weights with on only 5 levels, and (ii) stochastic variations of conductance with significant spread around
the ideal value in figure 9(c).

To improve the accuracy of the ANN, more advanced program-verify techniques can be adopted, such
as the IGVVA with small incremental gate voltage, e.g., 10 mV [26]. The improved programming precision
allows to reduce the standard deviation of conductance, thus increasing the number of levels and reducing the
quantization error. The improved precision of conductance, combined with quantization-aware algorithm
for off-line training, allows for a substantial increase of recognition accuracy approaching the equivalent
software performance [67]. Alternative error correction codes have been developed that take advantage of
encoding/decoding strategies with the support of a hardware encoder device matrix, which impacts the area
and energy requirements [103].

In addition to inference accelerators, in situ training was demonstrated in IMC hardware with 1T1R arrays
of RRAM devices with Ta/HfO2/Pt stack [95]. The on-line training was achieved by the stochastic gradient
descent algorithm, where the synaptic update was executed directly on the device by adjusting the gate volt-
age, similar to the IGVVA approach [95]. Similar results were obtained for a TiN/TaOx/HfAlyOz/TiN stack by
applying a train of equal pulses with constant gate and top electrode voltage [11]. With a similar RRAM stack,
a fully-memristive hardware implementation of CNN with 32 levels of conductance was demonstrated in [54].
Other CNN implementations with HfO2-based RRAM were reported in [9, 96].

To reduce the complexity of precise RRAM programming for multiple-level operation, binarized neural
networks (BNNs) [104] and TNNs [99] were developed with HfO2-based RRAM. In a BNN, both neuron
states and synaptic weights have binary values, such as +1 and −1, which strongly simplifies the computa-
tion and hardware implementation. In fact, in contrast to analog MVM implementations, all products and
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Figure 10. Sketch and performance of a BNN based on HfO2 RRAM. (a) Schematic illustration of the 2T2R array, where the
differential state of the synaptic element is read by a PCSA circuit. (b) Programming failure as a function of the reset pulse width
and voltage amplitude and for various compliance currents Ic controlling the LRS. (c) Correlation plot of the 2T2R error rate as a
function of the corresponding error rate of the 1T1R structure. The slope of 2 on the bilogarithmic plot indicates a better
reliability with respect to programming variations of LRS and HRS. © 2018 IEEE. Reprinted, with permission, from [104].

summation are carried out in the digital domain, with binary product being implemented by a XNOR oper-
ation, while summation is replaced by the POPCOUNT operation which counts all output signals equal to
one. A BNN was implemented in hardware with HfO2-based RRAM arranged in the 2T2R structure shown in
figure 10(a). Here, the two RRAM devices are programmed in a complementary state (HRS/LRS or LRS/HRS)
and the synaptic weight is represented by the difference between the two RRAM currents, which is sensed by a
precharge sense amplifier (PCSA) [104]. The 2T2R structure allows for a better immunity to errors resulting
from tails of the distributions of the LRS and HRS conductance. As shown in figure 10(b), these errors can be
minimized by increasing the compliance current, which reduces the LRS tails, and increasing the reset volt-
age and pulse width, which reduces the HRS tails. Figure 10(c) shows that write errors in the 2T2R structure
increases quadratically with the single-bit error, as a result of the LRS and HRS occurring independently in the
memory array [104].

The BNN concept was further demonstrated for learning, by taking advantage of the gradual potentiation
and depression of RRAM devices, although with relaxed requirements about the symmetry and linearity of
weight update with respect to on-line training with back-propagation algorithm [97]. The main advantages
of the BNN are the resilience to conductance variation and the fully-digital approach within the computing
hardware, where analog–digital converters are no more needed. However, the full parallelism of the analog
domain MVM cannot be simply achieved within hardware BNN. Extension to TNN was also reported by using
the same 2T2R synaptic architecture, which allows for a slight increase in recognition accuracy for the same
network size [99]. Binary RRAMs were also adopted for TCAMs [105], which find extensive applications in
storing synaptic tags for spike routing in multi-core SNNs [106] and decision trees for machine learning [107].
TCAMs are usually implemented by static random-access memories (SRAMs), however require relatively large
silicon area due to the six-transistor structure of SRAMs. TCAMs with nonvolatile RRAMs can be reduced to
a smaller 2T2R structure where the three states can be obtained by the configurations LRS/HRS (state 1),
HRS/LRS (state 0) and HRS/HRS (state X, or ‘do not care’) [105].

