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Abstract: Two vehicle chassis design tasks were solved by decomposition-based multi-disciplinary
optimisation (MDO) methods, namely collaborative optimisation (CO) and analytical target cascad-
ing (ATC). A passive suspension system was optimised by applying both CO and ATC. Multiple
parameters of the spring and damper were selected as design variables. The discomfort, road holding,
and total mass of the spring–damper combination were the objective functions. An electric vehicle
(EV) powertrain design problem was considered as the second test case. Energy consumption and
gradeability were optimised by including the design of the electric motor and the battery pack layout.
The standard single-level all-in-one (AiO) multi-objective optimisation method was compared with
ATC and CO methods. AiO methods showed some limitations in terms of efficiency and accuracy.
ATC proved to be the best choice for the design problems presented in this paper, since it provided
solutions with good accuracy in a very efficient way. The proposed investigation on MDO methods
can be useful for designers, to choose the proper optimisation approach, while solving complex
vehicle design problems.

Keywords: multi-disciplinary optimisation; analytical target cascading; collaborative optimisation;
passive suspension; electric vehicle powertrain

1. Introduction

In the automotive field, multi-disciplinary design problems typically involve several
groups of experts. They are responsible for different performances and for designing
different subsystems that constitute the vehicle. The expert groups must interact during
the development process. Some groups are responsible for the design (e.g., the body,
the powertrain, the suspension system, etc.), while other groups are responsible for different
performance metrics (e.g., handling, safety, noise, vibration, and harshness (NVH), etc.).
Traditionally, the design process and the assessment of performance are divided into
parallel phases with intermediate synchronisation phases (usually “design review meeting”)
between the groups.

Although the traditional approach leads to a feasible design, it may not be the optimal
choice. The purpose of MDO is to obtain the optimal solution by taking several disciplines
into account simultaneously. In this way, the design groups can work in parallel and au-
tonomously [1,2]. The most common optimisation approach to handle the computationally
demanding simulation models involves the use of metamodels [1,3]. Metamodels need to
be created by the design groups before the optimisation process, and they offer an easy way
of distributing the design work. The single-level optimisation method, AiO, in combination
with metamodels, is the most straightforward way of implementing multi-disciplinary
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methods in the development of automotive subsystems. Complex projects can be deployed
into small sub-problems rather than applying the AiO approach. A problem can be decom-
posed in different ways. Discipline-based decomposition refers to dividing the problem on
the basis of the different disciplines. In this case, the decomposition consists of two levels,
one top level and one for all disciplines.

Subsystem-based decomposition refers to dividing the system into its constituent
subsystems, which can be further subdivided into components. In this case, an arbitrary
number of levels is obtained. By using multi-level optimisation techniques, the problem can
be decomposed into multiple manageable sub-problems, and the interactions between them
can be managed using coordination strategies, such as CO, ATC, bi-level integrated system
synthesis (BLISS), and concurrent subspace optimisation (CSSO). The ATC method [4]
is the most common MDO method applied in the vehicle development process, such as
suspensions design [5,6], heavy truck design [7], engine calibration [8], optimisation of
hybrid electric powertrains [9], continuously variable transmission design [10], and passive
safety optimisation [11]. The convergence of the method was proved in [12]. The CO
was developed for aerospace optimisation problem [13,14], and applications to vehicle
development are limited to the body structure design [15,16]. A comparison between
ATC and CO can be found in [17]. The robustness of CO can be a disadvantage since it
has shown instabilities at convergence [18]. Other MDO methods can be applied to solve
vehicle design problems as well [19–22].

In this paper, two problems with different levels of complexity are solved by MDO
methods. The first problem is the optimisation of the suspension system performance by
including the geometry of spring and damper as design variables. Another problem is the
optimisation of the performance of EV powertrain by including the design of the battery
pack and the electric motors. CO and ATC, as well as the conventional AiO methods, are
analysed and compared.

2. Suspension Optimisation

The suspension system is closely related to ride quality and active safety of the vehicle.
The vertical dynamics of the vehicle with conventional passive suspension was well studied
by using the simplified quarter-car model of Figure 1 [23–30]. The optimal suspension
setting always involves a compromise among multiple performance indices by designing
spring and damping settings [6,31]. However, the spring stiffness and damping coefficient
are related to the actual design of the spring and damper. The damper is fitted inside
the spring coils in most of the front suspensions and some rear suspensions. Thus, it is
more practical to consider the geometry of the spring and damper as design variables,
with constraints related to the assembly requirements [32]. The mass of the spring and
damper was minimised to converge to an engineering relevant solution, considering the
same spring stiffness and damping coefficient levels can be obtained by different sets
of dimensions.

