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Registration on Reconfigurable Architectures
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Healthcare is a pivotal research field, and medical imaging is crucial in many applications. Therefore finding

new architectural and algorithmic solutions would benefit highly repetitive image processing procedures. One

of the most complex tasks in this sense is image registration, which finds the optimal geometric alignment

among 3D image stacks and is widely employed in healthcare and robotics. Given the high computational

demand of such a procedure, hardware accelerators are promising real-time and energy-efficient solutions,

but they are complex to design and integrate within software pipelines. Therefore, this work presents an

automation framework called Hephaestus that generates efficient 3D image registration pipelines combined

with reconfigurable accelerators. Moreover, to alleviate the burden from the software, we codesign software-

programmable accelerators that can adapt at run-time to the image volume dimensions. Hephaestus features

a cross-platform abstraction layer that enables transparently high-performance and embedded systems de-

ployment. However, given the computational complexity of 3D image registration, the embedded devices

become a relevant and complex setting being constrained in memory; thus, they require further attention

and tailoring of the accelerators and registration application to reach satisfactory results. Therefore, with

Hephaestus, we also propose an approximation mechanism that enables such devices to perform the 3D

image registration and even achieve, in some cases, the accuracy of the high-performance ones. Overall,

Hephaestus demonstrates 1.85× of maximum speedup, 2.35× of efficiency improvement with respect to the

State of the Art, a maximum speedup of 2.51× and 2.76× efficiency improvements against our software, while

attaining state-of-the-art accuracy on 3D registrations.
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organization→ Reconfigurable computing; • Applied computing→ Imaging;
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1 INTRODUCTION AND MOTIVATION

Healthcare is a central research field that has seen a surge in the development of different computa-

tional approaches [14, 29]. Moreover, in the last few years, medical imaging has become pivotal for

many applications, such as disease prevention, diagnosis, and robotic/computer-aided surgery [24].

Indeed, creating efficient, accurate, and fast solutions is gaining traction even among tech compa-

nies not directly related to the healthcare world since it presents attractive open research chal-

lenges and opportunities [5, 13, 15, 17].

Therefore, finding new architectural and algorithmic solutions would benefit various highly

repetitive image processing procedures such as registration, segmentation, and classification.

Thus, two main orthogonal paths can be followed: one on identifying ad-hoc algorithms and the

other on identifying the most suitable hardware substrate for their execution. Image registration

is an excellent candidate for developing efficient, accurate, and accelerated solutions within this

context.

Indeed, image registration is a well-known pre-processing step that aligns one or more stacks

of images to a reference one allowing for correct data integration and fusion [3, 24]. More specifi-

cally, it iteratively searches the space of geometric transformation parameters to find, based on a

similarity metric, the optimal ones that allow for the correct overlap of the considered images [31].

In clinical practice, it is essential to achieve a comprehensive understating of the analyzed area,

opening to the correct alignment of different types of images (e.g., anatomical and functional). It

is also widely employed in real-time robotic surgery, where pre-operative images are fused with

intra-operative ones acquired in real-time during the procedure, thanks to a C-arm (i.e., a portable

imaging device) [24].

In such a scenario, registering images in the lowest time and keeping energy consumption to the

minimum, giving for granted the best possible accuracy, is essential to reduce its impact on surgery

time. Additionally, from the State of the Art, it is clear how the computation of the similarity metric,

which indicates how well the images to be registered align, is the most compute-intensive part of

image registration [7], especially considering one of the literature’s most employed and robust one

such as the Mutual Information (MI) [3, 31].

Therefore, software- and hardware-based solutions are to be considered to allow for a flexible,

fast, accurate, and efficient registration. The former accounts for solutions like Matlab [19] and

SimpleITK [18], which allows for high flexibility in creating custom image registration pipelines.

Indeed, they offer different algorithms for the similarity metric and optimization procedure, where

the end users can customize some parameters, like the number of iterations, paying on the reached

performance. On the contrary, on the hardware side, the literature highly reduces the available

flexibility by devising custom accelerators tailored to a specific volume size, or registration config-

uration, to reach remarkable performance, preventing customization on the end users side [4, 8, 28].

Thus, to mix the benefits of both approaches, namely the software flexibility and the performance

achievable through hardware acceleration, this paper, building upon our previous open-source so-

lution [7, 9], presents a 3D-based framework for creating and developing software programmable

FPGA-based accelerators for the MI similarity metric integrated into affine image registration

pipelines. Indeed, the software programmability easily adapts to different volume dimensions and,

thanks to the proposed hardware abstraction layer, transparently allows the end users to bene-

fit from hardware acceleration without needing specific knowledge in hardware development. In

summary, to bridge the current literature gap of 3D image registration, we propose an open-source

framework1 that, leveraging codesign strategies and an automation and abstraction layer, allows

1https://github.com/necst/hephaestus
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for the deployment of fast and efficient 3D image registration pipelines benefiting from MI accel-

eration.

The main contributions of this work are:

• A software/hardware codesign methodology for highly efficient 3D image registration

pipelines where all the components are optimized at both levels (Section 3).

• An optimized, customizable, and reconfigurable architecture for the MI computation

designed to flexibly handle a run-time variable number of images to span from the 2D to

the 3D registration case (Section 3.1.2 and 3.1.3).

• An extensible automation framework that, given the input design parameters and de-

vice, automatically generates the design towards the bitstream combined with a software

layer that abstracts the underlining hardware, either embedded or datacenter devices

(Section 3.2).

• Two device-class-specific codesign strategies: for embedded systems, where we design a

mechanism to cope with main memory constraints, and for high-performance systems,

where we scale out the accelerator and further parallelize the software to benefit from the

hardware parallelization (Section 3.3).

We evaluate the proposed solution in terms of accuracy, energy efficiency, and execution time. Our

experimental evaluation studies at first the scalability of the single accelerator under different as-

pects (Section 4.1). Then, we compare the whole application execution time and accuracy against

a state-of-the-art software demonstrating top speedup of 1.85×, while improving our software of

2.51× (Section 4.2), and achieving state-of-the-art accuracy across all the platforms (Section 4.3).

We explore the possible boosts that our embedded-specific mechanism could enable in the high-

performance scenario, paving the way to novel strategies (Section 4.4). Finally, we compare Hep-

haestus with the literature showcasing top energy efficiency improvement of 2.35× against a

state-of-the-art software while 2.76× improvement with respect to our software (Section 4.5).

2 BACKGROUND AND RELATED WORK

As stated, image registration is pivotal in many fields, and different approaches have been de-

veloped over the years. They can be clustered into two main categories: rigid/affine (preserves

line parallelism) and deformable (loss of line parallelism) [31]. Since the scope of this work is the

former class of registration approaches, and, given that it is also required as the first step in the de-

formable case, we provide a short introduction on relevant theoretical concepts and a description

of the works in the literature on this topic.

Affine image registration can be carried out in various ways, among which the most employed

ones rely on landmark points or voxels intensity. While the former requires some a-priori knowl-

edge of some image features, the latter does not and, therefore, is more general and commonly

employed [3]. Based on these considerations, we decided to target the more general voxel intensity-

based solutions that can be applied even when no direct correspondence can be found among image

volumes, as it occurs in the medical field. In this configuration, the registration is framed as an it-

erative heuristic process that aims at maximizing a similarity metric (Sim) among the reference (R)

and floating (F) stacks, as in Equation (1).

T̂ = argmax
T

Sim(R, FT ) (1)

More into detail, the procedure starts by estimating the initial geometric transformation param-

eters (T0) as in Figure 1. Their estimation is commonly based on the image moments, which are

a well-established approach in 2D-based image registration [12]. Indeed, for the 3D affine case,
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Fig. 1. High-level scheme of a generic 3D affine image registration pipeline. Starting from the input image

volumes, it estimates the initial transformation parameters and, thanks to an optimization procedure guided

by a similarity metric value, refines them until the best ones are found.

the transformation parameters, which are three translation factors tx , ty , and tz , and three rota-

tion angles θ , ϕ, and ψ , can be as well derived through the image moments. Unfortunately, in the

3D scenario, these moments are more complex to compute, given the lack of an established and

shared definition of their computation. Therefore, the literature proposes different computational

proxies [12] for the initial transformation matrix parameters, which constitute the transformation

matrix in Equation (2).

