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Feasibility of proton dosimetry overriding planning CT with daily CBCT 
elaborated through generative artificial intelligence tools
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aDepartment of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; bLaboratory of Innovation in Sleep 
Medicine, Istituto Auxologico Italiano, Milan, Italy; cBioengineering Unit, Clinical Department, National Center for Oncological 
Hadrontherapy (CNAO), Pavia, Italy

ABSTRACT
Radiotherapy commonly utilizes cone beam computed tomography (CBCT) for patient positioning 
and treatment monitoring. CBCT is deemed to be secure for patients, making it suitable for the 
delivery of fractional doses. However, limitations such as a narrow field of view, beam hardening, 
scattered radiation artifacts, and variability in pixel intensity hinder the direct use of raw CBCT for 
dose recalculation during treatment. To address this issue, reliable correction techniques are 
necessary to remove artifacts and remap pixel intensity into Hounsfield Units (HU) values. This 
study proposes a deep-learning framework for calibrating CBCT images acquired with narrow 
field of view (FOV) systems and demonstrates its potential use in proton treatment planning 
updates. Cycle-consistent generative adversarial networks (cGAN) processes raw CBCT to reduce 
scatter and remap HU. Monte Carlo simulation is used to generate CBCT scans, enabling the 
possibility to focus solely on the algorithm’s ability to reduce artifacts and cupping effects without 
considering intra-patient longitudinal variability and producing a fair comparison between 
planning CT (pCT) and calibrated CBCT dosimetry. To showcase the viability of the approach 
using real-world data, experiments were also conducted using real CBCT. Tests were performed 
on a publicly available dataset of 40 patients who received ablative radiation therapy for 
pancreatic cancer. The simulated CBCT calibration led to a difference in proton dosimetry of less 
than 2%, compared to the planning CT. The potential toxicity effect on the organs at risk 
decreased from about 50% (uncalibrated) up the 2% (calibrated). The gamma pass rate at 
3%/2 mm produced an improvement of about 37% in replicating the prescribed dose before and 
after calibration (53.78% vs 90.26%). Real data also confirmed this with slightly inferior 
performances for the same criteria (65.36% vs 87.20%). These results may confirm that generative 
artificial intelligence brings the use of narrow FOV CBCT scans incrementally closer to clinical 
translation in proton therapy planning updates.

Abbreviations:  CBCT: cone-beam computed tomography; cGAN: cycle-consistent generative 
adversarial network; CNN: convolutional neural network; CT: computed tomography; DCBCT: 
discriminator CBCT; DCT: discriminator CT; DPR: dose difference pass rate; DVH: dose–volume 
histogram; FOV: field of view; G CBCT: generator CBCT; G CT: generator CT; GPR: gamma pass rate; 
IQR: interquartile range; MAE: mean absolute error; MC: Monte Carlo; OAR: organ at risk; pCT: 
planning CT; PSNR: peak signal-to-noise ratio; ROI: region of interest; sCT: synthetic CT; sCTc: 
corrected sCT; sCTu: uncorrected sCT; SSIM: structural similarity index measure

1.  Introduction

Medical imaging plays a crucial role in oncology, par-
ticularly in radiotherapy. Computed tomography (CT) is 
the primary modality used in radiation therapy for 
high-resolution patient geometry and accurate dose 
calculations [1]. However, CT is associated with high 
patient exposure to ionizing radiation. Cone-beam 
computed tomography (CBCT) has the potential to 

provide faster imaging and reduce patient exposure to 
non-therapeutic radiation. This makes it a valuable 
imaging modality used for patient positioning and 
monitoring in radiotherapy. CBCT is currently used to 
monitor and detect changes in patient anatomy 
throughout the treatment. It is also compatible with 
fractional dose delivery, making it a patient-safe imag-
ing modality with less additional non-therapeutic dose 
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than traditional CT. However, this modality can intro-
duce scattered radiation image artifacts like shading, 
cupping, and beam-hardening [2,3]. The artifacts 
resulting from scattered radiation in CBCT images can 
cause fluctuations in pixel values, making it difficult to 
use these images directly for dose calculation. 
Consequently, CBCT images cannot be used directly 
for dose calculations unless correction methods are 
applied. Reliable correction techniques for calibrating 
CBCT images to Hounsfield Unit (HU) values used by 
CT scanners would expand the clinical usage of CBCT 
in treatment planning and evaluation of tumor shrink-
age and organ shift [4–6]. In recent years, traditional 
approaches, such as anti-scatter grid, partial beam 
blockers, and scattering estimators [7–9], have been 
joined to deep learning-based methods, which have 
been showing interesting potential to improve CBCT 
quality [10]. Such methods, leveraging mainly convolu-
tional neural networks (CNN) and generative adversar-
ial networks (GAN), were investigated to map the 
physical model of the x-ray interaction with matter 
disregarding the underlying complex analytics and 
avoiding the use of explicit statistical approaches such 
as Monte Carlo. Aiming at removing scatter and cor-
recting HU units in CBCT scans, many authors explored 
various types of CNN, ranging from UNet trained with 
a supervised training approach [11–15] to the more 
complex cycle-consistent Generative Adversarial 
Network (cGAN), based on an unsupervised training 
approach [16–21]. cGAN model consists of two subnet-
works, the generator and the discriminator, with oppo-
site roles. While the generator tries to learn how to 
convert one dataset to another, the discriminator dis-
tinguishes between real and synthetic images. This 
process creates a cycle-consistent loop that improves 
the generator’s ability to produce synthetic images 
that look just like real ones. Focusing on CBCT-to-CT 
mapping, Xie et  al. proposed a scatter artifact removal 
CNN based on a contextual loss function trained on 
the pelvis region of 11 subjects to correct the CBCT 
artifacts in the pelvic area [22]. Another research 
focused on a cGAN model to calibrate CBCT HU values 
in the pelvis region. The model was trained on 49 
patients with unpaired data and tested on nine inde-
pendent subjects, and the authors claimed the method 
kept the anatomical structure of CBCT images 
unchanged [18]. Exploring the use of deep residual 
neural networks in this field, a study demonstrated the 
capability of such architectures by proposing an itera-
tive tuning-based training, where images with increas-
ing resolutions are used at each step [23]. Likewise, 
our group recently reported that cGAN has better 
capability than CNN trained with pure supervised 

