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Abstract

We propose a new type of diffuse interface model describing the evolution of a tumor mass under the 
effects of a chemical substance (e.g., a nutrient or a drug). The process is described by utilizing the variables 
ϕ, an order parameter representing the local proportion of tumor cells, and σ , representing the concentra-
tion of the chemical. The order parameter ϕ is assumed to satisfy a suitable form of the Cahn–Hilliard 
equation with mass source and logarithmic potential of Flory–Huggins type (or generalizations of it). The 
chemical concentration σ satisfies a reaction-diffusion equation where the cross-diffusion term has the same 
expression as in the celebrated Keller–Segel model. In this respect, the model we propose represents a new 
coupling between the Cahn–Hilliard equation and a subsystem of the Keller–Segel model. We believe that, 
compared to other models, this choice is more effective in capturing the chemotactic effects that may occur 
in tumor growth dynamics (chemically induced tumor evolution and consumption of nutrient/drug by tumor 
cells). Note that, in order to prevent finite time blowup of σ , we assume a chemical source term of logistic 
type. Our main mathematical result is devoted to proving existence of weak solutions in a rather general 
setting that covers both the two- and three- dimensional cases. Under more restrictive assumptions on coef-
ficient and data, and in some cases on the spatial dimension, we prove various regularity results. Finally, in 
a proper class of smooth solutions we show uniqueness and continuous dependence on the initial data in a 
number of significant cases.
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1. Introduction

Let � ⊂ Rd , d ∈ {2, 3}, be a smooth and bounded domain, and let T > 0 be an assigned final 
time. In this paper, we consider the following Cahn–Hilliard–Keller–Segel (CHKS) model aimed 
at describing some classes of tumor growth processes:

ϕt − div
(
m(ϕ,σ )∇μ

) = S(ϕ,σ ) in Q := � × (0, T ),

(1.1)

μ = −ε�ϕ + ε−1f (ϕ) − χσ in Q, (1.2)

σt − div
(
σn(ϕ,σ )∇(lnσ + χ(1 − ϕ))

) = b(ϕ,σ ) in Q, (1.3)

∂nϕ = (m(ϕ,σ )∇μ) · n = (σn(ϕ,σ )∇(lnσ + χ(1 − ϕ))) · n = 0 on 	 := ∂� × (0, T ),

(1.4)

ϕ|t=0 = ϕ0, σ |t=0 = σ0 in �. (1.5)

Equations (1.1)-(1.2) correspond to a generalized version of the Cahn–Hilliard (CH) system 
with mass source for the two unknown variables ϕ and μ. Here, ϕ denotes an order pa-
rameter, or phase-field, representing the difference between the tumor cells and healthy cells 
volume fractions, and is normalized in such a way that, at least in principle, the level sets 
{ϕ = 1} := {x ∈ � : ϕ(x) = 1} and {ϕ = −1} describe the regions occupied by the pure (“tumor” 
and “healthy”) phases, respectively. These regions are separated by a narrow transition layer of 
thickness scaling as ε ∈ (0, 1), in which {−1 < ϕ < 1}. As we will specify below, the fact that 
ϕ takes value in the reference interval [−1, 1] is enforced by the occurrence of the function f
in (1.2), which represents the derivative of what, in the Cahn–Hilliard terminology, is generally 
noted as a “singular (configuration) potential”. The variable μ is an auxiliary quantity denoting 
the chemical potential of the phase separation process. Since in tumor growth processes the total 
mass of the tumor is not conserved, we also assume the occurrence of a volumic source term S
on the right-hand side of (1.1). We shall comment on the precise expression of S later on.

The Cahn–Hilliard system (1.1)-(1.2) (cf. [6]) is coupled with the reaction-diffusion equation 
(1.3) describing the effects of a chemical substance on the evolution of the tumor. This may 
be a nutrient like oxygen or glucose which constitutes the primary source of nourishment for 
the tumor cells, as well as a drug or a medicine preventing the tumor to grow. In either case, the 
concentration of such a substance is represented by the variable σ . We shall extensively comment 
below on the expression of equation (1.3). The functions m(ϕ, σ) and n(ϕ, σ) in (1.1) and 
(1.3) are nonnegative mobility functions related to the phase-field and the nutrient concentration, 
respectively. The system is complemented with the Cauchy conditions (1.5) and with the no-flux 
(i.e., homogeneous Neumann) boundary conditions (1.4), where n is the outer unit normal vector 
to ∂�.

Diffuse interface models for tumor growth are now receiving a notable attention among the 
scientific community and the recent mathematical literature is very vast (we may quote, with 
no claim of completeness [7–9,1,10,12,13,18,19,21,27–31,23,22,46], see also the references 
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therein). Actually, most of the models considered in these papers turn out to couple a Cahn–
Hilliard relation for the tumor cell proportion (which may be of multi-phase type if more than 
two types of cells are considered, cf., e.g., [17,32,20]) with other equations describing the be-
havior of further significant quantities, like nutrient concentration (as in our case), macroscopic 
velocity, or even temperature [33].

Compared to previous tumor growth models of the same type (i.e., based on the coupling 
of the Cahn–Hilliard system with a reaction-diffusion equation), the main novelty in our sys-
tem (1.1)-(1.5) is represented by the expression of the reaction-diffusion equation (1.3), which is 
also what led us to use the terminology “Cahn–Hilliard–Keller–Segel model”. In this direction, 
we are aware of the recent contribution [15], where a connection between a generalized form of 
the Keller–Segel system and a relaxed version of the Cahn–Hilliard system is rigorously shown 
through a suitable limiting procedure). In a sense, the biological effect we would like to repre-
sent is chemotaxis, basically corresponding to the active movement, in a biological sense, of the 
tumor cells towards regions of high nutrient concentration. Considering for simplicity the case 
of a constant mobility n ≡ 1, in previous models (see, e.g., [21]), this “active transport” effect 
was described utilizing a relation of the form

σt − �σ + χ�ϕ = b(ϕ,σ ), (1.6)

where b is, as in our case, a volumic nutrient source. However, relation (1.6), which is math-
ematically simpler compared to (1.3), in our view seems to present several drawbacks from a 
modeling perspective. First of all, in view of the fact that the term χ�ϕ has no sign properties, 
(1.6) does not obey the minimum principle; hence, one cannot exclude, at least in principle, that 
the variable σ might somewhere assume strictly negative values conflicting with the physical 
interpretation of σ as a concentration. A further issue can be observed if one integrates (1.6) on 
a reference volume V ⊂ �. Indeed, applying the Gauss–Green formula, one then obtains

d

dt

∫
V

σ =
∫
∂V

∂nσ +
∫
V

b(ϕ,σ ) − χ

∫
∂V

∂nϕ, (1.7)

and we may notice that the last integral prescribes that the variation of σ in V depends on the 
flux of tumor cells across ∂V , independently of the value of σ . For instance, if many tumor cells 
(ϕ ∼ 1) are present outside V and fewer ones (ϕ ∼ −1) occur inside V (so that ∂nϕ is positive), 
then there is a nutrient flux from the inside to the outside of V , but this flux is in fact independent 
of the actual nutrient concentration.

On the other hand, if (1.6) is replaced by our (1.3), then (still in the case n ≡ 1), (1.7) assumes 
the different form

d

dt

∫
V

σ =
∫
∂V

∂nσ +
∫
V

b(ϕ,σ ) − χ

∫
∂V

σ∂nϕ, (1.8)

where, as physically expected, the nutrient flux across ∂V driven by consumption by tumor cells 
is proportional to the actual value of σ : the more nutrient is present, the more it flows away. This 
is, indeed, the main reason that led us to consider the present expression for the equation (1.3).

It is clear that the above choice, corresponding in the constant mobility case to the equation

σt − �σ + χ div(σ∇ϕ) = b(ϕ,σ ), (1.9)
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gives rise to a number of mathematical complications mainly due to the quadratic behavior of the 
cross-diffusion term. This is, indeed, one of the main sources of difficulty in the mathematical 
analysis of the Keller–Segel (KS) model [35]. Despite the vastness of the mathematical literature 
dealing with the KS model (cf., e.g., [5,11,34,48–50]), it is worth noting that, up to our knowl-
edge, this is the first paper where the coupling between a “Keller–Segel-like” expression of the 
form (1.3) (or (1.9)) with the Cahn–Hilliard system is considered. From a modeling perspective, 
while in true Keller–Segel models, a relation like (1.3) is combined with a second order reaction-
diffusion equation describing the evolution of a further concentration, in the present coupling, 
relation (1.3) is coupled with a fourth order equation describing the evolution of a proportion, 
i.e., of a normalized variable, the order parameter ϕ. This new type of coupling has some impli-
cations both on the regularity of solutions and on the mathematical techniques we use to address 
the system. For instance, we may notice that, compared to the case when the coupling variable 
ϕ satisfies a second order relation (like in the true KS model), here ϕ enjoys more regularity in 
space, but less regularity in time. This leads to some modifications of the regularity scenario and 
of the expected properties of solutions compared to the standard KS case.

It is worth noting that, as also happens in the KS model, the regularity obtained by the a-priori 
estimate corresponding to the energy balance principle (the variational formulation of the model 
starting from the free energy balance is presented below) seems not sufficient to prevent finite 
time blowup of the solution, unless the mass source term b in (1.3) is suitably designed. In par-
ticular, as is habitual in the Keller–Segel context, we have to assume b to present a “generalized 
logistic growth” property (see the next section for the precise assumption); namely, it goes like σ
for σ ∼ 0 (so to preserve the minimum principle), while it behaves as −σp (for suitable p > 1, 
with the reference case given by p = 2 corresponding to a “true” logistic growth) for large σ
(see [26,48,49] for examples of Keller–Segel models with logistic growth). With this choice, 
relation (1.8) prescribes that, if the nutrient concentration is high, then there occurs a volumic 
effect leading it to decrease. We believe this property be biologically reasonable, in addition to 
being probably unavoidable mathematically.

As anticipated above, system (1.1)-(1.5) could be variationally derived from the free energy 
functional

F(ϕ,σ ) = ε

2

∫
�

|∇ϕ|2 + 1

ε

∫
�

F(ϕ)

︸ ︷︷ ︸
=:E(ϕ)

+
∫
�

(
σ(lnσ − 1) + χσ(1 − ϕ)

)
︸ ︷︷ ︸

=:M(ϕ,σ )

, (1.10)

where F is an antiderivative of f . In particular, equation (1.1) is obtained as a balance law by 
setting

ϕt + div Jϕ = S(ϕ,σ ),

where, as is typical for the Cahn–Hilliard equation, the flux Jϕ is prescribed as Jϕ =
−m(ϕ, σ)∇μ for a mobility function m(ϕ, σ), and where the chemical potential μ is defined 
as the variational derivative of the free energy with respect to the order parameter, namely 
μ := δF/δϕ. Note that also equation (1.3) can be obtained as a balance law for the nutrient 
flux Jσ , i.e.,

σt + div Jσ = b(ϕ,σ ), with Jσ := −σn(ϕ,σ )∇μσ , μσ := δF = δM = lnσ + χ(1 − ϕ),

δσ δσ
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where the mobility function has the expression σn(ϕ, σ), hence, in particular, degenerates (in 
fact linearly) as σ ↘ 0 (so guaranteeing the minimum principle).

The above expression (1.10) for the free energy permits us to remark a further peculiarity 
of the present model. This is related to the coercivity of F , which is linked to the choice of a 
“singular potential” F , with the most usual choice in the Cahn–Hilliard literature being given by 
the Flory–Huggins “logarithmic potential” given by

F(r) = (1 + r) log(1 + r) + (1 − r) log(1 − r) − λ

2
r2, r ∈ [−1,1], λ ≥ 0. (1.11)

For the standard Cahn–Hilliard model the expression (1.11) represents a source of mathematical 
difficulties (cf., e.g., [41]), due to its singular character, and, for this reason, it is often replaced 
by a double well potential of controlled growth like, e.g., Freg(r) = (r2 − 1)2. Here, instead, the 
singular character of F helps us to get coercivity of the energy functional, and in particular to 
control the coupling term (i.e., the last summand in (1.10)).

Notice also that such a difficulty does not occur when the nutrient equation has the form (1.6). 
Indeed, in that case the free energy takes the expression

F2(ϕ,σ ) = ε

2

∫
�

|∇ϕ|2 + 1

ε

∫
�

F(ϕ) +
∫
�

(1

2
σ 2 + χσ(1 − ϕ)

)
,

which keeps its coercivity because of the contribution of σ 2 (note also that, in this case, the 
variational derivation of the model is similar, but one has to consider a mobility of the form 
n(σ, ϕ) rather than σn(σ, ϕ)).

We also have to observe a further difficulty occurring in Cahn–Hilliard models with mass 
source and singular potentials like (1.11). Namely, the forcing term S in (1.1) has to be designed 
in such a way to prevent the spatial average of ϕ to become larger than 1 or smaller than −1, 
which would be inconsistent with (1.2). Indeed, the mass balance (i.e., the evolutionary law 
ruling the spatial average of ϕ) only depends on (1.1), but at the same time its outcome must be 
consistent with (1.2). Following the lines of [17], we actually assume S(ϕ, σ) = −mϕ +h(ϕ, σ), 
where m > 0 is “large” compared to the L∞-norm of the (bounded) function h, which is readily 
seen to be an appropriate choice (see Subsec. 3.1 below for details). Note also that, for constant 
h, (1.1)-(1.2) reduces to the well-known Cahn–Hilliard–Oono system (see, e.g., [25,40,42,43]).

Our main mathematical results are devoted to proving existence of weak solutions under mild 
conditions on parameters and data as well as regularity and uniqueness results holding in more 
restrictive settings. In particular, under the sole “energy regularity” conditions on the initial data 
(basically corresponding to the finiteness of the functional F at the initial time), we can prove 
existence of weak solutions for nonconstant, bounded and nondegenerate mobilities m, n, and 
for a wide class of logistic terms. In particular, we provide, depending on the space dimension d , 
sufficient conditions on the growth of b at infinity in order to exclude the occurrence of blowup. 
This result is proved by a-priori estimates and weak compactness methods. A possible approxi-
mation scheme compatible with the a-priori estimates is also sketched.

In the case of true logistic growth, i.e., for b behaving like −σ 2 at infinity, we can also present 
a number of regularity results holding under additional hypotheses on the mobilities and on the 
other coefficients and data. As is customary for the CH system, some regularity results are only 
valid in spatial dimension d = 2, for reasons depending both on the structure of equation (1.3)
(and, in particular, on the quadratic behavior of the cross-diffusion term), and on the occurrence 
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of the singular potential, which gives rise, in the three-dimensional case, to an upper regularity 
threshold (see, e.g., [37]). In some cases we can also prove uniqueness; in fact, this is presented as 
a conditional result stating that two weak solutions starting from the same initial data and obeying 
some additional regularity properties must coincide. Then, it is observed that these regularity 
conditions are fulfilled for proper classes of strong solutions, also depending on the regularity of 
data and on the space dimension.

The plan of the paper is as follows: in the next section, we introduce our precise assumptions 
and present the statements of all our mathematical results. Then, in Section 3, we prove existence 
of weak solutions, while in Section 4 we move to the regularity results. Finally, Section 5 is 
devoted to uniqueness of “strong” solutions.