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cosθ cosψ − cosϕ sinψ + sinϕ sinθ cosψ sinϕ sinψ + cosϕ sinθ cosψ tx
cosθ sinψ cosϕ cosψ + sinϕ sinθ sinψ − sinϕ cosψ + cosϕ sinθ sinψ ty
− sinθ sinϕ cosθ cosϕ cosθ tz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2)

Such parameters are then refined, through a heuristic procedure, based on an optimizer, which

aims, as in Equation (1), at maximizing the value of a similarity metric computed among the R

volume and the F one transformed with the current matrix T. Finally, the optimization converges

when the optimal transformation parameters (T̂ ) are found and used to obtain the registered float-

ing volume F T̂ . Additionally, for each of the three blocks, namely the transformation, the optimizer,

and the similarity metric, different algorithms can be considered to create a wide range of config-

urations adaptable to a specific use case.

Considering the approach described above, the literature presents different solutions on both

the software and hardware sides. In the software scenario, Matlab [19] is a closed-source solution

offering high-performing configurations but with minimal flexibility. Also, on the software side,

SimpleITK [18], a Python-based library, offers a wide range of configurations, highly customizable

by the end user but at the cost of delivered performance. Conversely, on the hardware side, different

efforts have been put into accelerating the similarity metric computation and/or the transformation

being the most compute-intensive parts [2, 7, 9, 10, 16, 25]. However, to reach the best performance

in terms of execution time, the majority of the solutions in the literature present only one specific

configuration, which is defined at design time and not adaptable unless the entire hardware design

cycle is repeated, limiting the applicative flexibility to real scenarios [4, 8, 28]. Among them, we

have previously proposed a first attempt towards customization with an FPGA-based acceleration

of the Mutual Information (MI) similarity metric for 2D image registration [7, 9]. Although we

propose customizable accelerators, they only deal with a couple of 2D images at a time, which

is a limiting factor for the medical field, where, 3D image volumes, even though are acquired

as set of 2D images, are then stacked into a 3D volume allowing for the creation of continuous

structures. Indeed, working on 2D images, which means applying a different transformation matrix
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to each considered image, prevents the retention of the information along the image acquisition

axes, possibly creating unreal discontinuities in the original overall volume.

3 HEPHAESTUS CODESIGN AND AUTOMATION METHODOLOGY

This Section details the proposed methodology, starting from the codesign of fast, efficient, and

software-programmable MI accelerators (Section 3.1). These codesigned components are the

foundation of Hephaestus framework, which features automation and abstraction layers to

integrate them within 3D affine image registration pipelines seamlessly (Section 3.2). Finally,

the Section ends by describing the tailoring of the proposed solutions to the embedded and the

high-performance applicative cases (Section 3.3).

3.1 Hephaestus Codesign Strategy

Creating a flexible and fast solution for 3D image registration is pivotal to allow for the employ-

ment of performant hardware accelerators taking care of the most compute-intensive parts of the

computation. At the same time, the possibility of matching the flexibility of software libraries,

namely their possibility of customization at several levels of the registration pipeline (e.g., the

number of slices composing the volumes to be registered), and their ease of usage requires an

accurate study and a proper codesign of both the proposed accelerators and the overall registra-

tion software to achieve a tight coupling and best results ranging from accuracy, usability by a

non-hardware expert end user, and performance. For all these reasons, we accurately studied and

codesigned the proposed software-programmable MI accelerators to consider the constraint of the

registration procedure and vice-versa.

3.1.1 Software Codesign: 3D Image Registration. Section 2 described a general framework for

3D image registration represented in Figure 1 where five components (the initial conditions, the 3D

transform, the 3D similarity metric, the convergence condition, and the parameters updates) build

the overall iterative heuristic process. The convergence and the update of the parameters are prop-

erties of the so-called optimizer component. We design two 3D-based optimizers to represent two

broad classes of non-gradient-based approaches that explore the parameters space with different

strategies. The designed optimizers are called Powell’s method and 1+1 Evolutionary. The former

optimizes each factor of the transformation matrix (see Equation (2)) at a time and converges

based on a certain hyperparameter threshold, while the latter explores with an evolutionary strat-

egy of parent-child all the parameters simultaneously, and, usually, it converges when reaching the

maximum amount of iterations. These two optimizers fall at opposite sides of the time-accuracy

trade-off, which is the primary image registration dilemma, thus, being highly representative.

Algorithm 1 describes the search algorithm employing Powell’s optimizer. The algorithm works

on the input reference and floating volumes, their slice number, the parameters of the transforma-

tion matrix, a vector of ranges (rng) within which explore the parameters, and a threshold. The

algorithm computes a baseline MI value on the initial transformation parameters and starts explor-

ing the search space in a loop for convergence. Each transformation parameter (i.e., translation and

rotation along x ,y, and z axes) invokes the Gold_srch procedure that represents the golden section

search algorithm. This algorithm evaluates the best approximate transformation value for a given

parameter in a range. Specifically, the algorithm evaluates the golden section interval for the given

parameter and saves its extremes, start and end. Then, it simultaneously explores two possible

transformations through c and d by computing their MI value. The procedure iteratively executes

and resizes the interval until the distance between c and d is lower than a hyperparameter called ϵ .

After the golden section search procedure, the Powell’s method receives an optimized parame-

ter for the given range and its current MI. Suppose the current MI and the previous (or the initial)
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ALGORITHM 1: Powell’s method search for the best parameters

procedure Powell Algorithm(re f _volume , f lt_volume , volume_size , params , rnд, thrpowell )

while Not converдed do

for i in range(len(params)) do

cur_rnд, cur_param = дet_cur (params[i], rnд[i])
param_opt , cur_mi = Gold_srch(cur_param, cur_rnд, re f _vol , f loat_vol ,params, i )
if cur_mi − last_mi > thrpowell then

params[i] = param_opt
last_mi = cur_mi
converдed = False

else

params[i] = cur_par
converдed = True

return params

procedure Gold_srch(cur_param, cur_rnд, re f _volume, f lt_volume,volume_size,params, idx )

best_mi = 0

(start , end, c,d ) ← initializeParams () � Initialize search parameters with golden section

while abs(c-d)>ϵ do

matrix1← update (params, c ) � First transformation matrix to apply

matrix2← update (params,d ) � Second transformation matrix to apply

MI_matrix1 = computeMI (re f _vol , f lt_vol ,volume_size,matrix1) � First MI

MI_matrix2 = computeMI (re f _vol , f lt_vol ,volume_size,matrix2) � Second MI

if MI_matrix1 > MI_matrix2 then � Focus on first portion of interval

end = d
best_mi = MI_matrix1

else � Focus on the second portion of the interval

end = c
best_mi = MI_matrix2

(c,d ) ← updateParams (c,d ) � Update transformation values
returnmean(end, start ),best_mi � Return the best transformation value and the MI

one differ from a certain user-defined threshold. In that case, the current MI is saved into last_mi,

and the corresponding transformation parameter is kept in the transformation matrix. After con-

sidering transformations for all the search parameters, the search restarts from the first parameter.

The convergence is reached when none of the search parameters is modified anymore.

