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A Model and Survey of Distributed Data-Intensive Systems
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Data is a precious resource in today’s society, and it is generated at an unprecedented and constantly growing

pace. The need to store, analyze, and make data promptly available to a multitude of users introduces formi-

dable challenges in modern software platforms. These challenges radically impacted the research fields that

gravitate around data management and processing, with the introduction of distributed data-intensive sys-

tems that offer innovative programming models and implementation strategies to handle data characteristics

such as its volume, the rate at which it is produced, its heterogeneity, and its distribution. Each data-intensive

system brings its specific choices in terms of data model, usage assumptions, synchronization, processing

strategy, deployment, guarantees in terms of consistency, fault tolerance, and ordering. Yet, the problems

data-intensive systems face and the solutions they propose are frequently overlapping. This article proposes

a unifying model that dissects the core functionalities of data-intensive systems, and discusses alternative

design and implementation strategies, pointing out their assumptions and implications. The model offers a

common ground to understand and compare highly heterogeneous solutions, with the potential of fostering

cross-fertilization across research communities. We apply our model by classifying tens of systems: an exer-

cise that brings to interesting observations on the current trends in the domain of data-intensive systems and

suggests open research directions.
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1 INTRODUCTION

As data guides the decision-making process of increasingly many human activities, software ap-
plications become data intensive [54]. They handle large amounts of data produced by disparate
sources. They perform complex data analysis to extract valuable knowledge from the application
environment. They take automated decisions in near real time. They serve content to a multitude
of users, spread over wide geographical areas. The challenges for these applications come from
data characteristics such as its volume, the rate at which it is generated, and its heterogeneity.
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This demands distributed software systems that could exploit the resources of interconnected com-
puters to efficiently store, query, analyze, and serve data to customers at scale. Distribution brings
along issues related to communication, concurrency and synchronization, deployment of data and
computational tasks on physical nodes, replication and consistency, and handling of partial fail-
ures [54]. To address these issues, the past two decades have seen a flourishing of systems and
execution models that abstract away some of the concerns related to distributed data management
and processing. We collectively denote them as distributed data-intensive systems: they originate
from research and development efforts in various communities, particularly those working on
database and distributed systems.

Background: Different Research Lines Addressing Overlapping Problems. In the database commu-
nity, the mutating requirements brought by data-intensive applications put the traditional (re-
lational) data model and implementation strategies under question. The increasing complexity
and volume of data demanded flexibility and scalability. Internet-scale applications demanded ge-
ographically replicated stores, supporting a multitude of users concurrently reading and updating
data [6]. In these contexts, communication and synchronization costs may become the main bottle-
neck [15]. Workload characteristics changed as well: analytical tasks emerged and complemented
query tasks [85]. In response to these challenges, researchers first investigated so-called NoSQL
solutions [36] that trade strong consistency and transactional guarantees in favor of flexibility and
scalability. More recently, the complexity of writing applications with weak guarantees inspired a
renaissance of transactional semantics [86], coupled with programming, design, and implementa-
tion approaches to make transactions management more scalable [34, 88, 89, 92].

In parallel, within the distributed systems research community, the increasing centrality of data
fostered the development of new systems that exploit the compute capabilities of cluster infras-
tructures to extract valuable information from this large amount of data. Pioneered by MapRe-
duce [38], they organize the computation into a dataflow graph of operators that apply functional
transformations on their input data. This dataflow model promotes distributed computations: op-
erators may run simultaneously on different machines (task parallelism), and multiple instances
of each operator may process independent portions of the input data in parallel (data parallelism).
Developers only specify the behavior of operators, whereas the system automates their deploy-
ment, the exchange of data, and the re-execution of lost computations due to failures. Over the
years, a multitude of systems adopted and revised this processing model in terms of programming
abstractions (e.g., support for streaming data and iterative computations), as well as design and im-
plementation choices (e.g., strategies to associate operators to physical machines and to exchange
data across operators) [24, 99], whereas other systems brought alternative programming models
suited to specific domains, such as graph processing [68].

In general, the challenging demands of data-intensive applications are continuously pushing re-
searchers and practitioners to build novel solutions that go beyond traditional categories [87]. For
instance, many dataflow platforms offer abstractions to process data through complex relational
queries, thus crossing the boundaries of database technologies. Data stores such as VoltDB [89]
and S-Store [27] aim to support near real-time processing of incoming data within a relational
database core. Messaging services such as Kafka [55] offer persistency, querying, and processing
capabilities [18].

Motivations. In summary, a multitude of distributed data-intensive systems proliferated over the
years. The problems they face and the solutions they propose are frequently overlapping, but the
commonalities in design principles and implementation choices often hide behind concrete realiza-
tions and heterogeneous terminologies adopted by different research communities. In this scenario,
it is difficult for users to grasp the subtle differences between systems, evaluate their benefits and
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limitations, capture their assumptions and guarantees, and select the most suitable ones for a given
application. In addition, it is hard for researchers to get a coherent and comprehensive view of the
area, identify salient design choices, and understand their consequences in terms of functionalities
and performance.

Contributions and Methodological Approach. To address these issues, this article proposes a model
for data-intensive systems that integrates key design and implementation choices into a unifying
view. This model captures our view of a data-intensive system as a collection of abstract compo-
nents that together provide the system functionalities. For each component, we define the follow-
ing: ind (i) the assumptions it relies upon; iind (ii) the functionalities it provides; iiind (iii) the
guarantees it offers; ivnd (iv) the possible strategies for its design and implementation, highlight-
ing their implications. From these characteristics, we derive a list of classification criteria that
we use to survey tens of state-of-the-art data-intensive systems, organized into a taxonomy that
highlights their similarities and differences.

To develop our model and compile our taxonomy and survey, we started from works appearing
in top tier conferences and journals in the area of database and distributed systems in the past
20 years. We then checked the systems they were citing, including commercial products not pre-
sented in scientific publications. To remain focused on our goal of surveying existing systems,
we skipped works only presenting individual algorithms or mechanisms, and we concentrated on
systems addressing data management and processing problems, not compute-intensive problems
such as computer simulations. From this large background of material and our own past experi-
ence in the area, we derived our model and the relevant dimensions to classify systems. Without
pretending to embrace all possible systems and issues, we are confident that this survey captures
the key design strategies adopted in currently available distributed data-intensive systems.

Our work contributes to the research areas that gravitate around data-intensive systems in vari-
ous ways: and (i) it enables an unbiased comparison of their features; and (ii) it offers a broad view
of the research in the field; and (iii) it promotes cross-fertilization between communities, defin-
ing a vocabulary and conceptual framework that they can use to exchange ideas and solutions to
common problems; and (iv) it highlights consolidated results and open challenges, and helps in
identifying promising research directions.

ArticleOutline. The article is organized as follows. Section 2 presents our model and list of classi-
fication criteria. Based on these criteria, Section 3 proposes a taxonomy to organize data-intensive
systems in a small set of classes. Next, we apply the model to describe these classes: pure Data

Management Systems (DMSs) in Section 4, pure Data Processing Systems (DPSs) in Section 5,
and other systems that propose new or hybrid programming and execution models in Section 6.
Section 7 discusses key aspects that emerge from our analysis and points out future research di-
rections. Finally, Section 8 concludes the article. In the appendices, we describe individual systems
in detail; provide a summary of the terms and a map of the concepts that appear in the article,
together with their mutual relations; and report related surveys and studies.

2 A UNIFYING MODEL FOR DATA-INTENSIVE SYSTEMS

This section presents a model that captures the core functionalities of data-intensive systems
within a collection of abstract components. From the model, we derive fine-grained classifica-
tion criteria that we summarize in Tables 1 through 8. We organize data-intensive systems into
a taxonomy in Section 3, and we use the classification criteria to describe the systems within this
taxonomy in Sections 4 through 6. In this section, coherently with the taxonomy in Section 3, when
providing concrete examples of systems to explain the concepts in the model, we denote DMSs as
those that are primarily designed to store some state and expose functions to query and mutate
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Fig. 1. Functional model of a data-intensive system.

Table 1. Classification Criteria:
Functional Model

Driver exec client-side/system-side
Driver exec time on registration/on start
Invocation of jobs synchronous/asynchronous
Sources no/passive/active/both
Sinks no/yes
State no/yes
Deployment cluster/wide-area/hybrid

such state, whereas we denote DPSs as those that enable expensive transformation and analysis
of static (batch) or dynamic (streaming) data.

2.1 Functional Model

Figure 1 depicts the functional model of a data-intensive system. The resulting classification cri-
teria are shown in Table 1. A data-intensive system offers data management and processing func-
tionalities to external clients. Clients can register and start driver programs, which are the parts
of the application logic that interact with the data-intensive system and exploit its functionalities.
Specifically, during its execution, a driver program can invoke one or more jobs, which are the
largest units of execution that can be offloaded onto the distributed computing infrastructure made
available by the data-intensive system. Depending on the specific system, a driver program may
execute client-side or system-side. Some systems decouple activation of driver programs from their
registration; in this case, we say that driver execution time is on start, and otherwise we say that
it is on registration. To exemplify, in a DMS, a driver program may be a stored procedure that com-
bines code expressed in some general-purpose programming language with one or more queries
(the jobs) expressed in the language offered by the engine (e.g., SQL). Stored procedures typically
run system-side every time a client activates them (on start). Similarly, in a DPS, the driver pro-
gram may be a piece of Java code that spawns one or more distributed computations (the jobs)
written using the API offered by the data processing engine. In this context, the driver program
will typically run system-side on registration.

The data-intensive system runs on the distributed computing infrastructure as a set of worker

processes, hosted on the same or different nodes (physical or virtual machines). We model the
processing resources offered by workers as a set of slots. Jobs are compiled into elementary units
of execution that we denote as tasks and run sequentially on slots. Jobs consume input data and
produce output data. Some systems also store some state within the distributed computing infras-
tructure: in this case, jobs may access (read and modify) the state during their execution. When
present, state can be split (partitioned and replicated) across workers such that each of them is
responsible for a state portion.

In our model, data elements are immutable and are distributed through communication channels
(dark gray arrows in Figures 1 and 2) that we collectively refer to as the data bus. Notice that
the data bus also distributes jobs invocations. Indeed, our model emphasizes the dual nature of
invocations and data, which can both carry information and trigger jobs execution: invocations
may transport data in the form of input parameters and return values, whereas the availability
of new data may trigger the activation of jobs. Our model exploits this duality to capture the
heterogeneity in activating jobs and exchanging data of the systems we surveyed.

