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Abstract:We study an anisotropic, possibly non-homogeneous version of the evolution p-Laplacian equation
when fast diffusion holds in all directions. We develop the basic theory and prove symmetrization results
from which we derive sharp L1-L∞ estimates. We prove the existence of a self-similar fundamental solution
of this equation in the appropriate exponent range, and uniqueness in a smaller range. We also obtain the
asymptotic behaviour of finite mass solutions in terms of the self-similar solution. Positivity, decay rates as
well as other properties of the solutions are derived. The combination of self-similarity and anisotropy is not
common in the related literature. It is however essential in our analysis and creates mathematical difficulties
that are solved for fast diffusions.

Keywords: Nonlinear Parabolic Equations, p-Laplace Diffusion, Anisotropic Equation, Symmetrization,
Fundamental Solutions, Asymptotic Behaviour

MSC 2010: 35K55, 35K65, 35A08, 35B40
||
Communicated by: Julián López Gómez

1 Introduction
This paper focuses on the study of the existence of self-similar fundamental solutions to the following “aniso-
tropic p-Laplacian equation” (APLE for short):

ut =
N
∑
i=1
(|uxi |pi−2uxi )xi posed in Q := ℝN × (0, +∞), (1.1)

and their role to describe the long-time behaviour of general classes of finite-mass of the initial-value prob-
lem. Fundamental solutions are solutions of the equation for all times t > 0 that take a point mass (i.e.,
a Dirac delta) as initial data. In the process, we construct a theory of existence and uniqueness for initial
data in Lq spaces, 1 ≤ q < +∞, and we prove important results on symmetrization, boundedness, barriers
and positivity.

We are specially interested in the presence of different growth exponents pi. We take N ≥ 2 and pi > 1 for
i = 1, . . . , N. Therefore, this equation is ananisotropic relative of the standard isotropic p-Laplacian equation

ut = ∆pu :=
N
∑
i=1
(|∇u|p−2uxi )xi , (1.2)
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that has been extensively studied in the literature as the standard model for gradient dependent nonlinear
diffusion equation, with possibly degenerate or singular character. Thoughmost the attention has been given
to the elliptic counterpart, −∆pu = f , the parabolic case is also treated; see e.g. the well-known [30, 40, 41]
among the many references.

Even in the case where all the exponents pi in (1.1) are the same, we obtain an alternative version
ut = Lp,h(u) with a homogeneous but non-isotropic spatial operator

Lp,h(u) :=
N
∑
i=1
(|uxi |p−2uxi )xi , (1.3)

which appears quite early in the literature; cf. [41, 65, 66]; see also [14]. This operator has been sometimes
named “pseudo-p-Laplacian operator” [10], and more recently, “orthotropic p-Laplacian operator” [16, 17],
due to the invariance of Lp,h with respect to the dihedral group for N = 2. This will be our preferred denom-
ination. The parabolic version appears in [36, 51, 52]. In the general studies of nonlinear diffusion, the
case where the exponents pi are different falls into the category of “structure conditions with non-standard
growth”. The anisotropic equation was also studied in a number of references like [39, 53]. Actually, a more
general doubly nonlinear model was introduced in those references; see also [2]. Very general structure con-
ditions are considered by various authors like [57], specially in elliptic problems. Our interest here differs
from those works.

The Setting. We consider solutions to the Cauchy problem for equation (1.1) with nonnegative initial data

u(x, 0) = u0(x), x ∈ ℝN . (1.4)

We assume that u0 ∈ L1(ℝN), u0 ≥ 0, and put M := ∫ℝN u0(x) dx, the so-called total mass. The reader is here
reminded that the strong qualitative and quantitative separation between the two exponent ranges, p > 2 and
p < 2, is a key feature of the isotropic p-Laplacian equation (1.2).We recall that, in the isotropic equation, the
range p > 2 is called the slow gradient-diffusion case (with finite speed of propagation and free boundaries),
while the range1 < p < 2 is called the fast gradient-diffusion case (with infinite speed of propagation); cf. [30]
and [61, Section 11].

In this paper, we will focus on the case where fast diffusion holds in all directions, i.e.,

1 < pi < 2 for all i = 1, . . . , N. (H1)

We recall that, in the orthotropic fast diffusion equation (i.e., equation (1.1) with p1 = p2 = ⋅ ⋅ ⋅ = pN = p < 2,
hence p-homogeneous), there is a critical exponent

pc(N) :=
2N
N + 1

such that p > pc is a necessary and sufficient condition for the existence of fundamental solutions; cf. [61].
Note that 1 < pc(N) < 2 for N ≥ 2.

Moreover, we will always assume the condition

N
∑
i=1

1
pi
<
N + 1
2 , (H2)

that is crucial in what follows. We wemay also write it in terms of pc as ̄p > pc, where ̄p is the inverse average

1
̄p
=
1
N

N
∑
i=1

1
pi
. (1.5)

We point out that (H2) excludes the presence of (many) small exponents 1 < pi < pc close to 1. On the
contrary, condition (H2)would obviously be in force under the assumptions of slowdiffusion in all directions:
2 ≤ pi < +∞ for all i = 1, . . . , N (a situation we will not consider here). However, in the fast diffusion range,
we have to impose it; otherwise, the results we expect to obtain would be false.
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Finally, it is well known in the literature on operators with non-standard growth that some control on
the difference of diffusivity exponents is needed; see for instance [9, 15, 42]. Here, we will only need the
condition

pi ≤
N + 1
N
̄p (H3)

(see Section 2). It is remarkable that this condition is automatically satisfied if (H1) and (H2) are in force.
Under these conditions on the exponents, we develop a theory of existence, regularity, symmetrization,

and upper and lower estimates for the Cauchy problem. We prove the existence of a self-similar solution
starting from a Dirac mass, so-called fundamental solution or Barenblatt solution. Moreover, in the partic-
ular orthotropic case where pi = p for all i, thanks to extra regularity results that we derive, it is possible to
prove uniqueness of the fundamental solution, and the theory goes on to show the asymptotic behaviour
of all nonnegative finite mass solutions in the sense that they are attracted by the corresponding Barenblatt
solution with same mass as t →∞. This set of results shows that the ideas proposed by Barenblatt in his
classical work [8] are valid for our equation too.

Outline of the Paper by Sections. Here is a detailed summary of the contents. In Section 2, we examine the
form of the possible self-similar solutions, the a priori conditions on the exponents, andwe also introduce the
renormalized equation and its elliptic counterpart. The role of assumptions (H1), (H2) and (H3) is examined.

In Section 3, we review the basic existence and uniqueness theory for the Cauchy Problem using the
theories of monotone and accretive operators in Lq spaces. This general theory is valid in the whole range
pi > 1, with no further restriction on the exponents. The L1 theory is examined in detail in Section 4.

In Section 5, we develop the technique of Schwarz symmetrization for our anisotropic equation, and we
prove sharp comparison results by using the concept ofmass concentration as explained in [60]. Symmetriza-
tion is an important topic in itself with a huge literature, specially when anisotropy is mild; see [4, 5, 56]. The
passage from anisotropic to isotropic is based on a sharp elliptic result by Cianchi [22] that we develop in this
setting usingmass comparison, a strong tool used in some of our previous papers. The topic has independent
interest, and the theory and results are proved for all pi > 1 under assumption (H2).

The theory developed up to this point (including symmetrization) is used in Section 6 to obtain a uniform
L∞ bound for solutionswith L1 data, the so-called L1-L∞ effect. Theorem6.1 is a key estimate inwhat follows.

We begin at thismoment the construction of the self-similar fundamental solution under conditions (H1)
and (H2). In a preparatory section, Section 7, we construct the sharp anisotropic upper barrier for the solu-
tions of our problem; this is another key tool that we need. The theory is now ready to tackle the construction
of the special solution. The existence result, Theorem 8.1, is maybe the main result of the paper. In Sec-
tion 9, we construct the lower barrier and prove global positivity, an important additional information on the
obtained solution.

The very delicate question of uniqueness of the fundamental solutions is solved only for the orthotropic
case, pi = p, in Section 10.2, and as a consequence, we establish the asymptotic behaviour of general solu-
tions of the Cauchy problem in that case; see Section 10.3. Both questions remain open for the anisotropic
non-orthotropic equations.

As supplementary information, we discuss in Section 12 the necessary control on the anisotropy for the
theory towork.We devote Section 13 to introduce the study of self-similarity for anisotropic doubly nonlinear
equations. Finally, we add a section on comments and open problems.

Some RelatedWorks. This work follows the study of self-similarity for the anisotropic porous medium equa-
tion (APME) in the fast diffusion range done by the authors in [34], where previous references to the literature
are mentioned. Though it is well known that the PME and the PLE are closely related as models of nonlin-
ear diffusion of degenerate type (see for instance [63]), the theories and the results differ in many important
details, hence the interest on this investigation.

In a recent paper, Ciani and Vespri [23] study the existence of Barenblatt solutions for the same aniso-
tropic p-Laplace equation (1.1) posed also in the whole space, but they consider the slow diffusion case in
all directions, i.e., pi > 2 for all i. They exploit the property of finite propagation that holds in that exponent
range. Uniqueness and asymptotic behaviour are not discussed. See [29, 31] for related previous results in
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the slow diffusion range of exponents pi. These papers contain thus parallel, non-overlapping information
with respect to our present results that deal with fast diffusion. Let us finally point out that the existence of
fundamental solutions for anisotropic elliptic equations is a different issue; it has been studied by several
authors like [25].

2 Self-Similar Solutions
We start our study by taking a closer look at the possible class of self-similar solutions. This section follows
closely the arguments of [34] for the anisotropic porous medium equation, but they lead to a quite different
algebra; hence a careful analysis is needed. The common type of self-similar solutions of equation (1.1) takes
into account the anisotropy in the form

B(x, t) = t−αF(t−a1x1, . . . , t−aN xN),

with constants α > 0, a1, . . . , an ≥ 0 to be chosen below by algebraic considerations. Indeed, if we substitute
this formula into equation (1.1) and write y = (y1, . . . , yN) and yi = xi t−ai , equation (1.1) becomes

−t−α−1[αF(y) +
N
∑
i=1
aiyiFyi] =

N
∑
i=1
t−[α(pi−1)+piai](|Fyi |pi−2Fyi )yi .

We see that time is eliminated as a factor in the resulting equation on the condition that

α(pi − 1) + piai = α + 1 for all i = 1, 2, . . . , N.

We also look for integrable solutions that will enjoy the mass conservation property, and this implies that
α = ∑Ni=1 ai. Imposing both conditions and putting ai = σiα, we get unique values for α and σi,

α = N
N ̄p − 2N + ̄p , (2.1)

σi =
1
pi
(N + 1) ̄p

N
− 1, i.e., σi −

1
N
=
(N + 1)
N
( ̄p − pi)
pi

, (2.2)

so that∑Ni=1 σi = 1. This is a delicate calculation that produces the special value ̄p.
Observe that condition (H2) is required to ensure that α > 0 so that the self-similar solution will decay

in time in maximum value like a power of time. This is a crucial condition for the self-similar solution to
exist and play its role as asymptotic attractor since the existence theory we present contains the maximum
principle; hence the sup norm of the constructed solutions cannot increase in time.

As for the σi exponents that control the rate of spatial spread in each coordinate direction, we know that
∑Ni=1 σi = 1, and in particular, σi = 1

N in the homogeneous case. Condition (H3) on the pi ensures that σi > 0.
This means that the self-similar solution expands as time passes (or at least, it does not contract), along any
of the coordinate directions.

To fix ideas, we present in Section 12 a graphic analysis of assumptions (H1), (H2), (H3) for general
exponents pi > 1 in dimension N = 2. We also compare this analysis with the predictionsmade in [34] for the
APME.

With these choices, the profile function F(y) must satisfy the following nonlinear anisotropic stationary
equation inℝN :

N
∑
i=1
[(|Fyi |pi−2Fyi )yi + ασi(yiF)yi ] = 0. (2.3)

Conservation of mass must also hold, ∫ B(x, t) dx = ∫ F(y) dy = M <∞ for all t > 0. It is our purpose to prove
that there exists a suitable solution of this elliptic equation, which is the anisotropic version of the equation
of the Barenblatt profiles in the standard p-Laplacian; cf. [61].
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Examples. (1) The isotropic case. It is well known that the source-type self-similar solution is indeed explicit
in the isotropic case

ut =
N
∑
i=1
(|∇u|p−2uxi )xi .

Of course, for p = 2, we obtain the Gaussian kernel of the heat equation, F(y) = (4π)− N2 e−
|y|2
4 . In the nonlinear

cases, we get two different but related formulas.
For pc < p < 2,

F(y) = (C0 +
2 − p
p

λ−
1
p−1 |y| pp−1 )− p−12−p

.

When p > 2, we get

F(y) = (C0 −
p − 2
p

λ−
1
p−1 |y| pp−1 ) p−1p−2

+
,

with λ = N(p − 2) + p, and C0 > 0 is an arbitrary constant such that it can be determined in terms of the initial
mass M. They are called the Barenblatt solutions [7].

For 1 < p ≤ 2, the profile F is everywhere positive; moreover, for pc < p < 2, the profile F belongs to
L1(ℝN) and has a decay with a characteristic power rate. On the contrary, for p > 2, the profile F has compact
support and exhibits a free boundary. Free boundaries are important objects for slow diffusion, but they will
appear in this paper only in passing.