Conversely, Algorithm 2 illustrates our pseudocode of the 1+1 Evolutionary optimizer. Apart

from the input volumes and their features, the other 1+1 hyperparameters define the searching

strategy within the parameter space, e.g., the maximum number of iterations and the radius for

parameter exploration. The algorithm starts by initializing specific data structures and estimat-

ing the initial transformation matrix for the search. Then, it extracts the translation and rotation

around x , y, and z axes from such a matrix and assigns them to the starting parent node of the

search tree. Once the new transformation matrix is applied to the floating volume, it computes the

MI of the reference and floating volumes. After this setup stage, it begins a loop until the maximum

iteration number is reached. In this loop, starting from the selected parent node, noise is added to

the parameters in parent, thus generating a child node in which the child label contains the new

parameters. Then, the original floating volume is transformed using the child parameters, and the

MI between this latter volume and the reference is computed. The child node is discarded if the
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ALGORITHM 2: 1+1 Evolutionary search for the best parameters

procedure 1+1 Evolutionary Algorithm(re f _volume , f lt_volume , volume_size)

parameters

MaximumIters: maximum number of iterations to perform

SpaceDim: number of parameters to explore (dimension of the search space)

InitRadius: radius for parameters exploration

GrowthFactor : parameter for expansion of the explored subspace

ϵ : threshold for evaluating Frobenius Norm of A

end parameters

FrobeniusNorm = 0.0
ShrinkFactor = GrowthFactor−0.25

(A, child,delta, f _norm) ← initializeData(initRadius )
parent ← estimateInitial (re f _volume, f lt_volume,volume_size )
P_value = computeMI (re f _volume, f lt_volume,volume_size,parent )
for i in range(MaximumIteration) do

f _norm ← normalVariateGenerator () � Generate random updates

delta = A · f _norm
child = parent + delta � Generate child node by applying updates

C_value = computeMI (re f _volume, f lt_volume,volume_size, child )
adjust = ShrinkFactor
if C_value > P_value then � Select best node for search

P_value = C_value
child = parent
adjust = GrowthFactor

FrobeniusNorm = f robeniusNorm(A)
if FrobeniusNorm < ϵ then break

A← update (adjust , f _norm,delta)

return parent

obtained MI is lower than the MI value computed at the previous iteration, and a new child will be

generated at the next iteration. Otherwise, the considered child node is promoted to parent, and

the next iteration will generate a child node starting from it. Notably, the matrix A is transformed

at each iteration to modify the explored subspace’s dimension dynamically. The procedure ends if

the maximum number of iterations is reached or if the Frobenius norm of the matrix A is lower

than a given threshold.

Although the optimizer’s searching strategy and convergence are essential, a bad initialization

of the starting conditions has already been demonstrated to affect many optimization problems

negatively [20]. Therefore, computing the 3D moments of the stack of images would represent a

reasonable estimate of the required initial conditions for a transformation matrix related to transla-

tions and rotations around x, y, and z axes. However, the literature demonstrated that dealing with

3D image moments corresponds to highly complex computations, impacting the final procedure

performance dramatically [12]. Therefore, given that the literature lacks a unique computational

proxy of 3D moments as stated in Section 2, within Hephaestus, we propose an approximate

solution with a lightweight computational load and a geometrical interpretation.

More specifically, we split the two input volumes (i.e., the reference and the floating) into a

sequence of 2D slices along the z axis that matches the acquisition direction for the considered

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 134. Publication date: September 2023.
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case. Then, for each pair of 2D images, we compute their 2D moments to estimate the initial trans-

lation parameters along x and y axes and rotation angle around z axis. Afterward, we estimate

the rotation angle around y and x with the same computation by rotating the original volume

of 90 degrees counterclockwise around x and clockwise around y, respectively. Although this

formulation is the most general one allowing for the estimation of all the six degrees of freedom

for a 3D affine transformation, it can be simplified based on the final applicative scenario. Indeed,

having a prior understanding of the settings and constraints present during the image acquisition

process can facilitate the initialization of specific transformation parameters. For example, in the

considered applicative medical scenario, the employed images present the human body lying over

a rigid surface. Such configuration implies that the problem geometry prevents some rotations and

translations, thus estimating that parameters may be redundant and excessively time-consuming.

Indeed, in our specific case, rotation around x and y axes, as well as translation along z axis,

tend to be negligible. We, therefore, devised an additional procedure to compute the initial

moments, which only takes into account translations along x and y and rotation around z while

initializing to zero the remaining parameters. Such a procedure requires reduced execution time

without causing a noticeable accuracy loss. Moreover, the search algorithm still assures the ex-

ploration and optimization of all six degrees of freedom without limitation, preventing the loss of

generality.

The only remaining components of a general 3D image registration framework are the 3D trans-

formation and the 3D similarity metric. Though 3D image transformations are widely employed

in several image-processing pipelines, we struggle to find a software implementation available as

a golden reference. Kornia library [23] provides a highly optimized software implementation of

the 3D affine transformation that fits our scenario perfectly, being able to transparently use CPU

or GPU devices and providing batch processing capabilities. The 3D similarity metrics that fit the

optimizer computing requirements are several in the State of the Art [3, 26]. Within this context,

the Mutual Information (MI) demonstrated to be one of the most promising similarity metrics for

multi-modal intensity-based registration procedures [3, 7, 25, 26, 31]. However, the literature also

demonstrated that the computational complexity of the MI combined with the huge number of its

evaluations represent a clear bottleneck in the iterative registration procedures [7, 16, 25]. There-

fore, the following Section will focus on the codesign of the hardware accelerator that Hephaestus

exploits to optimize the 3D image registration application.

3.1.2 Hardware Codesign: Mutual Information Accelerator. We based the current 3D accelerator

design based on our previous open-source effort [7], where we developed a highly customizable

MI accelerator for 2D image registration. Also in this case, we leverage the High-Level Synthesis

(HLS) as coding style, since it eases the circuit generation for different use cases based on some

customization parameters. We first devise a design that respects the MI computational structure,

which is based on the following definition:

MI (X ,Y ) = H (X ) + H (Y ) − H (X ,Y ) (3)

where H (X ), H (Y ), and H (X ,Y ) are the entropies of the reference volume, the floating volume,

and their cross-entropy, respectively, and defined as follows:

H (X ) = −
∑

x ∈X
P (x ) log P (x ) (4)

H (X ,Y ) = −
∑

x,y∈X ,Y

P (x ,y) log P (x ,y) (5)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 134. Publication date: September 2023.
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Fig. 2. 3D Mutual information dataflow architecture: the accelerator fetches the slices, computes the joint

histogram in the first macrostage, the entropies in the second macrostage, and once processed the whole

volume writes the resulting mutual information value.

Therefore, to compute the MI value, it is necessary to evaluate the entropies (H (X ), H (Y )) of the

two images and their cross-entropy (H (X ,Y )). These values, based on probabilities P (x ), P (y), and

P (x ,y), can be evaluated by computing the histograms of the 2D images.

Following the mathematical definition of the MI which is the same for the 3D case, we substitute

theX andY 2D images with two 3D image volumes (acquired in the medical domain as a sequence

of N 2D images acquired along the z-axis). Therefore, the proposed accelerator within Hephaestus,

mimicking the mathematical definition of the MI, splits the computation into two macrostages

(divided by the dashed line in Figure 2): the first stage estimates the histograms of the images,

while the second retrieves the entropy based on the content of such histograms. Though the two

macrostages are blocking one with respect to the other, we adopt the dataflow design style to fetch,

consume, and compute as fast as possible, and we internally pipeline each macrostage through

different intermediate stages, with a map-reduce approach.

Starting from the first macrostage, i.e., the histograms computation, it is convenient to compute

the joint histogram as the first step, since the two single histograms can be extracted from it. The

volumes’ joint histogram can be seen as a squared matrix of L × L, where L is the number of gray

levels in the 3D volumes (e.g., 256 levels in our case). Additionally, the value of each element of

the joint histogram hist (x ,y) is equal to the total number of voxels of volume X with intensity

x corresponding to the voxels of volume Y with intensity y. Given its definition, after evaluating

two volume slices, the processing elements (PEs) must keep the partial joint histogram until all the

slices are evaluated. Therefore, we needed to modify the histogram processing elements (HPEs)

that we previously proposed [7] to benefit from data parallelism in the 3D context.

These PEs are designed to cache the partial results for the overall volume of the joint histogram

computation to preserve the memory up to the end of the volume’s slices. The derivation of the

marginal histograms, which delineates the starting point of the second macrostage, follows the

joint one, to enable the computation of the reference, floating, and joint entropies required for the

final MI. Once the joint histogram is correctly computed, the two single histograms, the one of

the reference and the one of the floating volumes can be extracted by a row and column reduction

respectively. Then, the proposed accelerator, starting from the histograms, computes the entropies

needed for the computation of the MI value.