A key limitation of RRAM devices for hardware ANN implementation is the limited precision due to the
program/read variations [68, 70]. Such variations can be turned into a precious feature in stochastic com-
puting circuits, e.g., true random number generators [109, 110], Bayesian neural networks [108] and Monte
Carlo Markov chains [111]. In a Bayesian neural network (figure 11(a)), synaptic parameters usually consist
of random variables, which well match the random nature of RRAM conductance obtained without program-
verify algorithms [108]. Figure 11(a) shows the methodology for describing a given probability distribution
of weights with stochastic RRAMs: the distribution can be approximated by a combination of a number of
Gaussian distributions, each obtained by programming RRAM devices with a fixed pulsed amplitude and
time, without verify. To represent a single probability distribution, a relatively large number of devices (e.g.,
1024) would be required, as opposed to the single RRAM device (or two RRAM devices in the case of a dif-
ferential synapse) required for describing a fixed, non-probabilistic weight in an ANN. The output neuron
distribution can be obtained in figure 11(c) by sampling multiple output results from predefined sub-sets of the
RRAM synapses [108]. Similarly, probabilistic Monte Carlo Markov chains were demonstrated by harnessing
the stochastic distributions of programmed RRAM conductance, thus taking advantage of the cycle-to-cycle
and device-to-device variations of RRAM [111].

The reported examples show that, depending on the RRAM multilevel precision, various computing
schemes can be implemented which target different applications. The requirement on RRAM precision and
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Figure 11. Implementation of Bayesian inference in a stochastic HfO2 RRAM array. (a) Illustration of a 3 × 3 Bayesian neural
network where each synapse and neuron are described by probability distributions. (b) Implementation of a target probability
distribution by composition of individual normal distributions of HfO2 RRAM conductance. (c) Circuit realization of the 3 × 1
network in the dashed triangle in (a), where the random conductance distribution of each column of the N × M RRAM array
corresponds to the distribution of a synaptic parameter. As a result of the applied input voltage, the row currents are fed to the
neuron circuit for subtraction and evaluation of the activation function. Reproduced from [108] CC-BY 4.0.

Figure 12. STDP synapses with HfO2 RRAM devices. (a) Sketch of the 1R synapse for STDP based on the overlap between
pre-neuron and post-neuron spikes. When Δt is negative, the resulting pulse shows a negative peak exceeding the threshold for
reset transition, thus resulting in a depression update. When Δt is positive, the resulting pulse shows a positive peak exceeding the
threshold for set transition, thus resulting in a potentiation update. (b) Resulting conductance change as a function of time delay
Δt. (c) Sketch of the 1T1R synapse for STDP. (d) Illustration of the pre-spike (top) and post-spike (bottom) for positive Δt. (e)
Resulting ratio of initial to final resistance as a function of Δt for increasing initial resistance. (f) Simulation results, showing
predictable STDP based on time delay and initial synaptic weight. (a) and (b) reproduced from [10] CC-BY 4.0. (c)–(f)
reproduced from [113] CC-BY 4.0.

consequent computation accuracy can be relaxed in favor of the reduction of system complexity and cost or
in favor of ultimate low power operation in case the computing system is used, for instance, as a tool for the
pre-processing or filtering of sensor data in the so called intelligent edge computing concept [112].

4.2. Spiking computing schemes
While ANNs show excellent performance in terms of image, speech and object classification, they also have
several key weaknesses such as the catastrophic forgetting and the limited learning capability. To overcome
these limits, SNNs directly mimic the information processing in the brain to gain a better performance in
terms of learning, adaptation, real-time interaction with the environment and energy efficiency [12]. Both
nonvolatile and volatile HfO2-based RRAMs have been explored to study and demonstrate SNN concepts.