Jobs invocations may be either synchronous, if the driver program waits for jobs completion
before making progress, or asynchronous, if the driver program continues to execute after
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Fig. 2. Jobs definition, compilation, deployment, and
execution.

Table 2. Classification Criteria: Jobs
Definition, Compilation, Deployment,
and Execution

Jobs Definition

Jobs definition API library/DSL

Exec plan definition explicit/implicit

Task communication explicit/implicit

Exec plan structure dataflow/workflow

Iterations no/yes

Dynamic creation no/yes

Nature of jobs one-shot/continuous

State management absent/explicit/implicit

Data-parallel API no/yes

Placement-aware API no/yes

Jobs Compilation

Jobs compil time
on driver

registration/on driver
execution

Use resources info no/static/dynamic

Jobs Deployment and Execution

Granularity of deployment job level/task level

Deployment time
on job compilation/on

task activation
Use resources info static/dynamic

Management of res system-only/shared

submitting the invocation. In both cases, invocations may return some result to the driver
program, as indicated by the bidirectional arrows in Figure 1. In some systems, jobs also consume
data from external sources and produce data for external sinks. We distinguish between passive

sources, which consist of static datasets that jobs can access during their execution (e.g., a
distributed filesystem), and active sources, which produce new data dynamically and may trigger
job execution (e.g., a messaging system).

To exemplify, stored procedures (the driver programs) in a DMS invoke (synchronously or asyn-
chronously, depending on the specific system) one or more queries (the jobs) during their execu-
tion. Invocations carry input data in the form of actual parameters. Queries can access (read-only
queries) and modify (read-write queries) the state of the system, and return query results. In batch
DPSs such as MapReduce, jobs read input data from passive sources (e.g., a distributed filesystem),
apply functional transformations that do not involve any mutable state, and store the resulting
data into sinks (e.g., the same distributed filesystem). In stream DPSs, jobs run indefinitely and
make progress when active sources provide new input data. We say that input data activates a job,
and in this case jobs may preserve some state across activations.

We characterize the distributed computing infrastructure based on its deployment. In a cluster

deployment, all nodes belong to the same cluster or data center, which provides high bandwidth
and low latency for communication. Conversely, in a wide-area deployment, nodes can be spread
in different geographical areas, a choice that increases the latency of communication and may
impact the possibility of synchronizing and coordinating tasks. For this reason, we also consider
hybrid deployments, when the system adopts a hierarchical approach, exploiting multiple fully
functional cluster deployments that are loosely synchronized with each other.

2.2 Jobs and Their Lifecycle: From Definition to Execution

This section concentrates on jobs, following their lifecycle from definition to execution (see
Figure 2). Jobs are defined inside a driver program (Section 2.2.1) and compiled into an execu-
tion plan of elementary tasks (Section 2.2.2), which are deployed and executed on the distributed
computing infrastructure (Section 2.2.3). The resulting classification criteria are presented in
Table 2.
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2.2.1 Jobs Definition. Jobs are defined inside driver programs. Frequently, driver programs in-
clude multiple jobs and embed the logic that coordinates their execution. For instance, stored
procedures (driver programs) in DMSs may embed multiple queries (jobs) within procedural code.
Similarly, DPSs invoke analytic jobs from a driver program written in a standard programming lan-
guage with a fork-join execution model. Notably, some systems implement iterative algorithms by
spawning a new job for each iteration and by evaluating termination criteria within the driver
program.

Jobs are expressed using programming primitives (jobs definition API ) with heterogeneous forms.
For instance, relational DMSs rely on SQL (a Domain-Specific Language (DSL)), whereas DPSs
usually offer libraries for various programming languages. Some systems support both forms.

Jobs are compiled into an execution plan, which defines the computation as a set of elementary
units of deployment and execution called tasks. Tasks (i) run on slots, (ii) exchange data over the
data bus (dark gray arrows in Figure 2) according to the communication schema defined in the
execution plan, and (iii) may access the state portion of the worker they are deployed on. We say
that the execution plan definition is explicit if the programming primitives directly specify the indi-
vidual tasks and their logical dependencies. The definition is instead implicit if the logical plan is
compiled from a higher-level, declarative specification of the job. To exemplify, the dataflow for-
malism adopted in many DPSs provides an explicit definition of the logical plan, whereas SQL, and
most query languages, provide an implicit definition. With an explicit definition of the logical plan,
the communication between tasks can itself be explicit or implicit. In the first case, the system APIs
include primitives to send and receive data across tasks, whereas in the latter case, the exchange
of data is implicit. The execution plan structure can be a generic workflow, where there are no
restrictions to the pattern of communication between tasks, or a dataflow, where tasks need to be
organized into an acyclic graph and data can only move from upstream tasks to downstream tasks.
When present, we also highlight further structural constraints. For instance, the execution plan of
the original MapReduce system forces data processing in exactly two phases: a map and a reduce.

Iterations within the execution plan may or may not be allowed. We say that a system supports
dynamic creation of the plan if it enables spawning new tasks during execution. Dynamic creation
gives the flexibility of defining or activating part of the execution plan at runtime, which may be
used to support control flow constructs.

Jobs can be either one-shot or continuous. One-shot jobs are executed once and then terminate.
We use the term invoke here: as invoking a program twice leads to two distinct processes, invoking
a one-shot job multiple times leads to separate executions of the same code. For instance, queries
in DMSs are typically one-shot jobs, and indeed multiple invocations of the same query lead to
independent executions. Instead, continuous jobs persist across invocations. In this case, we use
the term activate to highlight that the same job is repeatedly activated by the arrival of new data.
This happens in stream DPSs, where continuous jobs are activated when new input data comes
from active sources. As detailed in Section 2.4, the key distinguishing factor of continuous jobs is
their ability to persist in some private task state across activations. By definition, this option is not
available for one-shot jobs, since each invocation is independent from the other.

State management in jobs may be absent, explicit, or implicit. For instance, state management is
absent in batch DPSs, which define jobs in terms of functional transformations that solely depend
on the input data. State management is explicit when the system provides constructs to directly
access state elements to read and write them. For instance, queries in relational DMSs provide
select clauses to retrieve state elements and insert and update clauses to store new state el-
ements and update them. State management is implicit when state accesses are implicit in job
definition. For instance, stream DPSs manage state implicitly through ad hoc operators such as
windows that record previously received data and use it to compute new output elements.
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Another relevant characteristic of the programming model is the support for data parallelism,
which allows defining computations for a single element and automatically executing them on
many elements in parallel. Data parallelism is central in many systems, and particularly in DPSs,
as it simplifies the definition of jobs by letting developers focus on individual elements. It pro-
motes parallel execution, as the tasks operating on different elements are independent. Systems
supporting data parallelism apply partitioning strategies to both data and state (when available),
as we discuss in Section 2.3 and Section 2.4. As inter-task communication and remote data access
may easily become performance bottlenecks, some systems aim to reduce inter-task communica-
tion and to promote local access to data and state by offering placement-aware APIs that enable
developers to suggest suitable placement strategies based on the expected workload.

2.2.2 Jobs Compilation. The process of compiling jobs into an execution plan may either start
on driver registration or on driver execution. The first case models situations where the driver pro-
gram is registered in the system and can be executed multiple times, as in the case of stored pro-
cedures. The second case happens in DPSs, which usually offer a single command to submit and
execute a program. Jobs compilation may use resources information—that is, information about the
resources of the distributed computing infrastructure. The information is static if it only considers
the available resources. For instance, data-parallel operators are converted into multiple tasks that
run the same logical step in parallel: the concrete number of tasks is typically selected depending
on the available processing resources (overall number of CPU cores). The information is dynamic

if it also considers the actual use of resources. For instance, a join operation may be compiled
into a distributed hash join or into a sort-merge join depending on the current cardinality and
distribution of the elements to join.

2.2.3 Jobs Deployment and Execution. Jobs deployment is the process of allocating the tasks
of a job execution plan onto slots. For instance, the execution plan in Figure 2 consists of seven
tasks, and each of them is deployed on a different slot. Tasks tagged A and B exemplify data-
parallel operations, each executed by two tasks in parallel. Deployment can be performed with
job-level granularity or task-level granularity. Job-level granularity is common when the deploy-
ment takes place on job compilation, whereas task-level granularity is used when the deployment
(of individual tasks) takes place on task activation. It is important to note that the preceding clas-
sification is orthogonal to the nature of jobs (one-shot or continuous) as defined earlier. One-shot
jobs may be (i) entirely deployed either on job compilation or (ii) progressively, as their input data
is made available by previous tasks in the execution plan. The first choice is frequent in DMSs,
whereas the latter characterizes several DPSs. Similarly, continuous jobs may be (i) fully deployed
on compilation, with their composing tasks remaining available onto slots, ready to be activated
by incoming data elements, or (ii) their tasks may be deployed individually when new input data
becomes available and activates them. In this case, the same task is deployed multiple times, once
for each activation: systems that follow this strategy minimize the overhead of deployment by
accumulating input data into batches and deploying a task only once for the entire batch, as well
exemplified by the micro-batch approach of Spark Streaming [98]. As we discuss in Section 2.3,
task-level deployment requires a persistent data bus, to decouple task execution in time. If the
data bus is not persistent, all tasks in the execution plan need to be simultaneously deployed to
enable the exchange of data.

The deployment process always exploits static information about the resources available in the
computing infrastructure, like the address of workers and their number of slots. Some systems also
exploit dynamic information, such as the current load of workers and the location of data. This
is typically associated with task-level scheduling on activation, where tasks are deployed when
their input data is available and they are ready for execution. Finally, the deployment process may
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Table 3. Classification Criteria:
Data Management

Elements structure
no/general /domain

specific
Temporal elements no/yes
Bus connection
type

direct/mediated

Bus
implementation
Bus persistency persistent/ephemeral
Bus partitioning no/yes
Bus replication no/yes
Bus interaction
model

push/pull/hybrid

Table 4. Classification Criteria:
State Management

Elements structure
no/general /domain

specific

Storage medium
memory

/disk/hybrid/service
Storage structure
Task state no/yes
Shared state no/yes
Partitioned no/yes
Replication no/backup-only/yes
Replication consist. weak/strong
Replication
protocol

leader/consensus
/conflict resolution

Update
propagation

state/operations

Table 5. Classification Criteria:
Tasks Grouping

Group Atomicity
Causes for aborts system/job
Protocol blocking/coord free
Assumptions

Group Isolation
Level blocking/coord free
Implementation lock/timestamp
Assumptions

have a system-only or shared management of resources. System-only management only considers
the resources occupied by the data-intensive system. Shared management takes global decisions in
the case in which multiple software systems share the same distributed computing infrastructure.
For instance, it is common to use external resource managers such as Yarn for task deployment in
cluster environments.