Figure 1. Quarter-car model, adapted from [2].
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2.1. Optimisation Problem Definition

In the quarter-car model utilised to analyse the vertical dynamics (Figure 1), m1
and m2 represent the unsprung mass and sprung mass, respectively, x1 and x2 are the
corresponding vertical displacements. k1 represents the radial stiffness of the tyre. k2 and
c2 represent the spring stiffness and damping coefficient. A single slope PSD defined by
vehicle speed v and road profile parameter Ab represents road excitation r [31]. A typical
compact car is considered as the reference vehicle in the following analysis. The data of the
quarter-car model and running conditions are listed in Table 1 [33].

Table 1. Data of the quarter-car model and vehicle running conditions.

Parameters Meaning Value Unit

m1 Unsprung mass 31 kg
m2 Sprung mass 229 kg
k1 Tyre radial stiffness 120,000 N/m
v Vehicle speed 30 m/s

Ab Road profile parameter 1.4 × 10−5 m

The spring and damper settings were properly designed to obtain optimal suspension
performance, namely discomfort (σẍ2) and road holding (σFz ). Discomfort is defined as
the standard deviation of vehicle body vertical acceleration; road holding is defined as
the standard deviation of dynamic tyre load. These two performance indices and the total
mass of spring and damper (mk2 + mc2) are considered as objective functions.

The sketch of the spring and damper is shown in Figure 2, in which the main dimen-
sions are labelled. The selected design variables and their bounds are listed in Table 2.

Figure 2. Sketch of the spring and damper.

Table 2. Design variables for the suspension optimisation problem.

Variables Meaning Lower Bound Upper Bound Unit d

ic Number of spring coils 4 10
D Spring diameter 100 200 mm
d Wire diameter 5 15 mm
dr Rod diameter 8 25 mm
do Orifice diameter 1 5 mm
dp Piston diameter 40 60 mm

Other geometrical dimensions of the damper are assumed as constant parameters,
listed in Table 3.
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Table 3. Constant parameters of the damper.

Parameters Meaning Value Unit

Lc Length of cylinder 250 mm
Lr Length of rod 300 mm
Lo Length of orifice 10 mm

The spring stiffness and damping coefficient can be related to their geometry as

k2 =
Gd4

8D3ic
(1)

c2 =
32Loµ

do
2

(
Ap − Ar

)2

Ao
(2)

Since the spring is usually made of steel, the shear modulus G is assumed to be
79,300 × 106 Pa. The dynamic viscosity µ of the fluid in the damper is 0.04 Pa s. Ar, Ao,
Ap are the area of the rod, orifice, and piston, computed as

Ar =
πdr

2

4

Ao =
πdo

2

4
(3)

Ap =
πdp

2

4

The expressions of discomfort and road holdings can be derived as functions of the
spring stiffness k2 and damping coefficient c2 [31,34]. They are reported in Equations (4)
and (5), respectively.

• Discomfort

σẍ2 =

√
Abv

k1c2
2 + (m1 + m2)k2

2
2c2m2

2
(4)

• Road holding

σFz =
√

Abv(b1c2 + b2c−1
2 ) (5)

where
b1 = (m1+m2)

2k1
2m2

2

b2 =
(m1+m2)

3k2
2−2m1m2(m1+m2)k1k2+m1(m2k1)

2

2m2
2

(6)

By substituting Equations (1) and (2) into Equations (4) and (5), discomfort and road
holding can be rewritten as functions of the variables in Table 2.

• Spring mass

mk2 =
π2d2Dic

4
ρ (7)

where ρ = 7850 kg/m3 (steel).

• Damper mass

mc2 =

(
πd2

p

4
Lo −

πd2
o

4
Lo +

πd2
r

4
Lr + π

((
dp

2
+ 0.002

)2

−
(

dp

2

)2
)

Lc

)
ρ + moil (8)

where ρ = 7850 kg/m3 (steel).
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The oil mass moil in the damper is 0.3 kg, the piston height is the same as the orifice
length Lo, the thickness of the damper tube is 0.002 m.

The constraints are defined based on structural integrity and geometric limitations of
the components.

The explanation of the design constraints is presented in Table 4. The structural
integrity of the spring has to be guaranteed; therefore, the maximum stress τmax has to be
lower than the material admissible stress τadm

τmax ≤ τadm (9)

Table 4. Design constraints for the suspension optimisation problem.

Constraints Meaning

g1 Maximum shear stress of the spring material ≤ admissible shear stress
g2 Maximum spring deflection (maximum compression) ≤ admissible

spring deflection
g3 Geometry constraint, the damper is placed inside the helical spring
g4 Damper geometry constraint

The material admissible shear stress τadm is 1100 MPa. The maximum stress τmax in
Equation (9) depends on the load and spring geometry, it reads

τmax =
8FDW

πd3 (10)

where F is the spring force when the spring is fully compressed, W is the Wahl correction
factor. Their calculations are given below

F = k2

(
L f − Ls

)
Ls = (ic + 1)d
W = 4c−1

4c−4 + 0.615
e

e = D
d

(11)

Ls is the spring solid length (assuming a plain ends spring), L f is the spring free length
(0.3 m), and e is the spring index.