(2) The orthotropic case.We have found a rather similar explicit formula for F when pi = p for all i so that
̄p = p. In that case, we have, if pc < p < 2,

F(y) = (C0 +
2 − p
p

λ−
1
p−1 N
∑
i=1
|yi|

p
p−1)− p−12−p

, (2.4)

with C0 > 0 and λ = N(p − 2) + p as above. It is a solution to (2.3) because it solves

|Fyi |p−2Fyi +
α
N
yiF = 0 inℝN for all i.

Moreover, the condition pc < p guarantees that F ∈ L1(ℝN). Note that the constant C0 > 0 is arbitrary and
allows fixing the mass M > 0 at will.

As a complement, we state the case p > 2,

F(y) = (C0 −
p − 2
p

λ−
1
p−1 N
∑
i=1
|yi|

p
p−1) p−1p−2
+

, (2.5)

with C0 > 0 and same λ. To our best knowledge, the explicit formulas (2.4) and (2.5) are new, as well as the
formulas for V below.

In order to fix the mass of F given by (2.4) or (2.5), we use the transformation Tk[F(y)] = kF(k
2−p
p y) that

changes solutions into new solutions of the stationary equation (2.3) with pi = p and changes the mass
according to the rule

∫Tk[F(y)] dy = kN+1−
2N
p ∫ F(z) dz.

(3) Putting C0 = 0 in (2.4), we get for pc < p < 2 the following parabolic solution:

V(x, t) = k1t
1

2−p( N∑
i=1
|xi|

p
p−1)− p−12−p

for suitable k1 > 0.

This is called a very singular solution since it contains a singularity with infinite integral at x = 0. A much
more singular solution can be obtained by separating the variables,

V(x, t) = k2t
1

2−p( N∑
i=1
|xi|−

p
2−p) for suitable k2 > 0.

(4) We will not get any explicit formula for F in the general anisotropic case, but we will have existence
of self-similar solutions and suitable estimates, in particular decay.
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2.1 Self-Similar Variables

In several instances in the sequel, it will be convenient to pass to self-similar variables, by zooming the orig-
inal solution according to the self-similar exponents (2.1)–(2.2). More precisely, the change is done via the
formulas

v(y, τ) = (t + t0)αu(x, t), τ = log(t + t0), yi = xi(t + t0)−σiα , i = 1, . . . , N, (2.6)

with α and σi as before.We recall that all of these exponents are positive. There is a free time parameter t0 ≥ 0
(a time shift).

Lemma 2.1. If u(x, t) is a solution (resp. super-solution, sub-solution) of (1.1), then v(y, τ) is a solution (resp.
super-solution, sub-solution) of

vτ =
N
∑
i=1
[(|vyi |pi−2vyi )yi + ασi(yiv)yi ], ℝN × (τ0, +∞). (2.7)

This equation will be a key tool in our study. Note that the rescaled equation does not change with the time
shift t0, but the initial value in the new time does, τ0 = log(t0). Thus, if t0 = 1, then τ0 = 0. If t0 = 0, then
τ0 = −∞, and the v equation is defined for τ ∈ ℝ.

We stress that this change of variables preserves the L1 norm. The mass of the v solution at new time
τ ≥ τ0 equals that of the u at the corresponding time t ≥ 0.

This equation enjoys a scaling transformation Tk that changes the mass,

Tk[v(y, τ)] = kv(kβ1y1, . . . , kβN yN , τ), βi =
2 − pi
pi

, (2.8)

with scaling parameter k > 0. Working out the new mass, we get

∫
ℝN

Tk[v(y, τ)] dy = ∫
ℝN

v(y, τ) dy

with μ = 1 −∑i βi = N + 1 −∑i( 2pi ) = (N + 1) − (
2N
̄p ). We have μ > 0 since ̄p > pc.

3 Basic Theory, Variational Setting
The theory of the anisotropic p-Laplacian operator (1.1) shares a number of basic featureswith its best known
relative, the standard isotropic p-Laplacian ∆p. These common traits have been already mentioned in the
literature in the case of anisotropy with same powers, but we will see here that the similarities extend to the
general form. The only assumption we make in this setting is that pi > 1 for all i = 1, . . . , N. We denote by
X ⃗p the anisotropic Banach space

X ⃗p = {u ∈ L2(ℝN) : uxi ∈ Lpi (ℝN) for all i = 1, . . . , N}

endowed with the norm

‖u‖X ⃗p = ‖u‖L2 + N
∑
i=1
‖uxi‖Lpi .

It is easy to see that C∞c (ℝN) is dense in X ⃗p and that X ⃗p reduces to H1(ℝN) when p = 2.
Let us consider the anisotropic operator

A(u) := −
N
∑
i=1
(|uxi |pi−2uxi )xi , (3.1)

defined on the domain
D(A) = {u ∈ X ⃗p : A(u) ∈ L2(ℝN)}.
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It is easy to see thatA : D(A) ⊂ L2(ℝN)→ L2(ℝN) is the subdifferential of the convex functional

J(u) =
{{{{
{{{{
{

N
∑
i=1

1
pi
∫
ℝN

|uxi (x)|pi dx if u ∈ X ⃗p ,

+∞ if u ∈ L2(ℝN) \ X ⃗p ,

(3.2)

whenever pi > 1 for all i. Then we have that the domain of J is D(J) = X ⃗p. Now we use the theory of max-
imal monotone operators of [19] (see also the monograph [6] and [62, Chapter 10] for a summary and its
application to the porous medium equation). Let us prove some important facts, which follow from classical
variational arguments. Thus we can solve the nonlinear elliptic equation

λAu + u = f (3.3)

in a unique way for all f ∈ L2(ℝN) and all λ > 0, with solutions u ∈ D(A). Solutions with such regularity are
called strong solutions in the elliptic theory (see Definition 3.1 for the evolution problem).

Proposition 3.1. For all λ > 0 and f ∈ L2(ℝN), there exists a unique strong solution u ∈ X ⃗p of (3.3). Moreover,
the T-contractivity holds: if f1, f2 ∈ L2(ℝN) and u1, u2 solve (3.3) with datum f1, f2 respectively, we have

∫
ℝN

(u1 − u2)2+ dx ≤ ∫
ℝN

(f1 − f2)2+ dx, (3.4)

where (f )+ = max{f (x), 0}. Finally, a comparison principle applies in the sense that f1 ≥ f2 a.e. in ℝN implies
u1 ≥ u2 a.e. inℝN .

Proof. Let us define the functional

J(u) = λ
N
∑
i=1

1
pi
∫
ℝN

|uxi |pi dx +
1
2 ∫
ℝN

u2 dx − ∫
ℝN

fu dx

for any u ∈ X ⃗p. It is clear that J is strictly convex; thus, if a minimizer exists, it is the unique weak solution
to (3.3). Let us prove that J is bounded from below. For any u ∈ X ⃗p, we have, by Young’s inequality,

J(u) ≥ λ
N
∑
i=1

1
pi
∫
ℝN

|uxi |pi dx + (
1
2 − ε) ∫

ℝN

u2 dx − C(ε) ∫
ℝN

f 2 dx.

Hence, choosing ε < 1
2 ,

J(u) ≥ −C(ε) ∫
ℝN

f 2 dx.

Now, if {un} ⊂ X ⃗p is a minimizing sequence of J, it easily follows that

‖un‖2L2(ℝN ) ≤ 2J(un) + 2 ∫
ℝN

fun dx.

Then Young’s inequality again provides

(1 − 2ε)‖un‖2L2(ℝN ) ≤ 2J(un) + C(ε) ∫
ℝN

f 2 dx.

Then, by uniform boundedness of J(un), the sequence {un} ⊂ X ⃗p is bounded in L2(ℝN). Thus it admits a sub-
sequence, which we still label {un}, weakly converging to some u ∈ L2(ℝN). Now we observe that

λ 1
pi
∫
ℝN

|∂xiun|pi dx ≤ J(un) + ∫
ℝN

fun dx for every i = 1, . . . , N,
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and since J(un) is uniformly bounded and {un} is bounded in L2(ℝN), we have that {∂xiun} is bounded in
Lpi (ℝN) for all i = 1, . . . , N. Thus, up to subsequences, it follows ∂xiun ⇀ gi weakly in Lpi (ℝN) for each
i = 1, . . . , N. Since un converges weakly in L2(ℝN) to u, we find gi = ∂xiu for all i = 1, . . . , N. By the lower
semi-continuity of the Lq(ℝN) norms, we then obtain

lim inf
n→∞

J(un) = lim inf
n→∞
(λ

N
∑
i=1

1
pi
∫
ℝN

|∂xiun|pi dx +
1
2 ∫
ℝN

u2n dx − ∫
ℝN

fun dx)

≥ λ
N
∑
i=1

1
pi

lim inf
n→∞
∫
ℝN

|∂xiun|pi dx +
1
2 lim inf

n→∞
∫
ℝN

u2n dx − ∫
ℝN

fu dx

≥ λ
N
∑
i=1

1
pi
∫
ℝN

|∂xiu|pi dx +
1
2 ∫
ℝN

u2 dx − ∫
ℝN

fu dx = J(u);

therefore, u is the unique minimizer of J. In order to prove the T contraction, as usual, we multiply by
(u1 − u2)+ the difference of the equations related to data f1 and f2 and integrate in space. We are able to con-
clude using monotonicity ofA. Note thatA(u) = f−uλ , so we have u ∈ D(A). The solution is therefore a strong
solution.

Remark 3.2. Proposition 3.1 holds if f belongs to the dual space of X ⃗p, where the dual norm replaces the
L2 norm at the right-hand side of (3.4).

Note that this also applies for the problem posed in a bounded domain Ω, and then the natural boundary
condition is u(x)→ 0 as |x|→ ∂Ω.

By Proposition 3.1, we have that R(I + λA) = L2(ℝN), and the resolvent operator

Rλ(A) = (I + λA)−1 : L2(ℝN)→ D(A)

is onto and a contraction for all λ > 0. Hence [19, Proposition 2.2] implies that A is a maximal monotone
operator in L2(ℝN) (in other words,A is maximal dissipative).

Recall that A is the subdifferential of the convex functional J(u), where J is lower semi-continuous on
L2(ℝN) (indeed, it can be easily proven that its sublevel sets are strongly closed in L2(ℝN), following some
arguments of Proposition 3.1). Hence it follows from [19, Theorem 3.1, Theorem 3.2] that we can solve the
evolution equation

ut = −A(u) (3.5)

for all initial data u0 ∈ L2(ℝN). We observe that D(A) is dense in L2(ℝN); in other words, we can con-
struct the gradient flow in all of L2(ℝN) corresponding to the functional J. In particular, the solution
u : [0, +∞)→ L2(ℝN) is such that u(t) ∈ D(A) for all t > 0; this map is Lipschitz in time; it solves equa-
tion (3.5) pointwise on ℝN for a.e. t > 0 and u(0) = u0. Moreover, the semigroup maps SAt : u0 → u(t) form
a continuous semigroup of contractions in L2(ℝN). Comparison principle and T-contractivity hold in the
sense that

∫
ℝN

(u1(t) − u2(t))2+ dx ≤ ∫
ℝN

(u0,1 − u0,2)2+ dx.

We call SAt the semigroup generated by J, and the corresponding function u( ⋅ , t) = SAt (u0) is called the
semigroup solution of the evolution problem (or more precisely the L2 semigroup solution). In particular,
u solves the partial differential equation (3.5) in the sense of strong solutions in L2(ℝN), i.e., it agrees with
the following definition.

Definition 3.1. If X is a Banach space, a function u ∈ C((0, T); X) is called a strong solution of the abstract
ODE ut = −Au if it is absolutely differentiable as an X-valued function of time for a.e. t > 0, and moreover,
u(t) ∈ D(A) and ut = −Au for almost all times.

The theory says that, when X is a Hilbert space and A is a subdifferential, then the semigroup solution is
a strong solution and u(t) ∈ D(A) for all t > 0. When u0 ∈ L2(ℝN), since D(A) is dense L2(ℝN), we can use
this theory to get strong solutions for every initial datum in that class.
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The semigroup solution has extra regularity in anisotropic Sobolev spaces by virtue of the following two
computations; see [19, Theorem 3.2]:

1
2
d
dt
‖u(t)‖22 = −⟨Au(t), u(t)⟩L2 = −

N
∑
i=1
∫
ℝN

|uxi (x)|pi dx ≤ −(min
i
pi)J(u(t)). (3.6)

Moreover, we have the following entropy-entropy dissipation identity:
d
dt

J(u(t)) = ⟨Au(t), ut(t)⟩ = −‖ut(t)‖22, (3.7)

where the norms are taken in ℝN . It follows that both ‖u(t)‖2 and J(u(t)) are decreasing in time. Then,
from (3.6), integrating on (0, t), we get the estimate

J(u(t)) ≤
C‖u0‖22
t

for every t > 0, (3.8)

and from (3.7), integrating on (t1, t2),
t2

∫
t1

∫
ℝN

u2t (x, t) dx dt ≤ J(u(t1)). (3.9)

This Sobolev regularity gives the compactness for times t ≥ τ > 0 that we will need in Subsection 10.3.
In this work, we will also need an important extra property of the L2 semigroup which is the property of

generating a contraction semigroup with respect to the norm of Lq(ℝN) for all q ≥ 1, in particular for q = 1.
The q-semigroup in such a norm is defined first by restriction of the data to L2(ℝN) ∩ Lq(ℝN), and then it is
extended to Lq(ℝN) by the technique of continuous extension of bounded operators. We leave the details to
the reader since it is well-known theory, but see the next section.