2.3 Data Management

This section studies the characteristics of data elements and the data bus used to distribute them.
The resulting classification criteria are shown in Table 3. Recall that in our model, data elements
are immutable, meaning that once they are delivered through the data bus, they cannot be later
updated. In addition, they are used to represent both data and invocations, as they carry some
payload and may trigger the activation of tasks. Data elements may be structured, if they have
an associated schema determining the number and type of fields they contain, or unstructured,
otherwise. Structured data is commonly found in DPSs, when input datasets or data streams are
composed of tuples with a fixed structure. The structure of elements may reflect on the data bus,
with assumptions of homogeneous data elements (same schema) in some communication chan-
nels. For instance, DPSs typically assume homogeneous input and homogeneous output data for
each task. We further distinguish between systems that accept general structured data, when the
developers are free to define their custom data model, and systems that assume a domain-specific

structure, when developers are constrained to a specific data model, as in the case of relational
data, time series, or graph-shaped data. Finally, data may or may not have a temporal dimension:
this is particularly relevant for stream DPSs, where it is used for time-based analysis. Section 2.6
will detail how the temporal dimension influences the order in which tasks analyze data elements.

The data bus can either consist of direct connections between the communicating parties or
can be mediated by some middleware service. Accordingly, the actual bus implementation may
range from TCP links (direct connection) to various types of middleware systems (mediated con-
nection), like message queuing or distributed storage services.1 Whereas direct connections are
always ephemeral, various mediated connections are persistent. In the first case, receivers need
to be active when the data is transmitted over the bus and they cannot retrieve the same ele-
ments later in time. In the second case, elements are preserved inside the bus and receivers can
access them multiple times and at different points in time. For instance, DPSs that implement
job-level deployment usually adopt a direct (and ephemeral) data bus made of TCP connections
among tasks. Conversely, DPSs that deploy tasks independently (task-level deployment) require a

1When the values associated with a classification criterion are specific to individual systems, as in the case of bus imple-

mentation (see Table 3), we do not report a list of values in the corresponding table.
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persistent and mediated data bus (e.g., a distributed filesystem or a persistent messaging middle-
ware) where intermediate tasks can store their results for downstream tasks.

In many systems, the data bus provides communication channels where data elements are logi-
cally partitioned based on some criterion—for instance, based on the value of a given field. The use
of a partitioned data bus is common in DPSs, where it is associated with data-parallel operators:
the programmer specifies the operator for the data elements in a single partition, but the opera-
tor is concretely implemented by multiple (identical) tasks that work independently on different
partitions. A persistent data bus may also be replicated, meaning that the same data elements are
stored in multiple copies. Replication may serve two purposes: improving performance, such as
by enabling different tasks to consume the same data simultaneously from different replicas, or
tolerating faults, to avoid losing data in the case in which one replica becomes unavailable. We
will discuss fault tolerance in greater detail in Section 2.7. Among the systems we analyze in this
article, all those that replicate the data bus implement a single-leader replication schema, where
one leader replica is responsible for receiving all input data and for updating the other f (follower)
replicas. The update is synchronous (or semi-synchronous), meaning that the addition of an input
data element to the data bus completes when the data element has been successfully applied to all
f follower replicas (or to r < f replicas, if the update is semi-synchronous). The data bus offers an
interaction model that is push if the sender delivers data to recipients or pull if receivers demand
data to senders. Hybrid approaches are possible in the presence of a mediated bus, a common case
being a push approach between the sender and the data bus and a pull approach between the data
bus and the recipients.

2.4 State Management

After discussing data, we focus on state, deriving the classification criteria listed in Table 4. In
absence of state, tasks results (data written on the bus) only depend on their input (data read
from the bus), but many systems support stateful tasks whose results also depend on some muta-
ble state that they can read and modify during execution. This marks a difference between data
and state elements: the former are immutable, whereas the latter may change over time. As for
their structure, state elements resemble data elements: they may be unstructured or structured,
and in the second case, they may rely on domain-specific data models.

When present, state may be stored on different storage media: (i) many systems store the entire
state in-memory and replicate it to disk only for fault tolerance; (ii) other systems use disk storage,
or (iii) hybrid solutions, where state is partially stored in memory for improved performance and
flushed to disk to scale in size; and (iv) some systems rely on a storage service, as is common
in cloud-based systems that split their core functionalities into independently deployed services.
Some recent work investigates the use of persistent memory [61], but these solutions are not
employed in currently available systems.

The storage structure indicates the data structure used to represent state on the storage media.
This structure is heavily influenced by the expected access pattern. For instance, relational state
may be stored row-wise, to optimize access element by element (common in data management
workloads), or column-wise, to optimize access attribute by attribute (common in data analysis
workloads, e.g., to compute an aggregation function over an attribute). Many DMSs use indexed
structures such as B-trees or Log-Structured Merge (LSM) trees to rapidly identify individual
elements.

Data-intensive systems may support two types of state: task state, which is private to a single
task, and shared state, which can be accessed by multiple tasks. The availability of these types of
state deeply affects the design and implementation of the system. Shared state is central in DMSs,
where two tasks (e.g., an insert and a select query) can write and read simultaneously from the

ACM Computing Surveys, Vol. 56, No. 1, Article 16. Publication date: August 2023.



16:10 A. Margara et al.

same state (e.g., a relational table). Conversely, most DPSs avoid shared state to simplify parallel
execution. Frequently, batch DPSs do not offer any type of state, whereas stream DPSs only offer
task state, which does not require any concurrency control mechanism, as it is accessed only by
one task (sequential unit of execution). Notice that task state is only relevant in continuous jobs,
where it can survive across multiple activations of the same task. Indeed, it is used in DPSs to
implement stateful operators like windows.

In our model, workers are responsible for storing separate portions of the shared state. Tasks
have local access to elements stored (in memory or on disk) on the shared state portion of the
worker they are deployed on. They can communicate with remote tasks over the data bus to ac-
cess shared state portions deployed on other workers. For systems that rely on a storage service,
we model the service as a set of workers that are only responsible for storing shared state portions
and offer remote access through the data bus. Splitting of the shared state among workers may
respond to a criterion of partitioning. For instance, partitioning enables DMSs to scale beyond
the memory capacity of a single node, but also to run tasks belonging to the same or different
jobs (queries) in parallel on different partitions. Besides partitioning, many data-intensive systems
adopt replication. As in the case of data bus replication, state replication may also serve two pur-
poses: (i) reduce read access latency, by allowing multiple workers to store a copy (replica) of the
same state elements locally, and (ii) provide durability and fault tolerance, avoiding potential loss
in the case of failures. We return on the specific use of replication for fault tolerance in Section 2.7.
Here, we consider if the replication is backup-only, meaning that replicas are only used for fault
tolerance and cannot be accessed by tasks during execution, or not.

If tasks can access state elements from multiple replicas, different replication consistency models
are possible, which define which state values may be observed by tasks when accessing multiple
replicas. Replication models have been widely explored in database and distributed systems the-
ory. For the goal of our analysis, we only distinguish between strong and weak consistency mod-
els, where the former require synchronous coordination among the replicas while the latter do
not. This classification approach is also in line with the recent literature that denotes models that
do not require synchronous coordination as being highly available [15]. Intuitively, strong consis-
tency models are more restrictive and use coordination to avoid anomalies that may arise when
tasks access elements simultaneously from different replicas. In practice, most data-intensive sys-
tems that adopt a strong consistency model provide sequential consistency, a model that ensures
that accesses to replicated state are the same as if they were executed in some serial order. This
simplifies reasoning on the state of the system, as it hides concurrency by mimicking the behavior
of a sequential execution. In terms of implementation, we distinguish two main classes of mech-
anisms to achieve strong consistency: in leader-based algorithms, all state updates are delivered
to a single replica (leader) that decides their order, and in consensus-based algorithms, replicas
use quorum-based or distributed consensus protocols to agree on the order of state accesses. Sys-
tems that adopt a weak consistency model typically provide eventual consistency, where updates
to state elements are propagated asynchronously, which may lead to (temporary) inconsistencies
between replicas. For this reason, weak consistency is typically coupled with automated conflict

resolution algorithms, which guarantee that all replicas solve conflicts in the same way and eventu-
ally converge to the same state. A popular approach to conflict resolution is conflict-free replicated
data types, which expose only operations that guarantee deterministic conflict resolution in the
presence of simultaneous updates [81].

Finally, replication protocols may employ two approaches to propagate updates: state-based or
operation-based (also known as active replication). In state-based replication, when a task updates
a value in a replica, the new state is propagated to the other replicas. In operation-based replica-
tion, the operation causing the update is propagated and re-executed at each replica: this approach
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may save bandwidth, but it may spend more computational resources to re-execute operations at
each replica.

2.5 Tasks Grouping

Several systems offer primitives to identify groups of tasks and provide additional guarantees for
such groups, which we classify as group atomicity (Section 2.5.1) and group isolation (Section 2.5.2).
The resulting classification criteria are presented in Table 5. Atomicity ensures no partial failures
for a group of tasks: they either all fail or all complete successfully. Isolation limits the ways in
which running tasks can interact and interleave with each other. In DMSs, these concerns are
considered part of transactional management, together with consistency and durability properties.
In our model, we discuss consistency constraints as part of group atomicity in the next section,
whereas we integrate durability with fault tolerance and discuss it in Section 2.7.

