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Optical nonlinearity goes ultrafast in 2D
semiconductor-based nanocavities
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Abstract
Hybrid systems of silver nanodisks strongly coupled to monolayer tungsten-disulfide (WS2) show giant room-
temperature nonlinearity due to their deeply sub-wavelength localized nature, resulting in ultrafast modifications of
nonlinear absorption in a solid-state system.

Decades of scientific progress in the fields of micro and
nano-photonics allowed to harness strong interactions
between light and matter in solid-state systems, leading to
fascinating phenomena and ground-breaking technologi-
cal applications. Light-matter interactions in semi-
conductors can be precisely controlled by tuning the
coupling between excitons, bosonic quasi-particles made
of bound electron-hole pairs, and photons confined in an
optical resonator. At high coupling strengths, resonant
photons coherently exchange energy with excitons at a
rate (Rabi frequency, ΩR) higher than that of the dephas-
ing processes (i.e., the rate at which photons escape from
the cavity or excitons dephase), entering the so-called
strong coupling (SC) regime. From this process, new
hybrid quantum states are formed, called polaritons.
Reaching the SC regime opened new avenues for obser-
ving highly nonlinear optical phenomena in the solid state,
such as Bose-Einstein condensation1,2, polariton lasing3,4

and optical parametric amplification5. These discoveries
have been recently exploited for the creation of all-optical
logic gates6 and polariton-based neural networks7.
Among the different types of semiconductors systems,

monolayers of transition metal dichalcogenides (TMDs)
stand out as a highly promising platform for exploring the
nonlinear effects produced in the SC regime. Charge
carriers in such materials experience an out-of-plane
quantum confinement generated by their intrinsic 2D

structure which, together with the reduced Coulomb
screening, leads to excitons with huge binding energies
(several hundreds of meV) and prominent oscillator
strengths, persisting up to room temperature8,9. More-
over, the broken spatial inversion symmetry of the 2D
lattice, together with a large spin-orbit coupling, provides
an uncommon pseudo-spin degree of freedom for exci-
tons in the K and K′ valleys of the Brillouin zone. Valley
excitons thus become selectively addressable by exciting
them with oppositely circularly polarized light10, whose
valley coherence can be even enhanced by the strong
coupling with long-living cavity photons11. Excitons in
TMDs uniquely combine high temperature stability with
large nonlinearities, which makes them an ideal solution
for room-temperature polaritonics.
In order to reach the SC regime, TMD monolayers can

be coupled to different optical resonators. Seminal stu-
dies of TMD polaritons exploited atomically thin flakes
embedded in vertical microcavities (Fig. 1a). Such
devices consist of two highly reflective planar or concave
mirrors facing each other and distanced hundreds of
nanometers, confining photons at discrete energy levels,
the “cavity modes”, whose frequencies are determined
by the distance between the mirrors. The cavity mirrors
can be made of metallic films or of Distributed Bragg
Reflector (DBR), a sequence of pairs of dielectric layers
with high/low refractive index. In such devices, SC was
demonstrated for neutral excitons12,13, trions14,15 and
excited Rydberg excitons16, using monolayers either
mechanically exfoliated or grown by chemical vapor
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deposition on a large scale17. TMD polaritons have been
also observed in planar architectures, towards on-chip
optical circuits, exploiting the sub-diffraction spatial
light confinement of plasmonic nanoresonators (Fig.
1b)18,19, or involving propagating modes, as for wave-
guides20, Bloch Surface Waves (BSW)21, surface lattice
resonances22,23, photonic crystal slabs (1D gratings)24

(Fig. 1c) and Bound states In the Continuum (BIC)25.
Studies of polariton nonlinearities are of key importance

for the understanding of the nonlinear optical processes
which form the basis of coherent emission, for ultrafast
optical switches and for optical parametric scattering, the
latter being observed very recently in a TMD vertical
cavity26. However, investigations of such effects on the
ultrafast timescale and in deep-subwavelength optical
structures have been very limited so far.
Tang et al.18 explore the ultrafast dynamics of the

nonlinear optical response for WS2 monolayers strongly
coupled to plasmonic silver nanodisks, unveiling a giant
nonlinearity and studying the underlying physical pro-
cesses. The non-equilibrium dynamics of the samples
were analysed by using femtosecond pump-probe spec-
troscopy, revealing different exciton-plasmon nonlinear
processes over distinct timescales. The main mechanisms
which govern the optical nonlinearity in TMD-based
microcavity polariton devices27 are identified as (i) the
repulsive Coulombic interaction between excitons, which
usually reflects in a blueshift of the resonance energy, and
(ii) phase space filling (or Pauli blocking), inducing exci-
tonic saturation and reducing the exciton-photon cou-
pling strength. In addition, excitation-induced dephasing
in TMDs has been recently found to play a non-negligible
role at high fluences28, typically giving rise to a

broadening of excitonic linewidths. The prominent role of
the latter mechanism was demonstrated in this work,
studying the nonlinear behaviour of plasmon-exciton
polaritons (also known as plexcitons) as a function of the
excitation fluence. Very interestingly, the authors show a
direct application of the strong nonlinear interactions that
they found, exploiting the flexibility of the system to easily
modify the light-matter coupling strength. This resulted
in the observation of direct and reverse absorption
saturation at ultrafast timescales, which showcase the
potential of TMD polaritons for future uses in sub-
wavelength nonlinear optical devices.
There is ample room for further ultrafast studies of the

nonlinear optical response of TMD polaritons, from the
demonstration of ultrafast all-optical switches working in
a low excitation density regime to the holy grail of time-
domain observation of Rabi oscillations at the frequency
ΩR

29. Recently, it has been shown that greatly enhanced
polariton nonlinearities can be achieved using moiré-lat-
tice excitons in twisted TMD hetero-bilayers30 and
hybridized dipolar excitons in homo-bilayers31; it will be
interesting to study the out-of-equilibrium optical
response for those systems. An additional enticing per-
spective is to extend the investigation of ultrafast exciton-
polariton nonlinearities to other systems featuring
strongly bound excitons, such as three- and two-
dimensional perovskites32.
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Fig. 1 Optical Resonators strongly coupled to TMDs. a Schematic
of a vertical cavity made of DBRs, embedding a TMD monolayer (ML)
in strong coupling regime. b Scheme of a plexciton system with a
TMD monolayer strongly coupled to silver plasmonic nanodisks.
c Sketch of a photonic crystal slab made of a 1D grating coupled to a
TMD monolayer
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