techniques to preserve anatomical coherence [24]. All 
these contributions, however, did not address the con-
sistency of the treatment planning performed with the 
corrected CBCT. Conversely, Zhang et  al. [25] reported 
the test of pelvis treatment planning in proton therapy 
performed on CBCT corrected with CNN. However, 
they summarized that the dose distribution calculated 
for traditional photon-based treatment outperformed 
the one computed for proton therapy. CBCT corrected 
with a cGAN was applied to evaluate the quality of the 
proton therapy planning in cancer treatment across 
different datasets with satisfactory results [13,20]. All 
the mentioned research works focused on the prob-
lem of CBCT-to-CT HU conversion exploiting CBCT 
with a wide field of view (FOV). However, some sys-
tems present in clinical practice have a limited FOV, 
not sufficient to contain the entire volume of the 
patient, e.g. in the presence of large regions such as 
the pelvis or with obese patients [26]. Considering the 
current use of CBCT for patient positioning purposes, 
small FOV CBCT systems could be preferred due to 
their reduced imaging dose, shorter computation time, 
and increased resolution over the treatment region of 
interest [27]. However, the limited FOV also causes a 
truncation problem during reconstruction [28,29]. 
Consequently, the non-uniqueness of the solution for 
the iterative reconstruction causes additional 
bright-band effects that add artifacts to the CBCT [30]. 
Even in the case of optimal HU calibration and scatter 
reduction, a CBCT, acquired in a narrow FOV cannot 
be used for adaptive dose planning. Especially, narrow 
FOV CBCT lacks important anatomical information (e.g. 
the air/skin interface) necessary for properly calculat-
ing the beam path. The present work aimed to pro-
pose a deep-learning framework that elaborates the 
CBCT to calibrate the HU, remove artifacts due to the 
conic geometry acquisition, and handle narrow FOV 
issues to demonstrate the potential use of the cor-
rected CBCT in the context of proton treatment plan-
ning updates. The work is part of a larger study carried 
out in collaboration with the Italian National Center of 
Hadrontherapy (CNAO, Pavia, Italy) that aims to explore 
the possibility of using the in-house narrow FOV CBCT 
system not only for patient positioning but also for 
dosimetric evaluation without hardware modifications 
[31]. The deep-learning framework took its root from 
the CBCT-to-CT mapping model based on cGAN pro-
posed in [24] that was here extended to address the 
case of narrow FOV. Tests were carried out on a public 
dataset of planning CT (pCT) scans of 40 oncological 
patients affected by pancreatic cancer. In a first 
attempt, synthetic raw CBCT volumes were properly 
generated from CT scans throughout the Monte Carlo 
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simulation. This enabled us to dump anatomical varia-
tions usually present in real CBCT with respect to the 
corresponding planning CT. Moreover, in order to 
demonstrate the feasibility of the methodology also 
with real data, we replicated each experiment with the 
clinical CBCT included within the dataset. As the data-
set provided annotation data about the segmented 
lesion and organs at risk, particle beam dosimetry was 
computed in the original planning CT and the cor-
rected CBCT volume, verifying the coherency between 
the two dose distributions. The main contributions of 
this paper may therefore be summarized as:

•	 capability of the cGAN to correct CBCT (scatter 
reduction and HU remapping) when applied to 
small FOV;

•	 consistency of the proton dosimetry computed 
on corrected CBCT with respect to the original 
planning CT.

2.  Materials and methods

2.1.  Dataset description

A publicly available dataset obtained from the Cancer 
Imaging Archive, called Pancreatic-CT-CBCT-SEG [32], 
was exploited in this work. The dataset contained CT 
acquisition from 40 patients who received ablative 
radiation therapy for locally advanced pancreatic can-
cer at Memorial Sloan Kettering Cancer Center. Each 
CT was acquired during a deep inspiration breath-hold 
verified with an external respiratory monitor. The data-
set al.so included manual segmentations of a region of 
interest (ROI), defined by expanding the dose planning 
target volume by 1 cm. Along with the ROI, each scan 
provided contours of some organ at risk (OAR), namely: 
(i) the stomach with the first two segments of the 
duodenum, (ii) the remainder of the small bowel, and 
(iii) both lungs. The authors reported that the segmen-
tations were performed independently by six radiation 
oncologists and reviewed by two trained medical 
physicists. The dataset al.so provided two CBCT scans 
for each subject. In the first phase, these CBCTs were 
not considered because they were obtained at differ-
ent times with respect to the corresponding CT scan, 
which could lead to potential changes in patient anat-
omy between acquisitions. Simulated CBCT scans were 
considered instead by generating them directly from 
the corresponding planning CT (implementation is 
detailed below in section 2.1.1). This way, perfect 
alignment and anatomical correspondence between 
the two volumes were both ensured, avoiding the 
need for additional registration steps (rigid or deform-
able). To summarize, using simulated CBCT scans 

allowed the study to focus solely on the algorithm’s 
ability to reduce artifacts and cupping effects without 
considering intra-patient longitudinal variability. Each 
experiment was then also replicated with the real 
small FOV (250 mm diameter) CBCT provided with the 
dataset by adding an intermediate rigid registration 
step in the pipeline, in order to demonstrate the feasi-
bility of the methodology also with data from the 
real world.