2.5.1 Group Atomicity. Atomicity ensures that a group of tasks either entirely succeeds or en-
tirely fails. We use the established jargon of database transactions and say that a task (or group
of tasks) either commits or aborts. If the tasks commit, all the effects of their execution, and par-
ticularly all their changes to the shared state, become visible to other tasks. If the tasks abort,
none of the effects of their execution becomes visible to other tasks. We classify group atomicity
along two dimensions. First, we consider the possible causes for aborts and distinguish between
system-driven or job-driven. System-driven aborts (e.g., a worker running out of memory) derive
from non-deterministic hardware or software failures, whereas job-driven aborts (e.g., database
integrity constraints) are part of a job definition and are triggered if job completion may lead to
a logic error. Second, we consider how systems implement group atomicity. Atomicity is essen-
tially a consensus problem [65], where tasks need to agree on a common outcome: commit or
abort. The established protocol to implement atomicity is two-phase commit. In this protocol, one
of the participants (tasks) takes the role of a coordinator, collects all votes (commit or abort) from
participants (phase 1), and distributes the common decision to all of them (phase 2). Notice that
this protocol is not robust against failures of the coordinator; however, data-intensive systems
typically adopt orthogonal mechanisms to deal with failures, as discussed in Section 2.7. Most im-
portantly, two-phase commit is a blocking protocol as participants cannot make progress before
receiving the global outcome from the coordinator. For these reasons, some systems adopt simpli-
fied, coordination-free protocols, which reduce or avoid coordination under certain assumptions.
Being specific to individual systems, we discuss such protocols in Section 4.

2.5.2 Group Isolation. Group isolation constrains how tasks belonging to different groups can
interleave with each other and is classically organized into levels [4]. The stronger, serializable
isolation, requires the effects of execution to be the same as if all groups were executed in some
serial order, with no interleaving of tasks, whereas weaker levels enable some disciplined form
of concurrency that may lead to anomalies in the results that clients observe. In line with the
approach adopted for replication consistency and for atomicity, in this work we consider only two
broad classes of isolation levels: those that require blocking coordination between tasks and those
that are coordination free (referred to as being highly available in the literature [15]). This is also
motivated by the systems under analysis, which either provide strong isolation levels (typically,
serializable) or do not provide isolation at all.

Implementation-wise, strong isolation is traditionally achieved with two classes of coordination
protocols: lock-based and timestamp-based. With lock-based protocols, tasks acquire non-exclusive
or exclusive locks to access shared resources (shared state in our model) in read-only or read-
write mode. Lock-based protocols may incur distributed deadlocks: to avoid them, protocols
implement detection or prevention schemes that abort and restart groups in the case of deadlock.
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Table 6. Classification Criteria:
Delivery and Order

Delivery
guarantees

at most /at
least/exactly once

Nature of
timestamps

n.a./ingestion/event

Order guarantees n.a./eventually/always

Table 7. Classification Criteria:
Fault Tolerance

Detection
leader-worker
/distributed

Scope
comput - task state -

shared state
Computation
recovery

absent/job/task

State recovery

checkp
(indep./coord/per-

activ) /log
(WAL/CL)/repl

Guarantees for
state

none/valid/same

Assumptions

Table 8. Classification Criteria:
Dynamic Reconfiguration

Goal
Automated no/yes
Mechanisms state migr/task migr
Restart no/yes

Timestamp-based protocols generate a serialization order for groups before execution, then
the tasks need to enforce that order. Pessimistic timestamp protocols abort and re-execute
groups when they try to access shared resources out of order. Multi-version concurrency control
protocols reduce the probability of aborts by storing multiple versions of shared state elements
and allowing tasks to read old versions when executed out of order. Optimistic concurrency
control protocols allow out-of-order execution of tasks but check for conflicts before making the
effects of a group of tasks visible to other tasks. Finally, a few systems adopt special protocols
that reduce or avoid coordination under certain assumptions: as in the case of group atomicity,
we discuss these protocols in Section 4.

2.6 Delivery and Order Guarantees

Delivery and order guarantees define how external actors (driver programs, sources, and sinks)
observe the effects of their actions (submitting input data and invocations). Both topics are crucial
for distributed systems and have been widely explored in the literature. Here, we focus on the key
concepts that characterize the behavior of the systems we analyzed, and we offer a description that
embraces different styles of interaction, from invocation-based (as in DMS queries) to data-driven
(as in stream DPSs). The resulting classification criteria are presented in Table 6.

Delivery focuses on the effects of a single input I (data element or invocation). Under at most once

delivery, the system behaves as if I was either received and processed once or never. Under at least

once delivery, the system behaves as if I was received and processed once or more than once. Under
exactly once delivery, the system behaves as if I was received and processed once and only once. A
well-known theoretical result in the area of distributed systems states the impossibility to deliver
an input exactly once in a distributed environment where components can fail. Nevertheless, a
system can behave as if the input was processed exactly once under some assumptions: the most
common are that driver programs and sources can resubmit the input upon request (to avoid loss
of data), whereas sinks can detect duplicate output results and discard them (to avoid duplicate
processing and output). To exemplify, DMSs offer exactly once delivery when they guarantee group
atomicity through transactions: in this case, a job entirely succeeds or entirely fails, and in the
case of a failure, the system either notifies the driver program (that may retry until success) or
internally retries, allowing the jobs to be executed exactly once. DPSs offer exactly once delivery
by replaying data from sources (or from intermediate results stored in a persistent data bus) in the
case of a failure. In the presence of continuous jobs (stream processing), systems also need to avoid
duplicating the effects of processing on task state when replaying data: to do so, they often discard
the effects of previous executions by reloading an old task state from a checkpoint (see also the
role of checkpoints on fault tolerance in Section 2.7).

Order focuses on multiple data elements or invocations and defines in which order their ef-
fects become visible. Order ultimately depends on the nature of timestamps physically or logically
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attached to data elements. In some systems, no timestamp is associated with data elements; in these
cases, no ordering guarantees are provided. Conversely, when data elements represent occurrences
of events in the application domain, they have an associated timestamp that can be set by the orig-
inal source or by the system when it first receives the element. We rely on established terminology
and refer to the former case as event time and the latter case as ingestion time [8]. When a times-
tamp is provided, systems may ensure that the associated order is guaranteed always or eventually.
Systems in the first class wait until all data elements before a given timestamp become available
and then process them in order. To do so, they typically rely on a contract between the sender com-
ponents and the data bus, where sender components use special elements (denoted as watermarks)
to indicate that all elements up to a given time t have been produced, and the data bus delivers el-
ements up to time t in the correct order. Systems in the second class execute elements out of order,
but they retract previously issued results and correct them when they receive new data with an
older timestamp. Thus, upon receiving all input data up to time t , the system eventually returns the
correct results. Notice that this mechanism requires the elements receiving output data to tolerate
temporarily incorrect results. According to our preceding definitions, retraction is not compatible
with exactly once delivery, as it changes the results provided to sinks after they have already been
delivered, thus breaking the illusion that they have been produced once and only once.

2.7 Fault Tolerance

Fault tolerance is the ability of a system to tolerate failures that may occur during its execution. We
consider hardware failures, such as a disk failing or a node crashing or becoming unreachable, and
non-deterministic software failures, such as a worker exhausting a node’s memory. We assume
that the logic of jobs is correct, which guarantees that the re-execution of a failed job does not
deterministically lead to the same failure. Our minimal unit of fault is the worker, and we assume
the typical approach to tolerate failures that involves first detecting the failure and then recovering
from it. The classification criteria for fault tolerance are presented in Table 7.

Fault detection is usually addressed as a problem of group membership: given a group of workers,
determine the (sub)set of those active and available to execute jobs. Systems address this problem
either using a leader-worker approach, which assumes one entity with a special role (leader) that
cannot fail and can supervise normal workers, or using a distributed protocol, like gossip-based
protocols.

After a failure is detected, fault recovery brings the system into a state from which it can resume
with the intended semantics. We describe the recovery process by focusing on five aspects: scope,
computation recovery, state recovery, guarantees, and assumptions. Depending if tasks are state-
less or stateful and if they can share state or not, the scope of recovery may involve recovering the
computation of failing tasks, the task state of failing tasks, and/or the shared state portions held by
failing workers.

Computation recovery may be absent, in which case failing jobs are simply discarded and the sys-
tem offers at most once delivery (see Section 2.6). Otherwise, the system recovers the computation
by restarting it: we distinguish between systems that need to restart an entire job and systems that
can restart individual tasks. DMSs typically restart entire jobs to satisfy transactional (atomicity)
guarantees that require a job to either entirely succeed or entirely fail. Some DPSs (those using a
persistent data bus to save the intermediate results of tasks) may restart only failed tasks. Restart-
ing a computation requires that input data and invocations are persisted and replayable, and that
duplicate output data can be detected and discarded by sinks (if the system wants to ensure ex-
actly once delivery; see Section 2.6). To replay input data and invocations, systems either rely on
replayable sources, such as persistent message services, or keep a log internally (see the discussion
on logging in the following).
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To recover state, systems may rely on checkpointing, logging, and replication. Frequently, they
combine these mechanisms. Checkpointing involves saving a copy of the entire state to durable
storage. When a failure is detected, the last available checkpoint can be reloaded and the execution
of jobs may restart from that state. Different workers may take independent checkpoints, or they
may coordinate, such as by using the distributed snapshot protocol [28] to periodically save
a consistent view of the entire system state. A third alternative (per-activation checkpoint) is
sometimes used for continuous jobs to save task state: at each activation, a task stores its task
state together with the output data. This approach essentially transforms a stateful task into a
stateless task, where state is encoded as a special data element that the system receives in input
at the next activation. In practice, per-activation checkpoint is used in presence of a persistent
data bus that stores checkpoints. Frequent checkpointing may be resource consuming and affect
the response time of the system. Logging is an alternative approach that saves either individual
operations or state changes rather than the entire content of the state. These two forms of logging
are known in the database literature as follows: (i) the Command Logging (CL) persists input
data and invocations, and in the case of failure re-processes the same input to restore state [67],
and (ii) Write Ahead Log (WAL) persists state changes coming from tasks to durable storage
before they are applied, and in the case of a failure reapplies the changes in the log to restore
the state . As logs may grow unbounded with new invocations entering the system, they are
always complemented with (infrequent) checkpoints. In the case of failure, the state is restored
from the last checkpoint and then the log is replayed from the checkpoint on. Finally, systems
may replicate state portions in multiple workers. In this case, a state change performed by a task
succeeds only after the change has been applied to a given number of replicas r . This means
that the system can tolerate the failure of r − 1 replicas without losing the state and without the
need to restore it from a checkpoint. As already discussed in Section 2.4, the same replicas used
for fault tolerance may also be used by tasks during normal processing to improve state access
latency.