We will concentrate in the sequel on the semigroup solutions corresponding to data u0 ∈ L1(ℝN), which
we may call L1 semigroup solutions. Apart from existence, uniqueness and comparison, we will need three
extra properties: boundedness for positive times and comparison with super- and subsolutions defined in
a suitable way.

For future reference, let us state a general decay result.

Proposition 3.3. If u0 ∈ Lq(ℝN) for q ∈ [1, +∞], then the Lq norms ‖u(t)‖q are nonincreasing in time.

Two reminders about related results. First the variational theory applies in bounded domains with suitable
boundary data.

Remark 3.4. The semigroup theory applies to Dirichlet boundary problem defined in a bounded domain Ω
as well with zero boundary data.

We can also consider equations with a right-hand side.

Remark 3.5. The complete evolution equation ut +A(u) = f including a forcing term can also be treatedwith
the same maximal monotone theory when f ∈ L2(0, T : L2(ℝN)) or f ∈ L2(0, T : L2(Ω)).

Wewill not need such developments here. In the last case, we do not get a semigroup but amore complicated
object u = u(x, t; u0, f).

4 The L1 Theory
In this section, we will extend to the framework of the L1(ℝN) space the existence result for solutions to the
Cauchy problem for the full anisotropic equation (1.1). This amounts in practice to extending the contraction
semigroup defined in L2(ℝN) in the previous section to a contraction semigroup in L1(ℝN), an issue that has
been studied in some detail in the literature on linear and nonlinear semigroups; see [26, 28, 32, 47, 54]. We
will work for simplicity under assumptions (H1)–(H2) (but see Remark 4.3).
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For the reader’s benefit, we will present the most important details. Experts may skip this section. The
extension will be done by means of nonlinear semigroup theory in Banach spaces and using the results of
the previous section in Hilbert spaces. We will provide the existence of amild solution by solving the implicit
time discretization scheme (ITDS for short). Since the ITDS, as we see below, is based on the existence and
uniqueness of solutions to the stationary elliptic problemwith a zero-order term, wewill first recollect briefly
some information concerning the problem

{{
{{
{

−
N
∑
i=1
(|uxi |pi−2uxi )xi + μu = f inℝN ,

u(x)→ 0 as |x|→∞,
(4.1)

for arbitrary constant μ > 0.

Theorem 4.1. Assume f ∈ L1(ℝN) and μ > 0. Then there is a unique strong solution u ∈ L1(ℝN) to (4.1). More-
over, the following L1 contraction principle holds: if f1, f2 ∈ L1(ℝN) and u1, u2 are the corresponding solutions,
we have

∫
ℝN

(u1 − u2)+ dx ≤ ∫
ℝN

(f1 − f2)+ dx. (4.2)

In particular, if f1 ≤ f2, we have u1 ≤ u2 a.e.

Proof. We can proceed by approximation. Let us denote Tk(s) := min{|s|, |k|} sign(s), and let us take

fk = Tk(f ) ∈ L2(ℝN) ∩ L1(ℝN)

such that fk → f in L1(ℝN) and ‖fk‖L1(ℝN ) ≤ ‖f ‖L1(ℝN ) as a datum in (4.1).
(i) Let u1k and u

2
k be two solutions of the approximate problems with, respectively, data f 1k and f 2k in

L2(ℝN). Following [62, Proposition 9.1], let p(s) be a smooth approximation of the positive part of the sign
function sign(s), with p(s) = 0 for s ≤ 0, 0 ≤ p(s) ≤ 1 for all s ∈ ℝ and p(s) ≥ 0 for all s ≥ 0. Take any cutoff
function ζ ∈ C∞c (ℝN), 0 ≤ ζ ≤ 1, ζ (x) = 1 for |x| ≤ 1, ζ (x) = 0 for |x| ≥ 2, and set ζn(x) = ζ ( xn ) for n ≥ 1 so that
ζn ↑ 1 as n →∞. Using p(u1k − u

2
k)ζn(x) as test function in the difference of equations and letting p tend to

sign+, we get
N
∑
i=1
∫
ℝN

(|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k)xi sign

+(u1k − u
2
k)ζn(x) dx

+ μ ∫
ℝN

(u1k − u
2
k) sign

+(u1k − u
2
k)ζn(x) dx = ∫

ℝN

(f 1k − f
2
k ) sign

+(u1k − u
2
k)ζn(x) dx.

Now the monotonicity of the operator gives

μ ∫
ℝN

(u1k − u
2
k) sign

+(u1k − u
2
k)ζn(x) dx

≤ ∫
ℝN

(f 1k − f
2
k )+ζn(x) dx −

N
∑
i=1
∫
ℝN

(|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k) sign

+(u1k − u
2
k)∂xi ζn(x) dx.

We let now n →∞ to obtain
∫
ℝN

(u1k − u
2
k)+ dx ≤ ∫

ℝN

(f 1k − f
2
k )+ dx (4.3)

since the right-hand side goes to zero. Indeed, we have
N
∑
i=1
∫
ℝN

(|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k) sign

+(u1k − u
2
k)∂xi ζn(x) dx

≤
N
∑
i=1
(∫
ℝN

(|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k)

pi dx) 1
pi 1
n(∫
ℝN

∂xi ζ
pi
n (x) dx)

1
pi

≤
N
∑
i=1
(∫
ℝN

(|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k)

pi dx) 1
pi 1
n
‖∂xi ζn‖∞( ∫

n<|x|<2n

dx)
1
pi

and that (|∂xiu1k |
pi−2∂xiu1k − |∂xiu

2
k |
pi−2∂xiu2k)

pi ∈ L1(ℝN).
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(ii) By (4.3), it follows that {ujk} is a Cauchy sequence in L
1(ℝN); then ujk → uj in L1(ℝN) for j = 1, 2, and

we can pass to the limit in (4.3) obtaining (4.2).
(iii) Using Tm(uk) as test function in the problem with datum fk, we get the following a priori estimate:

N
∑
i=1
∫
ℝN

|(Tm(uk))xi |pi dx + μ ∫
ℝN

(Tm(uk))2 dx ≤ mC(N, p1, . . . , pN , ‖f ‖L1(ℝN ))

for every m > 0. By an anisotropic version of [11, Lemmas 4.1 and 4.2], we have
N
∑
i=1
‖(uk)xi‖Msi (ℝN ) ≤ C(N, p1, . . . , pN , μ, ‖f ‖L1(ℝN )), (4.4)

where Msi denote the Marcinkiewicz (or weak-Lsi ) spaces and si = N

̄p pi for i = 1, . . . , N.

When si > 1 for all i, estimate (4.4) yields that the sequence {∂xiuk} is bounded in Lqiloc(ℝ
N) with

1 < qi < N

̄p pi. Then (up to a subsequence) ∂xiuk → ∂xiu weakly in Lqiloc(ℝ

N) and u ∈ L1(ℝN) ∩W1,1
loc (ℝ

N)
is a distributional solution to (4.1). Moreover, we get uxi ∈ M

N̄p pi (ℝN) and u ∈ M N( ̄p−1)
N− ̄p (ℝN) because

‖uk‖M N( ̄p−1)
N− ̄p (ℝN ) ≤ C(N, p1, . . . , pN , μ, ‖f ‖L1(ℝN )). (4.5)

When at least one si ≤ 1 and ̄p > pc, we have to consider a different notion of solution; see e.g. [11] for
an entropy solution’s one. Following [11], there exists a unique entropy solution and ∂

∂xi Tm(u) ∈ L
pi (ℝN) and

u ∈ L1(ℝN) ∩M
N( ̄p−1)
N− ̄p (ℝN) by (4.5).

In order to obtain the existence of solutions to the nonlinear parabolic problem, we use the Crandall–Liggett
theorem [27] (see also [62, Chapter 10]), which we briefly recall here in the abstract framework. Let X be
a Banach space and A : D(A) ⊂ X → X a nonlinear operator defined on a suitable subset of X. We start from
the abstract Cauchy problem

{
u(t) +A(u) = f, t > 0,

u(0) = u0,
(4.6)

where u0 ∈ X and f ∈ L1(0, T; X) for some T > 0. We first take a partition of the interval, say, tk = kh for
k = 0, 1, . . . , n and h = Tn , and then we solve the ITDS, made by the system of difference relations

uh,k − uh,k−1
h

+A(uh,k) = f (h)k

for k = 0, 1, . . . , n, where we set uh,0 = u0. The data set {f (h)k : k = 1, . . . , n} is supposed to be a discretiza-
tion of the source term f , satisfying the relation ‖f (h) − f‖L1(0,T;X) → 0 as h → 0. The discretization scheme
is then rephrased in the form uh,k = Jh(uh,k−1 + hf (h)k ), where Jλ = (I + λA)

−1, λ > 0, is called the resolvent
operator, I being the identity operator. When the ITDS is solved, we construct a discrete approximate solu-
tion {uh,k}k, which is the piecewise constant function uh(t), defined (for instance) by means of uh(t) = uh,k
if t ∈ [(k − 1)h, kh]. If the operatorA ism-accretive, we have that, for all u0 ∈ D(A), the abstract problem (4.6)
has a unique mild solution u, i.e., a function u ∈ C([0, T); X) which is obtained as uniform limit of approxi-
mate solutions of the type uh as h → 0, where the initial datum is taken in the sense that u(t) is continuous
in t = 0 and u(t)→ u0 as t → 0. We have then, as h → 0, u(t) := limh→0 uh(t), and the limit is always uniform
in compact subsets of [0,∞). Then we can prove the following parabolic existence-uniqueness result.

Theorem 4.2. Let0 < T ≤ +∞ andQT := ℝN × (0, T). For any u0 ∈ L1(ℝN) and any f ∈ L1(Q), there is a unique
mild solution to the Cauchy problem

{{
{{
{

ut −
N
∑
i=1
(|uxi |pi−2uxi )xi = f in Q,

u(x, 0) = u0(x) inℝN .
(4.7)

Moreover, for every two solutions u1 and u2 to (1.1) with, respectively, initial data u0,1 and u0,2 in L1(ℝN) and
source terms f1, f2 ∈ L1(QT), we have, for any 0 ≤ s ≤ t < T,

∫
ℝN

(u1(t) − u2(t))+ dx ≤ ∫
ℝN

(u1(s) − u2(s))+ dx +
t

∫
s

[u1(τ) − u2(τ), f1(τ) − f2(τ)]+ dτ, (4.8)
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with the Sato bracket notation
[v, w]+ = inf

λ>0

‖(v + λw)+‖L1 − ‖w+‖L1
λ

.

In particular, if u0,1 ≤ u0,2 and f1 ≤ f2 a.e., then, for every t > 0, we have u1(t) ≤ u2(t) a.e.

Proof. In order to apply the abstract theory recalled above, we introduce the nonlinear operator

A : D(A) ⊂ L1(ℝN)→ L1(ℝN),

defined by (3.1) with domain

D(A) := {v ∈ L1(ℝN) : vxi ∈ Msi (ℝN), A(v) ∈ L1(ℝN)},

where we recall that si = N

̄p pi. By Theorem 4.1, we see that this operator is T-accretive on the space

X = L1(ℝN). Therefore, we have that there is a unique mild solution u to (4.7), obtained as a limit of discrete
approximate solutions by the ITDS scheme. Moreover, inequality (4.8) follows.

Remark 4.3. This section also holds under assumption (H2) and pi > 1 making minor changes in the proof
of Theorem 4.1.

5 Symmetrization, New Comparison Results
In this section, we assume that (H2) holds. We want to prove a comparison result based on Schwarz sym-
metrization. We start by considering the simpler setting of nonlinear elliptic equations posed in a bounded
open set of ℝN with Dirichlet boundary condition following the classical paper [56]. In our case, it is known
that if u solves the following stationary anisotropic problem in a bounded domain Ω:

{{
{{
{

−
N
∑
i=1
(|uxi |pi−2uxi )xi = f (x) in Ω,

u = 0 on ∂Ω,
(5.1)

then rearrangement methods allow to obtain a pointwise comparison result for u with respect to the solution
of the suitable radially symmetric problem in the case of energy solutions when the datum f belongs to the
dual space. In [22], it is proved that if Ω♯ is the ball centred in the origin such that |Ω♯| = |Ω| and if u♯ is the
symmetric decreasing rearrangement of a solution u to problem (5.1), then the following inequality holds:

u# ≤ U in Ω#, (5.2)

where U is the radially symmetric solution to the following isotropic problem:

{
Λ∆ ̄pU = f #(x) in Ω#,

U = 0 on ∂Ω#,
(5.3)

where ̄p is the harmonic mean of exponents p1, . . . , pN , given by formula (1.5), while f # is the symmetric
decreasing rearrangement of f . The result needs a constant Λ > 0 that has been determined as

Λ = 2
̄p( ̄p − 1) ̄p−1
̄p ̄p
[
∏Ni=1 p

1
pi
i (p

i )

1
pi Γ(1 + 1

pi )
ωNΓ(1 + N̄p ) ]

̄p
N

(5.4)

with ωN the measure of the N-dimensional unit ball, Γ the Gamma function and pi =
pi
pi−1 .