2.1.1.  CBCT simulation
Synthetic CBCTs were generated from the original 
available CTs following the approach documented in 
[33] and replicating the setup and the geometry of 
CNAO’s CBCT acquisition system [31]. Specifically, 
Monte Carlo (MC) simulations were conducted to gen-
erate primary (PMC) and scatter (SMC) X-ray images for 
each CT scan. All simulations were performed using 
the GATE open-source software v9.2 (based on Geant4 
v11) [34] with fixed forced detection, a variance reduc-
tion technique aimed at minimizing computation 
time. The energy-dependent detector efficiency was 
based on the design specifications provided by the 
manufacturer for the Paxscan 4030D (Varian Medical 
System, Palo Alto, CA). The X-ray fluence spectrum 
was computed using the open-source software SpekPy 
[35], employing 3.2 mm Al filtration at 100 kVp. The 
A-277 X-ray tube (Varian Medical System, Palo Alto, 
CA), chosen for this work, features a 7  rhenium-tungsten 
molybdenum target. Images were produced according 
to a CBCT scan of 220° and with projection matching 
the size of the Paxscan 4030D detector (isometric 
pixel spacing 0.388 mm, detector size 768 × 1024 pix-
els). The source-to-detector and source-to-isocenter 
distances were set to 1600 mm and 1100 mm, respec-
tively. A further acceleration of scatter calculation was 
achieved by downsampling resolution 8-fold and sim-
ulating SMC at 5° steps with a statistical uncertainty 
< 5%. SMC images were then upsampled and interpo-
lated at the required points to match the correspond-
ing PMC images. Lastly, the final projections S P

MC MC
+  

were normalized by the simulated flat field image. 
CBCT scans were then reconstructed using open-source 
software RTK [36] at a 1 1 1× ×  mm resolution, with a 
220 220 220× ×  size in pixel and masked to the axial 
field-of-view of diameter equal to 204 mm. Some 
examples of planning CT and simulated CBCT axial 
slices are visible in Figure 1, along with the intensity 
profile of the central pixel row. The cupping effect is 
evident as a shaded portion in the middle of the 
CBCT and confirmed by the concavity in the intensity 
profile.
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2.2.  CBCT-to-CT correction

2.2.1.  Neural network architecture and main 
processing layers
The network implemented for CBCT correction was based 
on the cycle Generative Adversarial Network (cGAN) [37]. 
This architecture is based on four concurrent subnet-
works, two generators and two discriminators, which 
work in opposition. While the generators try to learn the 
mapping to convert CBCT to CT (or CT to CBCT), the dis-
criminator’s objective is to distinguish between authentic 
and network-generated images. This generator- 
discriminator cycle-consistent loop is designed to improve 
the generators’ ability to produce synthetic images that 
reproduce with high fidelity the characteristic of the des-
tination modality (e.g. generate a calibrated synthetic CT 
starting from a scattered CBCT). The network’s funda-
mental processing unit was referred to as ConvBlocks 
(Figure 2), which were built using a 2D convolution with 
a 3 × 3 kernel, followed by an instance normalization layer 
and a swish activation function. Instance normalization 
was demonstrated to improve the performance in image 
generation tasks [38]. The use of swish activation was 
shown to combine the advantages of rectilinear and sig-
moid activations. It has a smooth, differentiable form due 
to the sigmoid component, which can help with training 
stability and gradient flow [39]. The other basic 

processing unit for cGAN structure was the InceptionBlock, 
consisting of four parallel ConvBlocks, each with an 
increasing kernel size of dimensions 1 × 1, 3 × 3, 7 × 7, and 
11 × 11, which processed the same input simultaneously 
with multiple receptive fields. The output of each branch 
of InceptionBlock was then combined, and the complete 
set of feature maps was produced as output. The primary 
objective of this processing block was to execute 
multi-scale feature extraction from the initial image. The 
extracted multi-scale features, varying from small to large 
receptive fields, can produce improved outcomes for 
image synthesis. The general design of the generator was 
then carried out as a modified version of the commonly 
used U-Net architecture. The U-Net model is usually uti-
lized for solving pixel-by-pixel classification challenges in 
image segmentation [40]. Still, it can also be used to 
solve image-to-image conversion problems with minor 
changes. The overall generator structure, depicted in 
Figure 2, was composed of a contracting and an expand-
ing path. The upper two processing layers of the gener-
ator were based on InceptionBlocks, while the deeper 
two exploited ConvBlocks. Consequently, the network 
can be broadly top-bottom divided into two segments, 
each serving distinct functions: (i) the inception part 
(upper layers) extracted global contextual information, 
whereas (ii) the traditional 2D convolution part (bottom 
layers) was responsible for capturing more intricate 

Figure 1. E xamples of two CT axial slices with their corresponding simulated CBCT. The intensity profiles of the central row 
(marked as a line in both images) are plotted in the right panel. Each image is displayed with Window = 1300, Level = 0.
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context and precise localization. On the other hand, the 
CNN utilized as the discriminator was responsible for 
image classification and relied on the PatchGAN architec-
ture [41]. Its architecture was based on four sequential 
ConvBlocks, each with a kernel size of 4 × 4. In the initial 
three ConvBlocks, the convolution was set with stride 2, 
leading to an output tensor with half the size and twice 
the features map. In contrast, the last ConvBlock had 
stride one and maintained the size and the number of 
feature maps unchanged. A sigmoid activation function 
was applied to the last layer, generating a 32 × 32 map 
used to classify the input image as real or fake.