The maximum compression of the spring is limited by its solid length Ls. Assuming a
target maximum compression ymax of 0.18 m, the constraint reads

ymax ≤ L f − Ls (12)

The remaining constraints are related to the available room and geometrical feasibility
of the damper. The damper has to be placed inside the spring coils; this introduces a
relation among the geometrical dimensions of the spring and damper in the form of
Equation (13)

dp ≤ D− d (13)

Finally, a constraint on the orifice diameter is required for a feasible solution

do ≤
(
dp − dr

)
2

(14)

The problem is a typical multi-objective optimisation problem that can be decomposed.
In the following, the problem is solved by different multi-disciplinary optimisation methods,
namely AiO, CO, and ATC.
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2.2. AiO Formulation

The AiO is the conventional formulation that solves the optimisation problem without
decomposition. This formulation is the easiest to understand and implement, while its
efficiency is one of the main concerns. The suspension optimisation problem is formulated
as in Equation (15).

min (σẍ2 , σFz , mk2 + mc2)
x = [ic, d, D, dp, dr, do]
g1 = τmax − τadm ≤ 0
g2 = ymax − (L f − Ls) ≤ 0
g3 = dp − (D− d) ≤ 0

g4 = do −
(dp − dr)

2
≤ 0

(15)

The problem is solved by applying the constraints method. The discomfort (σẍ2)
and total mass (mk2 + mc2) are converted into two constraints. The road holding (σFz ) is
minimised at each feasible combination of discomfort and total mass by using a sequential
quadratic programming (SQP) algorithm. Proper settings for the SQP algorithm need to be
selected in order to obtain accurate solutions efficiently. Tight tolerances are required to
obtain accurate solutions, but they may also lead to a large number of iterations or function
evaluations, which means lower efficiency. The proper settings are selected by performing
a sensitivity analysis of different algorithm parameters, listed in Table 5.

Table 5. Settings of optimisation algorithm for the suspension optimisation problem.

Options Value in AiO Value in CO Value in ATC

Algorithm SQP interior-point interior-point
Function Tolerance 1 × 10−6 1 × 10−10 1 × 10−6

Constraints Tolerance 1 × 10−3 1 × 10−3 1 × 10−6

Step Tolerance 1 × 10−9 1 × 10−6 1 × 10−10

Maximum number of iterations allowed 6 × 104 1 × 103 1 × 103

Maximum number of function
evaluations allowed

3 × 106 3 × 103 3 × 103

2.3. CO Formulation

The CO formulation is shown in Figure 3. Due to the simplicity of the suspension
system, the problem was decomposed into a spring subsystem and a damper subsystem
based on actual components rather than on disciplines.

All of the objective functions were optimised at the system level with all the design
variables, subject to the compatibility constraints (g01 and g02). The system level also coor-
dinated with the subsystems by sending and receiving the linking variables. The linking
variables included the design variables (x) at the system level, which went down as the
target to the subsystem level, and the design variables of the subsystems.

The objectives to be minimised in the subsystems were the discrepancies between the
values of the design variables at the system level and at the subsystems levels, subjected to
the design constraints. In the spring subsystem, the discrepancy of the design variables
related to the spring between the system level and subsystems was minimised, considering
the dimensions of the spring. The constraints g1 and g2 were considered in the spring
design. In the damper subsystem, the discrepancy of the design variables related to the
damper geometry between the system level and subsystems was minimised. The constraint
g4 is a geometry constraint related to the damper design. The constraint g3 was a geometry
constraint related to both the spring and damper, and it was only considered in the damper
subsystem. The optimal solutions of the spring and damper subsystems were sent from the
subsystem level to the system level as linking variables.
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Figure 3. CO formulation for the suspension optimisation problem.

The system level was optimised by applying the constraints method, as in the AiO
formulation, discomfort (σẍ2 ) and total mass (mk2 +mc2) were converted into two additional
constraints. At the first iteration, for a specified maximum level of discomfort and total mass,
the road holding (σFz ) was optimised and the solution (x) was sent to the subsystems as
linking variables. Afterwards, the subsystems were optimised by applying the constraints
method to minimise the discrepancy between the system design variables (x) with respect
to the local design variables (xs and xd) of the spring and damper subsystems. The local
design variables were then sent back to the system level to compute the compatibility
constraints (g01 and g02) for the next iteration. The termination criterion required that the
relative change in the values of the design optimization variables (norm of the difference)
after two consecutive CO iterations be smaller than a user-specified small positive threshold
(0.01). It should be noted that the design variables should be normalised when calculating
the compatibility constraints at the system level and the objective functions at the subsystem
level since the order of magnitude of the selected design variables are different.