We stress that, in contrast to the isotropic p-Laplacian equation, not only the space domain and the data
of problem (5.1) are symmetrizedwith respect to the space variable, but also the ellipticity condition is subject
to an appropriate symmetrization. Indeed, the diffusion operator in problem (5.3) is the standard isotropic
̄p-Laplacian.
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5.1 Main Ideas of the Parabolic Symmetrization

Now it is well known that the pointwise comparison (5.2) need not hold for nonlinear parabolic equations,
not even for the heat equation, and has to be replaced by a comparison of integrals known in the literature
as concentration comparison, which reads (see [5, 58–60])

s

∫
0

u∗(σ, t) dσ ≤
s

∫
0

U∗(σ, t) dσ in (0, |Ω|), (5.5)

valid for all fixed t ∈ (0, T). In [1], (5.5) is proved when ∗ is the one-dimensional, decreasing rearrangement
with respect to the space variable of the weak energy solution u to the following problem:

{{{{
{{{{
{

ut −
N
∑
i=1
(|uxi |pi−2uxi )xi = f (x, t) in Ω × (0, T),

u(x, t) = 0 on ∂Ω × (0, T),
u(x, 0) = u0(x) in Ω,

the datum belongs to the dual space, and U∗ is the same type of rearrangement of the solution U to the
following isotropic “symmetrized” problem:

{{{
{{{
{

Ut − Λ∆ ̄pU = f #(x, t) in Ω# × (0, T),
U(x, t) = 0 on ∂Ω# × (0, T),

U(x, 0) = u♯0(x) in Ω#,

respectively, with Λ defined in (5.4), u#0 the symmetric decreasing rearrangement of u0 and f #(x, t) the sym-
metric decreasing rearrangement of f with respect to x for t fixed.

Let u be ameasurable function onℝN (if u is defined on a boundeddomainΩ, we extend u by0 outsideΩ)
fulfilling

{x ∈ ℝ
N : |u(x)| > t} < +∞ for every t > 0.

The (Hardy–Littlewood) one-dimensional decreasing rearrangement u∗ of u is defined as

u∗(s) = sup{t > 0 : {x ∈ ℝ
N : |u(x)| > t} > s} for s ≥ 0,

and the symmetric decreasing rearrangement of u is the function u# : ℝN → [0, +∞[ given by

u#(x) = u∗(ωN |x|N) for a.e. x ∈ ℝN .

In what follows, we need the following order relationship, taken from [58]. Given two radially symmetric
functions f, g ∈ L1loc(ℝ

N), we say that f is more concentrated than g, f ≻ g if, for every R > 0,

∫
BR(0)

f (x) dx ≥ ∫
BR(0)

g(x) dx.

5.2 Comparison Result for Stationary Problems in the Whole Space
with a Lower-Order Term

A lack of pointwise comparison already arises in elliptic equationswith lower-order terms,which have a close
relationship with parabolic equations (see [60] where the isotropic case is treated). Indeed, by the Crandall–
Liggett implicit discretization scheme [27] (see belowor [62]), the parabolic comparison canbe obtained from
a similar comparison result for the following stationary problem with a lower-order term:

{{
{{
{

N
∑
i=1
(|uxi |pi−2uxi )xi + μu = f inℝN ,

u(x)→ 0 as |x|→∞,
(5.6)

for arbitrary μ > 0.
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Theorem 5.1. Let u be the solution of problem (5.6) with f ∈ L1(ℝN), and let U be the solution of the following
isotropic problem:

{
− Λ∆ ̄pU + μU = g inℝN ,

u(x)→ 0 as |x|→∞,

with g = g# ∈ L1(ℝN). If f # ≺ g, then we have u# ≺ U.

Proof. We can argue as in [1, Theorem 3.6], but considering the problem defined in whole space ℝN and
with a smooth datum. In order to obtain the result when the datum is in L1(ℝN), we argue by approximation
(see Section 4), and we pass to the limit in the concentration estimate, recalling that the rearrangement
application u → u∗ is a contraction in Lr(ℝN) for any r ≥ 1 (see [38]).

5.3 Statement and Proof of the Parabolic Comparison Result

Now we are in position to state a comparison result for problem (4.7). We set Q := ℝN × (0,∞).

Theorem 5.2. Let u be the mild solution of problem (4.7)with initial data u0 ∈ L1(ℝN) and f ∈ L1(Q). Let U be
the mild solution to the isotropic parabolic problem

{
Ut − Λ∆ ̄pU = g in Q,

U(x, 0) = U0(x), x ∈ ℝN ,
(5.7)

with a nonnegative rearranged initial datum U0 ∈ L1(ℝN) and nonnegative source g ∈ L1(Q) which is rear-
ranged with respect to x ∈ ℝN . Assume moreover that
(i) u#0 ≺ U0,
(ii) f #( ⋅ , t) ≺ g( ⋅ , t) for every t ≥ 0.
Then, for every t ≥ 0,

u#( ⋅ , t) ≺ U( ⋅ , t).

In particular, for every q ∈ [1,∞], we have the comparison of Lq norms

‖u( ⋅ , t)‖q ≤ ‖U( ⋅ , t)‖q (5.8)

Note that the norms of (5.8) can also be infinite for some or all values of q.

Proof. According to what was explained in Theorem 4.2, we use the implicit time discretization scheme to
obtain the mild solutions to the parabolic problems. For each time T > 0, we divide the time interval [0, T] in
n subintervals (tk−1, tk], where tk = kh and h = Tn , and we perform a discretization of f and g adapted to the
timemesh tk = kh; let us call them {f (h)k }, {g

(h)
k } so that the piecewise constant (or linear in time) interpolations

of this sequences give the functions f (h)(x, t), g(h)(x, t) such that ‖f − f (h)‖1 → 0 and ‖g − g(h)‖1 → 0 as h → 0.
We can define f (h)k , g(h)k in this way:

f (h)k (x) =
1
h

kh

∫
(k−1)h

f (x, t) dt, g(h)k (x) =
1
h

kh

∫
(k−1)h

g(x, t) dt.

Now we construct the function uh, which is piecewise constant in each interval (tk−1, tk], by

uh(x, t) =

{{{{{{{
{{{{{{{
{

uh,1(x) if t ∈ [0, t1],
uh,2(x) if t ∈ (t1, t2],

...
uh,n(x) if t ∈ (tn−1, tn],

where uh,k solves the equation
hA(uh,k) + uh,k = uh,k−1 + f (h)k (5.9)
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with the initial value uh,0 = u0. Similarly, concerning the symmetrized problem (5.7), we define the piecewise
constant function Uh by

Uh(x, t) =

{{{{{{{
{{{{{{{
{

Uh,1(x) if t ∈ [0, t1],
Uh,2(x) if t ∈ (t1, t2],

...
Uh,n(x) if t ∈ (tn−1, tn],

where Uh,k(x) solves the equation

− h∆ ̄pUh,k + Uh,k = Uh,k−1 + g(h)k (5.10)

with the initial value Uh,0 = U0. Our goal is now to compare the solution uh,k to (5.9) with solution (5.10) by
means of mass concentration comparison. We proceed by induction. Using Theorem 5.1, we get u#h,1 ≺ Uh,1.
If we assume by induction that u#h,k−1 ≺ Uh,k−1 and call ũh,k the (radially decreasing) solution to the equation

hA(ũh,k) + ũh,k = u#h,k−1 + (f
(h)
k )

#,

Theorem 5.1 again implies
u#h,k ≺ ũh,k ≺ Uh,k; (5.11)

hence (5.11) holds for all k = 1, . . . , n. Hence the definitions of uh and Uh immediately imply

uh( ⋅ , t)# ≺ Uh( ⋅ , t)) (5.12)

for all times t. Since we have uh → u, Uh → U uniformly, passing to the limit in (5.12), we get the result.

6 Boundedness of Solutions
In this section, we assume conditions (H2) and (H3). The following result is usually known as the L1-L∞

smoothing effect.

Theorem 6.1. If u0 ∈ L1(ℝN), then the mild solution to (1.1) with initial condition (1.4) satisfies the L∞ bound

‖u(t)‖∞ ≤ Ct−α‖u0‖
̄pα
N
1 for all t > 0, (6.1)

where the exponent α is just the one defined in (2.1) and C = C(N, ̄p).

Proof. It is clear that the worst case with respect to the symmetrization and concentration comparison in the
class of solutions with the same initial mass M is just the Barenblatt solution B of the isotropic ̄p-Laplacian
with Dirac mass initial data, i.e., u0(x) = Mδ(x). We are thus reduced to calculate the L∞ norm of B,

‖B‖∞ = C(N, ̄p)t−α‖u0‖
̄pα
N
1 .

Actually, there is a difficulty in taking B as a worst case in the comparison, namely that B(x, 0) is not a func-
tion but a Dirac mass. We overcome the difficulty by approximation. We take first a solution with bounded
initial data, u0 ∈ L1(ℝN) ∩ L∞(ℝN). We then replace B(x, t) by a slightly delayed function B(x, t + τ), which
is a solution with initial data B(x, τ), bounded but converging to Mδ(x) as τ → 0. It is then clear that, for
a small τ > 0, such a solution is more concentrated than u0. From the comparison theorem, we get

|u(x, t)| ≤ ‖B( ⋅ , t + τ)‖∞ = C(N, ̄p)M
̄pα
N (t + τ)−α

which of course implies (6.1). The result for general L1 data follows by approximation and density once it is
proved for bounded L1 functions.

Remarks. (1) Our proof relies on symmetrization. The result was proved in [50] using a different approach;
see also [49] and previously for the orthotropic case in [36].

(2) From Proposition 3.3 and Theorem 6.1, we have that, for u0 ∈ L1 ∩ L∞, the rescaled evolution solu-
tion v (2.6) is uniformly bounded in time.
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7 Anisotropic Upper Barrier Construction
The construction of an upper barrier in an outer domain will play a key role in the proof of existence of the
fundamental solution in Section 8. From now on, we assume (H1) and (H2) hold as in the introduction.

Proposition 7.1. The function

F(y) = (
N
∑
i=1
γi|yi|

pi
2−pi )−1 (7.1)

with

γi ≤ [
α
N (

min
i
{σi

pi
2 − pi
} − 1) 1

2(pi − 1)
(

pi
2 − pi
)
−pi
]

1
2−pi (7.2)

is a weak supersolution to (2.3) inℝN \ BR(0) and a classical supersolution inℝN \ {0}, with BR(0) being a ball
of radius R > 0. Moreover, F ∈ L1(ℝN \ BR(0)).

Proof. We observe that, from our hypotheses, 1 < pi < 2 and (H2) and the value of α and σi guarantee that

2 − pi
pi
< σi , (7.3)

which gives the summability outside a ball centred in the origin (see [55, Lemma 2.2]). Note that pi
2−pi ≥ 1.

Let γi be some positive constants that we will choose later. Denoting

X =
N
∑
j=1
γj|yj|

pj
2−pj for y ∈ ℝN \

N
⋃
i=1
{y ∈ ℝN : yi = 0},

we have

I :=
N
∑
i=1
[(|Fyi |pi−2Fyi )yi + ai(yiF)yi ]

≤
N
∑
i=1

2(pi − 1)(
piγi
2 − pi
)
pi
X−2pi+1|yi|

2pi
pi−1
2−pi + αX−1 − X−2 N

∑
i=1
ασiγi

pi
2 − pi
|yi|

pi
2−pi

= X−1[
N
∑
i=1

2(pi − 1)(
piγi
2 − pi
)
pi
X−2pi+2|yi|

2pi
pi−1
2−pi + α − X−1 N

∑
i=1
ασiγi

pi
2 − pi
|yi|

pi
2−pi ]

≤ X−1[
N
∑
i=1

2(pi − 1)(
piγi
2 − pi
)
pi
X−2(pi−1)|yi|

2pi
pi−1
2−pi + α(1 −min

i
{σi

pi
2 − pi
})].

Since, for every i, we have

γi|yi|
pi

2−pi ≤ N
∑
j=1
γj|yj|

pj
2−pj = X,

it follows that
X−2(pi−1) ≤ γ−2(pi−1)i |yi|

2pi
1−pi
2−pi .

Then

I ≤ X−1
N
∑
i=1
[2(pi − 1)(

pi
2 − pi
)
pi
γ2−pii +

α
N (

1 −min
i
{σi

pi
2 − pi
})],

where 1 −mini{σi pi
2−pi } < 0 by (7.3). In order to conclude that I ≤ 0, it is enough to show that

2(pi − 1)(
pi

2 − pi
)
pi
γ2−pii +

α
N (

1 −min
i
{σi

pi
2 − pi
}) ≤ 0

for every i = 1, . . . , N, i.e., (7.2). It is easy to check that computations work for y ∈ ℝN \ {0}. Finally, we stress
that Fyi ∈ Lpi (ℝN \ BR(0))with R > 0, and then we can easy conclude that F is a weak super-solution as well.
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Remark 7.2. We stress that F is a weak supersolution to (2.3) in ℝN \ {∑Nj=1 γj|yj|
pj

2−pj ≤ ρ} and belongs to
L1(ℝN \ {∑Nj=1 γj|yj|

pj
2−pj ≤ ρ}) for any ρ > 0. Moreover, if F∗ is the value of F on {∑Nj=1 γj|yj|

pj
2−pj = 1

F∗ }, then
min{F, F∗} agrees with F on {∑Nj=1 γj|yj|

pj
2−pj ≥ 1

F∗ } and with F∗ on {∑Nj=1 γj|yj| pj2−pj < 1
F∗ }.