Even this second macrostage features the map-reduce paradigm for H (X ), H (Y ), and H (X ,Y )
computations with several independent PEs. These map-reduce adoptions enable a higher degree

of parallelism, requiring fewer clock cycles at the cost of more memory or arithmetic resources for
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the joint histogram and entropies macrostages. To further improve the performance and reduce as

much as possible the number of floating point operations, we limit their usage for the sole entropy

macrostage, by computing the entropies with the following approximation:

H (X ) = − 1

R ·C · D
∑

x ∈X
J (x ) log J (x ) + log(R ·C · D) (6)

where J (X ) is the joint histogram, R is the number of rows, C is the number of columns of each

slice, and D is the depth of the volume, i.e., the number of slices per volume. Finally, the term
1

R ·C ·D must be added to Equation (3) to complete the approximation. We refer to this term as the

scale factor. Moreover, we analyze the impact of this approximation across several possible volume

sizes experimentally, measuring a maximum error in the computed MI values in the order of 10−6,

which is negligible and, therefore, will be ignored in further discussions.

Overall, this pipeline iteratively processes the input slices of the given volumes to build incre-

mentally the joint histogram of the volume pairs. Once consumed all the slices, the accelerator will

complete the MI computation, write back this similarity metric value for the registration process,

and reset its internal state.

3.1.3 Further Pushing the Hardware Codesign: Run-time Variable Volume Sizes. Till now the pro-

posed software development and the developed MI accelerator are sufficient to perform a correct

3D image registration procedure. Although the development process has reached a working point,

it is yet to be considered a flexible and transparently adoptable solution by end users. The current

solution deals with a predefined number of images composing the volumes to be registered, while

the applicative scenario, namely the medical field, requires for flexibility in the depth of the vol-

umes. Indeed, the number of images composing the volumes is a parameter selected at acquisition

time and is tailored to best represent the relevant characteristic from a clinical perspective. For

these reasons, to be useful, the registration software requires more flexible hardware, which can

easily adapt at run-time to volumes with dimensions varying in a given range of the number of

slices. Such adaptability is essential to move from a fixed hardware accelerator integrated into a

software framework to a flexible hardware component usable as a software object instantiable at

run-time to deal with different input depths. Such degree of flexibility offered by Hephaestus rep-

resents a novel contribution to the State of the Art of 3D image registration and a step towards its

integration in real applicative cases.

Given the above-highlighted necessity, to match them and make our MI accelerator software-

programmable, we have modified the scale factor introduced in Equation (6) to adapt to a variable

number of slices (D) composing the input volumes. Indeed, in the original definition of the scale

factor, as 1
R ·C ·D , D represented the fixed number of 2D slices composing the input 3D volumes

supported by the MI accelerator. Now, to account for different possible volume depths, we add a

further corrective factor, which takes into account the difference, in bits, between the maximum

volume size supported by the accelerator, Dmax , and the current size D of the input volumes. The

Hephaestus scale factor is therefore redefined as:

1

R ·C · D − (log2 (Dmax ) − log2 (D)) (7)

where Dmax is the maximum supported volume depth, while D is the effective depth of the given

input volumes. Thanks to this further correction Hephaestus allows the creation of software-

programmable MI accelerators adaptable to different use cases. Also in this case, we have inves-

tigated the effect of introducing an additional corrective factor over the computed MI value and

seen that it is negligible, and, specifically, it tends to zero as the number of considered slices tends

to the maximum supported volume depth Dmax . Moreover, we modify the whole pipeline to be
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Fig. 3. Hephaestus framework: it is based on a codesigned SW/HW image registration pipeline for 3D vol-

umes of images based on a run-time configurable mutual information accelerator. Hephaestus features an

automation framework that, based on the target deployment system and user-based customization param-

eters, automatically build the overall SW/HW registration pipeline.

adaptable to the actual D at run-time. Indeed, D is provided as input to the accelerator and used to

stop the processing of couples of slices once the D-th couple has been received. Hence, the entropy

macrostage produces the correct MI value at the end of the D slices, reducing the latency at the

necessary clock cycles, while increasing the flexibility.

At this point, within Hephaestus we have codesigned fast, efficient, and software-

programmable MI accelerators to be integrated into 3D image registration pipelines. Such

achievement allows for the creation of performant hardware accelerated solutions while keeping

the flexibility of pure software implementations. To further ease the usage of the proposed

accelerators Hephaestus proposes an automation flow and an abstraction layer, described in

detail in the following Section. In this way, we can integrate them transparently within 3D affine

image registration pipelines.

3.2 Hephaestus Automation and Abstraction Framework

Given the steepness of the learning curve of FPGAs technology in both development and usage [11,

27, 30], we designed an automation framework and abstraction layer to ease the final FPGA-based

3D image registration pipelines development. Figure 3 illustrates what Hephaestus offers to the

final user: an automated accelerator deployment and application design that exploits hardware

accelerators transparently.

The automation layer is essential to configure the highly customizable 3D MI accelerator in

different degrees. Indeed, it provides a collection of parameters, shown in Table 1, that enable

developers to customize our framework at several levels of abstraction. In particular, at the hard-

ware design level, it allows tuning the number of bits used to represent pixels of the input image

(IB), the image dimensions (ID), the macrostages parallelism degrees (i.e., the PEs number for the

histogram (HPE) and the entropy (EPE)), the number of cores (CORE_NR), and the maximum

volume depth (DMAX ) that our accelerator can handle. Moreover, given this maximum value, we

tailor the scale factor, the arithmetic operations, and the bitwidth of different structures, such as

the joint histogram PEs bitwidth. At the software level, developers can set specific parameters for

the optimizers, as for software libraries, to tune their execution time-accuracy tradeoff, such as

the maximum number of iterations to perform in 1+1 Evolutionary or the accuracy threshold in

Powell’s method. Finally, the automation and hardware abstraction layer can integrate additional
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Table 1. Customization Parameters of Hephaestus Accelerator Exposed Through

the Automation

Parameter Description

IB Number of bits for the target input image

HPE Number of parallel histogram PEs

EPE Number of parallel entropy PEs

DMAX Maximum number of 2D slices composing the 3D volume

ID Dimension R and C of the 2D slice

CORE_NR Number of parallel independent cores

optimizers or target boards, further extending the degree of flexibility provided to the end user of

the framework.

Given these customization parameters, Hephaestus targets a wide number of FPGA-based sys-

tems that we cluster in the embedded and high-performance devices, by producing a specialized

Register Transfer Level (RTL) description of the final architecture. These two device classes imply

two different design flows: one for the embedded and one for the high-performance. The former,

i.e., the embedded design flow, performs the High-Level Synthesis (HLS) process (i.e., from C++ to

RTL generation) to create the IP, generate the system-level connections, and finally all the steps

towards the bitstream generation. The latter design flow, the one for high-performance devices,

performs analogous yet different steps with a specialized toolchain: it performs the steps of IP cre-

ation and packing, system devise, and bitstream creation. Moreover, since each device can present

differences in physical parts or memory subsystems, we design specific automation components

that are not exposed to the end user.

Although the steps for bitstream generation are device-specific, we design a modular automa-

tion infrastructure that macroscopically differs for the system class but exposes the very same

interface to the final user for bistreams production. Therefore, users simply input the customiza-

tion parameters and the device type, as in Figure 3, and Hephaestus takes care of all the necessary

steps for bitstream generation. Additionally, designers can extend Hephaestus with new devices

by adding the device part, and, if needed, custom automation parts, as long as they respect the cur-

rent structure. In summary, Hephaestus can generate run-time software adaptable accelerators

that can seamlessly work with 3D volumes or single 2D images in an automated way.

The system kind (i.e., embedded or high-performance) introduces both differences in the build-

ing process and in the software APIs employed to manage the host-accelerator overall communi-

cation. Therefore, since the software management for reconfigurable devices is strictly dependent

on a given board, we designed a software component to relieve this burden from the application

designer. Indeed, Hephaestus offers a Python-based software layer that abstracts the underlying

low-level device features, such as buffer and execution management and exposes a unique interface

for the high-level image registration application regardless of the target hardware.

Having the automation and the abstraction layers at disposal, Hephaestus can generate 3D

image registration pipelines based on two different classes of optimizers (Section 3.1.1), on the

MI accelerator (Section 3.1.2) as similarity metric that can accept run-time variable volume sizes

(Section 3.1.3) in a seamless and integrated way regardless the target system.

3.3 Hephaestus Deployment Tailoring to Device Class

Since Hephaestus targets both embedded and high-performance devices, some further improve-

ments can be reached by keeping in mind the strengths and limitations of each class of devices.