As in the AiO formulation, the algorithm settings were selected based on a sensitivity
analysis. The settings used in the CO formulation are listed in Table 5.

2.4. ATC Formulation

The ATC formulation is described in Figure 4.
Similarly to the CO formulation, the problem was decomposed based on actual com-

ponents. The objective function total mass (mk2 + mc2) was divided into spring mass (mk2)
and damper mass (mc2). The system level optimised the vehicle performance discomfort
(σẍ2) and road holding (σFz ) considering spring stiffness k2 and damping coefficient c2 as
design variables. The system level also acted as a coordinator sending the optimal design
variables (k2 and c2) to the subsystems as design targets (t21 and t22).

The two subsystems must reach the design targets from the system level. The norm of
the discrepancy between the targets (t21 and t22) and the responses of the subsystems (r21
and r22) were minimised. These target and response variables are called linking variables
in ATC formulation since they are the links between the system level and subsystem level.
In this problem, the masses of the spring and damper (mk2 and mr2) were local objective
functions of the subsystems to be optimised.
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Figure 4. ATC formulation for the suspension optimisation problem.

In the spring subsystem, the objective function was the sum of the spring mass and
the norm of the target discrepancy (mk2 + ||t21 − r21||). The design variables were the three
parameters of the spring (ic, d, D), which were a subset of the design variables of the whole
optimisation problem. The constraints g1 and g2 were related to the spring design.

In the damper subsystem, the objective function was the sum of the damper mass and
the norm of the target discrepancy (mc2 + ||t22 − r22||). The design variables were related
to the geometry of the damper (dp, dr, do), which were the remaining design variables of
the whole optimisation problem. The constraint g4 was a geometry constraint related to
the damper design. The constraint g3 was a geometry constraint related to both the spring
and damper, and it was only considered in the damper subsystem. In this case, the design
variables d and D from the spring subsystem were transferred to the damper subsystem
via the system level. d and D were called shared variables in the ATC formulation.

The system level was solved by the constraints method, where the discomfort level
(constraint) varied in a predefined range and the road holding was minimised. At each
iteration, the system level was optimised and the target spring stiffness and damping
coefficient (t21 and t22) were sent to the subsystems. Then, the subsystems were optimised
to reach the targets and to minimise the masses. At each iteration, the spring subsystem was
optimised first, and the shared variables d and D were transferred to the damper subsystem.
At the end of each iteration, the two subsystems sent the spring stiffness and damping
coefficient (r21 and r22) back to the system level. The termination criterion required that the
relative changes in the values of the normalised design optimization variables (norm of
the difference) after two consecutive ATC iterations be smaller than a user-specified small
positive threshold (0.01).

As previously done, a sensitivity analysis was performed. The settings used in the
ATC formulation were selected considering the best compromise between accuracy and
efficiency; they are listed in Table 5.

2.5. Solutions and Comparison of the MDO Methods

The optimised solutions of the AiO, CO, and ATC formulations are reported and
analysed. The Pareto-optimal sets in the three objective functions domain are shown in
Figure 5. For all the formulations, discomfort ranges from 0.55 to 0.85 m/s2. The total mass
in the CO and ATC formulations ranges from 1.25 to 1.8 kg.
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Figure 5. Pareto-optimal sets in the objective functions domain.

It can be seen that the Pareto-optimal set for ATC is a curve, while the Pareto-optimal
sets of AiO and CO form a surface. This is due to the different problem formulations. In AiO,
the three objective functions are optimised concurrently. The system level of CO solves
the three objective functions in the same way as in the AiO. Therefore, the Pareto-optimal
sets for AiO and CO are three-dimensional surfaces. However, in the ATC, discomfort and
road holding were optimised first at the system level. Then, the minimum masses were
computed in the spring and damper subsystems. Thus, each discomfort level corresponded
to one combination of road holding and total mass.

Based on the analysis above, the solutions set for AiO and CO should include the
solutions for ATC. The projections of the three-dimensional plot are provided as well for a
better understanding of the Pareto-optimal solutions. It can be seen from Figure 6a that the
boundaries of AiO and CO solution sets are consistent with the ATC in the discomfort-road
holding domain. The solutions in the discomfort-total mass domain are shown in Figure 6b.
The discomfort and total mass are the objective functions that were converted to constraints
in the AiO and CO.

(a) (b)

Figure 6. Projection of Pareto-optimal sets in the objective functions domain. (a) Projection in
discomfort-road holding domain; (b) Projection in discomfort-total mass domain.