2.2.2.  Model training
As formerly stated, the cGAN overall training routine 
employed two generators and two discriminators, com-
peting against one another to solve the CBCT-to-CT 
conversion problem. The subnetworks were referred to 
as generator CT (GCT), generator CBCT (GCBCT), discrimi-
nator CT (DCT), and discriminator CBCT (DCBCT). GCT and 
GCBCT were used to produce generated CT from CBCT, 

and generated CBCT from CT, respectively, while DCT 
and DCBCT were used to distinguish the original CT and 
CBCT from their generated counterparts. The training 
routine was subdivided into two main steps occurring 
simultaneously. In the first step, called the generative 
phase, GCT (GCBCT) took a 2D axial slice of a CBCT (CT) as 
input and produced a generated CT (generated CBCT) 
as output. Then, GCT (GCBCT) took the generated CT (gen-
erated CBCT) as input and produced a cyclic CBCT 
(cyclic CT), which was supposed to be equal to the 
original CBCT (CT). At the same time, during the second 
step, called the classification phase, DCT (DCBCT) tried to 
distinguish between real CT (CBCT) and generated CT 
(generated CBCT). The whole dataset, consisting of the 
generated CBCT-pCT (paired) was divided into training, 
validation, and test sets in proportions of 70%, 15%, 
and 15%, containing 5698, 1221, and 1221 2D axial 
slices, respectively. As far as the loss functions are con-
cerned, the generator loss functions included three 
types of terms, namely adversarial loss, cycle consis-
tency loss, and identity loss. The discriminator loss was 

Figure 2. S chematic of the Generator model architecture.
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composed only of an adversarial term. Further technical 
details about the network training and implementation 
can be found in a previous work of our group [24]. The 
entire cGAN was implemented in Python, using Keras 
[42] and TensorFlow [43] frameworks.

2.2.3.  Performance metrics for model evaluation
The network performances were quantitatively evalu-
ated using the original CT as the ground truth refer-
ence. In particular, the metrics evaluated were: (i) 
peak signal-to-noise ratio (PSNR), (ii) structural simi-
larity index measure (SSIM), and iii) mean absolute 
error (MAE) [44]. The PSNR quantifies the quality of 
images by comparing the mean square error of the 
images being compared to the maximum possible 
signal power [45]. It is measured in decibels, and its 
value increases toward infinity as the difference 
between the calibrated CBCT and ground-truth CT 
decreases. Therefore, a larger PSNR value indicates 
better image quality, while a lower value indicates 
the opposite. SSIM evaluates the resemblance 
between two images by analyzing their luminance, 
contrast, and structure [46]. Compared to PSNR, SSIM 
is considered a more human-like measure of similar-
ity. The SSIM score ranges from 0 to 1, with a value 
of 1 indicating the highest level of similarity between 
the images. MAE was used to quantitatively assess 
the accuracy of Hounsfield Units between the gener-
ated CBCT and the original CT. The lower value corre-
sponds to the higher level of HU accuracy between 
the two images. The significance (p < 0.05) of the sta-
tistical difference between CBCT slices prior to and 
following calibration was verified using Kruskal-Wallis 
non-parametric test.

2.2.4.  Synthetic CT generation pipeline
Despite the better quality of calibrated CBCT in terms 
of HU density values, these volumes cannot yet be 
used for adaptive dose planning due to their limited 
FOV. In fact, these CBCT acquisitions lack important 
anatomical information (e.g. the air/skin interface) nec-
essary for the correct calculation of the beam path. In 
order to overcome this intrinsic limit, the original plan-
ning CT was used to provide the missing information. 
Therefore, synthetic CT (sCT) is defined in this work as 
an updated version of the original planning CT over-
ridden with the calibrated voxels from daily CBCT 
acquired during the treatment. Starting from a scat-
tered CBCT, the following procedure was followed in 
an axial slice-by-slice approach. At first, each pixel in 
the slice was clipped between values [–1000; 3000] 
and then normalized in the [0; 1] range. This step is 

fundamental because the neural network needs value 
in this range to operate properly. Then, the generator 
GCT processed the normalized CBCT, producing a cor-
rected version of the same axial slice. It is important to 
remember that GCT is the only cGAN subnetwork used 
after completing the training. After neural network 
processing, the previous pixel clipping guarantees that 
the normalization can be reversed back to HU. A rigid 
registration step between the corrected CBCT and the 
pCT followed, in order to increase the anatomical cor-
respondence. This was based on the SimpleITK regis-
tration framework. The process involved optimizing six 
degrees of freedom, which included three translational 
and three rotational parameters. Mutual information 
was used as the similarity metric to quantify the corre-
spondence between intensity patterns in the two 
images, guiding the optimization algorithm to find the 
optimal transformation that aligns the CBCT to the 
pCT in a rigid manner. The result was a registered 
transformation that improved the spatial alignment of 
the CBCT and pCT volumes by accounting only for 
translations and rotations without any other deforma-
tion in order to avoid introducing biases in the subse-
quent operations. This step was applied just for real 
CBCT, since the generated ones already matched the 
corresponding pCT anatomy. The last step involved 
overriding the planning CT pixels with the region 
acquired with the cone beam modality. Every pixel 
outside the CBCT FOV belonged to the original CT. The 
entire pipeline is summarized in Figure 3. In order to 
evaluate the effective improvement obtained by the 
corrected CBCT in terms of treatment planning, two 
versions of sCT were generated for each subject. The 
first, called sCT corrected (sCTc) was obtained follow-
ing the mentioned procedure, while the second, called 
sCT uncorrected (sCTu), was obtained simply by over-
riding the original CBCT volume without any kind of 
processing.