2. Mathematical preliminaries and main results

2.1. Notation

Before diving into the mathematical details, let us introduce the notation employed in the 
paper. Letting X be a Banach space, we denote by ‖ · ‖X the corresponding norm, by X∗ the 
topological dual of X, and by 〈·, ·〉X the related duality pairing between X∗ and X. Standard 
Lebesgue and Sobolev spaces defined on �, for every 1 ≤ p ≤ ∞ and k ≥ 0, are indicated by 
Lp(�) and Wk,p(�), with associated norms ‖ · ‖Lp(�) = ‖ · ‖p and ‖ · ‖Wk,p(�), respectively. 
When p = 2, these become Hilbert spaces and we use ‖ · ‖ = ‖ · ‖2 for the norm of L2(�) and 
set Hk(�) := Wk,2(�). Moreover, for brevity we introduce the following notation:

H := L2(�), V := H 1(�), H 2
n (�) := {v ∈ H 2(�) : ∂nv = 0 on �},

where we denote by � the boundary of �, that is � = ∂�.
For every v ∈ V ∗, we use v� := 1

|�| 〈v, 1〉V for the generalized mean value of v. Let us also 
point out a version of the celebrated Poincaré–Wirtinger inequality:

‖v − v�‖ ≤ c�‖∇v‖, v ∈ V, (2.1)

where the constant c� > 0 depends only on � and the spatial dimension d . The norm in V ∗ will 
be simply denoted by ‖ · ‖∗. Identifying H with H ∗ by employing the scalar product of H , we 
obtain the chain of continuous and dense embeddings V ⊂ H ⊂ V ∗. Moreover, we may denote 
as V0, H0, V ∗

0 the (closed) subspaces respectively of V , H , and V ∗, consisting of functions (or 
functionals) with zero spatial mean. Then, we observe that the weak version of the operator −�

with homogeneous Neumann boundary conditions, i.e.,

(−�) : V → V ∗, 〈(−�)v, z〉 :=
∫
�

∇v · ∇z, (2.2)

for v, z ∈ V , is invertible when it is restricted to the functions with zero spatial mean (i.e., when 
it operates from V0 to V ∗

0 ). Its inverse operator will be denoted by N : V ∗
0 → V0.

Finally, we remark that, for any v ∈ V ∗ there exists a positive constant c such that

|v�| =
∣∣∣ 1

|�| 〈v,1〉V
∣∣∣ ≤ c‖v‖∗,
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whence the Poincaré–Wirtinger inequality (2.1) yields

‖v‖V ≤ c(‖∇v‖ + |v�|) ≤ c(‖∇v‖ + ‖v‖∗), v ∈ V.

From now onward, we convey that the small-case symbol c denotes every constant that only 
relates to structural data of the problem and the norms of the involved functions; thus, its meaning 
may vary from line to line. When an additional positive constant δ also enters the computation, 
we use cδ to stress the dependency of c on δ.

2.2. Main results

We describe here our basic assumptions on coefficients and data, which will be kept for the 
remainder of the paper. Each assumption will be presented with a number of comments aimed at 
outlining its meaningfulness in the light of our specific application to tumor growth processes.

Moreover, we observe that more restrictive conditions, needed for the regularity and unique-
ness results, will be specified on occurrence.
(A1) - Assumptions on the potential. We assume F to be decomposed as F = F1 + F2, with 
F1 denoting the “singular” convex part and F2 the “smooth” nonconvex part. The latter is simply 
given by F2(r) := −λr2/2, r ∈ R, with λ ≥ 0 (so including the case F2 ≡ 0 corresponding to a 
convex potential F ). The properties of F1 are better described by using some basic notions from 
the theory of subdifferential operators. Namely, we assume F1 : R → (−∞, +∞] be convex 
and lower semicontinuous with the set {r ∈ R : F1(r) < +∞} (usually indicated as domain of 
F1 in the convex analysis terminology) coinciding either with [−1, 1] or with (−1, 1). In such 
a situation it is well-known that the subdifferential f1 = ∂F1 is a maximal monotone, possibly 
multivalued, operator in R such that {f1(r)} is nonempty at least for r ∈ (−1, 1) and at most for 
r ∈ [−1, 1]. Here, we are not interested in considering nonsmooth operators; for this reason we 
will also assume F1 ∈ C2(−1, 1) so that f (r) = f1(r) + f2(r) = F ′

1(r) + F ′
2(r) for r ∈ (−1, 1). 

Moreover, just for the sake of simplicity, we assume F1 so normalized that F ′
1(0) = 0, which 

implies in particular that F ′
1(r) ≥ 0 for r ≥ 0 and F ′

1(r) ≤ 0 for r ≤ 0. Notice that this includes 
both the case of the Flory–Huggins potential (1.11) (whose domain is [−1, 1]) as well as the case 
of “more singular” potentials like that considered in [45], i.e.,

F1(r) = − log(1 − r2), r ∈ (−1,1). (2.3)

Notice however that nonsmooth potentials, like the so-called double obstacle potential F1(r) =
I[−1,1](r), with I[−1,1] denoting the indicator function of the interval [−1, 1] (cf., e.g., [4]) may 
be considered as well, at least for what concerns existence of weak solutions.
(A2) - Assumptions on the mass source term. We assume S to be given by

S(ϕ,σ ) = −mϕ + h(ϕ,σ ), (ϕ,σ ) ∈ R2, (2.4)

where m > 0 is a constant. Moreover, we assume h to be uniformly bounded and Lipschitz con-
tinuous with respect to the complex of its variables. Finally, the following compatibility condition 
is assumed to hold

K

m
< 1, where K := ‖h‖L∞(R×R). (2.5)
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Notice that, in principle, only the behavior of h over the physical reference set H = [−1, 1] ×
[0, +∞) is significant. On the other hand, it is worth assuming h be defined for every value of 
its arguments because, for instance, in an approximation, it may happen ϕ to take values outside 
[−1, 1] (cf. Subsec. 3.3).

It is worth observing that, if h is a constant function (still indicated as h for notational sim-
plicity), the expression of S corresponds to that occurring in the so-called Cahn–Hilliard–Oono 
equation (see, e.g., [25,40,42,43] and the references therein), i.e.

S(ϕ,σ ) = −mϕ + h, h ∈ (−m,m).

Moreover, we observe that the case m ≡ h ≡ 0, corresponding to the conservation of total tumor 
mass, is admissible too, and in fact simpler to deal with. The variations needed to consider the 
situation with no mass source will be outlined on occurrence.
(A3) - Assumptions on the chemical source term. We assume b has a generalized logistic 
expression of the form

b(ϕ,σ ) = β(ϕ)(κ0σ − κ∞σp), ϕ ∈ R, σ ≥ 0, (2.6)

where p ∈ (1, 2] is a given exponent, and κ0 > 0, κ∞ > 0 are positive constants. Note that, in 
view of the minimum principle holding for equation (1.3) (and preserved in the approximation) 
it is sufficient to specify the above expression for σ ≥ 0. Here, the function β : R → R is assumed 
to be Lipschitz continuous and to satisfy

0 ≤ β(r) ≤ B < +∞ for every r ∈R, (2.7)

0 < b0 ≤ β(r) for every r ∈ [−3/2,3/2], (2.8)

β(r) ≡ 0 for every r /∈ (−2,2), (2.9)

where b0, B > 0 are given constants. In fact, in the limit, the only significant values of β(r) will 
be those assumed as r ∈ [−1, 1]. However, as in the case of h, it is necessary to extend β also 
outside that interval in view of an approximation. We finally observe that the motivations under-
lying the choice of a logistic behavior for the chemical source have been extensively detailed in 
the introduction.
(A4) - Assumptions on the mobility functions. We assume m ∈ C0(R × [0, +∞)) and n ∈
C1(R × [0, +∞)) to be globally Lipschitz continuous in the complex of their arguments, and to 
satisfy

0 < m0 ≤m(ϕ,σ ),n(ϕ,σ ) ≤ M < +∞, for every ϕ ∈ R, σ ≥ 0, (2.10)

|∂ϕn(ϕ,σ )| ≤ M < +∞, for every ϕ ∈R, σ ≥ 0, (2.11)

where, again, m0, M > 0 are given constants. In order to properly state a weak formulation of 
the system, we also set

N(ϕ,σ ) :=
σ∫
n(ϕ, s) ds,
0
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and we notice that, thanks to (2.10), N satisfies

m0σ ≤ N(ϕ,σ ) ≤ Mσ for every ϕ ∈R, σ ≥ 0. (2.12)

Moreover, it is not difficult to prove that

|N(ϕ1, σ1) − N(ϕ2, σ2)| ≤ |N(ϕ1, σ1) − N(ϕ1, σ2)| + |N(ϕ1, σ2) − N(ϕ2, σ2)|
≤ L|σ1 − σ2| + Lσ2|ϕ1 − ϕ2| (2.13)

where L > 0 is a Lipschitz constant. We also need to define

n1(ϕ,σ ) := ∂ϕN(ϕ,σ ) =
σ∫

0

∂ϕn(ϕ, s) ds,

whence there holds the identity

∇N(ϕ,σ ) = n(ϕ,σ )∇σ +n1(ϕ,σ )∇ϕ. (2.14)

Moreover, since n is assumed to be C1, n1 turns out to be continuous and to satisfy

|n1(ϕ,σ )| ≤ Mσ for every ϕ ∈R, σ ≥ 0, (2.15)

as a direct check shows.
In addition to the above assumptions, we take the chemotaxis sensitivity χ appearing in 

(1.2)-(1.3) to be a strictly positive constant. We keep its value explicit because its magnitude 
will play a role in part of the results. On the other hand, the magnitude of the interfacial en-
ergy coefficient ε > 0 has no importance for the mathematical analysis. Hence, for the sake of 
simplicity, we will directly take ε = 1 from now onward, without further reference.

The above choices lead us to rewrite system (1.1)-(1.3) in the following form, where, for the 
sake of clarity, some expressions of the source terms have been expanded:

ϕt − div
(
m(ϕ,σ )∇μ

) = −mϕ + h(ϕ,σ ) in Q, (2.16)

μ = −�ϕ + F ′
1(ϕ) − λϕ − χσ in Q, (2.17)

σt − div
(
n(ϕ,σ )∇σ

) − χ div
(
σn(ϕ,σ )∇(1 − ϕ)

) = β(ϕ)(κ0σ − κ∞σp) in Q. (2.18)

In particular, we have written the equation for σ in the “decoupled” form (2.18) where the cross-
diffusion term is split between two distinct components. Indeed, this is a necessary step in order 
to deal with a mathematically tractable weak formulation. On the other hand, it is also worth 
recalling the following “coupled” version of the equation for σ which is more suitable for the 
derivation of the a-priori estimates:

σt − div
(
σn(ϕ,σ )∇(lnσ + χ(1 − ϕ))

) = β(ϕ)(κ0σ − κ∞σp) in Q. (2.19)
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It is clear that, as far as “smooth” solutions are considered, relations (2.18) and (2.19) may be 
interpreted as equivalent. In particular, this may happen in the approximation thanks to additional 
regularity available at that level.

We can now present our first result for the chemotaxis system (1.1)-(1.5) concerning the ex-
istence of weak solutions in dimensions two and three holding under the assumptions detailed 
above. We observe in particular that, in order to pass to the limit in the cross-diffusion term (and 
in particular to decouple its components as expressed by equation (2.18)), we will be forced to 
restrict the admissible range of the exponents p in (2.6) in a way depending on the space dimen-
sion d . In the sequel, functions of the form g(r) = r ln r , or similar, are implicitly intended to be 
extended, by continuity, to r = 0 by setting g(0) = 0.

Theorem 2.1 (Existence of weak solutions, d ∈ {2, 3}). Suppose that Assumptions (A1)-(A4) are 
satisfied, let χ > 0 and let d ∈ {2, 3}. Moreover, assume that the initial data satisfy

ϕ0 ∈ V, F (ϕ0) ∈ L1(�), (ϕ0)� ∈ (−1,1), (2.20)

σ0 ≥ 0 a.e. in �, σ0 lnσ0 ∈ L1(�). (2.21)

Moreover, assume that the exponent p in (2.6) satisfies p ∈ [3/2, 2] for d = 2 and p ∈ [8/5, 2]
for d = 3. Then, system (1.1)-(1.5) admits at least one weak solution; namely there exists a triplet 
(ϕ, μ, σ) satisfying the regularity properties

ϕ ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ Lp(0, T ;W 2,p(�)), (2.22)

ϕ ∈ L∞(Q) : −1 ≤ ϕ(x, t) ≤ 1 for a.e. (x, t) ∈ Q, (2.23)

σ(x, t) ≥ 0 for a.e. (x, t) ∈ Q, (2.24)

σ ∈ C0([0, T ];Wn
∗) ∩ L∞(0, T ;L1(�)), (2.25)

σp lnσ ∈ L1(0, T ;L1(�)), σ lnσ ∈ L∞(0, T ;L1(�)), (2.26)

σ 1/2∇(lnσ + χ(1 − ϕ)) ∈ L2(0, T ;H), (2.27)

μ ∈ L2(0, T ;V ), (2.28)

F(ϕ) ∈ L∞(0, T ;L1(�)), f (ϕ) ∈ Lp(0, T ;Lp(�)), (2.29)

together with the “pointwise” formulation

μ = −�ϕ + f (ϕ) − χσ a.e. in Q, (2.30)

the boundary condition

∂nϕ = 0 in the sense of traces on � × (0, T ), (2.31)

and the weak variational formulations
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〈ϕt , v〉V +
∫
�

m(ϕ,σ )∇μ · ∇v =
∫
�

S(ϕ,σ )v, a.e. in (0, T ), (2.32)

〈σ(t),w(t)〉Wn
−

t∫
0

∫
�

N(σ,ϕ)�w −
t∫

0

∫
�

n1(ϕ,σ )∇ϕ · ∇w − χ

t∫
0

∫
�

σn(ϕ,σ )∇ϕ · ∇w

= 〈σ0,w(0)〉Wn
+

t∫
0

〈σ,wt 〉Wn
+

t∫
0

∫
�

b(ϕ,σ )w, for every t ∈ [0, T ], (2.33)

for all test functions v ∈ V , w ∈ C1([0, T ]; Wn), where we have set

Wn := {
w ∈ W 1,∞(�) ∩ W 2,p′

(�) : ∂nw = 0 on �
}
,

with p′ being the conjugate exponent of p, i.e., the exponent such that 1/p+1/p′ = 1. The space 
Wn is naturally endowed with the graph norm, which turns it into a Banach space. Besides, the 
initial conditions are satisfied in the sense that

ϕ|t=0 = ϕ0 a.e. in �, (2.34)

σ |t=0 = σ0 in Wn
∗. (2.35)

Furthermore, if the source term b has a standard logistic growth, i.e., b fulfills (2.6) with p = 2, 
then the solution (ϕ, μ, σ) obtained before satisfies the additional regularity property

σ 1/2 ∈ L2(0, T ;V ). (2.36)

It is worth providing some further comments on the above statement. First of all, we notice 
that, due to (A1), the second condition in (2.20) implies in particular that ϕ0 ∈ L∞(�) with 
−1 ≤ ϕ0 ≤ 1 almost everywhere in �. We also observe that relations (2.32)-(2.33) conveniently 
incorporate the boundary conditions. Finally, we observe that there may be proved the additional 
regularity property σ ∈ BV (0, T ; Wn

∗).
The above result may be improved as soon as the source term is pure logistic, i.e., b verifies 

(2.6) with p = 2. Specifically, that additional assumption, along with natural conditions on the 
initial data, suffices to improve the regularity of the weak solutions for d = 2 without any further 
restriction. In the three-dimensional case, a similar property holds provided that the chemotactic 
coefficient χ is assumed small enough and the mobility n is taken as a constant function (however 
this condition may be partially relaxed, see Remark 4.2 below).