Figure 7 shows that the boundaries of AiO and CO solutions match with the ATC in
terms of k2-c2 domain. The matching solutions of AiO and CO correspond to the solutions
that are the closest to the ATC solutions in the objective functions domain.
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Figure 7. Spring and damper coefficients correspond to the Pareto-optimal sets.

Similarly, some of the AiO and CO solutions match with the ATC in the design
variables domain (see Figure 8). The matching solutions for AiO and CO correspond to the
solutions that are the closest to the ATC solutions in the objective functions domain. They
also correspond to the matching solutions in the k2-c2 domain.

(a) (b)

Figure 8. Pareto-optimal sets in the design variables domain. (a) Results in the wire diameter
number of spring coils–spring diameter domain; (b) Results in the piston rod diameter–orifice
diameter domain.

According to the formulations and optimal solutions described above, the three formu-
lations were compared by considering transparency, simplicity, efficiency, and accuracy [35].
The comparison of MDO methods on the suspension optimisation problem is provided
in Table 6. The term transparency evaluates if the formulation is easy to understand and
straightforward in the implementation. Simplicity is also a subjective term, which considers
the amount of implementation effort and the complexity to modify the formulation for
different optimisation problems. The AiO is the most common formulation. It ranks first in
transparency and simplicity. CO and ATC decompose the complex problem into smaller
subsystems. The proper linking variables and shared variables need to be selected to
connect the system level and subsystems level. In this specific problem, ATC needed to
decompose both the objective functions and the constraints, whereas CO only needed to
decompose the constraints. Therefore, the CO and ATC were ranked second and third
place in both transparency and simplicity.
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Table 6. Comparison of MDO methods for the suspension optimisation problem.

Efficiency Simplicity Accuracy Transparency

Best ATC AiO ATC AiO
↓ CO CO AiO CO

Worst AiO ATC CO ATC

Efficiency can be evaluated by the number of iterations or the computational time.
By applying the constraints method, some objective functions are converted into constraints.
The number of iterations and computational effort varies when these objective functions
are fixed at different values of the constraints. This is closely related to the initial values
of the design variables. An example of computational effort evaluation when discomfort
is fixed to 0.7 m/s2 is shown in Table 7. Only discomfort is converted into a constraint in
ATC, while in AiO and CO, both discomfort and total mass are converted into constraints.
The number of iterations refers to the number of calls to the subsystems, so the number of
iterations in AiO is always one. The total computational time of the whole optimisation
process is the most straightforward metric to evaluate the efficiency. The ranking of the
three methods based on efficiency is ATC (8.6 s), CO (220.5 s), and AiO (574.6 s). The
ranking remains the same if we compute the computational time per optimal solution.
The optimization is performed on a PC with Intel Core i5-8250U CPU and 8 GB RAM.

Table 7. Computational effort for the suspension optimisation problem.

Discomfort ATC ATC Mass AiO AiO CO CO
(m/s2) Iterations Time (s) (kg) Iterations Time (s) Iterations Time (s)

1.25 1 0.0084 7 1.1663
1.30 1 0.0073 10 1.3712
1.35 1 0.0104 10 1.3125
1.40 1 0.1122 13 1.5624
1.45 1 0.0180 12 1.0811
1.50 1 3.2748 15 1.7952

0.7 2 1.9525 1.55 1 8.0097 14 1.1449
1.60 1 13.3667 14 1.2069
1.65 1 0.0157 13 1.3027
1.70 1 20.9520 12 1.2134
1.75 1 0.3253 12 1.1337
1.80 1 0.0166 11 1.2245

As it can be seen from the Pareto-optimal solutions obtained above, ATC shows
the best accuracy (closeness to the actual Pareto-optimal set). AiO and CO consider the
three objective functions with the same priority, so the optimal solution set for AiO and
CO includes the solutions of ATC. The accuracies of AiO and CO largely depend on the
discretisation of the objective functions converted into constraints. AiO with small enough
discretisations of the objective functions would provide better accuracy since the levels
decoupling in ATC and CO affects the accuracy. Therefore, the ranking of accuracy is ATC,
AiO, and CO.

3. Electric Vehicle Powertrain Optimisation

Compared with the suspension problem, the EV powertrain problem is significantly
more complex. The design of an electric powertrain involves knowledge of the battery, elec-
tric motors, and vehicle performance. Therefore, the powertrain design can be decomposed
into subsystems based on disciplines and optimised by MDO methods.

The schematic layout of the considered EV is shown in Figure 9. The vehicle equips
two in-wheel motors on the rear axle, and the energy is stored in a Li-ion battery pack.
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Figure 9. Layout of EV powertrain, adapted from [36].

In this section, AiO, CO, and ATC are considered for the powertrain optimisation
problem, to study the performance of MDO methods in a more complex scenario.