Nonvolatile devices are mostly used, as in the case of ANNs, to store static synaptic weights as conductance
values. In addition, SNN training is generally driven by local learning protocols rather then the minimization
of global error functions like in the case of ANNs. This fact renders the implementation of online training
protocols easier for SNNs than for ANNs. Indeed, online learning is often investigated in SNNs. A large amount
of publications have been dealing with the implementation of the so-called spike-timing dependent plasticity
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Figure 13. Unsupervised learning by STDP in a SNN. (a) Sketch of the SNN with 16 input neurons, 16 synapses and one output
neuron. (b) input pattern presented to the RRAM-based synapses during phase 1, 2 and 3 (top), and measured configuration of
the synaptic weights at the end of each phase (c). Input spikes as a function of time, including noise spikes to enable random
STDP depression to forget previous patterns. (d) Measured conductance for each synapse in the network. Pattern synapses
spontaneously converge to the LRS while background synapses converge to HRS due to the STDP weight update. Reproduced
from [101] CC-BY 4.0.

(STDP) learning protocol in a synaptic device that mediates the communication between a pre-synaptic and
a post-synaptic neuron. In biological STDP, the delay time, Δt, between the pre-synaptic and post-synaptic
spikes dictates the synaptic weight update [114]. In particular, long-term potentiation takes place for pre-
synaptic spike preceding the post-synaptic spike, while long-term depression takes place for the opposite spike
sequence.

Analog STDP weight modulation qualitatively similar to the biological one has been reproduced by stimu-
lating 1R devices at their two terminals by properly shaped overlapping pulses as shown in figure 12(a). Given
the triangular shaped pre-spikes, the resulting voltage drop on the device depends on the relative timing of pre-
and post-spikes and the obtained conductance change results in the typical asymmetric STDP shape reported
in figure 12(b). The reported results refer to TiN/HfO2/Ti/TiN devices properly optimized to give analog oper-
ation in response to train of pulses with increasing amplitude, as well as, in response to train of identical pulses
[10]. Alternative shapes or even binary versions of STDP curves can be obtained by designing the shape of the
programming pulses driving HfO2-based devices, as attested by several publications [52, 85, 88, 115].

A temporal overlap scheme has been also proposed for 1T1R synapse structure [113, 116]. Figure 12(c)
illustrates the concept of 1T1R synapse for STDP [113]. The pre-synaptic spike is applied to the gate of the
select transistor, while the post-synaptic spike, also called feedback spike, is applied to the top electrode of the
RRAM device. Under pre-synaptic stimulation, the synaptic current, which is proportional to the RRAM con-
ductance, is injected from the transistor source to the post-synaptic neuron. Under post-synaptic stimulation,
a set transition takes place across the RRAM device in case of a small positive delay Δt, where the pre-synaptic
spike overlaps with the positive pulse of the post-synaptic spike (figure 12(d)). On the other hand, a reset
transition takes place in the case of negative delay, where the pre-synaptic spike overlaps with the negative
side of the post-synaptic spike. Figures 12(e) and (f) show the measured and calculated STDP characteristics,
respectively, supporting the effects of potentiation and depression for positive and negative delay, respectively
[113]. Improved STDP characteristics with exponentially decaying weight update as a function of increasing
positive/negative delay can be obtained by properly shaping the post/pre-synaptic spikes and introducing a
second select transistor in the two-transistor/one-resistor (2T1R) structure [117].