The preceding recovery mechanisms provide different guarantees on the state of the system
after recovery. It can be any state, a valid system state, or the same state the system was before
failing. In any state recovery, the presence of a failure may bring the system to a state that violates
some of the invariants for data and state management that hold for normal (non failing) executions.
For instance, the system may drop some input data. A valid state recovery mechanism brings the
system to a state that satisfies all invariants, but it may differ from those states traversed before
the failure. For instance, a system that provides serializability for groups of tasks may recover by
re-executing groups of tasks in a different (but still serial) order. Depending on the system, clients
may be able or not to observe the differences between the two states (before and after the failure).
For instance, in a DMS, two read queries before and after the failure may observe different states.
A same state recovery mechanism brings the system in the same state it was before the failure.
Replication, write-ahead logging, and per-activation checkpointing bring the system to the same
state it was prior to fail, whereas independent checkpointing only guarantees to bring the system
back to a valid state, as the latest checkpoints of each task may not represent a consistent cut of
the system. The same happens for CL, due to different interleavings in the original execution and
in the recovery phase that may lead to different (albeit valid) states.

A final aspect related to recovery is the assumptions under which it operates, like assuming no
more than k nodes can fail simultaneously as in the case of replication.

2.8 Dynamic Reconfiguration

With dynamic reconfiguration, we refer to the ability of a system to modify the deployment
and execution of jobs on the distributed computing infrastructure at runtime. The corresponding
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Fig. 3. A taxonomy of data intensive systems. List of systems:
(1) Dynamo, DynamoDB, Redis, Voldemort, Riak KV, Aerospike, PNUTS, Memcached, (2) BigTable, Cas-
sandra, (3) MongoDB, CouchDB, AsterixDB, (4) InfluxDB, Gorilla, Monarch, Peregreen, (5) TAO, Unicorn,
(6) Deuteronomy, FoundationDB, Solar, (7) Spanner, CockroachDB, (8) Calvin, (9) VoltDB, (10) Aurora,
Socrates, (11) Tango, (12) A1, (13) MapReduce, Dryad, HaLoop, CIEL, Spark, Spark Streaming, (14) MillWheel,
Flink, Storm, Kafka Streams, Samza/Liquid, timely dataflow, (15) Pregel, GraphLab, PowerGraph, Arabesque,
G-Miner, (16) Percolator, (17) F1, (18) Trinity, (19) SDG, TensorFlow, Tangram, (20) ReactDB, and (21) S-Store,
SnappyData, StreamDB, TSpoon, Hologres.

classification criteria are shown in Table 8. Reconfiguration may be driven by different goals, which
may involve providing some minimum quality of service, such as in terms of throughput or re-
sponse time and/or minimizing the use of resources to cut down operation costs. It may be acti-
vated manually or be automated, if the system can monitor the use of resources and make changes
that improve the state of the system with respect to the intended goals. The reconfiguration pro-
cess may involve different mechanisms: state migration across workers, such as to rebalance shared
state portions if they become unbalanced, and task migration, to change the association of tasks
to slots, including the addition or removal of slots, to add computational resources if the load in-
creases or release them when they are not necessary. State migration is common in DMSs, where
the distribution of shared state across workers may affect performance. Task migration is instead
used in DPSs in the presence of continuous jobs, where tasks are migrated across invocations. In
both cases, the migration may adapt the system to the addition or removal of slots. Some systems
can continue operating during a reconfiguration process, whereas other systems need to temporar-
ily stop and restart the jobs they are running: this approach appears in some systems that adopt
job-level deployment; in this case, reconfiguration takes place by saving the current state, restart-
ing the whole system, and restoring the last recorded state.

3 SURVEY OF DATA-INTENSIVE SYSTEMS

To keep our survey compact and general, we decided not to survey data-intensive systems one by
one (this is provided in appendix), but to group them into the taxonomy of Figure 3 and to discuss
systems class by class in Sections 4 through 6. The caption of Figure 3 lists all systems we grouped
in each class.

Our taxonomy groups existing systems in a way that emphasizes their commonalities with re-
spect to our classification criteria (see Tables 1–8) while also capturing pre-existing classifications
widely adopted by experts. The top-level distinction between DMSs (Section 4) and DPSs (Sec-
tion 5) is well known to researchers and practitioners, and it is also well captured by our classifi-
cation criteria, with all DMSs providing shared state but not task state and DPSs having opposite
characteristics: this distinction impacts on the value of most fields of Table 4.
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Table 9. Survey of Systems: Functional Components; Jobs Definition, Compilation, Deployment, and
Execution; Data Management

Data Management Data Processing Other

NoSQL NewSQL
Dataflow
Task Depl

Dataflow
Jobs Depl

Graph
Comput on
Data Manag

New Prog
Models

Hybrid

Functional Components

Driver Exec client+sysSP client+sysSP sys/conf sys dep sys client* sys* sys*

Driver Exec Time reg+startSP reg+startSP reg reg reg reg* reg* reg*

Invocation of Jobs sync (+async) sync (+async) sys dep async* sys dep sys dep sys dep sys dep

Sources sys dep no passB / actS passB / actS pass sys dep sys dep sys dep

Sinks sys dep no* yes yes yes yes* yes* yes

State yes yes noB / yesS noB / yesS yes yes yes yes

Deployment sys dep sys dep cluster cluster cluster cluster* cluster cluster

Jobs Definition

Jobs Def API class dep class dep lib (+DSL) lib (+DSL) lib sys dep lib lib (+DSL)

Exec Plan Def impl* impl* expl (+impl) expl (+impl) expl impl (+expl) sys dep expl (+impl)

Task Comm impl impl* impl impl expl impl (+expl) impl* impl

Exec Plan Struct worfkl* worfkl* dataflow dataflow graph sys dep sys dep sys dep

Iterations no* no* sys dep sys dep yes no* yes no*

Dyn Creation no* no* no* no no* no no* no

Nature of Jobs one-shot one-shot
one-shotB

contS
one-shotB

contS
cont one-shot one-shot*

one-shotB

contS

State Man expl expl absentB / implS absentB / implS expl expl expl expl*

Data Par API no no* yes yes yes no* yes* yes*

Placem-Aware API no no* no no yes no no* sys dep

Jobs Compilation

Jobs Compil Time on exec* on exec* on exec on exec on exec on exec* on exec* on exec*

Use Resources Info static sys dep dynamic static static static static* static

Jobs Deployment and Execution

Granular of Depl job* job task job sys dep job sys dep sys dep

Depl Time compil* compil activ compil sys dep compil sys dep sys dep

Use Resources Info static static dynamic static* sys dep static static* sys dep

Managem of Res sys* sys* shared* sys* sys* sys* sys* sys

Data Management

Elem Struct class dep class dep gen (+spec) gen (+spec) graph sys dep sys dep spec*

Temp Elem sys dep no
noB

yesS
noB

yesS no no* no sys dep

Bus Conn Type direct direct mediated* direct* sys dep direct direct* direct*

Bus Impl net chan net chan* fs (+RAM)
net chan /

msg service
net chan /

mem
net chan net chan* net chan*

Bus Persist ephem ephem pers* ephem* sys dep ephem ephem* ephem*

Bus Partition yes yes yes yes yes yes yes yes

Bus Repl no no no no* no no no* no*

Bus Interact pull pull* hybrid* push* sys dep push* push* push*

Sys dep, system dependent; class dep, differences captured by the specific sub-classes in our taxonomy (see Figure 3); *,

with few system-specific exceptions; SP, in the case of stored procedures; B, in the case of batch processing; S, in the

case of stream processing.

Within the class of DMSs, the ability to offer strong guarantees in terms of consistency (see
Table 4), group atomicity, and group isolation (see Table 5) draws a sharp distinction between
those systems usually known as “NoSQL” and those known as “NewSQL.” NoSQL and NewSQL
systems can be further classified looking at the data model they offer (the field “elements structure”
in Table 3).

Within the class of DPSs, the criterion “execution plan structure” (see Table 2) differentiates
dataflow and graph processing systems, whereas the criterion “granularity of deployment” (see
Table 2) further separates dataflow systems into those offering task-level deployment and those
offering job-level deployment.

Finally, other systems (Section 6) that do not clearly fall into the two main categories of DMSs
and DPSs include those that implement data processing (as DPSs) but on top of shared state ab-
stractions usually offered by DMSs only, those that aim to offer new programming models, and
hybrid systems that explicitly try to integrate data processing and management capabilities within
a unified solution.

Table 9 and Table 10 show how the classes of systems at the second level of our taxonomy map
on the classification criteria of our model. The next sections describe each class in detail, explaining
the values in these tables and making practical examples that refer to specific systems.
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Table 10. Survey of Systems: State Management, Group Atomicity and Isolation, Delivery and Order,
Fault Tolerance, and Dynamic Reconfiguration

Data Management Data Processing Other

NoSQL NewSQL
Dataflow
Task Depl

Dataflow
Jobs Depl

Graph
Comput on
Data Manag

New Prog
Models

Hybrid

State Management

Elem Struct class dep class dep – – graph sys dep gen* spec*

Stor Medium sys dep sys dep – – mem sys dep mem mem*

Stor Struct sys dep sys dep – – user-def sys dep sys dep sys dep

Task State no no noB / yesS noB / yesS yes no no sys dep

Shared State yes yes no no no yes yes yes*

Partitioned yes yes – – – yes yes yes*

Replication yes / backup yes / backup – – – yes / backup no sys dep

Repl Consist weak / conf strong – – – sys dep – –*

Repl Protocol
lead / cons
+confl res

lead / cons – – – lead.* – –

Upd Propag op* op* – – – op* – –*

Group Atomicity

Aborts –* job+sys* – – – job+sys* –* job+sys*

Protocol –* blocking* – – – blocking* –* blocking*

Assumptions – – / DC / 1W – – – no – no / DC *

Group Isolation

Level – / coord free* blocking* – – – blocking sys dep sys dep

Implement – / SEQ ts / lock – – – ts / lock* sys dep sys dep

Assumptions – / 1P no / DC / 1W – – – no / 1P no no / DC *

Delivery and Order

Delivery Guar most / exact* exact* exact exact / least exact exact* exact exact

Nature of Ts no / event no noB / eventS no / event no no* no sys dep

Order Guar – – –B / alwS alw / event* – – – – / alw

Fault Tolerance

Detection sys dep lead-work* lead-work lead-work lead-work lead-work* lead-work* lead-work*