We are ready to prove a comparison theorem that is needed in the proof of existence of the self-similar fun-
damental solution. We set as a barrier the truncation of the supersolution F(y) given in (7.1). The proof is
similar to [34, Theorem 3.2], but for the sake of completeness, we include here the details.

Theorem 7.3 (Barrier Comparison). For any M > 0 and L1 > 0, there exists F∗ such that, if v0(y) ≥ 0 is an L1

bounded function such that imposing
(i) v0(y) ≤ L1 a.e. inℝN ,
(ii) ∫ v0(y) dy ≤ M,
(iii) v0(y) ≤ GM,L1 (y) a.e. inℝN ,
where GM,L1 = min{F, F∗} is the truncation of F(y) given in (7.1) at level F∗, then

v(y, τ) ≤ GM,L1 (y) for a.e. y ∈ ℝN , τ > τ0. (7.4)

where v(y, τ) solves (2.7) with initial datum v0(y).

Proof. (i) Let us pick some τ1 > 0. Starting from initial mass M > 0, from the smoothing effect (6.1) and the
scaling transformation (2.6) (we put t0 = 1 and then τ0 = 0), we know that

v(y, τ) = (t + 1)αu(x, t) ≤ C1M
̄pα
N (
t + 1
t )

α
= C1M

̄pα
N (1 − e−τ)−α , (7.5)

where C1 is a universal constant as in (6.1). Since τ = log(t + 1), we have ‖v(τ)‖∞ ≤ F∗ for all τ ≥ τ1 if F∗ is
such that

C1M
̄pα
N (1 − e−τ1 )−α ≤ F∗. (7.6)

(ii) For 0 ≤ τ < τ1, we argue as follows: from v0(y) ≤ L1 a.e., we get u0(x) ≤ L1 a.e., so u(x, t) ≤ L1 a.e.;
therefore,

‖v(τ)‖∞ ≤ L1(t + 1)α = L1eατ a.e.

We now impose F∗ is such that
L1eατ1 ≤ F∗. (7.7)

Then we choose F∗ such that (7.6) and (7.7) hold.
(iii) Under these choices, we get ‖v(τ)‖∞ ≤ F∗ for every τ > 0, which gives a comparison between

v(y, τ) with GM,L1 (y) in the complement of the exterior cylinder Qo = Ω × (0,∞), where Ω = {y : F ≤ F∗},
i.e., {∑Nj=1 γj|yj|

pj
2−pj ≥ 1

F∗ }. By the comparison in Proposition 11.1 for solutions in Qo, we conclude that

v(y, τ) ≤ GM,L1 (y) for a.e. y ∈ Ω, τ > 0,

The comparison for y ∉ Ω has been already proved, hence the result (7.4).

As a consequence of mass conservation and the existence of the upper barrier, we obtain a positivity lemma
for certain solutions of the equation. This is the uniform positivity that is needed in the proof of existence of
self-similar solutions, and it avoids the fixed point from being trivial.

Lemma 7.1 (A Quantitative Positivity Lemma). Let v be the solution of the rescaled equation (2.7) with inte-
grable initial data v0 such that v0 is an SSNI, bounded, nonnegative function with support in the ball of radius R,
∫ v0(y) dy = M > 0 and v0 ≤ GM,L1 a.e., where GM,L1 is as in Theorem 7.3. Then there is a continuous nonnega-
tive function ζ (y), positive in a ball of radius r0 > 0, such that v(y, τ) ≥ ζ (y) for a.e. y ∈ ℝN , τ > 0. In particular,
wemay take ζ (y) ≥ c1 > 0 a.e. in Br0 (0) for suitable r0 and c1 > 0. The function ζ will depend on the choice ofM
and ‖v0‖∞.

We will recall the denomination SSNI stands for separately symmetric and nonincreasing. It was introduced
in [34]. The proof of Lemma 7.1 runs as [34, Lemma 5.1].
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8 Existence of a Self-Similar Fundamental Solution
Now we are ready to prove the main theorem of this section, dealing with the difficult problem of finding
a self-similar fundamental solution to (1.1), enjoying good symmetry properties and the expected decay rate
at infinity.

Theorem 8.1. For any mass M > 0, there is a self-similar fundamental solution of equation (1.1) with mass M.
The profile FM of such solution is an SSNI nonnegative function. Moreover, FM(y) ≤ F(y) for a.e. y such that |y|
is big enough, where F(y) is given in (7.1).

Remark. Therefore, we get an upper bound for the behaviour of F at infinity. It has a clean form in every
coordinate direction, F(y) ≤ O(|yi|−

pi
2−pi ) as |yi|→∞.

The basic idea for proving existence with self-similarity is contained in [34, Theorem 6.1]. The full existence
includes self-similarity and will be established next.

8.1 Proof of Existence of a Self-Similar Solution

We will proceed in a number of steps.
(i) Let ϕ ≥ 0 be bounded, symmetric decreasing with respect to xi, supported in a ball of radius 1 centred

at 0, with totalmassM (we ask for such specific properties for convenience).We consider the solution u1 such
that u1(x, 1) = ϕ, which is bounded and integrable for all t > 1, and denote

uk(x, t) = Tku1(x, t) = kαu1(kσ1αx1, . . . , kσNαxN , kt)

for every k > 1. We want to let k →∞. In terms of rescaled variables (2.6) (with t0 = 0), we have

vk(y, τ) = eατuk(y1eασ1τ , . . . , yNeασNτ , eτ)
= eατkαu1(kσ1αy1eτσ1α , . . . , kσnαxNeτσNα , keτ),

where t = eτ, τ > 0. Put k = eh so that kσiαeτσiα = e(τ+h)σiα. Then

vk(y, τ) = e(τ+h)αu1(y1e(τ+h)σ1α , . . . , yNe(τ+h)σNα , e(τ+h)).

Putting v1(y, τ) = tαu1(x, t) with yi = xi t
−ασi , τ = log t, then

vk(y, τ) = e(τ+h−τ
)αv1(y1e(τ+h−τ)σ1α , . . . , yNe(τ+h−τ)σNα , τ + h).

Setting τ = τ + h, we get vk(y, τ) = v1(y, τ + h). This means that the transformation Tk becomes a forward
time shift in the rescaled variables that we call Sh with h = log k.

(ii) Next, we prove the existence of periodic orbits with the following setup. We take X = L1(ℝN) as ambi-
ent space andconsider an important subset ofX definedas follows. For any L1 > 0,wedefine the setK = K(L1)
as the set of all ϕ ∈ L1+(ℝN) ∩ L∞(ℝN) such that
(a) ∫ϕ(y) dy = 1,
(b) ϕ is SSNI (separately symmetric and nonincreasing with respect to all coordinates),
(c) ϕ is a.e. bounded above by GL1 (y), where GL1 (y) = min{F, F∗} is a fixed barrier, with F∗ conveniently

large and F(y) defined in (7.1),
(d) ϕ is uniformly bounded above by L1 > 0.
Observe that GL1 (y) is obtained in Theorem 7.3 by truncating F(y) at a convenient level F∗; this gives that
GL1 (y) is a barrier for solutions to (2.7) with mass M = 1 and initial data verifying the assumption of Theo-
rem 7.3.

By the previous considerations, it is easy to see that K(L1) is a non-empty, convex, closed and bounded
subset with respect to the norm of the Banach space X.
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Now, for all ϕ ∈ K(L1), we consider the solution v(y, τ) to equation (2.7) starting at τ = 0 with data
v(y, 0) = ϕ(y), and we consider for all small h > 0 the semigroup map Sh : X → X defined by Sh(ϕ) = v(y, h).
The following lemma collects some facts we need.

Lemma 8.1. Given h > 0, there exists L1 = L1(h) such that Sh(K(L1(h)) ⊂ K(L1(h)). Moreover, Sh(K(L1(h))) is
relatively compact in X. Finally, for every ϕ ∈ K(L1(h)),

Sh(ϕ)(y) ≥ ζ h(y) for a.e. y ∈ ℝN , τ > 0, (8.1)

where ζh is a fixed function as in Lemma 7.1. It only depends on h.

Proof. Fix a small h > 0, and let L1 = L1(h) such that

L1 ≥ C1M
̄pα
N (1 − e−h)−α , (8.2)

where C1 is the constant in the smoothing effect (6.1).We take τ1 = h in the proof of Theorem (7.3) and choose
F∗ = F∗(h) such that (7.7) holds, that is, L1eαh ≤ F∗. Thenwe have in particular that (7.6) is satisfied, namely

C1M
̄pα
N (1 − e−h)−α ≤ F∗.

This ensures the existence of a barrier GL1(h)(y) (a truncation of F defined in (7.1)) such that, for ϕ ∈ K(L1(h))
and any τ > 0, we have Sh(ϕ) ≤ GL1(h)(y) a.e. Then Sh(ϕ) obviously verifies (c), while (a) is a consequence of
mass conservation, and (b) follows by Proposition 11.3. Moreover, (8.2) ensures that, from (7.5), we immedi-
ately find Sh(ϕ) ≤ L1 a.e., that is, property (d). The relative compactness comes from known regularity theory.
The last estimate (8.1) comes from Lemma 7.1, which holds once a fixed barrier is determined.

It now follows from the Schauder fixed point theorem (cf. [33, Theorem 3, Section 9.2.2]) that there exists at
least a fixedpointϕh ∈ K(L1(h)), i.e.,Sh(ϕh) = ϕh. SetSτ(ϕh) =: vh(y, τ); thus, in particular, vh(y, 0) = ϕh(y).
The fixedpoint is in K, so it is not trivial because it hasmass 1, andmoreover, it satisfies the lower bound (8.1).
Iterating the equality, we get periodicity for the orbit vh(y, τ) starting at τ = 0,

vh(y, τ + kh) = vh(y, τ) for all τ > 0, (8.3)

which is valid for all integers k ≥ 1.
(iii) Once the periodic orbit is obtained, we may examine the family of periodic orbits {vh : h > 0} as

a way to obtain a stationary solution in the limit h → 0. Prior to that, let us derive a uniform boundedness
property of this family based on the rough idea that periodic solutions enjoy special properties. Indeed, the
smoothing effect implies that any solution with mass M ≤ 1 will be bounded by C1t−α (see (6.1)) in terms of
the u variable; hence v(y, τ)will be bounded uniformly in y for all large τwhenwritten in the v variable. Since
our functions vh are periodic, this asymptotic property actually implies that each vh is a bounded function,
uniformly in y and t. On close inspection, we see that the bound is also uniform in h, vh ≤ C1 a.e. That is quite
handy since then we can also get a positive lower bound ζ valid for all times using uniform upper bounds in
L∞, L1 and the upper barrier F. Then we have that the family vh is uniformly bounded in L1 ∩ L∞; thus the
family vh is equi-integrable. Moreover, vh is tight because the mass confinement holds; indeed, since vh ≤ F
a.e. uniformly with respect to h, for a large R > 0, it follows that

∫
|y|>R

vh dy < ∫
|y|>R

F(y) dy;

thus (recall that F ∈ L1(ℝN \ BR(0)))
lim
R→∞
∫
|y|>R

vh dy = 0.

Then the Dunford–Pettis theorem implies that, up to subsequences, vh(τ)⇀ v̂(τ)weakly in L1(ℝN) for some
v̂(y, τ). In particular, this gives ‖v̂(τ)‖L1 = 1. Moreover, the a priori estimates (3.6), (3.8),(3.9) and the smooth-
ing effect (6.1) allow to employ the usual compactness argument and find that v̂ solves the rescaled equation
(2.7) in the limit.
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(iv) We can now take the dyadic sequence hn = 2−n and kn = k2n−m with n,m, k ∈ ℕ and m ≤ n in this
collection of periodic orbits vh. Inserting these values in (8.3) and passing to the limit (along such subse-
quence) as n →∞, we find the equality

v̂(y, τ + k2−m) = v̂(y, τ) for all τ > 0

holds for all integers m, k ≥ 1. By continuity of the orbit in L1loc, v̂ must be stationary in time. Passing to the
limit, we conclude that v̂(y) ≤ C, and moreover, v̂(y) ≤ F, which gives in particular the required asymptotic
behaviour at infinity with the correct rate. Going back to the original variables, this means that the corre-
sponding function û(x, t) is a self-similar solution of equation (1.1). Hence its initial data must be a non-zero
Dirac mass. Now we choose any mass M > 0. If M = 1, then û is the self-similar solution we looked for. If
M ̸= 1, we apply the mass changing scaling transformation (2.8).

Remark 8.2 (Local Positivity). We know from the proof that v̂(y) ≤ C and v̂(y) ≤ F; then Theorem 7.3 and
Lemma 7.1 ensure that v̂(y) ≥ ζ (y) for some positive function ζ . Hence v̂ is locally positive.

We have a further property of the self-similar solutions that we will use later.