In all these works, the STDP protocol is implemented by including the temporal information in long lasting
pulses, which could complicate the management of a high number of devices in an array. VLSI neuromorphic
chips are able to implement various STDP variants by encoding the temporal information in the discharge of
capacitors in synapse and neuron CMOS circuits [118, 119]. On one side, this solution avoids the use of long
overlapping pulses [119], on the other side, the feasible time constants are limited by the physical dimension
of the capacitors [120]. The programming of RRAMs according to a generalized and biologically plausible
version of STDP, akin to the Bienenstok–Cooper–Munro theory [121], was demonstrated by connecting a
TiN/Ti/HfO2/TiN device in between two CMOS neurons realized in 350 nm technology node. Further, the
proposal of a six-transistor/one-resistor (6T1R) HfO2-based synapse in connection with the same CMOS neu-
ron circuits was validated through system level simulations against the hand-written classification task [83].
Supervised training protocols can also be implemented in SNNs. For instance, the so called delta rule which
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Figure 14. Direction sensitivity by spatio-temporal pattern recognition in volatile HfO2 RRAM. (a) Sketch of the receptive fields
of DS ganglion cell. (b) Artificial receptive fields with excitatory (blue) and inhibitory (yellow) branches, each consisting of several
HfO2 RRAM for statistical averaging of retention times. (c) Circuit for spike stimulation of the receptive fields, where the EPSC is
obtained as the difference between the excitatory and inhibitory response currents. (d) Current responses of excitatory and
inhibitory branches (top), and resulting EPSC (bottom) for an image moving from left to right. (e) Same as (d) but for an image
moving from right to left. (f) Distribution of EPSC peaks for preferred direction, equivalent to sequence A–B (b), and
non-preferred direction, equivalent to sequence B–A (c). (g) EPSC peak as a function of the angle between non-preferred
direction (180◦) and preferred direction (0◦). (h) Polar plot of the EPSC peak. Reproduced from [63] CC-BY 4.0.

is a spike-based version of the gradient descent has been validated by simulation based on experimental data
obtained from Pt/HfO2/TiOx/Ti RRAM devices [122].

The investigation of memristive SNNs has gradually moved from system-level simulations to mixed hard-
ware/software experiments, to fully hardware realizations. Fully-memristive neural networks implementing
STDP synapses were implemented for the demonstration of unsupervised learning [101]. Figure 13(a) shows
a sketch of the one-layer neural network that was used for the unsupervised learning of a 4 × 4 image pattern.
The 1T1R synapses were stimulated by spiking signals, either containing the image pattern (figure 13(b)) or
noisy, sparse images. The synapses were initialized with a random configuration, resulting in a stochastic spik-
ing of the single output neuron, with a higher probability of fire under presentation of the input image pattern.
As a result, the presentation of the image pattern preferentially causes the pre-post sequence, hence potenti-
ation of the stimulated synapses, whereas random noise stochastically causes a post-pre sequence leading to
depression. The stochastic STDP dynamics thus allows for sequential image learning, where each submitted
image is learnt by the synaptic array, then replaced by the newly arrived pattern, as shown in figures 13(c)
and (d) [101]. A full-hardware SNN with integrate-and-fire neurons and 1T1R RRAM-based synapses was
integrated in the 130 nm CMOS node, demonstrating inference accuracy of 84% with binarized weights for a
simplified MNIST dataset [123]. Similar SNNs were developed by adopting other types of RRAM materials,
such as SiOx [124].

A different usage of nonvolatile devices is the one proposed by Dalgaty et al [79]. They used 1T1R HfO2-
based RRAMs as programmable resistors in RC circuits for the tuning and diversification of synaptic and
neuronal time constants. As a matter of fact, in fully CMOS analog spiking chips, neurons and synaptic
dynamics are implemented with the charge and discharge of capacitors in order to match the signal timescales.
Capacitors occupy large silicon footprint and are, therefore, shared among all neurons and synapses of a chip.
Therefore, the solution proposed by Dalgaty et al [79] expands the tunability and diversification possibilities
of purely CMOS neuromorphic chips through nanoscaled nonvolatile programmable RRAM resistors.