Scope shared st shared st
comp

+task stS
comp

+task stS
comp+task st

shared st
(+comp)

shared st
(+comp)

sys dep

Comput Recov – – task job* job* sys dep sys dep sys dep

State Recov log (+repl) log (+repl) –B / checkpS checkp* checkp sys dep checkp* log+checkp

Guar for State none/conf* same/conf
–B

valid / sameS valid / same valid / same same* valid valid / same*

Assumptions
STOR /
REPL

STOR /
REPL (+DC)

REPLAY REPLAY – STOR sys dep sys dep

Dynamic Reconfiguration

Goal
avail

+load bal+elast
change schema
+load bal+elast

– / elast
– /

load bal+elast
load bal sys dep – / elast

– /
load bal+elast

Automated sys dep sys dep – / yes sys dep yes yes – / yes sys dep

State Migr yes yes –B / yesS yes yes yes – / yes – / yes

Task Migr – – –B / yesS yes yes sys dep – / yes – / yes

Add/Rem Slots yes yes – / yes – / yes no yes – / yes sys dep

Restart no no* – / no sys dep no no – / no sys dep

Sys dep, system dependent; class dep, differences captured by the specific sub-classes in our taxonomy (see Figure 3); *,

with few system-specific exceptions; B, in the case of batch processing; S, in the case of stream processing; DC, jobs are

deterministic; SEQ, jobs are executed sequentially, with no interleaving; 1W, a single worker handles all writes; 1P,

jobs access a single state portion; STOR, storage layer is durable; REPL, replicated data is durable; REPLAY, sources are

replayable.

4 DATA MANAGEMENT SYSTEMS

DMSs offer the abstraction of a mutable state store that many jobs can access simultaneously to
query, retrieve, insert, and update elements. Differently from DPSs, they mostly target lightweight
jobs, which do not involve computationally expensive data transformations and are short lived.
Since their advent in the 1970s, relational databases represented the standard approach to data
management, offering a uniform data model (relational), query language (SQL), and execution se-
mantics (transactional). Over the past two decades, new requirements and operational conditions
brought the idea of a unified approach to data management to an end [87, 88]: new applications
emerged with different needs in terms of data and processing models, for instance, to store and
retrieve unstructured data; scalability concerns related to data volume, number of simultaneous
users, and geographical distribution pointed up the cost of transactional semantics. This state of
things fostered the development of the DMSs presented in this section. Section 4.1 discusses the
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aspects in our model that are common to all such systems. Then, following an established termi-
nology, we organize them in two broad classes: NoSQL databases [36] (Section 4.2) emerged since
the early 2000s, providing simple and flexible data models such as key-value pairs, and trading
consistency guarantees and strong (transactional) semantics for horizontal scalability, high avail-
ability, and low response time; NewSQL databases [86] (Section 4.3) emerged in the late 2000s
and take an opposite approach: they aim to preserve the traditional relational model and transac-
tional semantics by introducing new design and implementation strategies that reduce the cost of
coordination.

4.1 Overview

Functional Model. All DMSs provide a global shared state that applications can simultaneously
access and modify. In the more traditional systems, there is a sharp distinction between the appli-
cation logic (the driver, executed client-side on registration) and the queries (the jobs, executed
by the DMS). Recent systems increasingly allow to move the part of the application logic that or-
chestrates jobs execution within the DMS, in the form of stored procedures that run system-side
on start. Stored procedures may bring two advantages: (i) reducing the interactions with external
clients, thus improving latency, and (ii) moving part of the overhead for compiling jobs from driver
execution time to driver registration time.

Being conceived for interactive use, all DMSs offer synchronous APIs to invoke jobs from the
driver program. Many also offer asynchronous APIs that allow the driver to invoke multiple jobs
and receive notifications of their results when they terminate. A common approach to reduce the
cost of communication when starting jobs from a client-side driver is batching multiple invocations
together, which is offered in some NoSQL systems such as MongoDB [32] and Redis [64].

Several DMSs can interact with active sources and sinks. Active sources push new data into the
system, leading to insertion or modification of state elements. Sinks register to state elements of
interest (e.g., by specifying a key or a range of keys) and are notified upon modification of such
elements.

DMSs greatly differ in terms of deployment strategies, which are vastly influenced by the coor-
dination protocols that govern replication, group atomicity, and isolation. NoSQL systems do not
offer group atomicity and isolation. Those designed for cluster deployment typically use blocking
(synchronous or semi-synchronous) replication protocols. Those that support wide-area deploy-
ments either use coordination-free (asynchronous) replication protocols that reduce durability and
consistency guarantees or employ a hybrid strategy, with synchronous replication within a data
center and asynchronous replication across data centers. Many NewSQL systems claim to sup-
port wide-area deployments while offering strong consistency, group atomicity, and isolation. We
review their implementation strategies to achieve this result in Section 4.3.

Jobs. All DMSs implement one-shot jobs with explicit state management primitives to read and
modify a global shared state. Jobs definition APIs greatly differ across systems, ranging from pure
key-value stores that offer CRUD (create, read, update, and delete) primitives for individual state
elements to expressive domain-specific libraries (e.g., for graph computation) or languages (e.g.,
SQL for relational data). In almost all DMSs, the execution plan and the communication between
tasks are implicit and do not include iterations or dynamic creation of new tasks. A notable excep-
tion are graph databases, which support iterative algorithms where developers explicitly define
how tasks update portions of the state (the graph) and exchange data. The structure of the exe-
cution plan also varies across systems: common structures include the use of a single task that
implements CRUD primitives, workflows orchestrated by a central coordinator task, or hierarchi-
cal structures. Jobs are compiled on driver execution, except for those systems where part of the
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driver program is registered server-side (as stored procedures). Job compilation always uses static
information about resources, such as the allocation of shared state portions onto nodes. Some
structured NewSQL DMSs such as Spanner [14] and CockroachDB [90] also exploit dynamic in-
formation about resources—for instance, to configure a given task (e.g., select a sort-merge or a
hash-based strategy for a join task) depending on some resource utilization or statistics about state
(e.g., cardinality of the tables to join).

All DMSs perform deployment at the job level, when the job is compiled, with the only excep-
tion of AsterixDB [9], which compiles jobs into a dataflow plan and deploys individual tasks when
they are activated [19]. Deployment is always guided by the location of the state elements to be
accessed, which we consider as a static information. Indeed, under normal execution, shared state
portions do not move, and our model captures dynamic relocation of shared state portions (e.g., for
load balancing) as a distinct aspect (dynamic reconfiguration). In addition, we keep saying that de-
ployment is based on static information even for those systems that exploit dynamic information
(e.g., the load of workers) but only to deploy the tasks that manage the communication between
the system and external clients. Finally, DMSs are not typically designed to operate in scenarios
where the compute infrastructure is shared with other software applications. This is probably due
to the interactive and short-lived nature of jobs, which would make it difficult to predict and adapt
the demand of resources in those scenarios. The only case in which we found explicit mention
of a shared platform is in the description of the Google infrastructure, where DMS components
(BigTable [29], Percolator [76], Spanner [34]) share the same physical machines and their schedul-
ing, execution, and monitoring is governed by an external resource management service.

Data and State Management. The data model (i.e., the structure of data and state elements) is a
key distinguishing characteristic of DMSs, which we use to organize our discussion in Sections 4.2
and 4.3. Some systems explicitly consider the temporal dimension of data elements. For instance,
some wide columns stores associate timestamps to elements and let users store multiple versions
of the same element, whereas time-series databases are designed to efficiently store and query se-
quences of measurements over time. DMSs differ in terms of storage medium and structure. We
detail the choices of the different classes of systems in Section 4.2 and Section 4.3, but we can iden-
tify some common concerns and design strategies. First, the representation of state on storage is
governed by the data model and the expected access pattern: relational tables are stored by row,
whereas time series are stored by column to facilitate computations on individual measurements
over time (e.g., aggregation, trend analysis). Second, there is a tension between read and write per-
formance: read can be facilitated by indexed data structures such as B-trees, but they incur higher
insertion and update costs. Hierarchical structures such as LSM trees improve write performance
by buffering updates in higher-level logs (frequently in-memory) that are asynchronously merged
into lower-level indexed structured, at the expense of read performance, due to the need to nav-
igate multiple layers. Third, most DMSs exploit main memory to reduce data access latency. For
instance, systems based on LSM trees store the write buffer in memory. Similarly, most systems
that use disk-based storage frequently adopt some in-memory caching layer. Finally, some sys-
tems adopt a modular architecture that supports different storage layers. This is common in DMSs
offered as a service in public cloud environments (e.g., Amazon Aurora [95]) or in private data
centers (e.g., Google Spanner [34]), where individual system components (including the storage
layer) are themselves services.

Tasks always communicate using direct, ephemeral connections, which implement a partitioned,
non-replicated data bus. Shared state is always partitioned across workers to enable concurrent ex-
ecution of tasks. Most DMSs also adopt state replication to improve read access performance, with
different guarantees in terms of consistency between replicas: NoSQL databases provide weak (or
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configurable) consistency guarantees to improve availability and reduce response time. NewSQL
databases provide strong consistency using leader-based or consensus protocols and restricting
the types of transactions (jobs) that can read from non-leader replicas—typically snapshot trans-
actions, which are a subset of read-only transactions that read a consistent version of the state,
without guarantees of it being the most recent one. Group atomicity and isolation are typically ab-
sent or optional in NoSQL databases, or restricted to very specific cases, such as jobs that operate
on single data elements. Instead, NewSQL databases provide strong guarantees for atomicity and
isolation, at the cost of blocking coordination. The transactional semantics of NewSQL systems
ensures exactly once delivery. Indeed, transactions (jobs) either complete successfully (and their
effects become durable) or abort, in which case they are either automatically retried or the client
is notified and can decide to retry them until success. Conversely, NoSQL systems frequently offer
at most once semantics, as they do not guarantee that the results of job execution are safely stored
on persistent storage or replicated. In some cases, users can balance durability and availability
by selecting the number of replicas that are updated synchronously. Finally, systems that support
timestamps use event time semantics, where timestamps are associated with state elements by
clients, whereas none of the systems provides order guarantees. Even in the presence of times-
tamps, DMSs do not implement mechanisms to account for elements produced or received out of
timestamp order.