2.3.  Dosimetric analysis

2.3.1.  Proton-based treatment planning
The treatment plan for each subject was computed 
with the matRad package [47], an open-source radi-
ation treatment planning toolkit written in Matlab. 
In particular, the planning was developed using 
protons as the radiation mode and optimized using 
the constant relative biological effectiveness times 
dose method, which accounts for the varying bio-
logical effectiveness of different radiation types and 
energies. A total of 30 fractions were scheduled for 
the treatment, with two beams used at gantry 
angles of 0 degrees (anterior direction) and 270 
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degrees (right lateral direction). Several constraints 
were chosen in the planning definition to ensure 
the safety and efficacy of the treatment. For the 
bowel and stomach regions, squared overdosing 
and maximum dose volume histogram constraints 
were used to limit the radiation dose received by 
these sensitive areas. The lung regions were also 
subject to squared overdosing constraints to limit 
the dose delivered to those areas. Finally, the ROI 
was subject to squared deviation constraints, which 
aim to keep the dose distribution as close as possi-
ble to the prescribed dose (30 fractions of 2 Gy 
equivalent) [48]. The reference dose planning was 
first computed directly on the pCT and used as the 
ground truth in further comparison. Then, this refer-
ence plan was updated, giving either corrected or 
uncorrected sCT as the new volume.

2.3.2.  Dose evaluation
To evaluate the suitability of corrected CBCT scans, 
various metrics were used, including dose difference 
pass rate (DPR), dose–volume histogram (DVH) metrics, 
and Gamma pass rates (GPR). The treatment dose 
computed for the original planning CT was considered 
as the prescribed ground truth dose [44]. DPR mea-
sures the percentage of pixels that meet a certain 
dose difference threshold, DVH compares cumulative 
dose to different structures in relation to volume, while 
GPR assesses the similarity of two dose distributions 
based on dose difference and distance-to-agreement 
criteria. The significance (p < 0.05) of the statistical dif-
ference in GPR distributions between sCTu and sCTc 
was verified using the Kruskal-Wallis non-parametric 
test. Mean doses, D5, and D95, measured on ROI, 
bowel, and stomach were considered to assess the 

treatment quality and the toxicity control on the organ 
at risk.

3.  Results

3.1.  Qualitative evaluation of the image 
translation

At a qualitative inspection, it can be seen that the 
darker region clearly visible in the original CBCT due 
to the cupping artifacts was no longer noticeable after 
cGAN correction (Figure 4). Likewise, the corrected 
overwritten sCT scans were more similar to pCTs with 
respect to their uncorrected counterpart. (Figure 5). 
Intensity profiles also confirmed this, showing that the 
concave shape observable in the unprocessed lines 
disappeared in the processed ones, now matching the 
HU values range of the reference pCT. This also con-
firmed that the non-linearity present in the CBCT tis-
sue density was corrected.

3.2.  Quantitative evaluation of the image 
translation

The results from evaluating the model’s performance 
metrics (Figure 6) showed promising improvements in 
the quality of the CBCT slices. The original images had a 
median PSNR of 24.60 dB with an interquartile range 
(IQR) of 1.40 dB. On the other hand, the processed 
images had a median PSNR of 33.41 dB (IQR 3.36 dB), 
resulting in a relative gain of approximately 37%. In 
terms of the SSIM score, the original images had a 
median of 0.90 (IQR 0.03), and the processed CBCTs 
showed a median of 0.95 (IQR 0.02), which corresponded 
to a relative enhancement of around 5%. Furthermore, 
the median MAE for the original images was 148.96 HU 

Figure 3. S chematic of sCT generation pipeline. *Rigid registration step is applied only to real CBCT scans since generated ones 
are intrinsically perfectly aligned.
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(IQR 31.24 HU), whereas the median MAE for the pro-
cessed images was 43.47 HU (IQR 14.82 HU). These 
results demonstrate the effectiveness of the cGAN 
approach in improving CBCT image quality. For all three 
metrics, a statistical difference was found (p < 0.01).

3.3.  Treatment planning evaluation – simulated 
data

The qualitative comparison between the treatment plans 
computed for each modality confirmed an ameliorated 

similarity between sCTc and pCT with respect to their 
uncorrected counterpart. An example of this can be seen 
in Figure 7 upper row. It is visible how the beam path 
computed on sCTu exceeded the ROI releasing a more 
significant amount of dose in the following tissues. 
Moreover, it could also be seen that high dose values (red 
pixels) break over ROI boundaries, indicating that a por-
tion of surrounding healthy areas received overexposure 
to radiation. This was also confirmed by the dose differ-
ence computed with respect to the pCT reference plan 
(cfr. Figure 7 bottom row). Conversely, the sCTc treatment 

Figure 4. E xample a CBCT axial slice before (left) and after (right) cGAN correction. As it can be noticed, the cGAN was effective 
in the correction of the CBCT. Each image is displayed with Window = 1300, Level = 0.

Figure 5. E xamples of two CT axial slices with their corresponding sCT generated overriding the uncorrected simulated CBCT 
(sCTu) and the corrected ones (sCTc). The intensity profiles of the central row (marked as a line in both images) are plotted in 
the right panel. Each image is displayed with Window = 1300, Level = 0.
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plan corrected that pattern, showing a more similar beam 
path and a reduced difference with respect to the pCT 
plan. Likewise, the dose-volume histogram computed for 
the same test subject confirmed and enforced such a 
consideration (Figure 8). Observing the ROI lines, the sCTc 
(orange dotted line) followed the profile of pCT (orange 
solid line) more closely than the sCTu (orange dashed 
line). The treatment plan calculated on sCTc and pCT 

showed a steep slope, indicating that 2 Gy was the dose 
delivered to almost all the ROI, while sCTu showed a 
smoother slope, a sign of overdosing in a portion of this 
area. Concerning the organs at risk (green and light blue 
lines), this consideration was even more evident, with an 
overdosing in the order of about two times with respect 
to the reference plan. This result would be incompatible 
with clinical practice. The GPR results for the entire 

Figure 6. P erformance metrics for cGAN model evaluation, computed on the axial slices of the test set before and after model 
processing.