Theorem 2.2 (Regularity properties of weak solutions). Suppose that Assumptions (A1)-(A4) and 
(2.20)-(2.21) hold with p = 2 in (2.6), and assume that the initial datum σ0 additionally satisfies

σ0 ∈ H. (2.37)

Moreover, if d = 3, suppose also that
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χ <
√

2κ∞b0, (2.38)

n(ϕ,σ ) ≡ 1. (2.39)

Then, the weak solution (ϕ, μ, σ) provided by Theorem 2.1 satisfies the following additional 
regularity properties:

ϕ ∈ H 1(0, T ;V ∗) ∩ L4(0, T ;H 2
n (�)) ∩ L2(0, T ;W 2,q(�)), (2.40)

σ ∈ H 1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) ∩ L3(0, T ;L3(�)), (2.41)

where q = 6 in (2.40) if d = 3, whereas one can take any q ∈ [1, ∞) if d = 2. Moreover, the sys-
tem equations are satisfied in the following sense: (2.30)-(2.31) hold together with the variational 
equalities

〈ϕt , v〉V +
∫
�

m(ϕ,σ )∇μ · ∇v =
∫
�

S(ϕ,σ )v, (2.42)

〈σt , v〉V +
∫
�

n(ϕ,σ )∇σ · ∇v − χ

∫
�

σn(ϕ,σ )∇ϕ · ∇v =
∫
�

b(ϕ,σ )v, (2.43)

for every test function v ∈ V and almost everywhere in (0, T ). Finally, the initial conditions
(2.34)-(2.35) are now both satisfied almost everywhere in �.

Under the assumptions of the previous theorem (including in particular (2.38) in the three-
dimensional case), we can prove additional regularity of solutions for constant mobilities pro-
vided that also the initial data are smoother. This is stated in the following theorem.

Theorem 2.3. Suppose that Assumptions (A1)-(A4) hold, with p = 2 in (2.6), together with 
(2.20)-(2.21). Moreover, assume

m(ϕ,σ ) ≡ n(ϕ,σ ) ≡ 1, (2.44)

and, if d = 3, assume also (2.38). If the initial data satisfy the additional conditions

ϕ0 ∈ H 2
n (�), μ0 := −�ϕ0 + f (ϕ0) − χσ0 ∈ V, σ0 ∈ V, (2.45)

then, the weak solution (ϕ, μ, σ) provided by Theorem 2.1 satisfies the following additional 
regularity properties:

ϕ ∈ W 1,∞(0, T ;V ∗) ∩ H 1(0, T ;V ) ∩ L∞(0, T ;W 2,q(�)), (2.46)

F ′
1(ϕ) ∈ L∞(0, T ;Lq(�)), (2.47)

μ ∈ L∞(0, T ;V ), (2.48)

σ ∈ H 1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H 2(�)), (2.49)

where q = 6 if d = 3 and q ∈ [1, ∞) if d = 2. Moreover, (2.42)-(2.43) can be interpreted as 
equations holding a.e. in � with the boundary conditions holding in the sense of traces.
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The next result, valid only in the two-dimensional case, extends to the present system a regularity 
property holding for the Cahn–Hilliard equation for those singular potentials whose convex part 
fulfills the growth condition

|F ′′
1 (r)| ≤ eCF (|F ′

1(r)|+1), for every r ∈ (−1,1), (2.50)

for some positive constant CF . It is well-known that (2.50) is satisfied by the logarithmic poten-
tial in (1.11); as one can directly check, it also holds for “more singular” potentials, like (2.3), 
such that |F ′

1(r)| behaves like a negative power of 1 − |r| as |r| ↗ 1. It does not hold, instead, 
in the case of the double obstacle potential. Nevertheless, whenever (2.50) holds, we can prove 
that, for smoother initial data, the solution ϕ is “separated” from the singular values ±1 in the 
uniform norm. This is stated in the following theorem.

Theorem 2.4. Suppose that Assumptions (A1)-(A4) hold with p = 2 in (2.6), together with 
(2.20)-(2.21). Moreover, assume that d = 2, the potential fulfills (2.50), and (2.44) holds. If the 
initial data satisfy the additional conditions

ϕ0 ∈ H 2
n (�), μ0 := −�ϕ0 + f (ϕ0) − χσ0 ∈ H 2

n (�), σ0 ∈ V, (2.51)

then the weak solution (ϕ, μ, σ) provided by Theorem 2.1, in addition to the regularity stated in 
Theorem 2.3, satisfies the following additional properties:

ϕ ∈ W 1,∞(0, T ;H) ∩ H 1(0, T ;H 2(�)) ∩ L∞(0, T ;H 4(�) ∩ W 2,q (�)), q ∈ [2,∞),

(2.52)

μ ∈ L∞(0, T ;H 2(�)) ∩ L2(0, T ;H 3(�)), (2.53)

F ′′
1 (ϕ) ∈ L∞(0, T ;Lq(�)). (2.54)

Moreover, if the initial data also satisfy

σ0 ∈ L∞(�), (2.55)

then one also has

σ ∈ L∞(Q) (2.56)

and there exists a computable constant δ ∈ (0, 1) only depending on the problem data such that 
the following “separation property” holds:

−1 + δ ≤ ϕ ≤ 1 − δ a.e. in Q. (2.57)

Remark 2.5. A direct check shows that, if (2.51) and (2.56) hold, then the separation property 
(2.57) holds at the initial time (i.e., its analogue is satisfied by ϕ0). Hence, (2.57) is fully com-
patible with (2.51).
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Remark 2.6. The separation property (2.57) is extremely important for singular potentials like 
(1.11). Indeed, if (2.57) holds, then, the singularity of F is no longer an obstacle for the analysis 
as, actually, ϕ is limited to range in a closed subinterval of (−1, 1) where F has controlled 
growth.

Remark 2.7. Given the parabolic nature of system (1.1)-(1.5), most of our regularity results 
could be seen as smoothing properties of weak solutions (i.e., of solutions starting from “en-
ergy regular” initial data as those constructed in Theorem 2.1), holding for strictly positive times 
(provided that the required additional assumptions on coefficients, like for instance constant mo-
bilities, hold). Of course, since uniqueness is not known to hold for weak solutions, we can 
assert that from energy regular initial data starts at least one weak solution that enjoys parabolic 
smoothing properties. However, we cannot exclude that there might exist other weak solutions 
which do not regularize in time.

Our last result is devoted to establishing uniqueness of solutions in the case of constant mobility 
functions. We prefer to formulate the result in a general version holding both for d = 2 and for 
d = 3 though in a conditional way.

Theorem 2.8 (Uniqueness). Suppose that assumptions (A1)-(A4) hold. Moreover, let m, n, β ≡
1 and p = 2 in (2.6). Let us consider a couple of weak solutions {(ϕi, μi, σi)}i=1,2 additionally 
satisfying

ϕ1 ∈ L2(0, T ;W 2,6(�)), (2.58)

σ1 ∈ L4(0, T ;H), (2.59)

σ2 ∈ L4(0, T ;L6(�)), (2.60)

associated to initial data {(ϕ0,i , σ0,i )}i=1,2 fulfilling (2.20)-(2.21) and (2.45). Let us also assume 
that either h is a constant function, or F ∈ C2(−1, 1) and there hold the additional conditions

F ′′(ϕ1),F
′′(ϕ2) ∈ L2(0, T ;H) (2.61)

as well as {(ϕ0,i , σ0,i )}i=1,2 also fulfill (2.51). Then, (ϕ1, μ1, σ1) ≡ (ϕ2, μ2, σ2) almost every-
where in Q.

Remark 2.9. We notice that conditions (2.58)-(2.59) are verified under the regularity setting of 
Theorem 2.2. The main obstacle is represented by (2.60), which holds only under the more 
restrictive conditions in Theorem 2.3. Finally, the validity of (2.61) is limited to the two-
dimensional case under assumption (2.50) and in the regularity setting of Theorem 2.4.

Remark 2.10. It is worth noticing that, under the assumptions of the above theorem, a continuous 
dependence estimate also holds. For instance, in the case of h constant, one has

∥∥ϕ1 − ϕ2 − ((ϕ1)� − (ϕ2)�)
∥∥2

L∞(0,T ;V ∗) + ‖(ϕ1)� − (ϕ2)�‖2
L∞(0,T ) + ‖(ϕ1)� − (ϕ2)�‖L∞(0,T )

+ ∥∥σ1 − σ2 − ((σ1)� − (σ2)�)
∥∥2

∞ ∗ + ‖(σ1)� − (σ2)�‖2 ∞
L (0,T ;V ) L (0,T )
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+ ‖ϕ1 − ϕ2‖2
L2(0,T ;V )

+ ‖σ1 − σ2‖2
L2(0,T ;H)

≤ K
(∥∥ϕ0,1 − ϕ0,2 − ((ϕ0,1)� − (ϕ0,2)�)

∥∥2
V ∗ + |(ϕ0,1)� − (ϕ0,2)�|2 + |(ϕ0,1)� − (ϕ0,2)�|

+ ∥∥σ0,1 − σ0,2 − ((σ0,1)� − (σ0,2)�)
∥∥2

V ∗ + |(σ0,1)� − (σ0,2)�|2
)
, (2.62)

for some K depending only on the known data, including the norms in (2.58)-(2.59).

Remark 2.11. Aiming at reducing the technical burden, Theorem 2.8 is proved by consider-
ing the two- and three-dimensional cases together. As a consequence, it is worth noticing that 
conditions (2.58)-(2.60) are unlikely to be optimal, especially in dimension two where better in-
equalities hold, and may be in fact replaced by other similar assumptions. For instance, it will be 
noted in the proof that (2.60) might be replaced by

σ2 ∈ L∞(0, T ;L3+δ(�)) for some δ > 0.

3. Well-posedness

This section is devoted to the proof of Theorem 2.1, which will be split into several parts 
presented in separate subsections.

3.1. Mass dynamics

The main tool in the existence proof consists in the derivation of suitable a-priori estimates. 
For the sake of simplicity, these will be presented by working on a triplet (ϕ, μ, σ) solving 
the original system (2.16)-(2.18) plus the initial and boundary conditions, without referring to 
any explicit approximation or regularization of it. In Subsection 3.3 below we will propose a 
regularization of the system and explain how the formal estimates derived here may be adapted 
to the rigorous framework.

In this respect, it is worth observing from the very beginning that a crucial point stands in the 
fact that the coercivity of the energy functional F (cf. (1.10)) is tied to the choice of a “singular” 
potential F . Hence, dealing with the original (i.e., non-regularized system) and assuming in 
particular that the component ϕ of the solution satisfies the a-priori information

−1 ≤ ϕ(x, t) ≤ 1 for a.e. (x, t) ∈ Q (3.1)

represents a real simplification at this level. Indeed, let us recall the expression of the energy 
functional F , namely (recall that ε = 1)

F(ϕ,σ ) = 1

2

∫
�

|∇ϕ|2 +
∫
�

F(ϕ) +
∫
�

σ(lnσ − 1) + χ

∫
�

σ(1 − ϕ).

Then, it is clear that, as far as (3.1) holds, the last term is nonnegative due to the expected positive 
sign of the variable σ . As a consequence, F turns out to be coercive: it is easy to check that there 
exists a computable constant C > 0 depending only on the known data such that
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(
C +F(ϕ,σ )

) ≥ 1

2
‖ϕ‖2

V + 1

2
‖σ lnσ‖1. (3.2)

Notice that the above still holds when ϕ ∈ L∞, even if (3.1) is not known to hold. Indeed, the 
coupling term can then be controlled as follows

χ

∣∣∣∣
∫
�

σ(1 − ϕ)

∣∣∣∣ ≤ χ‖σ‖1
(
1 + ‖ϕ‖∞

) ≤ 1

2
‖σ lnσ‖1 − c, (3.3)

where the last c also depends on the L∞-norm of ϕ.
On the other hand, if the singular potential F is replaced by a function of controlled growth, 

then the boundedness of ϕ is lost, (3.3) cannot be used, and consequently the energy functional 
loses its coercivity. This is the main issue we will need to fix when detailing the approximation 
in Subsection 3.3.

That said, we first show that, under assumptions (2.4)-(2.5) the spatial mean of ϕ is con-
strained to take values in the physical interval (−1, 1) for every t ≥ 0. Actually, testing (1.1) by 
|�|−1 and setting for simplicity y = ϕ�, we deduce the ODE-like relation

y′ + my = 1

|�|
∫
�

h(ϕ,σ ),

whence, using (2.5), we obtain the differential inequalities

−K ≤ y′ + my ≤ K.

Consequently, it holds that, for every t ∈ [0, T ],

y(0)e−mt + (1 − e−mt )
(

− K

m

)
≤ y(t) ≤ y(0)e−mt + (1 − e−mt )

K

m
.

Using again (2.5) and recalling the last assumption in (2.20), we then deduce that, for some δ > 0
depending only on ϕ0, K and m, there holds

∣∣(ϕ(t))�
∣∣ ≤ 1 − δ for every t ∈ [0, T ], (3.4)

which entails that the total mass of ϕ is prevented to reach the critical values ±1. Of course the 
same property (3.4) holds also when one takes S ≡ 0 because the spatial mean of ϕ is conserved 
in that case.

3.2. Formal energy estimate

First of all, we observe that, using assumption (2.21) and applying a standard minimum prin-
ciple argument, there follows that σ ≥ 0 almost everywhere in Q. Then, testing (2.16) by μ, 
(2.17) by ϕt , and taking the difference, we infer

d

dt
E(ϕ) − χ

∫
σϕt +

∫
m(ϕ,σ )|∇μ|2 =

∫
S(ϕ,σ )μ, (3.5)
� � �
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where we recall that E denotes the standard Ginzburg–Landau energy introduced in (1.10) (with 
ε = 1). Next, testing (2.19) by lnσ + χ(1 − ϕ), and setting for the sake of simplicity L(σ) :=
σ(lnσ − 1), we obtain

d

dt

∫
�

L(σ) + χ

∫
�

σt (1 − ϕ) +
∫
�

σn(ϕ,σ )
∣∣∇(lnσ + χ(1 − ϕ))

∣∣2

=
∫
�

β(ϕ)(κ0σ − κ∞σp)
(

lnσ + χ(1 − ϕ)
)
. (3.6)

Adding (3.5) with (3.6) and rearranging, using also (2.10), we deduce

d

dt

[
E(ϕ) +

∫
�

(
L(σ) + χσ(1 − ϕ)

)]

+ m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0‖∇μ‖2 + κ∞
∫
�

β(ϕ)σp lnσ

≤
∫
�

S(ϕ,σ )μ + κ0

∫
�

β(ϕ)σ lnσ + χ

∫
�

β(ϕ)(κ0σ − κ∞σp)(1 − ϕ). (3.7)

To control the first term on the right-hand side, we observe that, replacing the expression of μ
given by equation (2.17) and using (A2) along with (3.1) and the Poincaré–Wirtinger inequality 
(2.1), there follows

∫
�

S(ϕ,σ )μ =
∫
�

S(ϕ,σ )(μ − μ�) + μ�

∫
�

S(ϕ,σ ) ≤ (m + K)c�‖∇μ‖ + |�|(m + K)|μ�|,

(3.8)
where c� > 0 is a Poincaré constant. Now, integrating (2.17) over � and recalling that σ ≥ 0
almost everywhere in Q and (1.4), we have

|�||μ�| ≤ ‖f (ϕ)‖1 + χ

∫
�

σ. (3.9)

Replacing (3.8) and (3.9) into (3.7), using (2.7) and (2.8) with the fact 1 − ϕ ≥ 0 (which is, in 
turn, a consequence of (3.1)), it is not difficult to obtain

d

dt
F(ϕ,σ ) + m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0‖∇μ‖2 + κ∞b0

∫
�

(σp lnσ + 2)

≤ c + c

∫
�

σ + c‖∇μ‖ + (m + K)‖f (ϕ)‖1

+ κ0

∫
β(ϕ)σ lnσ + χ

∫
β(ϕ)(κ0σ − κ∞σp)(1 − ϕ)
� �

546



E. Rocca, G. Schimperna and A. Signori Journal of Differential Equations 343 (2023) 530–578
≤ c + c

∫
�

σ + m0

4
‖∇μ‖2 + (m + K)‖f (ϕ)‖1 + κ0B

∫
�

|σ lnσ | + χκ0B

∫
�

σ(1 − ϕ),

(3.10)

where we recall that F was defined in (1.10) (with ε = 1). In order to control the norm of f (ϕ)

on the right-hand side, we test (2.17) by ϕ − ϕ� to get

∫
�

f (ϕ)(ϕ − ϕ�) + ‖∇ϕ‖2 =
∫
�

μ(ϕ − ϕ�) + χ

∫
�

σ(ϕ − ϕ�). (3.11)

Using the mass property (3.4) and proceeding similarly as in [37] (see also, e.g., [16,39]) we 
then deduce that there exist two constants α > 0 (small) and c > 0 (large), both depending on the 
constant δ in (3.4), such that

∫
�

f (ϕ)(ϕ − ϕ�) ≥ α‖f (ϕ)‖1 − c. (3.12)

Hence, recalling (3.1) and operating straightforward manipulations in (3.11) leads to

α‖f (ϕ)‖1 ≤ c‖∇μ‖‖∇ϕ‖ + 2χ

∫
�

σ + c

≤ cδ‖∇ϕ‖2 + δ‖∇μ‖2 + 2χ

∫
�

σ + c, (3.13)

where δ > 0 can be taken arbitrarily small, in a way that will be specified later on, and cδ > 0
depends on the choice of δ.