Fault Tolerance. Frequently, DMSs offer multiple mechanisms for fault tolerance and durability
that administrators can enable and combine depending on their needs. Fault detection can be cen-
tralized (leader-worker) or distributed, depending on the specific system. Fault recovery mostly
targets the durability of shared state. Since jobs are lightweight, DMSs simply abort them in the
case of failure and do not attempt to recover (partial) computations. Transactional systems guar-
antee group atomicity: in the case of failure, none of the effects of a job become visible. To en-
able recovery of failed jobs, they either notify the clients about an abort, allowing them to restart
the failed job, or restart the job automatically. Almost all DMSs adopt logging mechanisms to en-
sure that the effects of jobs execution on shared state are durable. Logging enables changes to
be recorded on some durable append-only storage before being applied to shared state: most sys-
tems adopt a WAL that records changes to individual data elements, whereas few others adopt a
command log that stores the operations (commands) that perform the change. Individual systems
make different assumptions on what they consider as durable storage: in some cases the logs are
stored on a single disk, but more frequently they are replicated (or saved on third-party log ser-
vices that are internally replicated). Logging is frequently used in combination with replication
of shared state portions on multiple workers: in these cases, each worker stores its updates on a
persistent log to recover from software crashes, whereas replication on other workers may avoid
unavailability in the case of hardware crashes or network disconnections. In addition, most sys-
tems offer geo-replication for disaster recovery, where the entire shared state is replicated in a
different data center and periodically synchronized with the working copy. Similarly, many sys-
tems provide periodic or manual checkpointing to store a copy of the entire database at a given
point in time. Depending on the specific mechanisms adopted, DMSs provide either no guarantees
for state, such as in the case of asynchronous replication, or same state guarantees, such as in the
case of persistent log or consistent replication.

Dynamic Reconfiguration. Most DMSs support adding and removing workers at runtime, and
migrating shared state portions across workers, which enable dynamic load balancing and scaling
without restarting the system. All systems support dynamic reconfiguration as a manual admin-
istrative procedure, and some can also automatically migrate state portions for load balancing. A
special case of reconfiguration for NewSQL systems that rely on structured state (in particular,
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relational systems) involves changing the state schema: many systems support arbitrary schema
changes as long-running procedures that validate state against the new schema and migrate it
while still serving clients using the previous schema. Instead, systems such as VoltDB [89] rely on
a given state partitioning scheme and prevent changes that violate such scheme.

4.2 NoSQL Systems

Using an established terminology, we classify as NoSQL all those DMSs that aim to offer high
availability and low response time by relinquishing features and guarantees that require blocking
coordination between workers. In particular, they typically do the following. First, they avoid ex-
pressive job definition APIs that may lead to complex execution plans (as in the case of SQL, hence
the name) [85]. In fact, the majority of the systems we analyzed focus on jobs comprising a single
task that operates on an individual element of the shared state. Second, they use asynchronous
replication protocols: depending on the specific protocol, this may affect consistency, may affect
durability (if replication is used for fault tolerance), and may generate conflicts (when clients are
allowed to write to multiple replicas). Third, they abandon or restrict group guarantees (atomicity
and isolation) when jobs with multiple tasks are supported. In our discussion, we classify systems
by the data model they offer.

4.2.1 Key-Value Stores. Key-value stores offer a very basic API for managing shared state:
(i) shared state elements are represented by a key and a value; (ii) elements are schema-less, mean-
ing that different elements can have different formats, such as free text or JSON objects with het-
erogeneous attributes; (iii) the key-space is partitioned across workers; and (iv) jobs consist of a
single task that retrieves the value of an element given a key (get) or insert/update an element
given its key (put).

Individual systems differ in the way they physically store elements. For instance, Dynamo [39]
supports various types of physical storage, DynamoDB uses B-trees on disk but buffers incoming
updates in main memory to improve write performance, and Redis [64] stores elements in memory
only. Keys are typically partitioned across workers based on their hash (hash partitioning), but
some systems also support range partitioning, where each worker stores a sequential range of
keys, as in the case of Redis. Given the focus on latency, some systems cache the association of
keys to workers client-side, allowing clients to directly forward requests to workers responsible
for the key they are interested in.

Some systems provide richer APIs to simplify the interaction with the store. First, keys can be
organized into tables, mimicking the concept of a table in a relational database. For instance, Dy-
namoDB and PNUTS [33] let developers split state elements into tables. Second, elements may
have an associated structure. For instance, PNUTS lets developers optionally define a schema for
each table, DynamoDB specifies a set of attributes but does not constrain their internal structure,
and Redis provides built-in data types to define values and represent them efficiently in memory.
Third, most systems provide functions to iterate (scan) on the key-space or on individual tables
(range-based partitioning may be used to speedup such range-based iterations), as it happens for
DynamoDB, PNUTS, and Redis. Fourth, some systems provide query operations (select) to re-
trieve elements by value and in some cases these operations are supported by secondary indexes
that are automatically updated when the value of an element changes, as in DynamoDB.

All key-value stores replicate shared state to increase availability but use different replication
protocols. Dynamo, Voldemort, and Riak KV use a quorum approach, where read and write opera-
tions for a given key need to be processed by a given number of replica workers responsible for that
key. After a write quorum is reached, updates are propagated to remaining replicas asynchronously.
A larger number of replicas and a larger write quorum better guarantee durability and consistency
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at the cost of latency and availability. However, being designed for availability, these systems adopt
mechanisms to avoid blocking on write when some workers are not responsive. For instance, other
workers can supersede and store written values on their behalf. In some cases, these mechanisms
can lead to conflicting simultaneous updates: Dynamo tracks causal dependencies between writes
to solve conflicts automatically whenever possible, and stores conflicting versions otherwise, leav-
ing manual reconciliation to the users. DynamoDB, Redis, and Aerospike [84] use single-leader
protocols where all writes are processed by one worker and propagated synchronously to some
replicas and asynchronously to others, depending on the configuration. DynamoDB also supports
consistent reads that are always processed by the leader at a per-operation granularity. Redis sup-
ports multi-leader replication in the case of wide-area scenarios, using conflict-free replicated data
types for automated conflict resolution.

In summary, key-value stores represent the core building block of a DMS. They expose a low-
level but flexible API to balance availability, consistency, and durability, and to adapt to different
deployment scenarios. Systems that adopt a modular implementation can use key-value stores as
a storage layer or a caching layer [73] and build richer job definition API, job execution engines,
protocols for group atomicity, group isolation, and consistent replication on top.

4.2.2 Wide-Column Stores. Wide-column stores organize shared state into tables (multi-
dimensional maps), where each row associates a unique key to a fixed number of column families,
and each column family contains a value, possibly organized into more columns (attributes). State
is physically stored per column family and keys need not have a value for each column family
(the table is typically sparse). One could define the wide-column data model as middle ground
between the key-value and the relational model: it is similar to the key-value model but associates
a key to multiple values (column families), and it defines tables as the relational model, but
tables are sparse and lack referential integrity. The main representative systems of this class are
Google BigTable [29], with its open source implementation HBase, and Apache Cassandra [57].
As the official documentation of Cassandra explains, the typical use of wide-column systems is to
compute and store answers to frequent queries (read-only jobs) for each key, at insertion/update
time, within column families. In contrast, relational databases normalize tables to avoid duplicate
columns and compute results at query time (rather then insertion/update time) by joining data
from multiple tables. In fact, wide-column stores offer rich API to scan, select, and update values by
key but do not offer any join primitive. To support the preceding scenario, wide-column systems
(i) aim to provide efficient write operations to modify several column families (i.e., both BigTable
and Cassandra adopt LSM trees for storage and improve write latency by buffering writes in mem-
ory) and (ii) provide isolation for operations that involve the same key. These two design choices
allow users to update all entries for a given key (answers to queries) efficiently and in isolation.

BigTable and Cassandra have different approaches to replication. BigTable uses replication only
for fault tolerance and executes all tasks that involve a single key on the leader worker responsible
for that key. It also supports wide-area deployment by fully replicating the data store in additional
data centers: replicas in these data centers can be used for fault tolerance but also to perform jobs, in
which case they are synchronized with eventual consistency. Cassandra uses quorum replication as
in Dynamo, and allows users to configure the quorum protocols to trade consistency and durability
for availability.

4.2.3 Document Stores. Document stores represent a special type of key-value stores where
values are structured documents, such as XML or JSON objects. Document stores offer an API
similar to key-value stores, but they can exploit the structure of documents to update only some
of their fields. Physical storage solutions vary across systems, ranging from disk-based to memory
solutions to hybrid approaches and storage-agnostic solutions. In most cases, document stores
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support secondary indexes to improve retrieval of state elements using criteria different from the
primary key. Most document stores offer group isolation guarantees for jobs that involve a single
document. This is the case of MongoDB [32] and AsterixDB [9]. Recent versions of MongoDB also
implement multi-document atomicity and isolation as an option, using blocking protocols.

MongoDB supports replication for fault tolerance or also to serve read-only jobs. It implements a
single-leader protocol with semi-synchronous propagation of changes, where clients can configure
the number of replicas that need to synchronously receive an update, thus trading durability and
consistency for availability and response time. CouchDB [10] offers a quorum-based replication
protocol and allows for conflicts in the case a small write quorum is selected. In this case, conflict
resolution is manual. AsterixDB does not currently support replication.

Several document stores support some form of data analytic jobs. MongoDB offers jobs in the
form of a pipeline of data transformations that can be applied in parallel to a set of documents.
CouchDB focuses on Web applications and can start registered jobs when documents are added
or modified to update some views. AsterixDB provides a declarative language that integrates op-
erators for individual and for multiple documents (like joins, group by), and compiles jobs into a
dataflow execution plan.

4.2.4 Time-Series Stores. Time-series stores are a special form of wide-column stores dedicated
to store sequences of values over time, like measurements of a numeric metric such as the CPU
utilization of a computer over time. Given the specific application scenario, this class of systems
stores data by column, which brings several advantages: (i) together with the use of an in-memory
or hybrid storage layer, it improves the performance of write operations, which typically append
new values (measurements) to individual columns; (ii) it offers faster sequential access to columns,
which is common in read-only jobs that perform aggregations or look for temporal patterns over
individual series; and (iii) it enables a higher degree of data compression, such as by storing only the
difference between adjacent numerical values (delta compression), which is small if measurements
change slowly.