Proposition 8.3. Any nonnegative self-similar solution B(x, t) with finite mass is SSNI.

Proof. We use two general ideas: (i) SSNI is an asymptotic property of many solutions, and (ii) self-similar
solutions necessarily verify asymptotic properties for all times.

Let us consider a nonnegative self-similar solution B(x, t). The issue is to prove it has the SSNI property.
This is done by approximation and rescaling. We begin with approximating B at time t = 1 with a sequence
of bounded, compactly supported functions un(x, 1) with increasing supports and converging to B(x, 1) in
L1(ℝN). We consider the corresponding solutions un(x, t) to (1.1) for t ≥ 1.

The Aleksandrov principle says that these functions un( ⋅ , t) have, as t →∞, an approximate version of
the SSNI properties as follows. If the initial support at t = 1 is contained in ball of radius R > 0, then, for all
t > 1 and for every x, x̃ ∈ ℝN , |x|, |x̃| ≥ 2R, we have u(x, t) ≥ u(x̃, t) on the condition that |x̃i| ≥ |xi| + 2R for
every i = 1, . . . , N. A convenient reference can be found in [20] or [62, Proposition 14.27].

The last step is to translate these asymptotic approximate properties into exact properties. This is better
done in the v formulation, introduced with formulas (2.6) and (2.7). We first observe that un converges to
some B̃; thus, by the contraction principle, for t ≥ 1,

‖un(t) − B(t)‖L1(ℝN ) ≤ ‖un(1) − B(1)‖L1(ℝN ),

and passing to the limit as n →∞, we have un(t) L1-converges to some B(t) for t ≥ 1. This implies that the
sequence vn(y, τ) of rescaled solutions converges to the self-similar profile F(x) = B(x, 1) at τ ≥ 0 (i.e., t ≥ 1).
On the other hand, the definition of the rescaled variables yi = xi t−ai implies that themonotonicity properties
derived for un by Aleksandrov keep being valid in terms of (y1, . . . , yN) with the reformulation

vn(y, τ) ≥ vn(ỹ, τ) (8.4)

on the condition that |ỹi| ≥ |yi| + 2Rt−ai . Similarly, symmetry comparisons are trueup to adisplacementRt−ai .
Passing to the limit in (8.4) as n →∞, we find F(y) ≥ F(ỹ) provided |ỹi| ≥ |yi| + 2Rt−ai . Since t can be chosen
arbitrarily large, the same property holds for |ỹi| ≥ |yi|. Thus F is symmetric with respect to each yi, and the
full SSNI applies to F, hence to the original B.

9 Lower Barrier Construction and Global Positivity
Now we get a lower barrier that looks a bit like the upper barrier of Section 7.

Proposition 9.1. Let us take γ > 0, and let 0 < ϑi ≤ 1 be chosen such that
1
γϑi
<
2 − pi
pi
(< σi). (9.1)
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Then

F(y) = (A +
N
∑
i=1
|yi|ϑi)

−γ

∈ L1(ℝN)

is a weak sub-solution inℝN and a classical sub-solution to the stationary equation (2.3) in

ℝN \
N
⋃
i=1
{y ∈ ℝN : yi = 0} for A > A0,

where

A0 := max
i=1,...,N
(
Nγpi−1(pi − 1)(γ + 1)ϑpii
α(γmaxi{σiϑi} − 1)

)
1

γ−γ(pi−1)−pi/ϑi .
Proof. Since ϑi ≤ 1, we get

I :=
N
∑
i=1
[(|F yi |pi−2F yi )yi + ασi(yiF)yi ]

≥
N
∑
i=1
(A +

N
∑
j=1
|ηj|ϑj)

−(γ+1)(pi−1)−1
γpi−1(pi − 1)(γ + 1)ϑpii |yi|

pi(ϑi−1)

+ α(A +
N
∑
i=1
|yi|ϑi)

−γ

− γαmax
i
{σiϑi}(A +

N
∑
i=1
|yi|ϑi)

−γ−1 N
∑
i=1
|yi|ϑi

≥
N
∑
i=1
(A +

N
∑
j=1
|ηj|ϑj)

−(γ+1)(pi−1)−1
γpi−1(pi − 1)(γ + 1)ϑpii (A +

N
∑
j=1
|yj|ϑj)

pi(1− 1
ϑi
)

+ α(A +
N
∑
i=1
|yi|ϑi)

−γ

− γαmax
i
{σiϑi}(A +

N
∑
i=1
|yi|ϑi)

−γ−1
(A +

N
∑
i=1
|yi|ϑi).

Denoting X = A +∑Nj=1|ηj|ϑj , we obtain

I ≥
N
∑
i=1
X−γ(pi−1)−

pi
ϑi [γpi−1(pi − 1)(γ + 1)ϑpii + X

−γ+γ(pi−1)+
pi
ϑi
α
N (

1 − γmax
i
{σiϑi})].

We stress that (9.1) yields 1 − γmax{σiϑi} ≤ 0 and −γ + γ(pi − 1) + piϑi < 0. In order to have I ≥ 0, we have to
require X ≥ A0. Choosing A > A0, it follows that F is a sub-solution to equation (2.3) inℝN \ {0}. It is easy to
check that F ∈ L1(ℝN) and F yi ∈ Lpi (ℝN) for all i. In order to prove that it is a weak solution in allℝN , we have
to multiply by a test function ψ ∈ D(ℝN), to integrate in

ℝN \
N
⋃
i=1
{y : |yi| < ε} for ε > 0

and finally to estimate the boundary terms. We observe that, for every i = 1, . . . , N,

∫

∂{[−ε,ε]N }

Fyi∂yiψ dσ

≤ A−γ‖ψyi‖∞C(N)εN+1,


∫

∂{[−ε,ε]N }

|∂yiF|pi−2∂yiF∂yiψ dσ

≤ A−(γ+1)(pi−1)‖ψyi‖∞C(N)εN+(ϑi−1)(pi−1),

where N + (ϑi − 1)(pi − 1) > 0 under our assumptions. Similar computations work for the other boundary
terms. It is clear that all boundary terms go to zero when ε → 0.

Remark 9.2. Under the assumption of Proposition 9.1,

U(x, t) = t−αF(t−ασi x1, . . . , t−ασi xN) (9.2)

is a weak sub-solution to (1.1) inℝN × [0,∞) such that U(x, t)→ ‖F‖L1δ0(x) as t → 0 in distributional sense.
In particular, for every x ̸= 0, we have

lim
t→0

U(x, t) = 0. (9.3)
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We prove a comparison result from below. We take as comparison the following two functions:
(i) the self-similar solution in original variables (with t0 = 1 for simplicity),

B(x, t) = (t + 1)−αF(x1(t + 1)−ασ1 , . . . , xN(t + 1)−ασN ),

with α and σi as prescribed in (2.1) and (2.2), and
(ii) the function U(x, t) stated in (9.2), that depends on the parameter A.

Theorem 9.3 (Lower Barrier Comparison). There is a time ̄t > 0, a radius R > 0 and a constant A large enough
such that, for every |x| ≥ R, 0 ≤ t ≤ ̄t, we have

U(x, t) ≤ B(x, t). (9.4)

The proof of the previous theorem is a simple comparison in an outer cylinder that runs as [34, Theorem 7.4]
since the limit (9.3) is uniform in x as long as |x| ≥ R > 0 for t > 0 small enough.

From Theorem 9.3, we derive the positivity for small times of the self-similar fundamental solution deter-
mined in Theorem 8.1. Furthermore, we have the following result.

Corollary 9.4. If F is the profile of a self-similar solution, there are constants c1, c2 > 0 such that

F(x) ≥ c1F(x1cασ12 , . . . , xNcασN2 )

for every |x| ≥ R if R > 0 and A2 is large enough. In particular, the profile F decays at most like O(|xi|−ϑiγ) in any
coordinate direction.

To prove the previous corollary, it is enough to evaluate (9.4) at t = ̄t.
We can pass from the positivity of just the fundamental solution to the strict positivity for general solu-

tions. This uses a variation of [34, Theorem 7.6] together with the positivity result for the solutions of the
fractional p-Laplacian equation, which has been proved in [64, Section 6].

Theorem 9.5 (Infinite Propagation of Positivity). Any integrable solution with continuous and nonnegative
initial data and positive mass is strictly positive a.e. inℝN × (0,∞).

Proof. (i) Arguing as in the proof of [34, Theorem 7.6], we obtain the infinite propagation of positivity of u
when the initial datum u0 is SSNI, continuous and compactly supported.

(ii) Take now a continuous initial datum u0 ≥ 0. We can put below u0 a smaller SSNI continuous com-
pactly supported initial datum ũ(x) as in point (i) around some point x0, and in particular, u0(x) ≥ ũ(x) inℝN .
If u1(x, t) is the solution of the Cauchy problem with data ũ, we use the comparison principle to obtain that
u(x, t) ≥ u1(x, t) > 0 a.e. inℝN for every t > 0. Hence u is strictly positive inℝN in the sense ofmeasure theory,
t0 − ε < t < t0 + t2 − ε. After checking that t2 does not depend on ε, we conclude that u(x, t0) > 0.

10 The Orthotropic Case
In this section, we consider equation (1.1) in the orthotropic case, namely when all exponents are equal,
p1 = ⋅ ⋅ ⋅ = pN = p < 2, i.e.,

ut =
N
∑
i=1
(|uxi |p−2uxi )xi posed in Q := ℝN × (0, +∞). (10.1)

We have to restrict ourselves to this case to prove a uniqueness result for SSNI fundamental solutions because
we need some solution regularity that has not yet been proved (to our knowledge) in the general aniso-
tropic case.
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10.1 Continuity of Solutions

This subsection is devoted toproving the continuity ofmild solutions to theCauchyproblem for equation (1.1)
in the orthotropic case. We first recall from Section 3 that the operator Lp,h defined in (1.3) generates an L2

semigroup that can be extended to Lq for any q ≥ 1 by the technique of continuous extensions of bounded
operators. Indeed, the functional J, defined in (3.2), is a Dirichlet form on L2 (see for instance [24, Theo-
rem 3.6, Theorem 4.1]). As a consequence, due to the fact that Lp,h is positively homogeneous, for a given
nonnegative datum u0 ∈ L1(ℝN) ∩ L∞(ℝN), we can apply [12, Theorem 1] and find, for all q ≥ 1,

‖∂tu‖q ≤ C
‖u0‖q
t

.

If we take u0 ∈ L1(ℝN), u0 ≥ 0, then, by the smoothing effect (6.1), we get, for any τ > 0 and t ≥ 0,

‖∂tu(t + τ)‖q ≤ C
‖u(τ)‖q

t
.

Thus, if we combine this estimate with the smoothing effect (6.1), we obtain, for all t ≥ τ,

‖∂tu(t)‖∞ ≤ Cτ−α−1‖u0‖
pα
N
1 . (10.2)

Hence equation (10.1) can be viewed as the elliptic anisotropic equation

Ah(u) := −
N
∑
i=1
(|uxi |p−2uxi )xi = f, (10.3)

where f := ∂tu( ⋅ , t) is a bounded source term. Then this equation fits into the Lipschitz regularity theory
of [21], whose main result implies what follows.

Theorem 10.1. Let 2N
N+2 < p < 2. There exists a universal constant C > 0 such that, for all

u ∈ W1,1(B2R(x0)) ∩ L∞(B2R(x0))

such that Ah(u) = f weakly in B2R(x0), where f ∈ L∞(B2R(x0)), the following estimate holds:

sup
x∈BR(x0)
|∇u| ≤ C{ ∫

B2R(x0)

[1 + 1p ∑|∂xiu|
p + ‖f ‖L∞ |u|] dx}α , (10.4)

where C = C(p, N, R, ‖f ‖L∞ ) and α = α(p, N).
Then we are in position to prove the following result.

Theorem 10.2. Assume that 2N
N+2 < p < 2, u0 ∈ L

1(ℝN), and let u be the mild solution to equation (10.1), satis-
fying the initial condition (1.4). Then, for all τ > 0, u ∈ L∞(ℝN × [τ, +∞)), and u is global Lipschitz continuous
inℝN × [τ,∞), with a bound

sup
ℝN×[τ,∞)

|∇x,tu(x, t)| ≤ C(N, p,M, τ, u0). (10.5)

Proof. The fact that u ∈ L∞(ℝN × [τ, +∞)) immediately follows from the L1-L∞ smoothing effect (6.1). More-
over, by estimate (10.2), we have that u is Lipschitz continuous in time for t ≥ τ. Finally, writing the parabolic
equation as in (10.3), Theorem 10.1 yields global Lipschitz continuity in space; indeed, observe that, using
(10.2), the Lipschitz estimate (10.4) implies (recall that ∇u(t) ∈ Lp(ℝN) for any t > 0 by Section 3)

|∇u(x0, t)| ≤ C(N, p,M, τ, u0)

for all x0 ∈ ℝN . Then u is globally Lipschitz continuous inℝN × [τ,∞).

Remark 10.3. The local Lipschitz regularity in space in the range p < 2 descends from the main result in
[48, Theorem1]. For the case p > 2, gradient estimates for parabolic orthotropic equations have been recently
established in [18].
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10.2 Uniqueness of SSNI Fundamental Solutions

Now we give a uniqueness result for nonnegative SSNI fundamental solutions.