For example, embedded devices are energy efficient but show constrained memory compared to
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high-performance cards. Therefore, in some cases, they do not show enough memory to carry out

the entire registration procedure on the whole 3D volume since both the similarity metric and the

registration software run on the memory-constrained device. Conversely, high-performance cards

are commonly connected to high-end hosts allowing for higher performance even on bigger 3D

input volumes.

Given that high-performance devices present more resources, we decide to explore the Hephaes-

tus scalability on such devices. On the other hand, the embedded world is highly attractive for

clinical practice, but memory limitations are a de-facto bottleneck for 3D image registration, and

the current State of the Art has not yet solved this physical constraint. Therefore, to tackle such

a limitation, we propose a novel mechanism allowing for 3D image registration on very memory-

constrained devices while guaranteeing accuracy. Based on these considerations in the following

Sections, we describe the tailoring made to match the characteristics of the two device classes

considered, embedded and high-performance.

3.3.1 Hephaestus Tailoring to Embedded Devices. Given the traction of embedded solutions for

developing clinical practice in constrained scenarios such as at-home exams, the ability to execute

high-computational demanding procedures on small and memory-constrained devices is essential

but not fully resolved. Indeed, as we have already introduced, 3D image registration requires both

computational capabilities and increasing memory as the volume size increases. Therefore, when

the registration is run on embedded devices, which integrate both a Processing System (PS) and

a Programmable Logic (PL) with limited memory, the entire execution of the whole registration

procedure may be impossible, specifically for high-resolution input volumes.

Given these considerations, we devise a new mechanism to overcome the aforementioned limi-

tation and open 3D image registration to run on memory-constrained devices. More in detail, we

tailor the searching algorithm to focus on a sampled subvolume of the original 3D input image

stacks. Indeed, given that a 3D volume represents a continuous subject, it is reasonable to assert

that all the slices are highly correlated with one another. Therefore, evaluating a portion of them is

enough to find satisfactory translation and rotation parameters for registering the floating volume.

Figure 4 gives an example of the process proposed to deal with input subvolumes; indeed, thanks

to the previously introduced abstraction layer, for the end user, nothing changes, as Hephaestus

takes care of the sampling and the correct deployment of the MI accelerator and the tailoring of

the registration process to the selected subvolume size. To best exploit all the available resources

on the target device, Hephaestus identifies the available memory and, according to such informa-

tion, defines the size of the volume to be sampled, as shown in Figure 4. Additionally, Hephaestus

uniformly samples the images starting from the central slice in the 3D input volume, given that

we model the information within a 3D volume as a normal distribution. In this way, we aim to

consider the subvolume retaining the most information to identify the best transformation among

the reference and the floating subvolumes. After the sampling, the 3D image registration proce-

dure works as previously introduced (Section 3.1) and highlighted in Figure 4 till convergence is

reached. Finally, given the optimal 3D transformation parameters, the transformation is applied to

the floating volume. The transformation can be applied directly to the whole 3D floating volume

if there is enough memory, or if necessary, Hephaestus can sample subsequent floating subvol-

umes and separately transform them till the whole volume is registered. Also in this configuration,

Hephaestus exploits its abstraction layer to define the optimal dimension for the subvolume to

transform. A final tailoring of Hephaestus is that it can consider either disjoint or overlapping

subvolumes to apply the transformation to maximize the final registration accuracy while penal-

izing the execution time. Thanks to the proposed tailoring solution, Hephaestus also allows for

3D affine image registration on embedded devices, and later on, we will analyze the effect of such

tailoring on Hephaestus performance.
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Fig. 4. Hephaestus workflow for embedded devices: the memory constraint imposes sampling for large vol-

umes on which we then apply the registration procedure.

3.3.2 Hephaestus Tailoring to High-Performance Devices. On the opposite side of embedded

systems, the high-end FPGA-based ones feature many more resources on the FPGA fabric and

decoupled host-FPGA memory banks with a greater capacity (more than 8GB). Therefore, we de-

sign new class-specific optimizations taking advantage of these features. Firstly, more decoupled

memory banks directly mean more parallel off-chip memory access, for instance, one bank for

the reference and one for the floating volume. In this way, we reduce the contention on the off-

chip memory banks, improving the overall bandwidth, and decreasing the MI computation latency.

However, this bank’s parallelization has a minimal impact on the reconfigurable fabric usage; thus,

we can further push on the accelerator design.

The resource budget available on high-performance devices opens to two paths: scaling-up or

scaling-out the MI accelerator. Thanks to the automation part of Hephaestus, the scaling-up of

the accelerator just requires a simple change in the customization parameters. Section 4.1 will

detail the results reachable by following the scaling-up path. On the other hand, scaling-out to

multiple cores of the accelerators has an impact on the throughput and the application latency

if the workload can take effective advantage of this choice. The 1+1 Evolutionary optimizer eval-

uates the MI one time per iteration and thus does not feature suitable characteristics. Instead,

the Powell’s method internally explores the search space of the parameters through the golden

section search that evaluates two different sets of transformation parameters in parallel and re-

peatedly calls the MI to evaluate their goodness. Therefore, we codesign a solution that can take

advantage of such parallelism by replicating the MI accelerator and creating an architecture of

two independent MI cores. We also adapt Hephaestus automation to automatically generate the

bitstreams for such configuration adding a new customization parameter. Moreover, we codesign

Powell’s-based registration pipeline to be able to exploit such Dual Core design effectively. Now,

the software application sets up the execution for two accelerators in parallel and executes them

in an asynchronous parallel way. Finally, since the 3D transformation block implemented through

Kornia [23] can exploit batch processing by design, the Powell’s-based pipeline can now seam-

lessly exploits the batch processing of the 3D software transformation and the parallelization of

the MI hardware accelerator on the high-performance device class.

4 EXPERIMENTAL SETUP AND EVALUATION

In this Section, we describe the experimental setup employed for the implementation and valida-

tion of Hephaestus. Starting from a brief description of the experimental setup and the employed

dataset, we then provide a systematic evaluation starting from analyzing the sole MI accelerator

scalability, the whole 3D image registration performance in terms of execution time and accuracy,

and a discussion over the achievable improvements when exploiting the embedded tailoring also

on high-performance devices. Finally, we present a comparison with related work.
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Table 2. Target Machine Configurations Reported with their Unique Code Name

Code Name CPU Machine RAM Board DDR RAM FPGA

ZCU ARM A53 2GB Shared XCZU7EV

PZU ARM A53 4GB Shared XCZU5EG

AU200 Intel i7-4760 16GB 64GB Alveo U200

AU280 AMD Ryzen 7 3700X 32GB 32GB Alveo U280

Within Hephaestus we developed the proposed MI reconfigurable accelerator in C++ exploiting

Vivado HLS, Vivado, and Vitis suites version 2019.2. For what concerns the Hephaestus automa-

tion framework we mixed Python, TCL, bash, and Makefile utilities, while for the creation of the

proposed abstraction layer we leverage the PYNQ framework v2.7 [1]. Additionally, we design the

Hephaestus 3D image registration software in Python leveraging Kornia [23] and PyTorch [22]

libraries for the 3D transformation component of our final application. Moreover, we select as rep-

resentatives of the high-performance class the AMD-Xilinx Alveo U200 and the AMD-Xilinx Alveo

U280 cards, while for the embedded class we target the AMD-Xilinx ZCU104 and the AMD-Xilinx

PYNQ ZU. For convenience, Table 2 reports the features of the employed machines in this evalu-

ation. Finally, to evaluate the power consumption of the proposed solutions, different strategies

have been considered depending on the board used. In particular, for the boards with on-board sen-

sors, measurements have been taken exploiting the PYNQbased APIs for PMBus. When this was

not possible, they have been taken employing a Voltcraft 4000 energy logger. As testing dataset for

the 3D image registration pipeline we select a medical dataset [6, 21],2 composed of 512× 512× 246

Computed Tomography images and a corresponding number of Positron Emission Tomography

ones, up-scaled from the original 128 × 128 to 512 × 512 pixels.