3.1. Optimisation Problem Definition

The performance of powertrain was evaluated by two conflicting indices, namely
energy consumption Ec and gradeability Gr. The energy consumption was calculated as
the total energy required for running 250 km on the basis of the NEDC. The gradeability
was to evaluate the longitudinal performance and tractive ability.

The vehicle specification, battery model, and electric motor model were required to
calculate energy consumption and gradeability. The parameters of the EV are provided in
Table 8. The mbody includes the vehicle body, the front axle, and two passengers. mtyre is the
mass of a tyre. mcell is the mass of a single battery cell. mmotorre f is the mass of a reference
electric motor. The mass of the laden vehicle is

mvehicle = mbody + 2mtyre + mcell Nbc + 2mmotorre f krka (16)

where the Nbc is the total number of battery cells, the ka and kr are the scaling factors of the
electric motor in axial and radial direction.

Table 8. Electric vehicle parameters.

Parameters Meaning Value Unit

mbody Vehicle body mass 800 kg
mtyre Tyre mass 20 kg
mcell Battery cell mass 0.787 kg

mmotorre f Reference motor mass 30 kg
NEM Number of motors 2
Rw Wheel radius 0.32 m
A Frontal area 2 m2

Cd Coefficient of drag 0.25
Cr Rolling resistance coefficient 0.01

• Battery Model

The arrangement of the battery cells is shown in Figure 10.
The total number of battery cells is the product of the number of cells in series Nsc and

parallel Npc.
Nbc = NscNpc (17)

The rated cell capacity C is 33.1 Ah, and the average voltage Vcell is 3.8 V. Therefore,
the voltage of the battery pack is

Vbatt = NscVcell (18)
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The maximum discharge pulse current rate of the Li-ion cell is considered as 3C. So,
the current Ibatt and output power Pbatt of the battery pack are

Ibatt = Npc3C (19)

Pbatt = Vbatt Ibatt (20)

The available energy in the battery pack Ebatt is estimated considering 70% of the full
capacity in each cell.

Ebatt = 0.7NscNpcCVcell (21)

Figure 10. Battery cell layout, adapted from [36].

• Electric Motor Model

The vehicle uses outer rotor surface permanent magnet machines as the in-wheel
motors. An analytical motor model built by the relative permeance method described
in [37] was selected as the reference model. The reference model can be scaled to estimate
the performance, losses, and mass of the actual in-wheel motor. The scaling factors ka and
kr of the motor are described in Figure 11.

Figure 11. Scaling of the reference motor, adapted from [36,37].

The objective functions gradeability and energy consumption are derived as follows.

3.1.1. Gradeability

The gradeability Gr is the steepness of grade θ that a vehicle is able to climb. The cal-
culation of gradeability is given in Equation (22).

Gr = sin(θ) =
d− Cr

2
√

1− d2 + Cr
2

1 + Cr
2 (22)

d =

(TpeakωB

v
− 1

2
CdρAv2

)
1

mvehicleg

where frontal area A, drag coefficient Cd, and rolling resistance coefficient Cr are known
parameters provided in Table 8. The air density ρ and vehicle velocity v are 1.29 kg/m3

and 10 km/h respectively. The peak torque Tpeak is calculated from the motor model.

3.1.2. Energy Consumption

The energy consumption Ec is the energy consumed by the electric motor EEM and
power electronics EPE within the target range Rt.
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Ec =
Rt

DDC

NEM(EEM + EPE)

3600× 1000
(23)

where the range Rt is 250 km on NEDC.
The EEM is the integral of the motor input power over the driving cycle, and the EPE

includes switching and conduction loss. Details can be found in [37].
The design variables of the optimisation problem and their bounds are provided in

Table 9. The constraints are defined as in Table 10, and the expressions are in Equations (24)
and (25), respectively.

Ec ≤ Ebatt (24)

NemPin ≤ Pbatt (25)

where Pin =
√

3Vr Imax is the input power of the motor. Vr and Imax are the rated voltage
and maximum current of the electric motor.

Table 9. Design variables for the EV optimisation problem.

Variables Meaning Lower
Bound

Upper
Bound Unit

Nsc Number of battery cells in series 4 8
Npc Number of battery cells in parallel 80 84
Nbc Total number of battery cells 320 672
ka Axial scaling ratio of motor 0.8 1.4
kr Radial scaling ratio of motor 0.8 1.4

Irms RMS current of motor 100 405 A
Vr Rated voltage 210 230 V

Table 10. Constraints for the EV optimisation problem.