Next, we multiply (3.13) by P > 0 large enough such that Pα ≥ m +K +1; then, we choose δ
small enough such that Pδ ≤ m0/4. Finally, we add the result of this operation to (3.10) deducing 
that

d

dt
F(ϕ,σ ) + m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0

2
‖∇μ‖2 + αP ‖f (ϕ)‖1 + κ∞b0

∫
�

(σp lnσ + 2)

≤ c‖∇ϕ‖2 + c + c

∫
�

σ + κ0B

∫
�

|σ lnσ | + χκ0B

∫
�

σ(1 − ϕ).

In order to get an estimate from the above relation, we observe that, since p > 1, we have

c

∫
�

σ + κ0B

∫
�

|σ lnσ | + χκ0B

∫
�

σ(1 − ϕ) ≤ c + κ∞b0

2

∫
�

(σp lnσ + 2).

Then, we may set

V := C +F(ϕ,σ ),
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where C > 0 is chosen such that the coercivity property (3.2) holds. As noted above, here we 
are using the constraint (3.1) in an essential way. With these choices, we arrive at the differential 
inequality

d

dt
V +m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0

2
‖∇μ‖2 +αP ‖f (ϕ)‖1 + κ∞b0

2

∫
�

(σp lnσ +2) ≤ cV .

(3.14)
Noting that V(0) < ∞ thanks to (2.20)-(2.21), we can then apply Grönwall’s lemma to deduce 
the following a-priori bounds:

‖ϕ‖L∞(0,T ;V ) + ‖σ lnσ‖L∞(0,T ;L1(�)) + ‖F(ϕ)‖L∞(0,T ;L1(�))

+ ‖σ 1/2∇(lnσ + χ(1 − ϕ))‖L2(0,T ;H) + ‖∇μ‖L2(0,T ;H)

+ ‖f (ϕ)‖L1(0,T ;L1(�)) + ‖σp lnσ‖L1(0,T ;L1(�)) ≤ c. (3.15)

Here and below, it is intended that the constant c > 0 on the right-hand side, whose explicit value 
may vary on occurrence, depends only on the known data of the problem, including the initial 
data, but is independent of any hypothetical approximation parameter.

Next, going back to (3.13), squaring its first row, and integrating in time, using also the infor-
mation resulting from (3.15), we infer

‖f (ϕ)‖L2(0,T ;L1(�)) ≤ c. (3.16)

Then, we go back to (3.9): squaring and integrating in time, using (3.15) and (3.16) lead us to 
‖μ�‖L2(0,T ) ≤ c, and applying once more the Poincaré–Wirtinger inequality, we arrive at

‖μ‖L2(0,T ;V ) ≤ c.

Next, comparing terms in (2.16) and using in particular assumptions (A2) and (2.10), it is not 
difficult to deduce

‖ϕt‖L2(0,T ;V ∗) ≤ c. (3.17)

Finally, we observe that (2.17), complemented with the no-flux boundary condition, can be in-
terpreted as a family of time-dependent elliptic problems with maximal monotone perturbations 
of the form

−�ϕ + F ′
1(ϕ) = μ + λϕ + χσ. (3.18)

Here, we observe that, since we assumed p ≤ 2, the maximal summability available for the right-
hand side is exactly the Lp-one. Hence, applying standard tools (which basically correspond to 
testing (3.18) by |F ′

1(ϕ)|p−1 sign(F ′
1(ϕ)) and exploiting the monotonicity of F ′

1), we deduce the 
additional estimates

‖F ′(ϕ)‖Lp(0,T ;Lp(�)) + ‖�ϕ‖Lp(0,T ;Lp(�)) ≤ c. (3.19)
1
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Suppose now that b has a true logistic growth, that is (2.6) is fulfilled with p = 2. Then, testing 
(2.18) by lnσ and using (2.12), (2.14), and (2.15), it is not difficult to arrive at

d

dt

∫
�

σ(lnσ − 1) + 4m0‖∇σ 1/2‖2 + b0κ∞
∫
�

σ 2 lnσ

≤ χ

∫
�

n(ϕ,σ )∇ϕ · ∇σ + κ0

∫
�

β(ϕ)σ lnσ

= χ

∫
�

∇N(ϕ,σ )·∇ϕ − χ

∫
�

n1(ϕ,σ )|∇ϕ|2 + κ0

∫
�

β(ϕ)σ lnσ

≤ −χ

∫
�

N(ϕ,σ )�ϕ + c

∫
�

σ |∇ϕ|2 + κ0

∫
�

β(ϕ)σ lnσ

≤ c

∫
�

σ |�ϕ| + c‖σ‖‖ϕ‖∞‖ϕ‖H 2(�) + c‖σ‖2

≤ c‖�ϕ‖2 + b0κ∞
2

∫
�

σ 2 lnσ + c,

where we also used the well-known interpolation inequality

‖v‖W 1,4(�) ≤ c‖v‖1/2
H 2(�)

‖v‖1/2∞ for every v ∈ H 2(�) ∩ L∞(�). (3.20)

Hence, integrating the above in time and using (3.19) with p = 2, we obtain the additional esti-
mate

‖σ 1/2‖L2(0,T ;V ) ≤ c. (3.21)

3.3. Approximation scheme

In this part, we outline a possible regularization scheme for system (1.1)-(1.5). Usually, in 
Cahn–Hilliard-based models, approximation is provided by smoothing out the singular term 
(here represented by F ′

1) and replacing it with a Lipschitz continuous function. In this way, 
at least locally in time, existence of approximate solutions may be proved for instance by us-
ing a Faedo–Galerkin or time discretization scheme. Here, however, a further difficulty arises 
because the coercivity of the free energy (1.10) is tied to the presence of the singular potential 
F1. In other words, if F1 is smoothed out, it is also necessary to intervene on the coupling term 
χσ(1 − ϕ) by suitably truncating it; indeed, approximating F1, the property |ϕ| ≤ 1 is lost and 
the coupling term becomes supercritical if it is not smoothed out. This is why, similarly, e.g., to 
[26], we propose a regularized scheme where also σ is properly truncated. Namely, we consider 
the system

ϕt − div
(
m(ϕ,σ )∇μ

) = S(ϕ,σ ) in Q, (3.22)

μ = −�ϕ + F ′
n(ϕ) − λϕ − χTn(σ ) in Q, (3.23)
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Tn(σ )t − div
(
n(ϕ,σ )∇σ

) − χ div
(
σn(ϕ,σ )∇(1 − ϕ)

) = β(ϕ)(κ0σ − κ∞σp) in Q, (3.24)

with n ∈ N denoting the regularization parameter, intended to go to infinity in the limit. As for 
the boundary and initial conditions, we consider the same as in (1.4) and (1.5). In this part we 
will avoid employing the subscript n to denote the approximate solution for the sake of notational 
clarity. Here, we assume the following properties. First of all, {Fn}, with Fn :R → R, is a family 
of convex and regular functions such that, as n → ∞, Fn tends to F1 in the sense of Mosco. 
We refer to [2, Chap. 3] for the necessary background in convex analysis; we just observe that a 
simple condition ensuring this property holds when, for every fixed r ∈ R, Fn(r) is increasingly 
monotone with respect to n and converges to the limit value F1(r) (which is intended to be +∞
as far |r| is larger than 1, cf. (A1)). We also assume the normalization property

F ′
n(r) sign r ≥ n3(|r| − 1) for every |r| ≥ 1. (3.25)

Indeed, it is apparent that, for every potential F1 compatible with assumption (A1), an ap-
proximation Fn satisfying the above conditions can be constructed by standard methods. For 
instance one could take the Yosida approximation (see [3,4]) of F1 of order n−1 and add to it 
n3(|r| − 1)+ sign r .

Concerning the truncation operator Tn we assume the following properties:

Tn ∈ C1,1(R); Tn(r) = r for every r ≤ n, (3.26)

Tn is strictly monotone and concave, (3.27)

Tn(r) < n + 1 for every r ∈ R, lim
r→∞Tn(r) = n + 1. (3.28)

Explicit forms of Tn can be also constructed very easily.
We also need to introduce its inverse function, that is, γn := T −1

n . Then, γn ∈ C1((−∞, n +
1); R) and γn can also be interpreted as a maximal monotone graph in R × R so to apply the 
usual machinery of maximal monotone operator theory. Then, we also set

s := Tn(σ ) so that σ = γn(s)

and equation (3.24) can be consequently restated in terms of the new variable s in the following 
equivalent way:

st −div
(
n(ϕ, γn(s))∇γn(s)

)−χ div
(
γn(s)n(ϕ, γn(s))∇(1−ϕ)

) = β(ϕ)(κ0γn(s)−κ∞γn(s)
p).

(3.29)
Of course, also relations (3.22)-(3.23) could be equivalently reformulated in terms of s. Besides, 
by using the variable s, the initial conditions may be expressed as follows:

s|t=0 = s0 = Tn(σ0), ϕ|t=0 = ϕ0. (3.30)

Dealing with the regularized system (3.22)-(3.24), complemented with the initial conditions 
(3.30) and with the no-flux boundary conditions, may still be nontrivial. Indeed, equation (3.29)
contains the singular function γn. A strategy that could be used in order to obtain at leas local in 
time existence can be sketched as follows:
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(A) Smoothing out the function γn (for instance by replacing in with its Yosida regularization 
γn,ε for a regularization parameter ε intended to go to zero in the limit); one may also need 
to add further regularizing terms to get better properties of approximating solutions;

(B) Proving local in time existence to the obtained system through the Faedo–Galerkin method;
(C) Getting a-priori estimates uniform with respect to ε and, exploiting these, passing to the 

limit with respect to the approximation parameter ε so to obtain a solution to (3.22)-(3.24)
with the initial and boundary conditions.

As said, even if the above strategy (A)-(C) may be not trivial, we believe that the main difficulties 
are just of technical nature. Indeed, equations of the form

st − �(γ (s)) = f, (3.31)

with γ maximal monotone graph (possibly, as here, of singular nature), have been extensively 
studied in the literature and the proposed strategy in order to get local existence (i.e., smoothing 
γ , discretizing by Faedo–Galerkin, then going back to the original γ ) is very well established. 
Of course, in our setting, equation (3.29) is more complicated than (3.31) and we also have the 
additional difficulties resulting from the coupling with the CH system. Nevertheless, to reduce 
technical details, we assume to have accomplished the above strategy and we just focus on what 
we believe to be the main difficulty to get an existence theorem, i.e., the passage to the limit 
n → ∞.

For this purpose, we first have to reproduce the energy estimate by working on the regularized 
system (3.22)-(3.24). Of course, we can use either the original nutrient variable σ or the trans-
formed (truncated) variable s = Tn(σ ) since the formulations in terms of σ and s are equivalent 
at this level. Notice also that the proposed approximation is devised as to preserve the minimum 
principle property; hence we can freely assume s and σ to be nonnegative.

That said, using the variable σ so to get an estimate more similar to that obtained in the 
previous section, we have to test (3.22) by μ, (3.23) by ϕt , and (3.24) by lnσ + χ(1 − ϕ). Then, 
by proceeding as before, we arrive at the analogue of (3.7), which takes now the form

d

dt
Fn(ϕ,σ ) + m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0‖∇μ‖2 + κ∞
∫
�

β(ϕ)σp lnσ

≤
∫
�

S(ϕ,σ )μ + κ0

∫
�

β(ϕ)σ lnσ + κ0χ

∫
�

β(ϕ)σ (1 − ϕ) + κ∞χ

∫
�

β(ϕ)σp(ϕ − 1),

(3.32)

and where the approximated energy takes the expression

Fn(ϕ,σ ) =
∫
�

(1

2
|∇ϕ|2 + Fn(ϕ) − λ

2
ϕ2 + Ln(σ ) + χTn(σ )(1 − ϕ)

)
.

The function Ln is defined as follows:

Ln(σ ) =
σ∫
T ′

n(r) ln r dr,
0
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so that we have in particular

Ln(σ ) = σ(lnσ − 1) for σ ≤ n and Ln(σ ) ≥ n(lnn − 1) for σ > n. (3.33)

Let us now verify that the coupling term χTn(σ )(1 − ϕ) can be controlled, uniformly in n, by 
using the other integrands. We actually notice that

χ

∫
�

Tn(σ )(1 − ϕ) = χ

∫
�

Tn(σ ) − χ

∫
�

Tn(σ )ϕ

= χ

∫
�

Tn(σ ) − χ

∫
{|ϕ|≤2}

Tn(σ )ϕ − χ

∫
{|ϕ|>2}

Tn(σ )ϕ

≥ χ

∫
�

Tn(σ ) − 2χ

∫
{|ϕ|≤2}

Tn(σ ) − (n + 1)χ

∫
{|ϕ|>2}

ϕ

≥ −χ

∫
�

Tn(σ ) − 2(n + 1)χ

∫
{|ϕ|>2}

(ϕ − 1).

To control the right-hand side, one can first verify that

χTn(σ ) ≤ 1

2
Ln(σ ) + c, (3.34)

for every σ > 0 and a suitable constant c ≥ 0 independent of n. Analogously, owing to (3.25), it 
is clear that, for c ≥ 0 as above, we have

Fn(r) ≥ n3

2
(|r| − 1)2 − c for every |r| ≥ 1. (3.35)

Consequently, thanks also to Young’s inequality, we have in particular

2(n + 1)χ(ϕ − 1) ≤ 1

4
Fn(ϕ) + c for every ϕ ≥ 2.

Based on the above considerations, and noting also that, by (3.25),

λ

2
ϕ2 ≤ 1

4
Fn(ϕ) + c,

again for c ≥ 0 independent of n, we conclude that there exists a constant C independent of n
such that

Fn(ϕ,σ ) ≥
∫
�

(1

2
|∇ϕ|2 + 1

2
Fn(ϕ) + 1

2
Ln(σ ) − C

)
. (3.36)

Namely, coercivity of the energy is preserved at the approximate level.
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Then, in order to deduce from relation (3.32) an analogue of the energy estimate (3.14), we 
need to check that we can still control the right-hand side. To this aim, we start observing that 
the first integral can be managed similarly with (3.8)-(3.12). We only notice that, when the ana-
logue of (3.11) is performed, we can no longer use the uniform boundedness of ϕ. On the other 
hand, the mean property (3.4) is preserved also in the approximation. Then, the contribution 
corresponding to the last integral in (3.11) is now managed as follows:

χ

∫
�

Tn(σ )(ϕ − ϕ�) = χ

∫
{|ϕ|≤3/2}

Tn(σ )(ϕ − ϕ�) + χ

∫
{|ϕ|>3/2}

Tn(σ )(ϕ − ϕ�)

≤ c

∫
{|ϕ|≤3/2}

|Tn(σ )| + c(n + 1)

∫
{|ϕ|>3/2}

(|ϕ| − 1)

≤ c

∫
�

|Ln(σ )| + c + c

∫
�

Fn(ϕ),

where we used (3.34), (3.35) and the control (3.4) on the spatial average of ϕ, which is not 
affected by the approximation. Then we notice that the last integral on the right-hand side can 
be controlled by Grönwall’s lemma. In order to estimate the remaining terms in (3.32), we first 
observe that, using (A3) and in particular (2.9),

κ∞χ

∫
�

β(ϕ)σp(ϕ − 1) = κ∞χ

∫
{|ϕ|≤2}

β(ϕ)σp(ϕ − 1)

= κ∞χ

∫
{|ϕ|≤3/2}

β(ϕ)σp(ϕ − 1) + κ∞χ

∫
{3/2<|ϕ|≤2}

β(ϕ)σp(ϕ − 1) =: I1 + I2.