4.1 Hephaestus MI Accelerator Scalability Analysis

We have carried out a systematic analysis to evaluate the scalability of the MI accelerator, thanks to

the proposed automation framework that allows for an easy generation of multiple MI accelerator

configurations. We have evaluated the impact of the number of PEs employed for the two map-

reduce stages of the accelerator, namely the histogram phase (HPE) and the entropy one (EPE), as

in Figure 2, over the occupied hardware resources and the corresponding Frame per Second (FPS)

rate reached by each accelerator. Specifically, the FPS rate is defined as:

FPS =
SizeV olume

ExeTimeAvд
(8)

Given that, as already introduced, the histogram computation is more compute-intensive than

the entropies computation, we start the analysis by exploring how varying the number of his-

togram PEs reflects on the FPGA resource usage and the reached FPS rate. Figure 5 reports the

obtained results for the two classes of considered devices, and, in particular, for the Alveo U200

as representative of the high-performance class and for the ZCU 104 as the example of the embed-

ded class. Specifically, we have synthesized accelerators with an increasing number of PEs for the

histogram computation stage following the power-of-two pattern from one to maximum device

occupation.

Figure 5(a) shows how increasing the number of HPEs from 1 to 32 for the Alveo U200 leads

expectedly to a linear increase in the BRAM usage. Indeed, during the histogram computation

phase, the accelerator has to store information regarding the voxels volume content, and, therefore,

2Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18 FDG SKULL T, CT: WB STND, PET: WB 3D AC).
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Fig. 5. Resource analysis scaling the number of processing elements from 1 to maximum device occupation

with a power-of-two scheme for a high-performance board (AU200) and an embedded board (ZCU).

this step proves to be highly memory expensive. Moreover, to compute the FPS values, we have fed

each accelerator with the same three random 3D input volumes of 512 × 512 × 512 generated with

three different seeds, and the reported FPS values are the mean over thirty executions (10 runs per

random seed). Looking at the FPS trend, they increment more than linearly when scaling from 1

to 8 HPEs, then decreasing when implementing 16 and 32 HPEs. Such behavior is imputable to a

lower running frequency of the 16 and 32 HPEs accelerators compared to the 8 HPEs one. This

analysis shows that the configuration exploiting 8 HPEs for the histogram computation stage is

the best for the Alveo U200. Moreover, carrying out the same experiment on the Alveo U280, the

16 HPEs solution is the best one. Finally, exploring the impact of the Dual Core implementation

on resource usage, it doubles the amount of resources required by the whole accelerator, while

the best configuration remains unchanged for the Alveo U200. Conversely, for Alveo U280, the

best configuration becomes the one exploiting 8 HPEs since the one with 16 HPEs is no more

synthesizable due to a lack of resources.

Moving to the embedded case, Figure 5(b) presents a similar behavior to the high-performance

case with a nearly linear trend in the BRAM increase, except for the absence of a drop in the FPS

rate. Indeed, on the ZCU 104, we could scale only to 4 HPEs before saturating the resources, which

is insufficient to trigger the frequency drop seen in the Alveo U200 above 8 HPEs. Based on these

results, we selected the configuration exploiting 4 HPEsfor the histogram stage as the best one and

the one exploiting 2 HPEs for the PYNQ ZU.

Further consideration can be made on the number of HPEs employed for the computation of

the histogram; indeed, the accuracy in the computation of the MI value is independent of the

number of HPEs since this step only involves integer computations that are commutative. Having

identified the best configuration for all the tested boards, we analyze the scalability of the best MI

accelerators in terms of PEs deployable for the second stage, namely the entropies computation

(EPE). To carry out this exploration, we fix the HPEs, and as before, we increment the number of

EPEs for the entropy computation stage following the power-of-two pattern from one to maximum

device occupation. Also, in this case, Figure 6 reports the results for the Alveo U200 and the ZCU

104 as examples from the high-performance and embedded classes.

Figure 6(a) shows how the BRAM utilization remains pretty much constant in this second phase

while increasing the number of PEs. Additionally, given that the entropies computation presents

much more mathematical operations, we see a linear increment in the usage of almost all compo-

nents, particularly DSPs. Concerning the FPS rate, it is computed as in the previous experiment,
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Fig. 6. Resource analysis scaling the number of processing elements for the entropy computation from 1

to maximum device occupation with a power-of-two scheme for a high-performance board (AU200) and an

embedded board (ZCU). This analysis assumes 8 HPEs for the Alveo U200 and 4 HPEs for the ZCU104.

and it shows a similar trend to the one in Figure 5(a), with a peak in correspondence on 8 EPE

and then a decrease when considering 16 and 32 EPEs. It is interesting to notice how moving from

parallelizing only the histogram phase to both the histogram and the entropies allows for incre-

menting the FPS rate more than two times. Therefore, we select as the best configuration for the

Alveo U200 the one with 8 PEs for both stages (8HPE-8EPE), while for the Alveo U280, we select

the one exploiting 8 PEs for the histogram and 16 for the entropies (8HPE-16EPE).

Regarding the embedded case, Figure 6(b) shows a similar trend to the high-performance case

where increasing the number of EPEs keeps the BRAM usage nearly constant while it shows a lin-

ear increase of the other resources and specifically DSPs. Since the entropy phase relates more to

mathematical operations than to storing vast data, we could scale the EPE number to 16. Addition-

ally, the FPS rate show, as in Figure 5(b), a consistent increase moving from 1 to 16 EPEs reaching

nearly two times more FPS compared to the histogram-only parallelized version. Therefore, based

on the obtained results, we select, as the best model for the ZCU 104, the one with 4 PEs for the

histogram computation and 16 PEs for the entropy one (4HPE-16EPE). Finally, based on the same

consideration we selected for the PYNQ ZU the configuration with 2 PEs for the histogram and 16

PEs for the entropy computation (2HPE-16EPE).

4.2 Hephaestus 3D Image Registration Execution Time Evaluation

After identifying the best configuration per board, thanks to the previously described scalability

analysis, we now evaluate the performance in terms of the execution time of the overall 3D image

registration pipelines deployable thanks to Hephaestus. Specifically, as introduced before, we

tested the proposed solution on a medical dataset, and we evaluated the execution time of the

whole registration process by exploiting the two available optimizers, namely Powell’s method

and 1+1 Evolutionary. In particular, we tested Hephaestus in its two configurations: our pure

software one and our accelerated version exploiting the proposed MI accelerator for each of the

four considered boards. We compare these configurations against SimpleITK, a state-of-the-art

cross-platform software [18] run on the on-board processors of the embedded devices and

on the host CPU for the high-performance card, as in Table 2. Figure 7 reports the comparison

among our software, our hardware accelerated version, and SimpleITK in terms of execution

time, also considering any possible data transfers for boththe supported optimizers. As a general
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Fig. 7. Execution time analysis: comparison of SimpleITK and Hephaestus software and hardware imple-

mentation exploiting the two proposed optimizers and running on different devices.

consideration, we can see how Powell’s method (Figure 7(a)), as already explained, requires more

time to converge than 1+1 Evolutionary (Figure 7(b)), leading to a longer registration time.

Focusing on Powell’s optimizer Figure 7(a), it is clear how all the solutions exploiting the MI ac-

celerators outperform the corresponding SimpleITK implementation. Moreover, considering that

our software implementation is generally slower than SimpleITK, our MI accelerators have a con-

siderable positive impact on the overall execution time, opening an exciting possibility of inte-

grating it into SimpleITK to reach even faster solutions. Additionally, our software and hardware

versions show a negligible variance (except for one configuration) compared to SimpleITK, demon-

strating better stability over ten runs. More in detail, Hephaestus reaches a maximum speedup

over SimpleITK in the high-performance class of 1.53× on the Alveo U200 and of 1.71× for the em-

bedded class on the PYNQ ZU, with an overall geomean speedup of 1.31×. Finally, when looking at

the Dual Core implementation on the high-performance boards, since we are exploiting a batching

approach parallelizing two MI computations and the correspondent transformations, we reach a

speedup over SimpleITK of 1.85× and 1.26× on the Alveo U200 and Alveo U280, respectively, with

an increased overall geomean speedup of 1.53×.