Figure 7. E xample of dose planning for an axial slice of a subject for the original pCT, sCTu, and sCTc (upper row). The difference 
between both sCT treatment plans with respect to the original pCT plan is shown in the bottom row. Synthetic CT scans in this 
figure were produced using a simulated CBCT as the input.
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dataset were computed for different gamma criteria and 
summarized in Table 1 as median (IQR). The median 
gamma pass rates for the 1%/1 mm, 2%/2 mm, 3%/2 mm, 
and 3%/3 mm criteria were consistently higher for the 
sCTc the sCTu, with the most significant improvement 
observed for the 3%/3 mm criterion (92.82% vs. 57.57%).

DPR at 1% was also found to be significantly higher 
for the processed sCT than the unprocessed ones 
(93.97% vs. 79.76%), indicating a 14.21% improvement 
in dose accuracy with the use of sCTc. In regard to 
mean dose distribution across the overall dataset, the 

advantage of sCTc was evident with respect to the 
overdosing of the sCTu in the ROI (Table 2). The rela-
tive percentage error decreased from 6% for sCTu up 
to 2% for sCTc. A greater advantage was achieved in 
terms of unwanted doses distributed at the bowel as 
97% against 2%, with respect to the nominal toxicity 
in the pCT. Likewise, the relative toxicity in the stom-
ach decreased from 49% up the 2%. For D5, the cor-
rection was effective in reducing the overexposure 
found in the unprocessed sCT. For D95, the correction 
underestimated the dose of about 5%. As far as OAR 
is concerned, the correction was again effective in 
ensuring a low dose, very similar to that one obtained 
in the planning CT, at both bowel and stomach. 
Interestingly, the IQR range of 0.12 Gy (D95) for the 
stomach potentially delivered when using the sCTu 
was completely zeroed by the correction.

3.4.  Treatment planning evaluation – real data

Each result presented in previous sections referred to 
simulated CBCT. The following results refer to sCT gen-
erated using real CBCT as the input data in order to 
show the quality of the treatment planning with 
real-world data. As explained in Section 2.2.4, a rigid 
registration step was added to the pipeline just before 
the pCT override (Figure 9). Once again, the comparison 
of the treatment plans generated for each method con-
firmed an improved similarity between sCTc and pCT 
with respect to their uncorrected equivalent. Figure 10) 
depicts an example case in which it is possible to 
observe again how the beam path exceeded the ROI 
with a consequent overdosing in the adjacent healthy 
tissues when computed on sCTu. However, the sCTc 
treatment plan effectively reduced the overdosing and 
corrected this pattern, leading to a beam path that 
closely resembled the pCT plan and reducing the differ-
ences (cfr. Figure 10 bottom row). The corresponding 
dose-volume histogram for the test subject (Figure 11) 
further supported this observation. Looking at the ROI 
lines, the sCTc (orange dotted line) followed the profile 
of pCT (orange solid line) more closely than the sCTu 
(orange dashed line). Even if the corrected plan slightly 
overdosed about 60% of the volume, the effect is 
reduced compared to the uncorrected plan, which pre-
sented a smoother slope for the entirety of the ROI, 
giving 1.25 Gy to the 100% of the volume instead of the 
2 Gy of the prescribed dose and overdosing the rest. 
This observation became even more apparent when 
considering the organs at risk (represented by the green 
and light blue lines). Specifically, the corrected treat-
ment plan for the bowel closely replicated the pre-
scribed one, demonstrating a good level of accuracy.

Figure 8. E xample of DVH computed for ROI and two organs 
at risk (bowel and stomach). Solid line: pCT, dashed line: sCTu, 
dotted line: sCTc. Synthetic CT scans in this figure were pro-
duced using a simulated CBCT as the input.

Table 1. G amma pass rate results for different criteria com-
puted using only the simulated CBCT dataset as input to the 
framework. Statistical difference in gamma score distributions, 
between uncorrected and corrected sCT, was found (p < 0.001).
Gamma Criterion sCTu sCTc

1%/1 mm 44.68 (6.91) 74.37 (4.63)
2%/2 mm 51.72 (8.15) 87.30 (6.32)
3%/2 mm 53.78 (8.53) 90.26 (5.70)
3%/3 mm 57.57 (7.49) 92.82 (5.94)

Table 2. M ean doses, D5, and D95, measured on ROI, bowel, 
and stomach, computed using only the simulated CBCT data-
set as input to the framework. Values are expressed as medi-
an(IQR) Gy.

Mean dose D5 D95

pCT 1.98 (0.01) 2.04 (0.01) 1.86 (0.07)
ROI sCTu 2.10 (0.09) 2.61 (0.28) 1.64 (0.10)

sCTc 1.93 (0.08) 2.09 (0.05) 1.54 (0.28)
pCT 0.47 (0.44) 2.01 (0.04) 0.00 (0.00)

Bowel sCTu 0.93 (0.52) 2.06 (0.31) 0.00 (0.00)
sCTc 0.48 (0.40) 2.00 (0.13) 0.00 (0.00)
pCT 0.65 (0.27) 2.01 (0.03) 0.00 (0.00)

Stomach sCTu 0.97 (0.35) 2.14 (0.24) 0.00 (0.12)
sCTc 0.64 (0.29) 2.02 (0.11) 0.00 (0.00)
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For a quantitative comparison, the GPR results com-
puted on the entire dataset are summarized in Table 3 as 
median (IQR). Again, even in the presence of real CBCT 
overridden to the pCT, the median gamma pass rates for 
all the computed criteria were consistently higher for the 
sCTc, with the most significant improvement observed for 
the 3%/2 mm criterion (23% difference).