Now, using (2.7) with a generalized form of Young’s inequality, we have

I1 ≤ c

∫
{|ϕ|≤3/2}

σp ≤ c + κ∞b0

4

∫
{|ϕ|≤3/2}

|σp lnσ |. (3.37)

Similarly, we have

I2 ≤ c

∫
{3/2<|ϕ|≤2}

β(ϕ)σp ≤ c + κ∞
4

∫
{3/2<|ϕ|≤2}

β(ϕ)|σp lnσ |. (3.38)

The integrals on the right-hand sides of (3.37) and (3.38) can be estimated by noting that the last 
term on the left-hand side of (3.32) gives

κ∞
∫

β(ϕ)σp lnσ ≥ κ∞b0

∫
|σp lnσ | + κ∞

∫
β(ϕ)|σp lnσ | − c, (3.39)
� {|ϕ|≤3/2} {3/2<|ϕ|≤2}
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as a straightforward check shows. The remaining two integrals on the right-hand side of (3.32)
have a slower growth with respect to σ ; hence they can be controlled in a similar but in fact easier 
way.

As a consequence, it is not difficult to obtain from (3.32) the following inequality:

d

dt
Fn(ϕ,σ ) + m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0

2
‖∇μ‖2 + κ∞b0

2

∫
{|ϕ|≤3/2}

|σp lnσ |

+ κ∞
2

∫
{3/2<|ϕ|≤2}

β(ϕ)|σp lnσ | ≤ c‖∇ϕ‖2 + c + c

∫
�

Fn(ϕ) + c

∫
�

|Ln(σ )|.

Estimating the last term similarly with (3.37) we end up with

d

dt

(
C0 +Fn(ϕ,σ )

) + m0

∫
�

σ
∣∣∇(lnσ+χ(1 − ϕ))

∣∣2 + m0

2
‖∇μ‖2 + κ∞b0

4

∫
{|ϕ|≤3/2}

|σp lnσ |

+ κ∞
2

∫
{3/2<|ϕ|≤2}

β(ϕ)|σp lnσ | ≤ c‖∇ϕ‖2 + c + c

∫
�

Fn(ϕ) + c

∫
�

|Ln(σ )|, (3.40)

where C0 > 0 is large enough so that C0 +Fn is coercive uniformly with respect to n (cf. (3.36)). 
Then, we can apply Grönwall’s lemma to the above relation so to deduce the following bounds 
which are independent of the approximation parameter n:

‖ϕ‖L∞(0,T ;V ) ≤ c, (3.41)

‖∇μ‖L2(0,T ;H) ≤ c, (3.42)

‖Fn(ϕ)‖L∞(0,T ;L1(�)) + ‖Ln(σ )‖L∞(0,T ;L1(�)) ≤ c, (3.43)

‖σ 1/2∇(lnσ+χ(1 − ϕ))‖L2(0,T ;H) ≤ c. (3.44)

As in the previous part, the uniform control (3.4) of the spatial average of ϕ permits us to improve 
(3.42) leading to

‖μ‖L2(0,T ;V ) ≤ c. (3.45)

Now, from the first of (3.43) and (3.35) it is not difficult to deduce that

∣∣{|ϕ(·, t)| ≥ 3/2}∣∣ ≤ cn−3 for a.e. t ∈ (0, T ).

As a consequence, we have

t∫
0

∫
�

|σp lnσ | =
t∫

0

∫
{|ϕ(·,t)|≤3/2}

|σp lnσ | +
t∫

0

∫
{|ϕ(·,t)|>3/2}

|σp lnσ |

≤ c + cnp lnn
∣∣{|ϕ(·, t)| > 3/2}∣∣ ≤ c + cnp−3 lnn ≤ c,
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where we used the control (3.40) and the fact p ≤ 2. Hence, we end up with

‖σp lnσ‖L1(0,T ;L1(�)) ≤ c. (3.46)

A similar procedure, combined with the second bound in (3.43), permits us to deduce

‖σ lnσ‖L∞(0,T ;L1(�)) ≤ c. (3.47)

Finally, we notice that the analogues of (3.17) and (3.19) can be obtained reasoning as in the 
previous section. On the other hand, concerning (3.21), since the property |ϕ| ≤ 1 is not known 
to hold at the approximate level, we cannot apply the interpolation inequality (3.20) and for 
this reason the procedure should be modified by operating a proper truncation of the mobility 
function n. We omit the details since property (3.21) is not essential for the sequel. In addition 
to that, we notice that this difficulty does not arise when n is a constant function.

3.4. Passage to the limit

In this part, we assume to have a sequence {(ϕn, μn, σn)}n of solutions complying with the 
a-priori estimates uniformly with respect to the parameter n. Such a sequence may be an out-
come of the “strategy” (A)-(C) outlined before. In particular, we will assume (ϕn, μn, σn) to 
solve, at least locally in time, system (3.22)-(3.24) complemented with homogeneous Neumann 
boundary conditions and suitable initial conditions. Moreover, from now on, the dependence of 
the approximate solution on the parameter n is stressed.

Moreover, since the estimates derived in the previous part are uniform in time, by standard 
extension arguments the solution obtained in the limit will acquire a global in time character. For 
this reason, and for the sake of simplicity too, we will directly assume to have a global solution 
at the approximate level.

That said, we observe that the approximated version of estimates (3.17) and (3.19), 
(3.41)-(3.45), (3.46), with standard weak and weak star compactness results, imply that there 
exist limit functions ϕ, σ, μ, and ξ such that, as n → ∞,

ϕn → ϕ weakly-star in H 1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ Lp(0, T ;W 2,p(�)), (3.48)

σn → σ weakly in Lp(0, T ;Lp(�)), (3.49)

μn → μ weakly in L2(0, T ;V ), (3.50)

F ′
n(ϕn) → ξ weakly in Lp(0, T ;Lp(�)). (3.51)

The above convergence relations, as well as the ones that follow, are intended to hold up to 
the extraction of non-relabelled subsequences of n → ∞. Since (3.26)-(3.28) imply in particular 
|T ′

n(r)| ≤ 1 for every n ∈N and r ∈R, we also have

sn → s weakly in Lp(0, T ;Lp(�)),

where, at this level, the functions s and σ need not be related to each other.
Next, note that (3.48), applying the Aubin–Lions lemma, also gives

ϕn → ϕ strongly in C0([0, T ];H 1−δ(�)) for every δ > 0. (3.52)
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The above implies, in particular, pointwise (almost everywhere) convergence. As we will 
see below, properties (3.48)-(3.51) are sufficient to pass to the limit in the Cahn–Hilliard system 
(2.16)-(2.17). On the other hand, as is common in Keller–Segel-type models, the main difficulties 
arise when one considers the equation (2.18) for the chemical concentration. In particular, the 
key step stands in providing a suitable control of the cross-diffusion term, which has a quadratic 
growth. To this aim, the choice of a logistic source term is crucial and a suitable refined argument 
has to be devised.

Before detailing the procedure to pass to the limit, we need some preparation. In this direction, 
we set Z := W 1,2p/(p−1)(�) and we first notice that

∥∥σnn(ϕn, σn)∇(lnσn + χ(1 − ϕn))
∥∥

L2p/(p+1)(Q)

≤ M‖σ 1/2
n ‖L2p(Q)

∥∥σ
1/2
n ∇(lnσn + χ(1 − ϕn))

∥∥
L2(Q)

≤ c, (3.53)

the last inequality following from (3.44) and (3.46).
Next, we consider the second term in (3.24) multiplied by z ∈ Z. Integrating by parts and 

using the analogue on � of (3.53), we obtain

∫
�

σnn(ϕn, σn)∇(lnσn + χ(1 − ϕn)) · ∇z

≤ ∥∥σnn(ϕn, σn)∇(lnσn + χ(1 − ϕn))
∥∥

2p/(p+1)
‖∇z‖2p/(p−1)

≤ M‖σn‖1/2
p

∥∥σ
1/2
n ∇(lnσn + χ(1 − ϕn))

∥∥‖z‖Z. (3.54)

Moreover, we observe that, if p is as in the statement of Theorem 2.1, i.e., p ∈ [3/2, 2] if d =
2 and p ∈ [8/5, 2] if d = 3, then we also have Z ⊂ L∞(�) by Sobolev’s embeddings. As a 
consequence, we have

∫
�

β(ϕn)(κ0σn − κ∞σ
p
n )z ≤ c

(
1 + ‖σn‖p

p

)‖z‖∞ ≤ c
(
1 + ‖σn‖p

p

)‖z‖Z. (3.55)

Hence, recalling (3.46) and (3.44), it is not difficult to deduce from (3.54) and (3.55) that

‖sn,t‖L1(0,T ;Z∗) ≤ c. (3.56)

Now, to apply once again the Aubin–Lions lemma, we also need an estimate of the gradient of 
sn. To this aim, we need to decouple the information on the cross-diffusion term resulting from 
the energy estimate. In order to achieve this goal, the constraints on the exponent p in (2.6) are 
essential.

Indeed, we start noticing that, by the second in (3.19) (or the corresponding convergence 
(3.48)), there holds

‖∇ϕn‖Lp(0,T ;Ldp/(d−p)(�)) ≤ c,

where, in the critical case p = d = 2, dp/(d − p) is intended to be replaced by any p ∈ [1, ∞).
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Interpolating the above information with the L∞(0, T ; H)-bound resulting from the second 
in (3.48), it is then not difficult to obtain

‖∇ϕn‖Lp(d+2)/d (Q) ≤ c, (3.57)

which holds also in the critical case p = d = 2 thanks to Ladyženskaja’s inequality and the last 
of (3.48). Combining this fact with the uniform Lp-bound for σn, we also deduce that

‖σn∇ϕn‖L1(Q) ≤ c provided that
1

p
+ d

p(d + 2)
≤ 1, (3.58)

where the condition on the exponents corresponds exactly to p ≥ 8/5 for d = 3 and p ≥ 3/2 for 
d = 2, as stated in Theorem 2.1. Next, comparing (3.58) with (3.53) and using also that |T ′

n| ≤ 1, 
it is not difficult to obtain

‖∇σn‖L1(Q) + ‖∇sn‖L1(Q) ≤ c. (3.59)

Properties (3.56) and (3.59) allow us to apply to sn the generalized Aubin–Lions in the form [44, 
Cor. 4, Sec. 8], which implies, in particular, the pointwise (a.e.) convergence sn → s.

More precisely, the control of the last summand in (3.46) provides the following uniform 
integrability estimate:

∥∥σn ln1/p(1 + σn)
∥∥

Lp(Q)
≤ c (3.60)

and, as before, the same bound holds for sn. Combining this fact with the pointwise convergence 
shown above and applying Vitali’s theorem [47], we then infer

sn → s strongly in Lp(Q). (3.61)

We now show that, in fact, the functions s and σ do coincide. To this aim, setting �+
n = �+

n (t) :=
{x ∈ � : σn(x, t) ≥ n}, thanks to (3.33) there follows |�+

n (t)| ≤ c/(n lnn) for almost every t ∈
(0, T ). As a consequence,

‖σn − s‖L1(Q) ≤ ‖σn − sn‖L1(Q) + ‖sn − s‖L1(Q)

= ∥∥σn − Tn(σn)‖L1(Q) + ‖sn − s‖L1(Q)

≤
T∫

0

∫
�+

n (t)

σn(·, t) dt + ‖sn − s‖L1(Q)

≤
T∫

0

(
|�+

n (t)| p−1
p ‖σn‖Lp(�+

n (t))

)
dt + ‖sn − s‖L1(Q)

≤ c

n
p−1
p

‖σn‖L1(0,T ;Lp(�)) + ‖sn − s‖L1(Q), (3.62)
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and it is readily seen that the right-hand side tends to zero in view of (3.60) and (3.61) as n → ∞. 
Comparing with (3.49), we then obtain the identification s ≡ σ . In particular, the truncation 
operator Tn disappears in the limit. For this reason, we can drop the use of the letter s in the limit 
and go back to the original variable σ . Notice also that, applying Vitali’s theorem again, we have

σn → σ strongly in Lp(Q). (3.63)

We are now ready to take the limit n → ∞ in the Cahn–Hilliard system. To this aim, we first 
notice that, by the facts that ϕn → ϕ and σn → σ almost everywhere, combined with the bound-
edness and Lipschitz continuity of h, m, n, and β , we may deduce, as n → ∞,

h(ϕn,σn),m(ϕn, σn),n(ϕn, σn),β(ϕn) → h(ϕ,σ ),m(ϕ,σ ),n(ϕ,σ ),β(ϕ) strongly in Lp(Q),

(3.64)
for every p ∈ [1, ∞), thanks also to a generalized version of Lebesgue’s dominated convergence 
theorem. Combining this with (3.50) we have, by virtue of the weak-strong convergence princi-
ple,

m(ϕn, σn)∇μn →m(ϕ,σ )∇μ weakly in L2(0, T ;H). (3.65)

Hence, in view of the above relations, testing (3.22) by a generic test function v ∈ V and inte-
grating by parts, it is apparent that all terms pass to n → ∞ so to obtain (2.32) in the limit.

Concerning (2.30), this is obtained by testing (3.23) by v ∈ V and then letting n → ∞. To 
check that this procedure work we just need to take care of the nonlinear term depending on 
the configuration potential. In other words, going back to the weak convergence in (3.51), we 
need to identify the limit function ξ . To this aim, we first notice that from (3.52) and Sobolev’s 
embeddings there follows in particular

ϕn → ϕ strongly in Lq(0, T ;Lq(�)), (3.66)

for any q ∈ [1, 6). Hence, under our assumptions on p, we have in particular

ϕn → ϕ strongly in Lp′
(0, T ;Lp′

(�)), (3.67)

where p′ is the conjugate exponent to p.
Actually, the strong convergence (3.67) combined with the weak convergence (3.51) guar-

antees the identification ξ = F ′
1(ϕ) by means of a suitable version of the standard strong-weak 

compactness argument for maximal monotone operators. Indeed, we recall that the assumed 
Mosco-convergence Fn → F1 implies a convergence property on the maximal monotone opera-
tors induced by the derivatives F ′

n. Referring once more to [2, Chap. 3] for the background, what 
holds is the graph convergence

F ′
n → F ′

1 in Lp′
(Q) × Lp(Q).

This corresponds to saying that, for every couple [w, η] ∈ Lp′
(Q) ×Lp(Q) such that η = F ′

1(w)

a.e. in Q there exists a sequence {[wn, ηn]} ⊂ Lp′
(Q) ×Lp(Q), with ηn = F ′

n(wn) a.e. in Q and 
such that
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[wn,ηn] → [w,η] strongly in Lp′
(Q) × Lp(Q).

Thanks to this property, an appropriate version of the usual monotonicity argument in (reflexive) 
Banach spaces (cf., e.g., [3]) permits us to achieve that, as n → ∞,

F ′
n(ϕn) → F ′

1(ϕ) weakly in Lp(Q).