Constraints Meaning

g1 Energy consumption ≤ available energy in the battery pack
g2 Motor input power ≤ battery output power

3.2. AiO Formulation

The AiO solved the whole problem together, as shown in Equation (26).

min (Ec, Gr)
x = [Nsc, Npc, ka, kr, Irms]
s.t.
Ec ≤ Ebatt, NemPin ≤ Pbatt

(26)

The number of battery cells in series Nsc and parallel Npc can only be integers. There-
fore, branch and bound (BnB) and genetic algorithm (GA) were applied since they could
solve problems with integer design variables. In the BnB algorithm, the design variables
were divided into smaller ranges (branches) within the lower and upper bounds in Table 9.
For integer design variables, the bounds of each branch were integer values [38,39]. In this
optimisation problem, Gr was converted into a design constraint and the objective function
to be minimised was Ec. Each branch was optimised by the constraints method using an
interior-point algorithm. The settings of the constraints method listed in Table 11 were
selected for finding the best compromise between the accuracy and efficiency.

Similar to the BnB algorithm, the objective function Gr was converted into a constraint
in the GA. The GA settings have to be selected considering both accuracy and efficiency.
In order to select the proper settings, a sensitivity analysis on the population size, maximum
number of generations, and crossover fraction was implemented [34,40].
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Table 11. Settings of the constraints method used in AiO for the EV optimisation problem.

Options Value

Algorithm interior-point
Step Tolerance 1 × 10−10

Function Tolerance 1 × 10−6

Constraints Tolerance 1 × 10−6

Maximum number of function evaluations allowed 3 × 103

The analysis was performed at three different levels of Gr as shown in Figure 12. A
larger population size and higher number of generations would have helped to achieve
more accurate results. However, they were expected to be as small as possible for higher
efficiency as well. The crossover fraction was related to the crossover rate and mutation rate.
A proper crossover fraction could help to reduce the number of generations. Moreover,
it can be seen that, at different values of Gr, the influence of population size, maximum
number of generations, and crossover fraction were not consistent. Therefore, the settings
listed in Table 12 were selected based on a reasonable compromise between accuracy
and efficiency.

(a)

(b)

(c)

Figure 12. Sensitivity analysis of GA settings. (a) 1/Gr = 1.8, (b) 1/Gr = 2.4, (c) 1/Gr = 3.0.
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Table 12. Settings of GA for the EV optimisation problem.

Options Value in
AiO

Value in
CO

Value in
ATC

Population Size 150 150 100
Crossover Fraction 0.7 0.7 0.8
Function Tolerance 1 × 10−6 1 × 10−6 1 × 10−6

Constraint Tolerance 1 × 10−6 1 × 10−9 1 × 10−6

Maximum number of generations 150 200 50

3.3. CO Formulation

The formulation of the CO method is presented in Figure 13. The battery is a sub-
system not included in the vehicle powertrain system level. The system level optimises
all the objective functions considering all the design variables, as in the AiO formulation.
The compatibility constraint g01 is applied at the system level.

The battery subsystem is connected with system level by linking variables, which are
the design variables of the system level and subsystem level (x and xb). The objective of
the subsystem is to minimise the discrepancy of the design variables between the system
level and battery subsystem, subjected to the constraints g1 and g2 related to the battery
energy and power. The expression of the objective function is the discrepancy between the
target value of Nbc optimised at the system level and the product of Nsc and Npc optimised
at the subsystem level.

Figure 13. CO formulation for the EV optimisation problem.

Gradeability at the system level was converted to a constraint. Iteratively, a specific
value of Gr was selected and the Ec was minimised, subject to the compatibility constraint.
The optimal design variables x were then sent to the battery subsystem as the linking
variables. The discrepancy between the system design variables x with respect to the
subsystem design variables xb was minimised in the battery subsystem. At the end of
each iteration, the subsystem design variables xb were sent back to the system level and
used to compute the compatibility constraints g01. The optimisation was terminated when
the variation of Ec at the system level was small enough with respect to the previous
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iteration. The convergence criterion was defined as the norm of the discrepancy between
two iterations less than 0.005.

The GA settings were selected according to a sensitivity analysis performed above,
listed in Table 12. This problem cannot be solved by the branch and bound algorithm due
to the convergence issues.

3.4. ATC Formulation

In the ATC formulation, the problem was decomposed into vehicle performance design
(system level) and battery design (subsystem level), as shown in Figure 14. The vehicle
performance was optimised at the system level considering the objective functions Ec and
Gr. The electric motor was also included in the system level. Therefore, the design variables
of the system level were the total number of battery cells, the axial and radial electric motor
scaling ratio and the rated voltage of the electric motor. The system level also acted as
a coordinator sending the optimum value of Nbc to the battery subsystem as the design
target. The constraints g1 and g2 are defined in Section 3.1.

Figure 14. ATC formulation for the EV optimisation problem.