Regarding the average dose distribution, the 
superiority of sCTc over sCTu in terms of 

overdosing within the ROI was evident, as indicated 
in Table 4. The relative percentage error decreased 
from 3% for sCTu to 1% for sCTc. Furthermore, a 
significant advantage was also achieved in terms of 
undesired doses in the bowel, with error percent-
ages of 31% (sCTu) and 13% (sCTc) in comparison 
to the nominal toxicity in the pCT. Similarly, the rel-
ative toxicity in the stomach decreased from 
12% to 3%.

Figure 9. O verlay of corrected CBCT (pink) on pCT (green) before (left) and after (right) rigid registration. It can be seen that the 
registration was effective in the alignment of the bony structures. Each image is displayed with Window = 1300, Level = 0.

Figure 10. E xample of dose planning for an axial slice of a subject for the original pCT, sCTu, and sCTc (upper row). The difference 
between both sCT treatment plans with respect to the original pCT plan is shown in the bottom row. Synthetic CT scans in this 
figure were produced using a real CBCT as the input.
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4.  Discussion

This work proposed a novel image-processing frame-
work for generating synthetic CT scans, which com-
bines the original planning CT with routine CBCT scans, 
usable to update the dosimetry plan in proton therapy. 
The core of the framework was represented by a deep 
learning model, namely a cycle-consistency GAN, to 
correct the scatter artifacts in the CBCT images and cal-
ibrate intensity values, in the proper HU range. 
Especially, the framework was shown to properly 
address CBCT equipment scanning narrow FOV [44]. To 
the aim, the public dataset of patient-paired CT-CBCT 

scans, named Pancreatic-CT-CBCT-SEG [32], was 
exploited because of clinically consistent segmentation 
of ROI and OAR across all the considered patients. From 
the CT scans, physically consistent simulated CBCT 
were generated by means of the Monte Carlo algo-
rithm, also accounting for narrow FOV. Especially, Monte 
Carlo parameter tuning was set according to the CBCT 
equipment and the acquisition setup at the CNAO. The 
cGAN-based correction mapped synthetic uncorrected 
CT into synthetic corrected CT. We remark that, as long 
as the dataset used to train the network is representa-
tive of the data expected to be used in clinical practice, 
the methodology remains robust. In terms of robust-
ness, the applied methodology did not require retrain-
ing the model when moving from simulated to real 
data. Generally speaking, as soon as the predicted data 
are no longer satisfactory, the model can be retrained 
with data taken from the actual clinical setup.

The available segmentations granted replicating the 
particle beam planning, computed on the original CT, to 
the corrected sCT for straightforward comparison. The 
obtained results confirmed, both qualitatively and quan-
titatively, the capability of the cGAN-based to correct 
CBCT into CT-compatible images. As shown, the intensity 
profiles were rectified adequately thanks to the reduction 
of cupping and truncation artifacts (cfr. Figure 5). A sig-
nificant increase in PSNR, SSIM, and MAE metrics testified 
to the effectiveness of the methodology (cfr. Figure 6). 
Dosimetry computed on uncorrected sCT featured over-
dosing, especially at OAR (cfr. Tables 1 and 2). An inaccu-
rate assessment of tissue densities was made due to the 
lack of HU calibration. The proton dosimetry computa-
tion is strongly affected by the gradient between CBCT 
and pCT if HU correction is not properly performed, as 
the result obtained on sCTu confirmed. The difference in 
grayscale values between the original CBCT and pCT 
caused a discontinuity in the volume (cfr. Figure 5), lead-
ing to errors in particle beam path computation. 
Conversely, the dosimetric plan computed on the cor-
rected sCT confirmed the consistency of the plan com-
puted on the corresponding CT scan (cfr. Table 1).  
The proposed method showed promising preliminary 
results in terms of proton dosimetry consistency. The 
American Association of Physicists in Medicine (AAPM) 
Task Group 218 defined acceptance criteria for tolerance 
and action limits as exceeding 95% and falling below 
90%, respectively, for a 3%/2 mm GPR standard [49]. 
While not completely in agreement with the upper 
threshold, the 90.26% found in this work (cfr. Table 1) is 
to be deemed reasonable. Nonetheless, such value, over-
coming the lower 90% action limit threshold, makes the 
methodology promising for clinical application. In order 
to avoid confounding factors induced by organ 

Figure 11. E xample of DVH computed for ROI and two organs 
at risk (bowel and stomach). Solid line: pCT, dashed line: sCTu, 
dotted line: sCTc. Synthetic CT scans in this figure were pro-
duced using a real CBCT as the input.

Table 3. G amma pass rate results for different criteria com-
puted using real CBCT dataset as input to the framework. 
Statistical difference in gamma score distributions, between 
uncorrected and corrected sCT, was found (p < 0.001).
Gamma Criterion sCTu sCTc

1%/1 mm 49.73 (14.84) 71.97 (7.01)
2%/2 mm 61.41 (14.17) 84.37 (5.89)
3%/2 mm 65.36 (14.17) 87.20 (5.79)
3%/3 mm 70.11 (13.66) 89.87 (5.26)

Table 4. M ean doses, D5, and D95, measured on ROI, bowel, 
and stomach, computed using only the real CBCT dataset as 
input to the framework. Values are expressed as median(IQR) Gy.