Theorem 10.4. Let pc < p < 2. The nonnegative self-similar fundamental solution of the orthotropic equa-
tion (10.1) with given mass M > 0, given by

B(x, t) = t−αF(t−
α
N x), (10.6)

with the explicit profile F of mass M given by (2.4), is the unique fundamental SSNI solution of that equation
with mass M.

In particular, the explicit solution (2.4) is the unique solution of the stationary equation (2.3)with givenmass
M > 0.

Proof. (i) By contradiction, let us suppose there exists another SSNI fundamental solution B1 to (10.1), with
same mass M. We observe that B1 satisfies the Lipschitz continuity stated in Theorem 10.2.

We shall really need the non-degeneracy properties of B, given by (10.6) with the explicit profile F (2.4).
A key point in the argument is that two different solutions with the same mass must intersect. We define the
maximumof the two solutions B∗ = max{B1, B} and theminimum B∗ = min{B1, B}. Obviously, B∗ and B∗ are
positive and Lipschitz continuous solutions (with respect to each variable) to (10.1). Under the assumption
that the two functions B1 and B are not the same, we define the open sets Ω1 = {(x, t) ∈ Q : B1(x, t) < B(x, t)}
and Ω2 = {(x, t) ∈ Q : B1(x, t) > B(x, t)}, where as usual Q = ℝN × (0,∞). Then Ω1 and Ω2 are disjoint, and
both are non-void open sets since the integrals of both functions over QT = ℝN × (0, T) are the same for all
T > 0. In particular, neither of them can be dense in Q. Moreover, Ω1 is the set where B∗ < B and Ω2 is the
set where B∗ > B.

(ii) We now show that the situation B1 ̸= B is not possible because of strong maximum principle argu-
ments applied to the difference of the two equations concerning B∗ and B. It is here that we use the fact that
all the spatial derivatives of B are different from zero away from the set of points where a least one coordi-
nate is zero, a set that we may call the coordinate skeleton. Its complement in Q is given by Ω = Q \⋃Ni=1Ai,
where Ai = {(x, t) ∈ Q : xi = 0} for i = 1, . . . , N. Moreover, Ω is an open set, the union of symmetric copies
of Qi = {(x, t) ∈ Q : xi > 0 for all i}. We will work in Ω to avoid the presence of degenerate points. We do as
follows: we put w(x, t) = B∗(x, t) − B(x, t); then w is nonnegative and continuous and satisfies (in the weak
sense; recall that the stationary profiles are differentiable a.e.)

wt =∑
i
(ai(x, t)wxi )xi , (10.7)

where the coefficients are

ai(x, t) =
|B∗xi |

p−2B∗xi − |Bxi |
p−2Bxi

B∗xi − Bxi
.

Thus, by the locally Lipschitz continuity of the solutions given by Theorem 10.2, all the ai(x, t) are locally
bounded below by C1 > 0,

ai(x, t) ≥
Cp

|B∗xi |2−p + |Bxi |2−p
> C1 > 0,

revealing that each ai(x, t) is of the order of ξ p−2(x, t) for ξ between |B∗xi | and |Bxi |. The problem is the bound
from above, the equation might be not uniformly elliptic if we approach the skeleton.

(iii) Under our assumption B1 ̸= B, we know thatw > 0 somewhere. By continuity, wewill havew ≥ c > 0
in a ball that does not intersect the skeleton, contained in Qi. Then w cannot be zero everywhere in Ω. Now
assume there is a point P = (x, T) of intersection between B∗ and B, having all the coordinate values non-
zero, xi ̸= 0 for all i. Then w(P) = 0. For definiteness, let us be in Q1. In such a case, |Bxi | > ci is bounded
in a neighbourhood of P for all i, and that means that all ai(x, t) are bounded above as announced in (ii).
Indeed, arguing as in [13, Lemma 5.1], we can write

ai(x, t) =
|Bxi |p−2Bxi − |B∗xi |

p−2B∗xi
Bxi − B∗xi

= (p − 1)
1

∫
0

|sBxi + (1 − s)B∗xi |
p−2 ds.
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We use the algebraic inequality

1

∫
0

|a + sb|p−2 ds ≤ Cp( max
s∈[0,1]
|a + sb|)p−2,

valid for all a, b ∈ ℝ such that |a| + |b| > 0, with the choice a = B∗xi and b = Bxi − B
∗
xi (so that |a| + |b| > ci in

the neighbourhood of P); hence

ai(x, t) ≤ Cp( max
s∈[0,1]
|sBxi + (1 − s)B∗xi |)

p−2 ≤ C.

Considering the parabolic equation (10.7) in a small cylinderQε,τ,T = Bε(x) × (τ, T), the linear parabolic Har-
nack inequality (see [43, 44]) applies to it, and we can conclude that necessarily w must vanish identically
in Qε,τ,T . By extension of the same principle, wmust vanish in the whole Q1, i.e., B∗ > B1 everywhere in Q1.
What is important is that this implies that Q1 does not contain any point of Ω1. We now use the symmetry
with respect to the axes and invariance by translation with respect to any hyperplane t = T, and we arrive at
the conclusion that Ω1 does not contain any interior point of any quadrant. This is impossible.

10.3 Asymptotic Behaviour

In the orthotropic case, once the unique SSNI self-similar fundamental solution BM, given in Theorem (10.4),
is determined for any mass M > 0, it is natural to expect that this is a good candidate to be the attractor for
solutions to the Cauchy problem for equation (10.1). Indeed, we have the following result.

Theorem 10.5. Let pc < p < 2. Let u(x, t) ≥ 0 be the unique weak solution of the Cauchy problem of the
orthotropic equation (10.1) with initial data u0 ∈ L1(ℝN) of mass M. Let BM the self-similar solution

BM(x, t) = t−αF(t−
α
N x)

with F defined in (2.4) having mass M. Then

lim
t→∞
‖u(t) − BM(t)‖1 = 0. (10.8)

The convergence holds in the L∞ norm in the proper scale

lim
t→∞

tα‖u(t) − BM(t)‖∞ = 0, (10.9)

where α is given by (2.1). Weighted convergence in Lq(ℝN), 1 < q <∞, is obtained by interpolation.

Proof. First let us observe that the smoothing effect estimate (6.1) implies in particular that u(t) ∈ L2(ℝN)
for all t ≥ τ, for any τ > 0, so that u is the solution of (10.1) for t ≥ τ with datum in L2(ℝN). It follows from
the theory that u is a strong semigroup L2 solution, as explained in Section 3, meaning that the first and the
second energy estimate (3.6), (3.7) hold in any time interval (τ, T). Let us define now the family of rescaled
solutions. For all λ > 0, we put uλ(x, t) = λαu(λ

α
N x, λt). By the mass invariance, it follows that, for all λ > 0,

‖uλ( ⋅ , t)‖1 = M = ‖u( ⋅ , t)‖1, and the smoothing estimate (6.1) yields, for any ̄t > 0,

‖uλ( ⋅ , ̄t)‖∞ = λα‖uλ( ⋅ , λ ̄t)‖∞ ≤ C ̄t
−αM

pα
N . (10.10)

Then, since the norms ‖uλ( ⋅ , ̄t)‖1 and ‖uλ( ⋅ , ̄t)‖∞ are equiboundedwith respect to λ, we have by interpolation
that thenorms ‖uλ( ⋅ , ̄t)‖p are equibounded for all p ∈ [1,∞]. Nowwefix ̄t > 0 so that, by theprevious remark,
u( ̄t) ∈ L2(ℝN), and we can use the first energy estimate (3.6) for t ≥ ̄t,

N
∑
i=1

t

∫
̄t

∫
ℝN

|uxi |p dx dτ ≤
1
2 ‖u(
̄t)‖22.
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Moreover, (3.8) and (3.9) provide
t

∫
̄t

∫
ℝN

|ut(x, τ)|2 dx dτ ≤ C
‖u( ̄t)‖22
t

.

Then we have
N
∑
i=1

t

∫
̄t

∫
ℝN

|∂xiuλ|p dx dτ ≤ Cλα‖u( ⋅ , λ ̄t)‖22 = C‖uλ( ⋅ , ̄t)‖
2
2, (10.11)

and since ‖uλ( ⋅ , ̄t)‖2 is equibounded, we have that ∂xiuλ are equibounded in Lpx,t for i = 1, . . . , N, t ≥ ̄t.
Moreover, we have the following estimate of the time derivatives:

t

∫
̄t

∫
ℝN

|∂tuλ(x, τ)|2 dx dτ = λα+1
λt

∫
λ ̄t

∫
ℝN

|∂tu(x, τ)|2 dx dτ ≤ Cλα
‖u( ⋅ , λ ̄t)‖22
̄t
=
C
̄t
‖uλ( ⋅ , λ ̄t)‖22, (10.12)

and this gives weak compactness of the time derivatives ∂tuλ in L2x,t for t ≥ ̄t. Then estimates (10.10), (10.11)
and (10.12) imply, for t ≥ ̄t, uλ ∈ L∞x,t, ∂xiuλ ∈ L

p
x,t for every i, ∂tuλ ∈ L2x,t with uniform bounds with respect

to λ. Then theRellich–Kondrachov theoremallows to say that the family uλ is relatively locally compact in L1x,t.
Therefore, up to subsequences, we have limλ→∞ uλ(x, t) = U(x, t) for some finite-mass function U(x, t) ≥ 0,
and the convergence holds in L1loc(Q). Then, arguing as in [62, Lemma18.3], it is easy to show that U is aweak
solution to (10.1) in the sense that

t2

∫
t1

∫
ℝN

Uϕt dx dt −
N
∑
i=1

t2

∫
t1

∫
ℝN

|∂xiU|p−2∂xiU∂xiϕ dx dt = 0

for all the test functions ϕ ∈ C∞c (ℝN × (0,∞)).
(ii) Assuming that u0 is boundedandcompactly supported in aballBR,we argue as in [62, Theorem18.1].

We take a larger mass M > M and the self-similar solution BM (x, t) such that BM (x, 1) ≥ u0(x). Then we
clearly have

uλ(x, 0) = λαu(λ
α
N x, 0) ≤ λαBM (λ α

N x, 1) = BM(x, 1λ ).
Then the comparison principle gives

uλ(x, t) ≤ BM(x, t + 1λ ). (10.13)

Since uλ → U a.e. and BM(x, t + 1
λ )→ BM (x, t) as λ →∞, the mass invariance of BM and (10.13) allows to

apply the Lebesgue dominated convergence theorem and obtain (up to subsequence) uλ(t)→ U(t) in L1(ℝN),
which means that the mass of U is equal to M at any positive time t. This gives that U is a fundamental solu-
tion with initial mass M; it is bounded for all t > 0, and the usual estimates apply. Moreover, observe that
the rescaled sequence uλ has initial data supported in a sequence of shrinking balls BR/λ αN (0). The usual
application of the Aleksandrov principle implies that U(x, t) will have the properties of monotonicity along
coordinate directions and also the property of symmetry with respect to coordinate hyperplanes. For more
details, see [37, Theorem 3]. Then the uniqueness theorem, Theorem 10.4, applies, and we have U = BM.
Actually, we have that any subsequence of uλ(t) converges in L1(ℝN) to BM(t); thus the whole family of
rescaled solutions uλ(t) converges to BM(t) in L1(ℝN).

In particular, we have uλ(x, 1)→ BM(x, 1) = F(x) in L1(ℝN) with F defined in (2.4), which gives for-
mula (10.8). The general case u0 ∈ L1(ℝN) can be done by following the arguments in [62, Theorem 18.1].

(iv) Nowwe pass to achieve the uniform convergence (10.9). First of all, the equiboundedness of the fam-
ily uλ and the Lipschitz estimates (10.4) given by Theorem 10.2 allow the use of the Ascoli–Arzelá theorem,
in order to obtain uλ → BM uniformly on compact sets of Q = ℝN × (0,∞). In order to obtain the full conver-
gence inℝN at time t = 1, we need a tail analysis at infinity, and we argue as in [62, Theorem 18.1]. Take any
ε > 0; then the very definition of the rescaled solutions uλ gives, for λ > 1 and R > 1,

∫
|x|> R2

uλ(x, 1) dx = ∫
|x|> R2

[uλ(x, 1) − F(x)] dx + ∫
|x|> R2

F(x) dx ≤ ∫
ℝN

[u(y, λ) − BM(y, λ)] dx + ∫
|x|> R2

F(x) dx.
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Now (10.8) allows to select a sufficiently large λ such that

∫
ℝN

|u(y, λ) − BM(y, λ)| dy <
ε
2 .

Then, choosing a large R ≫ 1 such that
∫
|x|> R2

F(x) dx < ε2 ,

we have, for λ large,
∫
|x|> R2

uλ(x, 1) dx < ε. (10.14)

Let us take any x0 such that |x0| > R, so that B R
2
(x0) ⊂ {|x| > R2 }. From the Gagliardo–Nirenberg inequality on

bounded domains (see e.g. [35, 46]), we have

‖uλ( ⋅ , 1)‖L∞(B R
2
(x0)) ≤ C1‖uλ( ⋅ , 1)‖α̃L1(B R

2
(x0))‖∇uλ( ⋅ , 1)‖

1−α̃
L∞(B R

2
(x0)) + C2‖uλ( ⋅ , 1)‖L1(B R

2
(x0)),

where α̃ = 1
N+1 and Ci, i = 1, 2, are constants depending on N, x0 and R. Then, by (10.14) and the uniform

bound of the gradient (10.5), we have, for λ large,

‖uλ(x, 1)‖L∞(B R
2
(x0)) ≤ Cεα̃;

therefore, for all x0 such that |x0| > R,
uλ(x0, 1) ≤ Cεα̃ .