Moving to the 1+1 Evolutionary optimizer, Figure 7(b) shows that our accelerated implementa-

tions consistently outperform their SimpleITK counterparts except on the Alveo U280, where we

reach comparable results. Also, in this case, our software version is always significantly slower

than SimpleITK, demonstrating the considerable impact of accelerating the similarity metric. On

the other hand, the lower gap between the hardware versions and SimpleITK when selecting 1+1

Evolutionary compared to Powell’s method is given by the lower number of executions of the sim-

ilarity metric computation. For these reasons, the impact of accelerating the similarity metric over

the overall registration process is reduced, and, therefore, this lower gap is imputable to the gap

(in favor of SimpleITK) between SimpleITK and our searching and transformation software part.

Finally, Hephaestus, exploiting 1+1 Evolutionary, reaches a maximum speedup over SimpleITK

in the high-performance class of 1.26× on the Alveo U200 and of 1.36× for the embedded class on

the PYNQ ZU, with an overall geomean speedup of 1.17×.

As a final remark, considering only the MI computation and comparing its accelerated version

to the software one over a volume of 512 × 512 × 512 we achieve a speedup that reaches up to

258× across the different machines. Such numbers further support the high positive impact of
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Table 3. Accuracy Analysis: Comparison of SimpleITK and Hephaestus in Terms of Intersection over

Union (IoU), Clustered Per Device Class, and Reporting the Best Results Per Class in Bold

Work Optimizer
Embedded High-Performance

ZCU PZU AU200 AU280

Hephaestus
1 + 1

0.853 ± 0.08
∧

0.870 ± 0.079
�

0.889 ± 0.026
�

0.992 ± 0.004 0.992 ± 0.004

SimpleITK [18] 0.742 ± 0.267
∧

0.665 ± 0.304
�

– 0.827 ± 0.152 0.863 ± 0.06

Hephaestus
Powell

0.946 ± 0.056
∧

0.953 ± 0.037
∧

0.996 ± 0.001
�

0.996 ± 0.001 0.996 ± 0.001

SimpleITK [18] 0.722 ± 0.267
∧

0.732 ± 0.27
∧

– 0.816 ± 0.15 0.851 ± 0.06
�

Registration on 160 slices.
�
Registration on 100 slices.

∧
Registration on 60 slices.

Hephaestus accelerators over the similarity metric computation and, therefore, over the overall

registration process.

4.3 Hephaestus Accuracy Evaluation

Having evaluated the execution time, we now move to assess Hephaestus performance in terms of

accuracy in carrying out the 3D affine image registration and compare it to SimpleITK on the same

dataset. To evaluate the results’ goodness, we select the Intersection over Union (IoU) as metric,

which indicates how well two objects overlap. Indeed, if an optimal registration is achieved, the

gold standard volume (achieved with a semi-automatic registration procedure) and the registered

one should perfectly overlay, leading to a unitary IoU. Moreover, given that affine transformations

preserve line parallelism, if the external structures coincide, the internal ones will also.

Table 3 reports the obtained IoU for the Hephaestus hardware accelerated version for each

available device and for their SimpleITK counterparts. Regarding the high-performance class, Hep-

haestus consistently achieves better results than SimpleITK with a top improvement of 0.180 for

the Alveo U200 employing Powell’s optimizer. Moving to the embedded class, Table 3 shows the

IoU results and the number of slices composing the considered volume. Indeed, as described in

Section 3.3.1, given the low memory of the considered devices, we had to deal with a subvolume of

the actual input to compute the optimal transformation parameters, then employed to transform

the entire floating volume. Regarding the ZCU 104, our solution and SimpleITK work on 60 slices,

but we can see how our implementation consistently outperforms SimpleITK with a maximum im-

provement of 0.224 when considering Powell’s method. The same trend is visible when looking at

the PYNQ ZU board, where considering both Powell with 60 slices and 1+1 Evolutionary with 100

slices, our solution consistently achieves higher accuracy, with Powell’s method reaching a 0.221

improvement. Although such results, Hephaestus can also deal with bigger subvolumes compared

to SimpleITK, and considering a subvolume of 160 slices, it reaches a top IoU of 0.996 employing

Powell’s method. Such a result is a remarkable achievement considering that SimpleITK could not

scale up to bigger volumes in such a constrained scenario.

A visual comparison also supports all these results; indeed, Figure 8 shows how overlapping the

gold standard binarized (in green) and the obtained results (in yellow) with SimpleITK, and Hep-

haestus hardware, the former shows a mismatch, while the ones obtained through Hephaestus

nearly perfectly align to the gold standard.

4.4 High-Performance Improvement Exploiting Hephaestus Embedded Subsampling

Given the possibility of Hephaestus to work on subvolumes of the input, as described in Sec-

tion 3.3.1, we decide to explore the possibility of employing it not only in the embedded cases,

where it is fundamental to perform the registration but also in the high-performance case, and,

in particular, on the Alveo U200 to see how it impact the execution time and reachable accuracy.
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Fig. 8. A visual example of 3D affine image registration results. From left to right, the gold standard, the

overlap between the gold standard (represented in green) and the registered image with Hephaestus Powell,

Hephaestus 1+1 Evolutionary, and SimpleITK Powell and SimpleITK 1+1 Evolutionary (all in yellow). For

visualization simplicity, we report a single 2D slice.

Therefore, we perform the 3D affine image registration on volumes of increasing dimensions start-

ing from 20 slices to 160 slices with a step of 20 slices, and then we reported the results obtained

considering the whole input volume (246 slices). Such slices were used to carry out the entire

search process, while applying the final 3D transformation to the original input floating volume

was directly made on it without volume subsampling since high-performance devices have more

than enough memory.

Figure 9 clearly shows how, for the employed dataset, a subvolume of 20 slices is already enough

to reach more than 0.96 of IoU while leading to an execution time reduction of 9× (only 0.031 lower

IoU). Additionally, considering configurations that lead to an IoU above 0.98, we can see from

Figure 9 that the one with 40, 140, and 160 slices show a reduction in execution time of 4.81×,

1.91×, and 1.68×, respectively. Although these improvements demonstrate how it would be bene-

ficial to identify an automatic selection method for the subvolume dimension, this optimal value

is highly dependent on unpredictable parameters related to the data to be registered. Indeed, it de-

pends on the information distribution along the volume, where a subvolume of N < Nmax slices

taken at the beginning, middle, or end of the 3D volume can impact the registration accuracy.

Additionally, increasing the subvolume dimension but locating it in the low-informative part of

the volume could not outperform a smaller subvolume that is extracted from a high-informative

region. Indeed, if the considered volumes showcase enough information around their centers to

represent the global misalignment among them correctly, small subvolumes will lead to highly

accurate registration allowing for a considerable execution time reduction thanks to the fast con-

vergence of the searching procedure. Based on these results, we believe that applying Hephaestus

embedded tailoring on the high-performance board could be an interesting approach to reduce reg-

istration time further. Moreover, given the Hephaestus, MI accelerator software-programmability

and thanks to the automation framework testing different subvolume dimensions does not require

resynthesizing the accelerator but only rerunning the registration process, opening the possibility

of searching for the optimal trade-off in a reasonable time.

4.5 Related Work Comparison

Finally, we conclude Hephaestus evaluation considering the image registration literature. As high-

lighted in our previous work [7], researchers struggle to fairly compare their approaches when con-

sidering intensity-based heuristics in multi-modal image registration. Indeed, different algorithmic

combinations of similarity metric, transformation, and optimizer components (as in Figure 1) lead

to considerable differences in the final registration performance. Moreover, a registration algo-

rithm must usually deal with the trade-off between execution time and accuracy that requires

application-specific choices. Therefore, Shams et al. [26] try to normalize these differences with a
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Fig. 9. Hephaestus speedup and accuracy variations while scaling the subvolume size analyzed from 20 slices

to 160 with a 20-slice step compared to the entire input volume on the Alveo U200.

performance metric that accounts for the execution time, the number of processed voxels, and the

optimizer iterations and is computed as:

Per f =
Time[ms]

MVoxel × iterations (9)

Based on this definition, the optimizer iterations have an extremely high impact on the final perfor-

mance without necessarily meaning a better execution time or accuracy (as shown in [7]). More-

over, we also adopt our previous enery efficiency evaluation metric [7] as:

EE =
1

Per f × KWatt
=

MVoxel × iterations
ms × KWatt

(10)

Looking for literature works, we have seen how they mainly deal with 2D registration, but compar-

ing them with 3D solutions employing the performance metric is not an apple-to-apple comparison

since it produces an entirely different order of magnitude in the obtained results. Therefore, trying

to be as fair as possible, in Table 4, we only report works dealing with 3D image registration, along

with the technology node, the proposed algorithm for the different blocks, the performance metric

(Equation (9)), which is the lower, the better, and the energy efficiency (Equation (10)) which, con-

versely, is the higher, the better. Table 4 reports two works employing GPUs and SimpleITK as soft-

ware counterparts of Hephaestus. Additionally, while Hephaestus and SimpleITK reach results

in the same order of magnitude, the two works exploiting GPUs achieve way better performance

and energy efficiency results. This difference is strictly connected to the heavy preprocessing done

like considering only 15% of the total number of voxels, which, in some cases, as explained by the

authors, also led to a failure of the registration process.