Hence, we can pass to the limit n → ∞ in (3.23) so to obtain (2.30).
Finally, we need to take the limit in the equation for σ , which is a bit trickier. First of all, we 

go back to (3.24), test it by w ∈ Wn and integrate by parts. Using the condition ∂nw = 0 on the 
boundary and (2.14), we then get

∫
�

n(ϕn, σn)∇σn · ∇w =
∫
�

(∇N(ϕn,σn) −n1(ϕn, σn)∇ϕn) · ∇w

= −
∫
�

N(ϕn,σn)�w −
∫
�

n1(ϕn, σn)∇ϕn · ∇w,

which leads us to the n-analogue of (2.33), namely

〈sn,t ,w〉Wn
−

∫
�

N(σn,ϕn)�w −
∫
�

n1(ϕn, σn)∇ϕn · ∇w − χ

∫
�

σnn(ϕn, σn)∇ϕn · ∇w

=
∫
�

β(ϕn)(κ0σn − κ∞σ
p
n )w. (3.68)

To take the limit in this relation, we first observe that, by (3.63) and (3.64),

β(ϕn)(κ0σn − κ∞σ
p
n ) → β(ϕ)(κ0σ − κ∞σp) weakly in L1(Q). (3.69)

Next, by (3.63), (3.67) and (2.13), it turns out that N(ϕn, σn) → N(ϕ, σ) almost everywhere. As 
a consequence of the generalized Lebesgue theorem we then deduce

N(ϕn,σn) → N(ϕ,σ ) strongly in Lp(Q). (3.70)

Analogously, recalling (2.15), we infer

n1(ϕn, σn) → n1(ϕ,σ ) strongly in Lp(Q). (3.71)

To deal with the cross-diffusion terms, for clarity we just consider the worst case, corresponding, 
as said, to d = 3 and p = 8/5. In that case, the exponent of the space in (3.57) reduces to 8/3. 
Then, using (3.64) with the uniform boundedness of n and (3.57), we deduce

n(ϕn, σn)∇ϕn → n(ϕ,σ )∇ϕ weakly in L8/3(Q),

whence, by virtue of (3.63), as n → ∞,
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σnn(ϕn, σn)∇ϕn → σn(ϕ,σ )∇ϕ weakly in L1(Q). (3.72)

Analogously, owing to (3.71), we get, as n → ∞,

n1(ϕn, σn)∇ϕn → n1(ϕ,σ )∇ϕ weakly in L1(Q). (3.73)

The above relations serve as a starting point to pass to the limit in (3.68). Indeed, the diffusion 
terms are managed by means of (3.70) and (3.72), whereas the right-hand side goes to the desired 
limit thanks to (3.69). On the other hand, the best estimate we have on sn,t is given by (3.56). 
Hence, in order to take the limit n → ∞, we have to consider, as specified in the statement, 
w ∈ C1([0, T ]; Wn) and integrate (3.68) with respect to time between 0 and t ≤ T integrating 
by parts the first term. In this way, the time derivative of sn disappears; nevertheless, (3.56) still 
does not suffice to take the desired limit, unless one uses a generalized tool like Helly’s selection 
principle. In particular, the limit function s is expected to be only BV with respect to time, which 
would allow it to have jumps with respect to the time variable.

In order to exclude this fact, we need to refine a bit the information on sn,t by exploiting in 
a suitable way the uniform integrability property (3.60). This procedure will allow us to recover 
also the initial datum in the sense (2.35). To this aim, we go back to (3.24) and test it by w ∈Wn. 
Using, in particular, the fact Wn ⊂ W 1,∞(�), it is then not difficult to obtain

‖sn,t‖W∗
n

≤ c‖σ 1/2
n ‖∥∥σ

1/2
n ∇(lnσn + χ(1 − ϕn))

∥∥ + c
(
1 + ‖σn‖p

p

)
≤ c‖σ 1/2

n ‖∥∥σ
1/2
n ∇(lnσn + χ(1 − ϕn))

∥∥ + c + c‖σn‖p
p =: M1,n + c + M2,n.

(3.74)

Now, it is clear that t �→ ‖σ 1/2
n (t)‖ is bounded in L2p(0, T ) as a consequence of (3.63) and that 

t �→ ∥∥σ
1/2
n (t)∇(lnσn(t) + χ(1 − ϕn(t)))

∥∥ is bounded in L2(0, T ) as a consequence of (3.44). 
Combining these facts, we readily obtain that

‖M1,n‖L2p/(p+1)(0,T ) ≤ c, (3.75)

with c independent of n. Let us now set, for r > 0, �(r) := r ln(e + r) and let us notice that �
is convex and increasing. Then, applying � to inequality (3.74) and integrating in time, it is not 
difficult to check that

T∫
0

�
(‖sn,t‖W∗

n

) ≤
T∫

0

�(M1,n + c + M2,n)

≤ c + c

T∫
0

�(M1,n) + c

T∫
0

�(M2,n)

≤ c + c

T∫
�

(
c‖σn‖p

p

)

0
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≤ c + c

∫
�

σ
p
n ln(e + σn) ≤ C, (3.76)

where C > 0 is a computable constant depending only on the known data of the problem. Notice 
also that, to estimate the first integral on the second row, we used (3.75) with the fact 2p/(p +
1) > 1.

Next, let 0 ≤ τ < t ≤ T . Then, we have

‖sn(t) − sn(τ )‖W∗
n

|t − τ | ≤
t∫

τ

1

|t − τ | ‖sn,t (r)‖W∗
n

dr.

Using that � is nondecreasing and convex, and applying Jensen’s inequality, we then deduce

�

(‖sn(t) − sn(τ )‖W∗
n

|t − τ |
)

≤ �

( t∫
τ

1

|t − τ | ‖sn,t (r)‖W∗
n

dr

)

≤
t∫

τ

1

|t − τ |�
(‖sn,t (r)‖W∗

n

)
dr

≤ 1

|t − τ |
T∫

0

�
(‖sn,t (r)‖W∗

n

)
dr ≤ C

|t − τ | ,

where C > 0 is the constant introduced in (3.76).
Then, using again the strict monotonicity of �, we deduce

‖sn(t) − sn(τ )‖W∗
n

|t − τ | ≤ �−1
( C

|t − τ |
)
,

or, in other words,

‖sn(t) − sn(τ )‖W∗
n

≤ |t − τ |�−1
( C

|t − τ |
)
.

Then, noting that �−1 is strictly sublinear at infinity, as a direct check shows, we may observe 
that there holds the following equicontinuity property: for every ε > 0 there exists δ > 0 such 
that for every n ∈N and every 0 ≤ τ < t ≤ T with |t − τ | < δ there holds

‖sn(t) − sn(τ )‖W∗
n

< ε.

Now, using (3.47) with (3.26)-(3.28), it is easy to deduce

‖sn‖L∞(0,T ;L1(�)) ≤ c.
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Hence, observing that L1(�) ⊂ W∗
n with compact embedding, if we take as Z a generic (re-

flexive) Banach space (which, of course, will have a negative order as a Sobolev space) such 
that

L1(�) ⊂⊂Z ⊂ W∗
n,

using some interpolation it is not difficult to check that Ascoli’s theorem can be applied to the 
sequence {sn} in the space C0([0, T ]; Z) so to obtain

sn → s = σ strongly in C0([0, T ];Z) (3.77)

and, a fortiori, in C0([0, T ]; W∗
n). In particular, since sn|t=0 = Tn(σ0) and Tn(σ0) tends to σ0 in 

L1(�) thanks to Lebesgue’s dominated convergence theorem, we obtain that the initial condition 
σ |t=0 = σ0 is satisfied in a standard sense, which excludes the occurrence of jumps of σ with 
respect to the time variable. Moreover, (3.77) allows us to pass to the limit in the time-integrated 
version of (3.68) so to obtain (2.33) (which, we remark, also incorporates the boundary condi-
tions). We incidentally notice that (2.25) also follows from the above procedure. In particular, the 
second regularity in (2.26) is a consequence of (3.47) and an equiintegrability argument. Finally, 
(2.36) follows from the analogue of (3.21). This concludes the proof of Theorem 2.1.

4. Proof of the regularity results

The proofs of the regularity results are mainly based on the derivation of higher-order addi-
tional sets of a-priori estimates. It is worth observing from the very beginning that these estimates 
will be derived in a formal way by working on the “original” system (1.1)-(1.5). We believe that, 
at this regularity level, obtaining the estimates in a fully rigorous way would require a very 
lengthy and technical adaptation of the approximation scheme. Since such a procedure would, 
however, present a very limited mathematical interest, we prefer to proceed formally.

Proof of Theorem 2.2. We distinguish between the 2D and the 3D cases, which have to be man-
aged by different methods.
Two dimensional case. For convenience, let us start with the two dimensional case recalling that 
now p = 2. In that setting, we test (2.18) by σ to obtain

1

2

d

dt
‖σ‖2 + m0‖∇σ‖2 + κ∞b0‖σ‖3

3 ≤ c‖σ‖2 + χ

∫
�

σn(ϕ,σ )∇ϕ · ∇σ. (4.1)

Then, we test (2.17) by −�ϕ to infer that

∫
�

F ′′
1 (ϕ)|∇ϕ|2 + ‖�ϕ‖2 ≤ −χ

∫
�

σ�ϕ + λ‖∇ϕ‖2 + ‖∇ϕ‖‖∇μ‖, (4.2)

whence, squaring and using the previous estimates with the monotonicity of F ′
1, standard manip-

ulations lead us to

‖�ϕ‖4 ≤ c
(
1 + ‖σ‖4 + ‖∇μ‖2). (4.3)
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Then, to control the last term on the right-hand side of (4.1), we observe that, by Hölder’s and 
standard interpolation inequalities holding for d = 2,

χ

∫
�

n(ϕ,σ )σ∇ϕ · ∇σ ≤ c‖σ‖4‖∇ϕ‖4‖∇σ‖

≤ c‖σ‖1/2‖σ‖1/2
V ‖ϕ‖1/2

V ‖ϕ‖1/2
H 2(�)

‖∇σ‖
≤ c‖σ‖1/2(‖σ‖1/2 + ‖∇σ‖1/2)(1 + ‖�ϕ‖1/2)‖∇σ‖

≤ m0

2
‖∇σ‖2 + 1

2
‖�ϕ‖4 + c(‖σ‖4 + 1), (4.4)

where we used in particular that t �→ ‖ϕ(t)‖V is L∞(0, T ) and Young’s inequality. Summing 
(4.1) with (4.3) and using (4.4), we then arrive at

1

2

d

dt
‖σ‖2 + m0

2
‖∇σ‖2 + κ∞b0‖σ‖3

3 + 1

2
‖�ϕ‖4 ≤ c

(
1 + ‖σ‖4 + ‖∇μ‖2).

Next, recalling that (2.26) holds with p = 2, an application of Grönwall’s lemma, along with 
elliptic regularity results, yields the additional regularity bounds

‖ϕ‖L4(0,T ;H 2(�)) ≤ c, (4.5)

‖σ‖L∞(0,T ;H)∩L2(0,T ;V )∩L3(0,T ;L3(�)) ≤ c, (4.6)

where (2.37) has also been used.
Using (4.5)-(4.6) and comparing terms in (2.18), it is then a standard matter to derive that

‖σt‖L2(0,T ;V ∗) ≤ c.

This permits us to write the nutrient equation in the standard form (2.43) rather than in the inte-
grated form (2.33); moreover, by classical results for second-order parabolic equations, this also 
gives the continuity property in (2.41). By the above relations we also recover the usual regular-
ity scenario for the Cahn–Hilliard equation with singular potential under the “energy regularity” 
of the initial data in two space dimensions, i.e.,

ϕ ∈ H 1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L4(0, T ;H 2(�)) ∩ L2(0, T ;W 2,q(�)),

for any q ∈ [1, ∞), where the latter regularity property is obtained by considering once more 
(2.17) as an elliptic equation with maximal monotone nonlinearity, namely

−�ϕ + F ′
1(ϕ) = λϕ + χσ + μ, (4.7)

and noting that the right-hand side lies (or, in a suitable approximation, is uniformly bounded in) 
L2(0, T ; Lq(�)) thanks to continuity of the two-dimensional embedding V ↪→ Lq(�) for any 
q ∈ [1, ∞).
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Three dimensional case. We now move to the three dimensional case. As said before, we pro-
ceed formally and, to begin, we provide an auxiliary estimate which will play an important role 
in the sequel. To this aim, we set γ (ϕ) := −(F ′

1)
5−(ϕ) (where (·)− denotes the negative part of a 

quantity). Then, noting that γ is monotone and nonpositive, we test (2.17) by γ (ϕ) to obtain

∫
�

F ′
1(ϕ)γ (ϕ) +

∫
�

γ ′(ϕ)|∇ϕ|2 = λ

∫
�

ϕγ (ϕ) + χ

∫
�

σγ (ϕ) +
∫
�

μγ (ϕ). (4.8)

Now, as γ (ϕ) = −(F ′
1)

5
−(ϕ) = F ′

1(ϕ)5χ {ϕ<0} (recall the normalization property F ′
1(0) = 0, 

cf. (A1)), it is clear that

∫
�

F ′
1(ϕ)γ (ϕ) = ‖(F ′

1)−(ϕ)‖6
6. (4.9)

Moreover, the second term on the left-hand side of (4.8) is clearly nonnegative, while the second 
term on the right-hand side is nonpositive due to (2.24). By Hölder’s and Young’s inequalities 
we also have

λ

∫
�

ϕγ (ϕ) +
∫
�

μγ (ϕ) ≤ c
(‖ϕ‖6 + ‖μ‖6

)‖γ (ϕ)‖6/5 ≤ c
(
1 + ‖μ‖6

)‖(F ′
1)−(ϕ)‖5

6

≤ c
(
1 + ‖μ‖6

6

) + 1

2
‖(F ′

1)−(ϕ)‖6
6. (4.10)

Hence, replacing (4.9) and (4.10) into (4.8), it is not difficult to deduce

1

2
‖(F ′

1)−(ϕ)‖6
6 ≤ c

(
1 + ‖μ‖6

6

)
.

Taking the cubic root, using Sobolev’s embeddings and recalling (2.28) this implies

(F ′
1)−(ϕ) ∈ L2(0, T ;L6(�)). (4.11)

Next, recalling assumptions (2.38)-(2.39), we may test (2.18) (with n ≡ 1 and p = 2) by σ to 
obtain

1

2

d

dt
‖σ‖2 + ‖∇σ‖2 + κ∞b0‖σ‖3

3 ≤ c‖σ‖2 + χ

∫
�

σ∇ϕ · ∇σ (4.12)

and we need to properly manipulate the last term on the right-hand side. To this aim, we integrate 
by parts and exploit the no-flux conditions with relation (1.2) to deduce

χ

∫
�

σ∇ϕ · ∇σ = χ

2

∫
�

∇ϕ · ∇(σ 2) = −χ

2

∫
�

�ϕ σ 2

= χ

2

∫
μσ 2 − χ

2

∫
F ′

1(ϕ)σ 2 + λχ

2

∫
ϕσ 2 + χ2

2
‖σ‖3

3

� � �
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=: I1 + I2 + I3 + I4.

We now provide a bound of the various terms on the right-hand side. First of all, for every δ > 0,

I1 ≤ ‖μ‖6‖σ‖3‖σ‖ ≤ δ‖σ‖2
3 + cδ‖μ‖2

V ‖σ‖2.