14

https://creativecommons.org/licenses/by/4.0/


Neuromorph. Comput. Eng. 2 (2022) 042001 Topical Review

On the other side, time constants and synaptic/neuronal dynamics can in principle implemented by tak-
ing advantage of device physics [1, 125]. From this standpoint, volatile RRAMs-based on HfO2 can mimic
short term memory in the human brain, thus supporting various cognitive processes such as the spatio-
temporal sequence recognition. Although nonvolatile RRAM based on HfO2 were also shown to learn and
recognize spatio-temporal patterns [126], volatile RRAMs can directly mimic transient effects, such as the
excitatory post-synaptic current (EPSC), thus serving as an ideal hardware parallel for short-term memory
effects. Figure 14(a) illustrates the concept for in-memory sensing and processing capable of direction sensi-
tivity similar to the human retina [63]. The direction sensitive (DS) ganglion cell in figure 14(a) serves in this
role by collecting the EPSCs from excitatory and inhibitory synapses stimulated by the photoreceptors in the
retina. Due to their space configuration, excitatory and inhibitory synapses are stimulated at different times
by a moving light image. For instance, an image moving from left to right in figure 14(b) stimulates excitatory
synapse (A) followed by inhibitory synapses (B). This can be replicated in hardware by the neural network
in figure 14(c), where excitatory and inhibitory synapses are mimicked by volatile RRAM devices, each con-
tributing a transient current for a limited retention time tret. The difference between excitatory and inhibitory
currents yields EPSC, which consists of a positive current peak for the preferred sequence A–B (image mov-
ing from left to right, figure 14(d) or negative peak for the non-preferred sequence B–A (image moving from
right to left, figure 14(e). Figure 14(f) shows the probability distributions of the maximum measured EPSC,
indicating well-separated distributions for sequences A–B and B–A, thus supporting direction sensitivity as
shown in figures 14(g) and (h) [63].

5. Challenges, solutions and perspectives

As for most emerging memory technologies, the development of HfO2-based RRAM is still facing several
challenges, mostly originating from the non-ideal reliability and performance of the device. The most rele-
vant limitations of HfO2-based RRAM, which are shared with all other filamentary RRAMs, are the rather
high variability, the random fluctuation of resistance, the relatively narrow resistance window and the limited
endurance. These issues affect all IMC applications, particularly those where the device is supposed to operate
in a multilevel mode to maximize the density and performance. Two types of variability effects are present,
namely device-to-device and cycle-to-cycle variation of the programmed states [77]. Stochastic variations are
inherently arising from the filamentary nature of the conduction path in the RRAM device, where the vari-
ation of defect number and of the filament shape can result in a relatively large change of resistance. Both
variation phenomena can be addressed by accurate program/verify techniques to finely tune the resistance to
the desired multilevel state [26]. However, post-programming rediffusion of defects and RTN can affect the
resistance even after the program/verify operation [73]. These fluctuation phenomena result in the broadening
of the distribution, thus affecting the bit precision of RRAM conductance levels.

In addition to variations and fluctuations, HfOx RRAM shows an intrinsic limit of the resistance window,
particularly for the HRS which generally shows a finite, non-zero value of resistance. The resulting leakage
current can affect the IMC accuracy if not properly compensated. In general, a differential synapse, including
two RRAM devices with opposite currents to represent the positive and negative components of the synaptic
weight, is recommended to achieve a highly precise zero weight. This is shown in figure 15(a), illustrating
a differential synapse where the two opposite currents are obtained by biasing the two RRAM devices with
opposite voltage, so that the overall weight is given by W = G+ − G−, where G+ and G− are the conductance
values of the two devices in the differential pair [127]. Given the distribution of programmed conductance in
figure 15(b), obtained by the IGVVA10 algorithm, one can properly combine the LRS levels L1 –L9 to realize
the differential weight distribution in figure 15(c). Although the HRS distribution in figure 15(b) displays a
non-negligible conductance of about 8 μS, the weight W0 in figure 15(c) displays an average zero value thanks
to the subtraction of two L9 levels in the differential pairs.