Mean dose D5 D95

pCT 1.98 (0.01) 2.04 (0.01) 1.86 (0.07)
ROI sCTu 2.03 (0.08) 2.37 (0.21) 1.73 (0.13)

sCTc 1.96 (0.06) 2.11 (0.07) 1.69 (0.18)
pCT 0.47 (0.44) 2.01 (0.04) 0.00 (0.00)

Bowel sCTu 0.62 (0.43) 2.05 (0.22) 0.00 (0.00)
sCTc 0.41 (0.29) 2.00 (0.12) 0.00 (0.00)
pCT 0.65 (0.27) 2.01 (0.03) 0.00 (0.00)

Stomach sCTu 0.73 (0.31) 2.12 (0.15) 0.00 (0.00)
sCTc 0.63 (0.26) 2.02 (0.06) 0.00 (0.00)
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deformation, this work used simulated CBCT by means of 
the Monte Carlo approach, so that differences between 
the images were exclusively due to artifacts rather than 
anatomy. This allowed us to use the same lesion and 
OAR segmentation used to compute the reference treat-
ment plan. However, results obtained using real-world 
CBCT as input to the framework confirmed the feasibility 
of the approach (cfr. Table 3). Real data resulted in gen-
erally lower performances when compared to the sim-
ulated ones. This was mainly due to the anatomical 
changes when in the presence of volume acquired on 
different days during the treatment. It is important to 
remember that the pelvic site, the subject of this 
study, contains soft tissue that implies relative move-
ment between organs and the generation of air bub-
bles [15,50]. Moreover, during the treatment, the 
patient often loses weight, and the tumor changes 
shape due to the treatment itself. The CBCT volumes 
were overridden on the corresponding pCT without 
any other image fusion techniques. We are aware that 
this approach is not always viable, especially when the 
pCT is distant from CBCT acquisition in terms of time. 
However, many centers are already adopting some 
immobilization techniques (e.g. custom thermoplastic 
masks) for patient immobilization on the treatment 
couch. This helps minimize relative movements 
between acquisitions. Additionally, a 3D-3D rigid regis-
tration step, primarily guided by bony structures 
between CBCT and pCT, was performed to minimize 
differences between the two volumes before overrid-
ing. When the gradient between the two volumes is 
considered excessive, it is still advisable to acquire a 
revaluation CT following the traditional protocol.

Comparison with works in the literature using deep 
learning to correct CBCT and test proton dosimetry 
showcased the consistency of the methodology in terms 
of GPR 2%/2 mm results, even though slightly smaller 
values with respect to that reported in some papers 
(Table 5). Significantly, our results on simulated and real 
data differed less than expected. Nonetheless, we note 
that our study applied the correction to small FOV 
(204 mm diameter for simulated data and 250 mm for 
real data) while the mentioned works dealt with mainly 
wider FOV (about 480 mm diameter on average). All the 
works in this comparison involved large anatomical sites 
(e.g. pelvis, thorax, and abdomen) and the patient 
cohort had a similar size. Remarkably, the comparison 
highlighted the superiority of the generative adversarial 
networks [20,51] with respect to traditional UNet [13,52].

Concerning the small FOV, it is fundamental to 
recall that the volume of interest is entirely contained 
in the CBCT and that the tissues coming from the pCT 
are only needed to calculate the beam path when the 

air/tissue interface is not already embedded in the 
CBCT [28,29]. In addition, this makes it mandatory to 
update the segmentation mask. In this work, the FOV 
was particularly reduced to demonstrate the feasibility 
of the methodology. In general, the proposed frame-
work can be adopted in all cases in which the district 
of interest is too large to fit into a single acquisition. 
Furthermore, the proposed method extends the use of 
CBCT systems currently used for patient positioning 
without additional hardware. Considering that daily 
CBCTs are acquired for patient positioning purposes, 
the present framework can be used in parallel with 
the current clinical routine. Moreover, the computation 
time required to produce an sCT starting from a CBCT 
is in the order of a few minutes on an average com-
puter, making it compatible with clinical routines. 
However, in this work, we did not use the treatment 
plan computed using the CBCT scan acquired at dose 
delivery time as the ground truth, but the one com-
puted on the original pCT. While we acknowledge that 
this can be regarded as a shortcoming toward gener-
alization, the feasibility of the overall methodology 
was showcased. In future work, the method will be 
evaluated in a real offline therapy context at the CNAO 
facility [31]. Correction of CBCTs obtained day-by-day 
during treatment will be used to assess the evolution 
of the dose plan without the need to acquire addi-
tional CTs and administer further toxicity to the patient 
[6,20]. Finally, no additional hardware will be needed 
to add to the patient positioning setup in order to 
increase the FOV for dosimetric evaluation.

5.  Conclusions

The present study proposed a generative artificial 
intelligence tool to correct CBCT scans, acquired with 
narrow FOV systems, enabling the reduction of scatter 
and the remap pixel intensity in HU. The methodology 

Table 5.  Comparison of dosimetry results with literature out-
comes in terms of GPR2%/2 mm in the domain of proton 
therapy.

Work Model
Anatomic 

Site
axial FOV 

[mm]
Patient 
cohort

GPR 
2%/2 mm

Hansen et  al. 
[52]

Unet Pelvis 410 30 53%

Landry et  al. 
[13]

Unet Pelvis 410 42 85%

Thummerer 
et  al. [53]

UNet Thorax 500 33 90.7%

Kurz et  al. [51] cGAN Pelvis 550 33 96%
Uh et  al. [20] cGAN Abdomen/

Pelvis
530 50 98.5%

This work 
– simulated

cGAN Pelvis 204 40 87.3%

This work – real cGAN Pelvis 250 40 84.4%
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made feasible treatment planning updates, which 
brings the use of CBCT images incrementally closer to 
clinical translation in proton therapy.
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