The second term is the key one. Using again that F ′
1(ϕ) has the same sign as ϕ, we have

I2 = −χ

2

∫
{ϕ≥0}

F ′
1(ϕ)σ 2 − χ

2

∫
{ϕ<0}

F ′
1(ϕ)σ 2 ≤ −χ

2

∫
{ϕ<0}

F ′
1(ϕ)σ 2

= χ

2

∫
�

|(F ′
1)−(ϕ)|σ 2 ≤ χ

2
‖(F ′

1)−(ϕ)‖6‖σ‖3‖σ‖

≤ δ‖σ‖2
3 + cδ‖(F ′

1)−(ϕ)‖2
6‖σ‖2.

The control of I3 is immediate, while I4 has to be moved to the left-hand side. Collecting the 
above considerations, then (4.12) gives, for every “small” δ > 0 and correspondingly “large” 
cδ > 0,

1

2

d

dt
‖σ‖2 + ‖∇σ‖2 +

(
κ∞b0 − χ2

2

)
‖σ‖3

3 ≤ cδ

(
1 + ‖(F ′

1)−(ϕ)‖2
6 + ‖μ‖2

V

)
‖σ‖2 + 3δ‖σ‖2

3.

Hence, under the compatibility condition (2.38), recalling (2.28) and the preliminary bound 
(4.11) we can adjust δ ∈ (0, 1) and apply Grönwall’s lemma to deduce

σ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L3(0, T ;L3(�)).

Finally, with this property at hand, the regularity of ϕ can be bootstrapped easily by arguing as 
done above for the two dimensional case. �
Remark 4.1. It is not difficult to check that, in the three-dimensional case, the “smallness” con-
dition (2.38) might be avoided if one takes a superquadratic logistic term on the right-hand side 
of (1.3), i.e., β(ϕ)(κ0σ − κ∞σ 2+ρ), where ρ > 0 may be arbitrarily small.

Remark 4.2. In the three dimensional case, even when the mobility n is not taken as a constant 
function, something could still be said. Indeed, (4.12) would then be replaced by

1

2

d

dt
‖σ‖2 + m0‖∇σ‖2 + κ∞b0‖σ‖3

3 ≤ c‖σ‖2 + χ

∫
�

σn(ϕ,σ )∇ϕ · ∇σ

and the last term could be integrated by parts as follows:

χ

∫
σn(ϕ,σ )∇ϕ · ∇σ = −χ

∫
N2(ϕ,σ )�ϕ − χ

∫
n2(ϕ,σ )|∇ϕ|2, (4.13)
� � �
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where we have set

N2(ϕ,σ ) :=
σ∫

0

n(ϕ, s)s ds, n2(ϕ,σ ) :=
σ∫

0

∂ϕn(ϕ, s)s ds.

Then, the procedure performed above can be adapted at least when either n depends only on σ
(so that the last integral in (4.13) disappears) or n satisfies proper structure assumptions ensuring 
that the last integral in (4.13) is nonnegative (so that it can be moved to the left-hand side and 
does not need to be controlled). On the other hand, in the general case (i.e., for n depending both 
on ϕ and σ with no sign conditions), the last integrand in (4.13) behaves like σ 2|∇ϕ|2, which 
appears to have a supercritical behavior in space dimension d = 3, as the interested reader can 
verify.

Proof of Theorem 2.3. Again, we derive additional a-priori estimates in a formal way and with-
out referring to the proposed approximation. We also recall that, at this level, weak solutions are 
already known to enjoy the regularity in (2.22)-(2.29) and (2.40)-(2.41). That said, we formally 
differentiate equation (2.17) with respect to time obtaining the identity

μt = −�ϕt + F ′′
1 (ϕ)ϕt − λϕt − χσt . (4.14)

Next, we multiply (2.16) (where m ≡ 1) by μt , the above expression (4.14) by ϕt , and add to 
both sides the term ‖ϕt‖2. Then, summing the resulting equalities together and integrating by 
parts we infer

1

2

d

dt
‖∇μ‖2 + ‖ϕt‖2

V +
∫
�

F ′′
1 (ϕ)|ϕt |2

=
∫
�

S(ϕ,σ )μt + (1 + λ)‖ϕt‖2 + χ

∫
�

σtϕt

= d

dt

∫
�

S(ϕ,σ )μ −
∫
�

∂t (S(ϕ,σ ))μ + (1 + λ)‖ϕt‖2 + χ

∫
�

σtϕt .

Note that here we assumed, just for simplicity, that F1 is twice differentiable, which is unnec-
essarily true under our assumption (A1). However, it is easy to see that, using standard convex 
analysis tools, the argument might be adapted to work for nonsmooth, but convex, F1 (as in our 
case). That said, we add to the above relation the result of (2.18) (where n ≡ 1) tested by σt . 
Using the specific expression of the source term in (2.6) with p = 2, after some rearrangements 
we obtain

d

dt

(1

2
‖∇μ‖2 −

∫
�

S(ϕ,σ )μ + 1

2
‖∇σ‖2

)
+ ‖ϕt‖2

V + ‖σt‖2

≤ (1 + λ)‖ϕt‖2 −
∫

∂t (S(ϕ,σ ))μ + χ

∫
σtϕt − χ

∫ (∇σ · ∇ϕ + σ�ϕ
)
σt
� � �
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+
∫
�

β(ϕ)(κ0σ − κ∞σ 2)σt , (4.15)

and we need to control the terms on the right-hand side. First of all, by elementary interpolation, 
it is clear that

(1 + λ)‖ϕt‖2 ≤ 1

8
‖ϕt‖2

V + c‖ϕt‖2∗. (4.16)

Next, by the global Lipschitz continuity of S (cf. (A2)) and a well-known chain rule formula for 
Lipschitz functions in Sobolev spaces, we obtain

−
∫
�

∂t (S(ϕ,σ ))μ ≤ c

∫
�

(|ϕt | + |σt |)|μ| ≤ 1

8
‖ϕt‖2 + 1

8
‖σt‖2 + c‖μ‖2.

Analogously, owing to interpolation once again, we deduce

χ

∫
�

σtϕt = χ〈σt , ϕt 〉V ≤ 1

8
‖ϕt‖2

V + c‖σt‖2∗.

The estimation of the remaining terms is just a bit more involved. Firstly we notice that, by 
standard Sobolev’s embeddings holding both in the two- and in the three-dimensional case, we 
have

−χ

∫
�

(∇σ · ∇ϕ + σ�ϕ
)
σt ≤ c

(‖∇σ‖‖∇ϕ‖∞‖σt‖ + ‖σ‖4‖�ϕ‖4‖σt‖
)

≤ 1

8
‖σt‖2 + c‖σ‖2

V ‖ϕ‖2
W 2,4(�)

.

Next, using (2.7), we infer

∫
�

β(ϕ)(κ0σ − κ∞σ 2)σt ≤ B
(
κ0‖σ‖ + κ∞‖σ‖2

4

)‖σt‖

≤ 1

8
‖σt‖2 + c

(
1 + ‖σ‖4

V

)
. (4.17)

Replacing the outcome of (4.16)-(4.17) into (4.15), we then arrive at

d

dt

(1

2
‖∇μ‖2 −

∫
�

S(ϕ,σ )μ + 1

2
‖∇σ‖2

)
+ 5

8
‖ϕt‖2

V + 5

8
‖σt‖2

≤ c + c‖ϕt‖2∗ + c‖σt‖2∗ + c‖μ‖2 + c
(
1 + ‖σ‖2

V + ‖ϕ‖2
W 2,4(�)

)‖σ‖2
V . (4.18)

To close the estimate, we go back to (4.12). Neglecting some nonnegative terms on the left-hand 
side and performing standard manipulations, that relation implies
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1

2

d

dt
‖σ‖2 ≤ c‖σ‖2 + c‖σ‖6‖∇σ‖‖∇ϕ‖3 ≤ c

(
1 + ‖ϕ‖2

H 2(�)

)‖σ‖2
V . (4.19)

Adding this relation to (4.18), we recover the full V -norm of σ on the left-hand side. Next, we 
prove that the functional we get under time derivative is coercive. In this direction, we employ 
(1.2), Young’s inequality and the uniform boundedness of S (in particular we can now use that 
−1 ≤ ϕ ≤ 1 almost everywhere) to infer that

−
∫
�

S(ϕ,σ )μ = −
∫
�

S(μ − μ�) −
∫
�

Sμ� ≥ −c‖μ − μ�‖ − c|μ�|

≥ −c‖∇μ‖ − c|μ�| ≥ −1

8
‖∇μ‖2 − c|μ�| − c

≥ −1

8
‖∇μ‖2 − c

(‖F ′
1(ϕ)‖1 + ‖ϕ‖1 + ‖σ‖1

)

≥ −1

8
‖∇μ‖2 − c‖F ′

1(ϕ)‖1 − c. (4.20)

Next, testing once more (2.17) by ϕ − ϕ� and proceeding similarly with (3.11)-(3.13), we arrive 
at

α‖F ′
1(ϕ)‖1 ≤ c

(
1 + ‖∇μ‖), (4.21)

where α > 0 is as in (3.12) and c > 0 on the right-hand side also depends on other quanti-
ties that have already been controlled uniformly with respect to time. As a consequence, from 
(4.18)-(4.19), we deduce the differential inequality

d

dt

(1

2
‖∇μ‖2 −

∫
�

S(ϕ,σ )μ + 1

2
‖σ‖2

V

)
︸ ︷︷ ︸

=:J

+5

8
‖σt‖2 ≤ c + c‖ϕt‖2∗ + c‖σt‖2∗ + c‖μ‖2

+ c
(
1 + ‖σ‖2

V + ‖ϕ‖2
W 2,4(�)

+ ‖ϕ‖2
H 2(�)

)‖σ‖2
V , (4.22)

where the functional J , thanks to (4.20)-(4.21), satisfies

J≥ 3

8
‖∇μ‖2 − c‖∇μ‖ − c + 1

2
‖σ‖2

V ≥ 1

4
‖∇μ‖2 + 1

2
‖σ‖2

V − C,

and C > 0 depends only on quantities that have already been controlled uniformly in time. Hence, 
for C > 0 as above, (4.22) can be rewritten in the form

d

dt
(J + C) + 5

8
‖ϕt‖2

V + 5

8
‖σt‖2

≤ c + c‖ϕt‖2∗ + c‖σt‖2∗ + c‖μ‖2 + c
(
1 + ‖σ‖2

V + ‖ϕ‖2
W 2,4(�)

+ ‖ϕ‖2
H 2(�)

)
(J + C).

Then, recalling (2.28) and (2.40)-(2.41), an application of Grönwall’s lemma yields the estimate
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‖ϕ‖H 1(0,T ;V ) + ‖∇μ‖L∞(0,T ;H) + ‖σ‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ c,

provided that the functional J is finite at the initial time, and we actually note that this follows, 
at least formally, from (2.45).

Next, using the control on the mean value of μ resulting from (4.21), it is a standard matter to 
infer that

‖μ‖L∞(0,T ;V ) ≤ c.

In turn, this also allows us to improve the regularity of ϕ. Indeed, we may go back to relation 
(4.7) and notice that, now, the right-hand side lies in the space L∞(0, T ; V ). Then, arguing once 
more as in [25, Lemmas 7.3 and 7.4], we deduce that

‖F ′
1(ϕ)‖L∞(0,T ;Lq(�)) + ‖ϕ‖L∞(0,T ;W 2,q (�)) ≤ c, (4.23)

where q = 6 if d = 3 and q ∈ [1, ∞) if d = 2. Finally, by a comparison of terms in (2.16), it is 
easy to check that

‖ϕt‖L∞(0,T ;V ∗) ≤ c,

whereas, applying elliptic regularity in (2.18), one can easily deduce

‖σ‖L2(0,T ;H 2(�)) ≤ c.

Noting that the continuity property in (2.49) is, once more, a consequence of standard regularity 
results, this concludes the proof of the theorem. �
Proof of Theorem 2.4. First of all, proceeding as in [25, Lemmas 7.3 and 7.4] and using the 
growth condition (2.50) with the Trudinger–Moser inequality (see also [38]), we deduce

‖F ′′
1 (ϕ)‖L∞(0,T ;Lq(�)) ≤ c, (4.24)

for any q ∈ [1, ∞). This acts as a starting point to prove the additional regularity in the state-
ment. As before, we proceed formally to avoid unnecessary technicalities, noting that rigorous 
estimates could be performed, e.g., by working on a time discrete level as done in [25]. In this 
direction, we differentiate in time (2.16) (where, we recall, m ≡ 1), to find

ϕtt = �μt + (S(ϕ,σ ))t = �μt − mϕt + ∂ϕh(ϕ,σ )ϕt + ∂σ h(ϕ,σ )σt .

Then, we test the above equation by ϕt . Integrating by parts and using the Lipschitz continuity 
of h, we deduce

1

2

d

dt
‖ϕt‖2 +

∫
�

∇μt · ∇ϕt ≤ c
(‖ϕt‖2 + ‖σt‖2). (4.25)

Next, differentiating (2.17) in time and testing the result by −�ϕt , we get
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∫
�

∇μt · ∇ϕt = ‖�ϕt‖2 −
∫
�

F ′′
1 (ϕ)ϕt�ϕt − λ‖∇ϕt‖2 + χ

∫
�

σt�ϕt . (4.26)

Combining (4.25) with (4.26) and performing standard manipulations, it is easy to get

1

2

d

dt
‖ϕt‖2 + 1

2
‖�ϕt‖2 ≤ c

(‖ϕt‖2
V + ‖σt‖2) +

∫
�

F ′′
1 (ϕ)ϕt�ϕt (4.27)

and the last term can be controlled as follows:∫
�

F ′′
1 (ϕ)ϕt�ϕt ≤ ‖F ′′

1 (ϕ)‖4‖ϕt‖4‖�ϕt‖

≤ c‖F ′′
1 (ϕ)‖2

4‖ϕt‖2
V + 1

4
‖�ϕt‖2 ≤ c‖ϕt‖2

V + 1

4
‖�ϕt‖2, (4.28)

the last inequality following from (4.24). Hence, replacing (4.28) into (4.27), using the known 
regularity properties (2.46) and (2.49), we deduce

‖ϕt‖L∞(0,T ;H) + ‖ϕt‖L2(0,T ;H 2(�)) ≤ c, (4.29)

provided ϕt lies in H at the initial time. As before, this property has to be read by formally 
evaluating (2.16) at the time t = 0. Then, by a direct check one can verify that this corresponds 
exactly to the condition on μ0 postulated in (2.51).

Then, viewing (2.16) as a family of time-dependent elliptic equations whose right-hand sides 
lie in L∞(0, T ; H) ∩ L2(0, T ; V ) due to (4.29), (2.49) and the Lipschitz continuity of h, we 
deduce

‖μ‖L∞(0,T ;H 2(�)) + ‖μ‖L2(0,T ;H 3(�)) ≤ c.

Note that the above, by Sobolev’s embeddings, also gives

‖μ‖L∞(Q) ≤ c. (4.30)

Next, to improve the regularity of ϕ, we rewrite (2.17) as

−�ϕ = μ − F ′
1(ϕ) + λϕ + χσ.

Then, recalling (4.23) and (4.24), a simple check permits us to verify that the above right-hand 
side lies (at least) in L∞(0, T ; V ). Hence, by elliptic regularity we deduce also

‖ϕ‖L∞(0,T ;H 3(�)) ≤ c. (4.31)

Next, to get the L∞-bound of σ , we come back to (2.18), which, rearranging, can be rewritten as

σt − �σ = −χ(∇σ · ∇ϕ + σ�ϕ) + β(ϕ)(κ0σ − κ∞σ 2) =: G.
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We now claim that G ∈ L∞(0, T ; H). To check this, we consider only the two cross-diffusion 
terms, the other ones being simpler to deal with. Indeed, we first observe that

‖∇σ · ∇ϕ‖L∞(0,T ;H) ≤ c‖∇σ‖L∞(0,T ;H)‖∇ϕ‖L∞(Q) ≤ c,

thanks to (4.31), (2.49) and Sobolev’s embeddings. Analogously,

‖σ�ϕ‖L∞(0,T ;H) ≤ c‖σ‖L∞(0,T ;L4(�))‖�ϕ‖L∞(0,T ;L4(�)) ≤ c.