Based on these considerations, we discuss the results obtained by Hephaestus and SimpleITK

regarding the performance metric and energy efficiency. As a first general trend, Table 4 shows, as

expected, that the implementations exploiting 1+1 Evolutionary optimizer generally reach higher

performance and energy efficiency results than the Powell-based counterparts, although, as we had

seen, they are always less accurate. A second general trend that further supports the previously de-

scribed results is that Hephaestus consistently achieves better performance and energy efficiency

results than its SimpleITK counterparts with top improvements of 1.85× and 2.35×, respectively.

Looking at the high-performance configurations, they are always faster than the embedded ones,

and, therefore, they reach better performance results. Additionally, looking at the energy efficiency,

they reach the same order of magnitude as the embedded ones, but such a similarity is given by
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Table 4. Comparison with Related Work with Performance (Perf.) Measured as Proposed by Shams

et al. [26] (the Lower the Better), and Energy Efficiency (Energy Eff.) as we Previously Proposed [7] (the

Higher the Better)

Arch. Work Transform Metric Optimizer Hardware
Perf. Energy Eff.

[ ms
MV oxels ·iter s

] [ iter s ·MV oxels
kW ·ms

]

FPGA

1C-2HPE-16EPE 3D Rigid 3D MI
†

Powell PYNQ ZU (16nm) 459.7509
∧ �

0.1954
‡

1C-2HPE-16EPE 3D Rigid 3D MI
†

1+1 PYNQ ZU (16nm) 207.8363
� ⊗

0.4216
‡

1C-4HPE-16EPE 3D Rigid 3D MI
†

Powell ZCU104 (16nm) 470.3763
∧ �

0.1583
‡

1C-4HPE-16EPE 3D Rigid 3D MI
†

1+1 ZCU104 (16nm) 213.4435
∧ ⊗

0.348
‡

2C-8HPE-8EPE 3D Rigid 3D MI
†

Powell Alveo U200 (16nm) 56.1841
�

0.1486
‡

2C-8HPE-8EPE 3D Rigid 3D MI
†

Powell Alveo U200 (16nm) 13.0226

�

0.6413
‡

1C-8HPE-8EPE 3D Rigid 3D MI
†

Powell Alveo U200 (16nm) 15.4949

�

0.6338
‡

1C-8HPE-8EPE 3D Rigid 3D MI
†

Powell Alveo U200 (16nm) 68.0001
�

0.1444
‡

1C-8HPE-8EPE 3D Rigid 3D MI
†

1+1 Alveo U200 (16nm) 34.6938
⊗

0.2744
‡

2C-8HPE-16EPE 3D Rigid 3D MI
†

Powell Alveo U280 (16nm) 44.0455
�

0.1959
‡

1C-16HPE-16EPE 3D Rigid 3D MI
†

Powell Alveo U280 (16nm) 54.9499
�

0.1657
‡

1C-16HPE-16EPE 3D Rigid 3D MI
†

1+1 Alveo U280 (16nm) 28.4451
⊗

0.3195
‡

GPU
[16] 3D Nonrigid 3D NMI

†
Grad. Desc.

†
GTX 580 (40nm) 0.1378

♠♣
31.52

�

[2] 3D Nonrigid
†

3D NMI
†

Stoch. Grad. Desc.
†

Tesla K40c (28nm) 2.5750
♥

1.58
�

CPU

SimpleITK [18] 3D Rigid 3D MI Powell ARM A53 (PZU) (16nm) 919.6886
∧ ⊗

0.0857
‡

SimpleITK [18] 3D Rigid 3D MI 1+1 ARM A53 (PZU) (16nm) 282.2573
� ⊗

0.2800
‡

SimpleITK [18] 3D Rigid 3D MI Powell ARM A53 (ZCU) (16nm) 613.6293
∧ ⊗

0.1529
‡

SimpleITK [18] 3D Rigid 3D MI 1+1 ARM A53 (ZCU) (16nm) 281.0516
∧ ⊗

0.3335
‡

SimpleITK [18] 3D Rigid 3D MI Powell Intel i7-4770 (22nm) 121.8642
⊗

0.0634
‡

SimpleITK [18] 3D Rigid 3D MI 1+1 Intel i7-4770 (22nm) 43.8520
⊗

0.1796
‡

SimpleITK [18] 3D Rigid 3D MI Powell AMD R7-3700X (7nm) 64.8199
⊗

0.0955
‡

SimpleITK [18] 3D Rigid 3D MI 1+1 AMD R7-3700X (7nm) 23.9288
⊗

0.2592
‡

In bold the best 3D metrics per device class, while in italics the best overall performing configuration (high-performance

exploiting embedded tailoring).
†

Implemented in hardware.
�

Computed with Thermal Design Power (TDP) as

power.
‡

Computed with whole system power consumption.
�
Registration on 100 slices.

∧
Registration on 60 slices.



Registration on 40 slices.

⊗
200 iterations.

�
234 iterations.

�
156 iterations.

♠
Exploits the binning to reduce

joint histogram sizes
♣

This value is the result of several dataset-specific approximations and preprocessing that reduces

the computation to 1/6 and lead to misregistrations [16].
♥

Working on 15% of image pixels.

the fact that the energy efficiency metric considers both the power consumption and the execution

time. Therefore the similarity in the attained values resides in the fact that, while the embedded

devices require less power than the high-performance ones, they are also slower.

Finally, a last consideration should be done regarding the two high-performance configurations

on the Alveo U200 exploiting the tailoring made for the embedded (1C-8HPE-8EPE and 2C-8HPE-

8EPE); indeed, they exploit a 40-slice subvolume to find the optimal transformation parameters

reaching an accuracy above 0.98 while highly reducing the overall registration time. Therefore,

Table 4 shows how they attain, although exploiting Powell’s optimizer, the best performance and

energy efficiency results with an improvement over SimpleITK run on the same CPU host (Intel

i7-4770). In particular, Hephaestus achieves improvement in performance of 9.35× and 7.86×,

and in energy efficiency of 10, 11× and 9.99×, on dual-core and single-core versions of AU200

respectively, along with higher accuracy (0.984 versus 0.816).

5 CONCLUSIONS AND FUTURE WORK

This paper presented Hephaestus, a 3D-based framework for creating and developing software

programmable FPGA-based accelerators for the MI similarity metric integrated into affine image

registration pipelines. Indeed, the software programmability easily adapts to different input
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volume dimensions and, thanks to the proposed hardware abstraction layer, transparently allows

the end users to benefit from hardware acceleration without needing specific knowledge in

hardware development. Finally, from Hephaestus validation, we have seen how it outperforms

the other solutions in terms of accuracy, execution time (up to 1.85× faster), and energy efficiency

(up to 2.35× more efficient).

Future Work – To improve Hephaestus, we aim to explore the use of pyramid levels for high-

resolution images. Indeed, at the first pyramid level, a low-resolution version of the volumes should

be registered to fix large misalignment, until, in the last pyramid level, the original high-resolution

volumes are used, and the registration aims at registering eventual finer residual misalignment. In

this second scenario, the proposed automation could enable the creation of a database of 3D MI

accelerators with different image dimensions, where the FPGA reconfigurability is exploited to

adapt the accelerator to the different pyramid levels.

Finally, exploring the URAM usage would open further improvements of Hephaestus. Thanks

to this, we could cache the whole reference volume throughout the registration procedure and

scale the number of PEs better, gaining more bandwidth, higher running frequencies, data locality,

and power consumption improvements.
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