The battery subsystem has to reach the target value of Nbc by arranging the battery cells
in the pack. Therefore, the design variables are Nsc and Npc. The objective was evaluated
by the discrepancy between the target value of Nbc and the product of the Nsc and Npc.
Moreover, one constraint was defined, as the total number of battery cells obtained in the
subsystem (product of Nsc and Npc) should not be less than Nbc, defined at the system level,
to ensure the available energy in the battery pack. Another constraint was g2, in which the
Pin was the shared variable from the system level.

The system level and subsystem level of the ATC formulation were optimised by two
algorithms supporting integer design variables. The objective function Gr in the system
level was converted into a constraint. The optimisation process is as follows. At the first
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iteration, the system level is optimised and the target number of battery cells Nbc is sent to
the battery subsystem. Then, the battery subsystem optimises the arrangement of cells in
the battery pack, trying to minimise the discrepancy with the target Nbc from the system
level. At the end of each iteration, the battery subsystem sends Nsc and Npc back to the
system level. The optimisation is terminated when the discrepancy between the target
value of Nbc and the product of Nsc and Npc in the current iteration is very close to the
discrepancy at the last iteration. The convergence tolerance is set to 0.06.

Based on the sensitivity analysis, the settings of GA are listed in Table 12. The settings
of the constraints method employed in the branch and bounds algorithm are the same as in
the AiO formulation.

3.5. Solutions and Comparison of the MDO Methods

The optimal solutions for the powertrain optimisation problem obtained from the
AiO, CO, and ATC methods are reported and analysed in this section. Since the problem
includes integer design variables, the branch and bound algorithm, as well as the genetic
algorithm, were applied to solve the individual optimisation problems. Gradeability Gr
was converted into a constraint and energy consumption Ec was minimised. The range
1/Gr in all the formulations was from 1.6 to 3.4. The Pareto-optimal sets from the proposed
methods are compared in Figure 15. It can be seen that the energy consumption increases
when higher gradeability is required.

Figure 15. Pareto-optimal sets in the objective functions domain.

As for the suspension optimisation problem, a similar comparison of the three methods
was performed referring to transparency, simplicity, efficiency, and accuracy. The AiO
is the simplest formulation in terms of transparency and simplicity. The problem needs
to be decomposed both in CO and ATC, while ATC is more complex to understand and
implemented. Therefore, the ranking for transparency and simplicity is AiO, CO, and ATC.

The number of iterations and computational effort at different values of gradeability
are related to the initial values of the design variables. Therefore, the efficiency was
evaluated by the computational time reported in Table 13. It can be concluded that the ATC
is more efficient than AiO when the same algorithm is employed. The efficiency of BnB
algorithm is higher than GA in AiO and ATC, while it shows convergence problem in CO.
The CO solved by GA has the lowest efficiency.
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Table 13. Computational effort for the EV optimisation problem.

Formulation Algorithm Time (s)

AiO Branch and bound 4851
AiO Genetic algorithm 37,970
CO Branch and bound /
CO Genetic algorithm 590,342

ATC Branch and bound 1659
ATC Genetic algorithm 28,213

The accuracy of the three methods was evaluated by comparing the results with a
reference set of optimal solutions. A Sobol low discrepancy sequence was used for sampling
the design variables within their bounds. The optimal values of objective functions were
then sorted, including the constraints g1 and g2. It is evident that AiO and ATC have similar
accuracy, and both are better than CO.

4. Conclusions

Optimisation problems in the vehicle design field were solved by MDO methods,
namely AiO, CO, and ATC. The simplicity, transparency, accuracy, and efficiency of the
methods were analysed and compared for the solution of the two problems. It turns out
that AiO is the simplest formulation to understand and implement, with moderate accuracy
and efficiency. ATC is the best choice for both problems, since it can efficiently provide
solutions with good accuracy. However, the formulation and implementation cost of ATC is
relevant. Similar to ATC, CO also needs special effort in the formulation and programming
process. However, its accuracy and efficiency are not as good as ATC. It also should be
noted that ATC convergence was proven by other researchers [12], but the CO might have
convergence problem [18].

Both the considered suspension design and the EV powertrain design are typical multi-
objective optimisation problems with many design variables, while they do cover different
levels of complexity. Therefore, the results described in this paper can be considered quite
general for most problems. The comparison of the considered MDO methods is summarised
in Table 14. There is no method evaluated as poor in the table since other MDO methods,
such as BLISS and CSSO, which may perform poorly, based on the studies in the literature,
were excluded a priori. Independently from the MDO method applied, the optimisation
algorithm and related settings need to be selected properly for the specific optimisation
problem. The results described in the paper could help designers to apply MDO methods
while optimising complex systems in the vehicle chassis development process.

Table 14. Comparison of MDO methods.

MDO
Method

No. of
Levels Efficiency Simplicity Transparency Accuracy

AiO 1 - ++ ++ +
CO 2 - + + -

ATC ≥2 ++ - - +
Note: ++ very good, + good, - acceptable.
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