Then, recalling the assumption (2.55) on the initial datum, by an application of [36, Thm. 7.1, 
p. 181] we readily obtain (2.56). Finally, the above regularity allows us to obtain the separation 
property (2.57). To this aim, we go back to the expression (3.18) and notice that the right-hand 
side, thanks to (4.30), (4.31) and (2.56), is now bounded in the L∞(Q)-norm. Hence, (2.57) can 
be obtained by reasoning exactly as in the proof of [14, Thm. 2.2]. This concludes the proof. �
Remark 4.3. With the separation property (2.57) at disposal, the singular character of F ′

1 at ±1 is 
essentially lost and the term F ′

1(ϕ) in (2.17) behaves like a smooth function of ϕ with controlled 
growth. Thanks to this fact, the regularity of solutions may be further improved at least as far as 
the nonlinear terms (like h, or F1 itself) satisfy additional regularity properties (e.g., Ck for large 
k).

5. Uniqueness of strong solutions

This section is devoted to the proof of Theorem 2.8. We first recall that in Subsection 2.1
was introduced the operator N : V ′

0 → V0 representing, in a suitable weak sense, the inverse of 
(minus) the Neumann Laplacian acting on the functions with zero spatial average. Moreover, as 
anticipated in Remark 2.11, we just consider the case d = 3, noting that the conditions may be 
relaxed in the two-dimensional setting.

Proof of Theorem 2.8. Let us assume to have a couple of solutions (ϕ1, μ1, σ1) and (ϕ2, μ2, σ2)

fulfilling the assumptions of the theorem and let us correspondingly set

ϕ := ϕ1 − ϕ2, μ := μ1 − μ2, σ := σ1 − σ2,

Si := S(ϕi, σi) for i = 1,2, ϕ0 := ϕ0,1 − ϕ0,2, σ0 := σ0,1 − σ0,2. (5.1)

Then, under the assumptions of the theorem the triplet (ϕ, μ, σ) turns out to solve the system

ϕt = �μ + (S1 − S2) in Q, (5.2)

μ = −�ϕ + (
f (ϕ1) − f (ϕ2)

) − χσ in Q, (5.3)

σt − �σ + χ div(σ∇ϕ1 + σ2∇ϕ) = κ0σ − κ∞σ(σ1 + σ2) in Q, (5.4)

∂nϕ = ∂nμ = ∂nσ = 0 on 	, (5.5)

ϕ|t=0 = ϕ0, σ |t=0 = σ0 in �. (5.6)

We then start by integrating (5.2) over � to find that
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ϕ′
� = (S1 − S2)� = 1

|�|
∫
�

(
S(ϕ1, σ1) − S(ϕ2, σ2)

)
. (5.7)

Testing the above by ϕ� and using Young’s inequality with the Lipschitz continuity of S, we 
easily deduce

1

2

d

dt
|ϕ�|2 ≤ |ϕ�|2 + c(‖ϕ‖2 + ‖σ‖2). (5.8)

Next, we subtract (5.7) from (5.2) and test the resulting equality by N (ϕ − ϕ�) obtaining that

1

2

d

dt
‖ϕ − ϕ�‖2∗ +

∫
�

(ϕ − ϕ�)(μ − μ�) =
∫
�

(
(S1 − S2) − (S1 − S2)�

)
N (ϕ − ϕ�)

≤ c‖ϕ‖2 + c‖σ‖2 + c‖ϕ − ϕ�‖2∗. (5.9)

Let us now point out that, by the Poincaré–Wirtinger inequality and some elementary interpola-
tion,

c‖ϕ‖2 ≤ c
(‖ϕ − ϕ�‖2 + |ϕ�|2) ≤ c‖ϕ − ϕ�‖V ‖ϕ − ϕ�‖∗ + c|ϕ�|2

≤ δ‖∇ϕ‖2 + cδ‖ϕ − ϕ�‖2∗ + c|ϕ�|2 (5.10)

for “small” δ > 0 and correspondingly “large” cδ > 0.
Next, noting that 

∫
�

μ�(ϕ − ϕ�) = 0, we may use (5.3) to obtain that

∫
�

(ϕ − ϕ�)(μ − μ�) = ‖∇ϕ‖2 +
∫
�

(ϕ − ϕ�)(f (ϕ1) − f (ϕ2)) − χ

∫
�

(ϕ − ϕ�)σ. (5.11)

Using also (5.10), we deduce

χ

∣∣∣∣
∫
�

(ϕ − ϕ�)σ

∣∣∣∣ ≤ c‖σ‖2 + c‖ϕ − ϕ�‖2 ≤ δ‖∇ϕ‖2 + cδ‖ϕ − ϕ�‖2∗ + c‖σ‖2, (5.12)

for δ > 0 and cδ > 0 as above.
Summing (5.8) with (5.9) and using (5.11), (5.12) and (5.10) again, we deduce

1

2

d

dt

(‖ϕ − ϕ�‖2∗ + |ϕ�|2) +
∫
�

(ϕ − ϕ�)(f (ϕ1) − f (ϕ2)) + (1 − 2δ)‖∇ϕ‖2

≤ cδ

(‖ϕ − ϕ�‖2∗ + ‖σ‖2 + |ϕ�|2).
Next, decomposing f into its monotone and remainder parts, it is not difficult to get
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1

2

d

dt

(‖ϕ − ϕ�‖2∗ + |ϕ�|2) + (1 − 3δ)‖∇ϕ‖2

≤ cδ

(‖ϕ − ϕ�‖2∗ + ‖σ‖2 + |ϕ�|2) +
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�. (5.13)

We now move to the estimation of σ . Integrating (5.4) over � we obtain

(σ�)t = κ0σ� − κ∞
(
σ 2

1 − σ 2
2

)
�
. (5.14)

Subtracting the above from (5.4), we then get

(σ −σ�)t −�σ +χ div(σ∇ϕ1 +σ2∇ϕ) = κ0(σ −σ�)−κ∞
(
σ 2

1 −σ 2
2 −(σ 2

1 )� +(σ 2
2 )�

)
. (5.15)

Testing (5.14) by σ�, it is not difficult to obtain

1

2

d

dt
|σ�|2 ≤ κ0|σ�|2 + κ∞

|�| |σ�|
∫
�

|σ ||σ1 + σ2|

≤ κ0|σ�|2 + c|σ�|(‖σ − σ�‖ + |σ�|)‖σ1 + σ2‖
≤ η‖σ − σ�‖2 + cη

(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2, (5.16)

where η > 0 denotes a positive constant whose value will be fixed at the end. Next, we test (5.15)
by N (σ − σ�) to deduce that

1

2

d

dt
‖σ − σ�‖2∗ + ‖σ − σ�‖2 ≤ χ

∫
�

σ∇ϕ1 · ∇N (σ − σ�) + χ

∫
�

σ2∇ϕ · ∇N (σ − σ�)

+ κ0‖σ − σ�‖2∗ − κ∞
∫
�

(
σ 2

1 − σ 2
2 − (σ 2

1 )� + (σ 2
2 )�

)
N (σ − σ�). (5.17)

As for the right-hand side, we first notice that

χ

∫
�

σ∇ϕ1 · ∇N (σ − σ�) ≤ c‖σ‖‖∇ϕ1‖∞‖∇N (σ − σ�)‖

≤ c‖σ‖‖∇ϕ1‖∞‖σ − σ�‖∗ ≤ η‖σ‖2 + cη‖∇ϕ1‖2∞‖σ − σ�‖2∗
≤ 2η‖σ − σ�‖2 + cη|σ�|2 + cη‖ϕ1‖2

W 2,6(�)
‖σ − σ�‖2∗. (5.18)

To control the second integral, several strategies are possible, leading to different assumptions 
on σ2. Under the conditions in the statement, we may proceed by noting that

χ

∫
�

σ2∇ϕ · ∇N (σ − σ�) ≤ c‖σ2‖6‖∇ϕ‖‖∇N (σ − σ�)‖3

≤ c‖σ2‖6‖∇ϕ‖‖N (σ − σ�)‖1/2‖N (σ − σ�)‖1/2
2
V H (�)
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≤ c‖σ2‖6‖∇ϕ‖‖σ − σ�‖1/2∗ ‖σ − σ�‖1/2

≤ η‖∇ϕ‖2 + η‖σ − σ�‖2 + cη‖σ2‖4
6‖σ − σ�‖2∗. (5.19)

Next, we move to the last term in (5.17), which can be treated as follows:

− κ∞
∫
�

(
σ 2

1 − σ 2
2 − (σ 2

1 )� + (σ 2
2 )�

)
N (σ − σ�)

≤ c
∥∥σ 2

1 − σ 2
2 − (σ 2

1 )� + (σ 2
2 )�‖1‖N (σ − σ�)‖∞

≤ c‖σ‖(‖σ1‖ + ‖σ2‖
)‖N (σ − σ�)‖1/2

V ‖N (σ − σ�)‖1/2
H 2(�)

≤ c
(‖σ − σ�‖ + |σ�|)(‖σ1‖ + ‖σ2‖

)‖σ − σ�‖1/2∗ ‖σ − σ�‖1/2

≤ cη

(
1 + ‖σ1‖4 + ‖σ2‖4)‖σ − σ�‖2∗ + η‖σ − σ�‖2 + c|σ�|2. (5.20)

Next, we replace (5.18), (5.19) and (5.20) into (5.17) to deduce that

1

2

d

dt
‖σ − σ�‖2∗ + (1 − 4η)‖σ − σ�‖2

≤ cη

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗ + η‖∇ϕ‖2 + c|σ�|2.

Adding (5.16) to the above relation gives

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2) + (1 − 5η)‖σ − σ�‖2 ≤ cη

(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2

+ cη

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗ + η‖∇ϕ‖2. (5.21)

We then take δ = 1/6 in (5.13) and multiply that relation by ζ > 0 to be chosen below. Finally, 
we add the result to (5.21). This yields

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2 + ζ‖ϕ − ϕ�‖2∗ + ζ |ϕ�|2) + ζ

2
‖∇ϕ‖2 + (1 − 5η)‖σ − σ�‖2

≤ cη

(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2

+ cη

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗ + η‖∇ϕ‖2

+ cζ‖ϕ − ϕ�‖2∗ + c1ζ‖σ − σ�‖2 + cζ |σ�|2 + cζ |ϕ�|2 + ζ

∣∣∣∣
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�

∣∣∣∣,

where c1 > 0 is a computable constant independent of ζ and η. Then, choosing first ζ ≤
min{1, 1/2c1}, we arrive at

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2 + ζ‖ϕ − ϕ�‖2∗ + ζ |ϕ�|2) + ζ

2
‖∇ϕ‖2 +

(1

2
− 5η

)
‖σ − σ�‖2

≤ cη

(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2
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+ cη

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗ + η‖∇ϕ‖2

+ c‖ϕ − ϕ�‖2∗ + c|σ�|2 + c|ϕ�|2 +
∣∣∣∣
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�

∣∣∣∣.

Next, choosing η ≤ min{1/20, ζ/4}, we get

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2 + ζ‖ϕ − ϕ�‖2∗ + ζ |ϕ�|2) + ζ

4
‖∇ϕ‖2 + 1

4
‖σ − σ�‖2

≤ c
(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2 + c

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗

+ c‖ϕ − ϕ�‖2∗ + c|σ�|2 + c|ϕ�|2 +
∣∣∣∣
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�

∣∣∣∣. (5.22)

To obtain a contractive estimate, we need to manage the last term. This is treated in two different 
ways depending on the assumption on h. Indeed, if h is a constant, we may proceed as in [24]
since in that case the ODE relation (5.7) reduces to

ϕ′
� + mϕ� = 0. (5.23)

For constant h we may then proceed by noting that

∣∣∣∣
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�

∣∣∣∣ ≤ (‖F ′
1(ϕ1)‖1 + ‖F ′

1(ϕ2)‖1
)|ϕ�|. (5.24)

Then, testing (5.23) by the sign of ϕ� (this standard procedure may be also justified by approxi-
mation), summing the result to (5.22), and using (5.24), we deduce

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2 + ζ‖ϕ − ϕ�‖2∗ + ζ |ϕ�|2 + |ϕ�|) + ζ

4
‖∇ϕ‖2 + 1

4
‖σ − σ�‖2

≤ c
(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2 + c

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗

+ c‖ϕ − ϕ�‖2∗ + c|ϕ�|2 + (‖F ′
1(ϕ1)‖1 + ‖F ′

1(ϕ1)‖1
)|ϕ�|,

where we recall that ζ is a positive constant whose value has already been fixed. Next, we observe 
that, in view of (2.29) and (2.58)-(2.60), we may apply Grönwall’s lemma, which gives the 
statement (and, more generally, the continuous dependence estimate (2.62)). This concludes the 
analysis of the first case.

On the other hand, when h is nonlinear, it does not seem to be possible to proceed as above. 
For this reason, we need to provide a different control of the last integral term in (5.22). Namely, 
we may first notice that a simple computation shows, as we are assuming F ∈ C2(−1, 1), that

F ′
1(ϕ1) − F ′

1(ϕ2) = �ϕ, with � =
1∫
F ′′

1 (sϕ1 + (1 − s)ϕ2) ds.
0
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Consequently, by the Young, Hölder and Poincaré–Wirtinger inequalities we infer

∣∣∣∣
∫
�

(F ′
1(ϕ1) − F ′

1(ϕ2))ϕ�

∣∣∣∣ =
∣∣∣∣ϕ�

∫
�

�ϕ

∣∣∣∣ ≤ |ϕ�|‖ϕ‖‖�‖

≤ |ϕ�|(‖ϕ − ϕ�‖ + |ϕ�|)‖�‖ ≤ c|ϕ�|(‖∇ϕ‖ + |ϕ�|)‖�‖
≤ ζ

8
‖∇ϕ‖2 + c

(
1 + ‖�‖2)|ϕ�|2 ≤ ζ

8
‖∇ϕ‖2 + c|ϕ�|2(1 + ‖F ′′

1 (ϕ1)‖2 + ‖F ′′
1 (ϕ2)‖2),

where the value of ζ was assigned before (and the last constants c > 0 also depend on it). Re-
placing this into (5.22), we then get

1

2

d

dt

(‖σ − σ�‖2∗ + |σ�|2 + ζ‖ϕ − ϕ�‖2∗ + ζ |ϕ�|2) + ζ

8
‖∇ϕ‖2 + 1

4
‖σ − σ�‖2

≤ c
(
1 + ‖σ1‖2 + ‖σ2‖2)|σ�|2 + c

(
1 + ‖σ1‖4 + ‖σ2‖4

6 + ‖ϕ1‖2
W 2,6(�)

)‖σ − σ�‖2∗

+ c‖ϕ − ϕ�‖2∗ + c|ϕ�|2(1 + ‖F ′′
1 (ϕ1)‖2 + ‖F ′′

1 (ϕ2)‖2).
Once again, using also the additional assumption (2.61), Grönwall’s lemma gives the thesis.

Finally, with reference to Remark 2.11, we notice that the second integral on the right-hand 
side of (5.17) can alternatively managed in the following way employing Hölder’s inequality:

χ

∫
�

σ2∇ϕ · ∇N (σ − σ�) ≤ c‖σ2‖3+δ‖∇ϕ‖‖∇N (σ − σ�)‖ 6+2δ
1+δ

≤ δ‖∇ϕ‖2 + cδ‖σ2‖2
L∞(0,T ;L3+δ(�))

‖∇N (σ − σ�)‖2
6+2δ
1+δ

,

where δ > 0 is arbitrarily small (but fixed) and the right-hand side can be managed by using 
interpolation and accordingly adjusting the magnitude of the occurring constants as the interested 
reader may verify. �
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