Thus the uniform convergence on compact sets implies that uλ(x, 1)→ F(x) uniformly on ℝN as λ →∞,
which easily translates to (10.9).

11 Complements on the Theory

11.1 A Comparison Theorem

First we prove a comparison for solutions to a Cauchy–Dirichlet problem associated to equation (1.1) posed
on a domain U, where U can be bounded or unbounded. In the latter case, we will consider U either as
an outer domain (i.e., the complement of a bounded domain) or a half-space. Let us consider the following
Cauchy–Dirichlet problem:

{{{{{{
{{{{{{
{

ut =
N
∑
i=1
(|uxi |pi−2uxi )xi in U × [0,∞),

u(x, t) = h(x, t) ≥ 0 in ∂U × [0,∞),
u(x, 0) = u0(x) ≥ 0 in U,

(11.1)

where, in general, we take u0 ∈ L1(U) and h ∈ C(∂U × [0,∞)).

Proposition 11.1. Let u1 and u2 be two nonnegative solutions of (11.1)with initial data u0,1, u0,2 ∈ L1(U) and
boundary data h1 ≤ h2 on ∂U × [0,∞). Then we have

∫
U

(u1(t) − u2(t))+ dx ≤ ∫
U

(u0,1 − u0,2)+ dx.

In particular, if u0,1 ≤ u0,2 for a.e. x ∈ U, then, for every t > 0, we have u1(t) ≤ u2(t) a.e. in U.

Proof. We point out that the boundary conditions of u1, u2 on ∂U imply in particular that u1 ≤ u2 on ∂U and
in particular (u1 − u2)+ = 0 on ∂U. We follow the lines of the proof of (4.2) in Theorem 4.1. Indeed, using the
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same test function, by the monotonicity of the operator, we find

d
dt ∫

U

(u1(t) − u2(t))+ζn(x) dx =
N
∑
i=1
∫
U

∂xi (|∂xiu1|pi−2∂xiu1 − |∂xiu2|pi−2∂xiu2)(u1 − u2)+ζn(x) dx

≤ −
N
∑
i=1
∫
U

(|∂xiu1|pi−2∂xiu1 − |∂xiu2|pi−2∂xiu2)(u1 − u2)+∂xi ζn(x) dx

+
N
∑
i=1
∫
∂U

(|∂xiu1|pi−2∂xiu1 − |∂xiu2|pi−2∂xiu2)(u1 − u2)+ζn(x)νi dσ

= −
N
∑
i=1
∫
U

(|∂xiu1|pi−2∂xiu1 − |∂xiu2|pi−2∂xiu2)(u1 − u2)+∂xi ζn(x) dx.

From now on, we argue as in (i) in the proof of Theorem 4.1.

11.2 Aleksandrov’s Reflection Principle

In this auxiliary section, we prove Aleksandrov’s principle. Let H+j = {x ∈ ℝ
N : xj > 0} be the positive half-

space with respect to the xj coordinate for any fixed j ∈ {1, . . . , N}. For any j = 1, . . . , N, the hyperplane
Hj = {xj = 0} dividesℝN into two half-spaces H+j = {xj > 0} and H

−
j = {xj < 0}. We denote by πHj the specular

symmetry that maps a point x ∈ H+j into πHj (x) ∈ H
−
j , its symmetric image with respect to Hj. We have the

following important results.

Proposition 11.2. Let u be a nonnegative solution of the Cauchy problem for (1.1)with nonnegative initial data
u0 ∈ L1(ℝN). If, for a given hyperplane Hj with j = 1, . . . , N, we have u0(πHj (x)) ≤ u0(x) for a.e. x ∈ H j+, then,
for all t, u(πHj (x), t) ≤ u(x, t) for a.e. (x, t) ∈ H+j × (0,∞).

Proposition 11.3. Let u be a nonnegative solution of the Cauchy problem for (1.1)with nonnegative initial data
u0 ∈ L1(ℝN). If u0 is a symmetric function in each variable xi, and also a decreasing function in |xi| for all i a.e.,
then u(x, t) is also symmetric and a nonincreasing function in |xi| for all i, for all t, a.e. in x (for short SSNI,
meaning separately symmetric and nonincreasing).

In order to prove the previous two propositions, we can argue as in [34]. In particular, Proposition 11.2 is
a consequence of Proposition 11.1 and yields Proposition 11.3.

12 Control on the Anisotropy
In our analysis of existence of self-similar solutions for equation (APLE), we have found conditions (H2) and
(H3). It is interesting to examine what these requirements mean for N = 2 and p1, p2 > 1. Condition (H2)
means

p1p2
p1 + p2

>
2
3 , i.e., (p1 −

2
3)(p2 −

2
3) >

4
9 .

The region is limited below in Figure 1 by a symmetric hyperbola which passes through the points (2, 1),
(43 ,

4
3 ) and (1, 2). As for condition (H3), we have

pi <
3
2
̄p = 3p1p2
p1 + p2

,

which amounts to p1 < 2p2 (delimited by line r2 in Figure 1) and symmetrically p2 < 2p1 (delimited by line
r1). We thus get a necessary “small anisotropy condition” which takes the form

1
2 <

p1
p2
< 2,

and it is automatically satisfied for fast diffusion 1 < p1, p2 < 2.
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Figure 1: p1 , p2 that verify conditions (H2)–(H3) when p1 , p2 ≤ 2 or p1 , p2 ≥ 2

The analysis of the (APME) in [34] leads to a simpler algebra. According to the results of the paper, the
analogue of condition (H2) becomes

1
N ∑i

mi >
N − 2
N

,

which in dimension N = 2 reads m1 + m2 > 0. For N ≥ 3, we get m1 + m2 + ⋅ ⋅ ⋅ + mN > N − 2. This is much
simpler than the (APLE) condition. Otherwise, the anisotropy control, the analogue of (H3), reads

mi < m̄ +
2
N
,

where m̄ = 1
N ∑

N
i=1 mi. For N = 2, this means |m1 − m2| < 2. This is automatically satisfied for fast diffusion

0 < m1,m2 < 1, but is important when slow diffusion occurs in some coordinate direction.

13 Self-Similarity for Anisotropic Doubly Nonlinear Equations
We have studied two types of anisotropic evolution equations: the anisotropic equation of porous medium
type (APME) treated in [34] and the model (APLE) involving anisotropic p-Laplacian type (1.1), studied here
above. The similarities lead to consider a more general evolution equation with anisotropic nonlinearities
involving powers of both the solution and its spatial derivatives

ut =
N
∑
i=1
(|(umi )xi |

pi−2(umi )xi )xi . (13.1)

We will call it (ADNLE). We assume that mi > 0 and pi > 1. The isotropic case is well known; see [61, Sec-
tion 11]. We describe next the self-similarity analysis applied to solutions plus the physical requirement of
finite conserved mass.

The type of self-similar solutions of equation (1.1) has again the usual form

B(x, t) = t−αF(t−a1x1, . . . , t−aN xN)

with constants α > 0, a1, . . . , an ≥ 0 to be chosen below. We substitute this formula into equation (13.1).
Note that, writing y = (yi) with yi = xi t−ai , equation (13.1) becomes

−t−α−1[αF(y) +
N
∑
i=1
aiyiFyi] =

N
∑
i=1
t−[αmi(pi−1)+piai](|(Fmi )yi |

pi−2(Fmi )yi )yi .
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Time is eliminated as a factor in the resulting equation on the condition that

α(mi(pi − 1) − 1) + piai = 1 for all i = 1, 2, . . . , N.

We also look for integrable solutions that will enjoy themass conservation property, and this implies that
α = ∑Ni=1 ai. Writing ai = σiα, we get the conditions∑Ni=1 σi = 1 and

α[mi(pi − 1) − 1 + piσi] = 1 for all i.

From this set of conditions, we can get the unique admissible values of α and σi. We proceed as follows. From
the last displayed formula, we get

σi =
1
pi
(
1
α
+ 1 − mi(pi − 1)). (13.2)

Then the condition∑Ni=1 σi = 1 implies that

1 = (1α + 1)
N
∑
i=1

1
pi
−

N
∑
i=1
mi +

N
∑
i=1

mi
pi

.

At this moment, we introduce some suitable notation:

1
N

N
∑
i=1

1
pi
= ̄p, 1

N

N
∑
i=1
mi = m̄,

1
N

N
∑
i=1

mi
pi
=
q
̄p
.

Using that, we get
α = N

N(m̄ ̄p − q − 1) + ̄p .

We want to work in a parameter range that ensures that α > 0, and this means the condition

̄pm̄ +
̄p
N
> q + 1,

which is the equivalence in this setting to condition (H2) in the introduction. Under this condition, the self-
similar solution will decay in time in maximum value like a power of time. This is a crucial condition for
the self-similar solution to exist and play its role since the suitable existence theory contains the maximum
principle.

Once α is obtained, the σi are given by (13.2). These exponents control the rate of spatial spread in
every coordinate direction; we know that ∑Ni=1 σi = 1, and in particular, σi = 1

N in the homogeneous case.
The condition to ensure that σi > 0 is

mi(pi − 1) <
1
α
+ 1, i.e., mi(pi − 1) < ̄pm̄ +

̄p
N
− q.

This means that the self-similar solution expands as time passes (or at least it does not contract), along any
of the coordinate directions.

Note that the simple fast diffusion conditions mi < 1 and pi < 2 and α > 0 ensure that σi > 0.

(1) Particular Cases.
(a) When all the mi equal 1, we find the results of our present paper contained in Section 2 for equation

(APLE). On the other hand, when pi = 2, we find the results of the previous paper [34] for equation
(APME).

(b) It is also interesting to look at cases where themi equalm, but not necessarily 1, andwhen pi = p but not
necessarily 2. In the first case, q = m, while in the second case, we get q = m̄. In both cases, α is given by
the simpler formula

α = N
N(m̄( ̄p − 1) − 1) + ̄p

that looks very much like the isotropic case; see the Barenblatt solution, which is explicitly written in
[61, Subsection 11.4.2].
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(2) On the theory. With these choices, the profile function F(y)must satisfy the following doubly-nonlinear
anisotropic stationary equation inℝN :

N
∑
i=1
[(|(Fmi )yi |

pi−2(Fmi )yi )yi + ασi(yiF)yi ] = 0.

Conservation of mass must also hold: ∫ B(x, t) dx = ∫ F(y) dy = M <∞ for t > 0.
The next step would be to prove that there exists a suitable solution of this elliptic equation, which is the

anisotropic versionof the equationof thedoublynonlinearBarenblatt profiles in the standardm-p-Laplacian.
The solution is indeed explicit in the isotropic case, as we have said.

14 Comments, Extensions and Open Problems
∙ Wemay replace the main equation (1.1) by

ut =
N
∑
i=1
(ai|uxi |pi−2uxi )xi in Q := ℝN × (0, +∞)

with all constants ai > 0, and nothing changes in the theory. Inserting the constants may be needed in
the applications. The case where the ai depend on x appears in inhomogeneous media, and it is out of
our scope. And we did not touch on the theory of equations like (1.1) where the exponents p(x, t) are
space-time dependent; see [3] in this respect.

∙ Wemay replace the main equation (1.1) by

ut =
N
∑
i=1
(|uxi |pi−2uxi )xi + ε∆p(u) in Q := ℝN × (0, +∞).

At least in the case of homogeneous anisotropy, the same theory will work, and we have uniqueness of
self-similar solutions, which are also explicit, and we can write them.

∙ The cases where some or all of the pi are larger than 2 are not treated here in any systematic way. Notice
that our general theory applies, as well as the symmetrization and boundedness. The upper barrier has
to be changed into a barrier compatible with the compact support properties. In the orthotropic case, the
existence theorem for self-similar Barenblatt solutions obtained in the paper [23] can be completed with
the proof of uniqueness and the theorem of asymptotic behaviour as in Section 10 above.

∙ The limit cases where some pi = 2 deserve attention.
∙ Symmetrization does not give sharp bounds probably when the pi are not the same, but it implies the

L1-L∞ boundwhere the constant is explicit. Can we compare our self-similar solutions with the isotropic
Barenblatt solution by symmetrization?

∙ If we check the explicit self-similar solutions of the isotropic and orthotropic equations, they are compa-
rable but for a constant.

∙ We have not discussed the Harnack or the Hölder regularity for this theory.
∙ Following the idea of [45], it is possible to prove a strong maximum principle in the homogeneous case

where all exponents are equal, p1 = ⋅ ⋅ ⋅ = pN = p < 2.

Theorem 14.1. Let T > 0, Ω a bounded domain of ℝN , u ∈ C0([0, T) × Ω) satisfying ut − Lhu ≥ 0 with Lh
defined as in (1.3), p < 2 and data u0 non-identically zero such that u( ⋅ , t) ≥ 0 on ∂Ω for all t ≥ 0. If there
exists some x ∈ Ω and t > 0 such that u(x, t) = 0, then u( ⋅ , t) ≡ 0 on Ω.
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