Note that a significant drawback of the differential approach in figure 15 is the presence of relatively large
currents to achieve relatively low weight values, e.g., two conductances of about 225 μS are needed to achieve a
zero-valued weight with relatively low standard deviation. More generally, HfO2-based RRAMs display rather
large conductance, in the range of several tens of μS, as shown in figure 15(b). While relatively high con-
ductance values are beneficial thanks to a relatively small variation and a higher robustness against high-T
annealing [77], large currents can cause significant voltage drop across the bitlines (usually referred to as IR
drop), due to the summation of synaptic currents in the MVM operation and to the parasitic wire resistance
of the metallic interconnections. The IR drop can be mitigated by several techniques including both hardware
training techniques [128] and replication circuits for compensation [129]. From this standpoint, the adoption
of low-current emerging memory technologies, such as electro-chemical random access memories (ECRAMs)
[130, 131], is the most efficient solution.
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Figure 15. (a) Circuital scheme of a synapse composed of two RRAM devices; (b) conductance distribution of multilevel states of
one RRAM device; (c) cumulative distributions of 5 weight levels of the overall synaptic unit. © 2022 IEEE. Reprinted, with
permission, from [127].

Neuromorphic computing may require extensive programming of devices, e.g., for continuous learning
and adaptation of synaptic weights or integration-and-fire neuron applications. From this point of view, a
potential concern is the limited endurance upon repeated set/reset cycles [132]. The endurance of HfO2 has
been shown to be typically in the range of one million cycles, although the maximum number of cycles expo-
nentially drops for increasing reset voltage [133]. For incremental set/reset operations, which might be needed
for neuromorphic plasticity and integration, a larger endurance might be expected, although a comprehensive
study of endurance for neuromorphic applications is not available yet.

Regarding the programming operation, another key concern is the forming operation, which is needed to
initialize the device from the initial, pristine state of high resistance. Forming generally requires a relatively high
voltage, which is a burden from the circuit point of view as it may requires charge pumps or high-reliability
select transistor that can sustain the applied voltage. To minimize this burden, the HfO2 layer is engineered to
minimize the forming voltage by introducing a suitable concentration of defects [42]. This can be achieved by
an oxygen exchange layer generated by redox exchange at the interface between the switching HfO2 layer and
a scavenging layer of moderately reactive metal, such as Ti, Hf or Ta [19], as also discussed in section 2.1.

Hardware accelerators of network training require in-memory execution of the outer product, namely an
element-wise vector–vector product for updating the weight matrix in the RRAM array [134]. For this type of
application, the device should display a high linearity of conductance vs number of pulses at fixed voltage, to
enable potentiation or depression which is proportional to the pulse width at a given amplitude [102]. From
this standpoint, the HfO2-based RRAM is not optimized to achieve high linearity of conductance update,
due to saturation effects (figure 5). RRAM with bilayer oxide stacks, such as HfO2/TaO2, have been recently
reported to improve the linearity of conductance update [135]. Alternative memory technologies have shown
a better linearity, usually combined with a lower operating current [136, 137].

Table 1 shows a summary of the properties of RRAM compared to other nonvolatile memory technologies
[138], including commercial flash [139] and emerging memories such as phase change memory (PCM) [140],
spin-transfer torque magnetic random access memory (STT-MRAM) [141], spin–orbit torque magnetic ran-
dom access memory (SOT-MRAM) [142], ferroelectric random access memory (FeRAM) [143], ferroelectric
field-effect transistor (FeFET) [144] and Li-ion based ECRAM [136]. In general, RRAM displays good compat-
ibility for integration in CMOS circuits, simple fabrication process in the back end and small cell size. However,
challenges still exist in terms of current operation, programming speed and reliability, including variability,
endurance and fluctuations. Further progress is possible by a suitable combination of material engineering,
programming/read/training algorithm and circuit/architecture design.

For what concerns the employment of volatile device for the implementation of dynamical components
of neuromorphic networks, the investigation is still at the beginning and problems and challenges have not
been identified precisely yet. However, one can consider that the use of the relaxation dynamics of volatile
devices in real system is beneficial only in case the decay times are longer compared to the time constants that
can be alternatively achieved with reasonably small capacitors and charging/discharging currents. In CMOS
neuromorphic chips time constants of hundreds of milliseconds have been reported thanks to the use of very
low subthreshold transistor currents and relatively large capacitors used to emulate the dynamics of a row of
many synaptic devices exploiting the superposition principle [118]. Relaxation times of seconds are closed to
the maximum values reported for HfO2-based devices. Therefore, it is not clear whether the replacement of
capacitors with volatile device is a real advancement. In turn, in case of the emulation of the dynamics of indi-
vidual network units, like single neuron or synapse with its own dynamics, the superimposition principle does
not hold any more and use of volatile RRAMs for each network units provides a scaling advantage compared to
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Table 1. Comparison of figures of merit of different technologies useful for the nonvolatile storage of synaptic weights. Adjusted from [102] under the terms of Creative Commons Attribution 4.0 License, Copyright 2019, Institute
of Physics.

Technology
CMOS mainstream memories Memristive emerging memories

NOR flash NAND flash RRAM PCM STT-MRAM FeRAM FeFET SOT-MRAM Li-ion

On/off ratio 104 104 10 to 102 102 to 104 1.5–2 102 to 103 5–50 1.5–2 40 to 103

Multilevel operation 2 bit 4 bit 2 bit 2 bit 1 bit 1 bit 5 bit 1 bit 10 bit
Write voltage <10 V >10 V <3 V <3 V <1.5 V <3 V <5 V <1.5 V <1 V
Write time 1–10 μs 0.1–1 ms <10 ns ∼50 ns <10 ns ∼30 ns ∼10 ns <10 ns <10 ns
Read time ∼50 ns ∼10 μs <10 ns <10 ns <10 ns <10 ns ∼10 ns <10 ns <10 ns
Stand-by power Low Low Low Low Low Low Low Low Low
Write energy (J bit−1) ∼100 pJ ∼10 fJ 0.1–1 pJ 10 pJ ∼100 fJ ∼100 fJ <1 fJ <100 fJ ∼100 fJ
Linearity Low Low Low Low None None Low None High
Drift No No Weak Yes No No No No No
Integration density High Very high High High High Low High High Low
Retention Long Long Medium Long Medium Long Long Medium —
Endurance 105 104 105 to 108 106 to 109 1015 1010 >105 >1015 >105

Suitability for DNN training No No No No No No Moderate No Yes
Suitability for DNN inference Yes Yes Moderate Yes No No Yes No Yes
Suitability for SNN applications Yes No Yes Yes Moderate Yes Yes Moderate Moderate
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the use of capacitors. In particular, volatile devices can be used to implement biological properties of individ-
ual synapses, like paired pulse facilitation and depression [57, 62, 145], metaplasticity [146] or short-to-long
term memory [145] transition in case the same RRAM device shows both volatile to nonvolatile retention
[92, 93, 147]. These functions, which cannot be efficiently implemented in conventional CMOS technology,
have not been demonstrated neither with large statistics nor at array level, yet. In general, however, a criticality
that can already be identified for volatile device is their variability whose impact may depend a lot on their
specific use in a neuromorphic system. In some case the parallel of many volatile device instead of only one is
used in order to mitigate the effect of variability [63].

6. Conclusions

This review article presents the status of HfO2-based RRAM devices for neuromorphic computing. The key
device properties are illustrated for RRAMs devices, highlighting the role of the top electrode material in con-
trolling the forming voltage and the volatile/nonvolatile memory behavior. The programming algorithms for
nonvolatile RRAM are described, covering both high-precision multilevel cell programming for off-line train-
ing and analog weight update for on-line training. An overview on computing schemes is provided, covering
ANNs with binary, multilevel and stochastic weights, as well as SNNs for unsupervised learning and spatiotem-
poral recognition. Finally, we discuss about open challenges, solutions and perspective of HfO2-based RRAMs
for neuromorphic applications in comparison with other existing and emerging technologies. From this report,
HfO2 appears as one of the most important RRAM material for demonstrating and prototyping neuromorphic
circuits.
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