Among the time-series stores we analyzed, InfluxDB is the most general one. It provides a declar-
ative job definition language that supports computations on individual columns (measurements).
Gorilla [75] is used as an in-memory cache to store monitoring metrics at Facebook. Given the vol-
ume and rate at which metrics are produced, Facebook keeps the most recent data at a very fine
granularity within the Gorilla cache and stores historical data at a coarser granularity in HBase.
Peregreen [96] follows a similar approach and optimizes retrieval of data through indexing. It uses a
three-tier data indexing, where each tier pre-computes aggregated statistics (minimum, maximum,
average, etc.) for the data it references. This allows to quickly identify chunks of data that satisfy
some conditions based on the pre-computed statistics and to minimize the number of interactions
with the storage layer. Monarch [3] is used to store monitoring data at Google. It has a hierarchical
architecture: data is stored in the zone (data center) in which it is generated and sharded (by key
ranges, lexicographically) across nodes called leaves. Jobs are evaluated hierarchically: nodes are
organized in three layers (global, zone level, leaves), and the job plan pushes tasks as close as pos-
sible to the data they need to consume. All time-series stores we analyzed replicate shared state to
improve availability and performance of read operations. To avoid blocking write operations, they
adopt asynchronous or semi-synchronous replication, thus reducing durability guarantees. This
is motivated by the specific application scenarios, where losing individual measurements may be
tolerated.

4.2.5 Graph Stores. Graph stores are a special form of key-value stores specialized in graph-
shaped data, meaning that shared state elements represent entities (vertices of a graph) and
their relations (edges of the graph). Despite that researchers widely recognized the importance
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of large-scale graph data structures, several graph data stores do not scale horizontally [80].
A prominent example of distributed graph store is TAO [20], used at Facebook to manage the
social graph that interconnects users and other entities such as posts, locations, and actions. It
builds on top of key-value stores with hybrid storage (persisted on disk and cached in memory),
asynchronously replicated with no consistency or grouping guarantees.

A key distinguishing factor in graph stores is the type of queries (read-only jobs) they support.
Indeed, a common use of graph stores is to retrieve sub-graphs that exhibit certain patterns of
relations. For instance, in a social graph, one may want to retrieve people (vertices) that are direct
friends or have friends in common (friendship relation edges) and like the same posts. This problem
is denoted as graph pattern matching, and its general form can only be solved by systems that can
express iterative or recursive jobs, as it needs to traverse the graph following its edges. These types
of vertex-centric computations have been first introduced in the Pregel DPS [66], also discussed
in Section 5.

Efficient query of graph stores can also be supported by external systems. For instance, Facebook
developed the Unicorn [35] system to store indexes that allow to quickly navigate and retrieve data
from a large graph. Indexes are updated periodically using an external compute engine. Unicorn
adopts a hierarchical architecture, where indexes (the shared state of the system) are partitioned
across servers and the results of index lookups (read jobs) are aggregated first at the level of individ-
ual racks and then globally to obtain the complete query results. This approach aggregates results
as close as possible to the servers producing them to reduce network traffic. Unicorn supports
graph patterns queries by providing an apply function that can dynamically start new lookups
based on the results of previous ones: our model captures this feature by saying that jobs can
dynamically start new tasks.

4.3 NewSQL Systems

NewSQL systems aim to provide transactional semantics (group atomicity and isolation), dura-
bility (fault tolerance), and strong replication consistency while preserving horizontal scalability.
Following the same approach we adopted in Section 4.2, we organize them according to their data
model.

4.3.1 Key-Value Stores. NewSQL key-value stores are conceived as part of a modular system,
where the store offers transactional guarantees to read and update a group of elements with atom-
icity and isolation guarantees, and it is used by a job manager that compiles and optimizes jobs
written in some high-level declarative language. A common design principle of these systems is to
separate the layer that manages the transactional semantics from the actual storage layer, thus en-
abling independent scaling based on the application requirements. Deuteronomy [59] implements
transactional semantics using a locking protocol and is storage agnostic. FoundationDB [100] uses
optimistic concurrency control with a storage layer based on B-trees. Solar [101] also uses opti-
mistic concurrently control with LSM trees.

4.3.2 Structured and Relational Stores. Stores for structured and relational data provide the
same data model, job model, and job execution semantics as classic non-distributed relational
databases. As we clarify in the following classification, they differ in their protocols for imple-
menting group atomicity, group isolation, and replication consistency, which reflects on their ar-
chitectures.

Time-Based protocols. Some systems exploit physical (wall-clock) time to synchronize nodes.
This approach was pioneered by Google’s Spanner [34]. It adopts standard database techniques:
two-phase commit for atomicity, two-phase locking and multi-version concurrency control for
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isolation, and single-leader synchronous replication of state portions. Paxos consensus is used to
elect a leader for each state portion and to keep replicas consistent. The key distinguishing char-
acteristic of Spanner is the use TrueTime, a clock abstraction that uses atomic clocks and GPS
to return physical time within a known precision bound. In Spanner, each job is managed by a
transaction coordinator, which assigns jobs with a timestamp at the end of the TrueTime clock un-
certainty range and waits until this timestamp is passed for all nodes in the system. This ensures
that jobs are globally ordered by timestamp, thus offering the illusion of a centralized system with
a single clock (external consistency). Spanner is highly optimized for workloads with many read-
only jobs. Indeed, multi-version concurrency control combined with TrueTime allows read-only
jobs to access a consistent snapshot of the shared state without locking and without conflicting
with in-progress read-write jobs, as they will be certainly be assigned a later timestamp. More
recently, Spanner has been extended with support for distributed SQL query execution [14]. Cock-
roachDB [90] is similar to Spanner but uses an optimistic concurrency control protocol that, in the
case of conflicts, attempts to modify the timestamp of a job to a valid one rather than re-executing
the entire job. Like Spanner, CockroachDB supports distributed execution plans. It supports wide-
area deployment and allows users to define how data is partitioned across regions, to promote
locality of data access or to enforce privacy regulations.

Deterministic Execution. Calvin [92] builds on the assumption that jobs are deterministic and
achieves atomicity, isolation, and consistency by ensuring that jobs are executed in the same order
in all replicas. Determinism ensures that jobs either succeed or fail in any replica (atomicity), and
interleave in the same way (global order ensures isolation), leading to the same results (consis-
tency). Workers are organized into three layers. The first is a sequencing layer that receives jobs
invocations from clients, organizes them into batches, and orders them consistently across repli-
cas. Ordering of jobs is the only operation that requires coordination and takes place before jobs
execution. Calvin provides both synchronous (Paxos) and asynchronous protocols for ordering
jobs, which bring different tradeoffs between latency and cost of recovery in the case of failures.
The second is a scheduler layer that executes tasks onto workers in the defined global order. In
cases where it is not possible to statically determine which shared state portions will be involved
in the execution of a job (i.e., in the case of state-dependent control flow), Calvin uses an optimistic
protocol and aborts jobs if some of their tasks are received by workers out of order. The third is a
storage layer that stores the actual data. In fact, Calvin supports any storage engine providing a
key-value interface.

Explicit Partitioning and Replication Strategies. VoltDB [88, 89] lets users control partitioning
and replication of shared state, so they can optimize most frequently executed jobs. For instance,
users can specify that Customer and Payment tables are both partitioned by the attribute (column)
customerId. Jobs that are guaranteed to access only a shared state portion within a given worker
are executed sequentially and atomically on that worker. For instance, a job that accesses tables
Customer and Payment to retrieve information for a given customerId can be fully executed on
the worker with the state portion that includes that customer. Every table that is not partitioned
is replicated in every worker, which optimizes read access from any worker at the cost of repli-
cating state changes. In the case in which jobs need to access state portions at different workers,
VoltDB resorts to standard two-phase commit and timestamp-based concurrency control protocols.
Differently from Spanner and Calvin, VoltDB provides strong consistency only for cluster deploy-
ment: geographical replication is supported but only implemented with asynchronous and weakly
consistent protocols.

Primary-Based Protocols. Primary-based protocols are a standard approach to replication used in
traditional transactional databases. They elect one primary worker that handles all read-write jobs
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and acts as a coordinator to ensure transactional semantics. Other (secondary) workers only handle
read-only jobs and can be used to fail over if the primary crashes. Recently, the approach has been
revamped by DMSs offered as services on the cloud. These systems adopt a layered architecture
that decouples jobs execution functionalities (e.g., scheduling, managing atomicity and isolation)
from storage functionalities (durability): the two layers are implemented as services that can scale
independently from each other. The execution layer still consists of one primary worker and an
arbitrary number of secondary workers, which access shared state through the storage service
(although they typically implement a local cache to improve performance). Amazon Aurora [95]
implements the storage layer as a sequential log (replicated for availability and durability), which
offers better performance for write operations. Indexed data structures that improve read perfor-
mance are materialized asynchronously without affecting write latency. The storage layer uses
a quorum approach to guarantee replication consistency across workers. Microsoft Socrates [11]
adopts a similar approach but further separates storage into a log layer (that stores write requests
with low latency), durable storage layer (that stores a copy of the shared state), and a backup layer
(that periodically copies the entire state).

4.3.3 Objects Stores. Object stores became popular in the early 1990s, inheriting the same data
model as object-oriented programming languages. We found one recent example of a DMS that
uses this data model, namely Tango [16]. In Tango, clients store their view of objects locally, in-
memory, and this view is kept up-to-date with respect to a distributed (partitioned) and durable
(replicated) log of updates. The log represents the primary replica of the shared state that all clients
refer to. All updates to objects are globally ordered on the log through sequence numbers that
are obtained through a centralized sequencer. Total order guarantees isolation for operations on
individual objects: Tango also offers group atomicity and isolation across objects using the log to
store information for an optimistic concurrency control protocol.

4.3.4 Graph Stores. We found one example of a NewSQL graph store, named A1 [22], which
provides strong consistency, atomicity, and isolation using timestamp-based concurrency control.
Its data model is similar to that of NoSQL distributed graph stores, and jobs can traverse the graph
and read and modify its associated data during execution. The key distinguishing characteristic
of A1 is that it builds on a distributed shared memory abstraction that uses RDMA (remote direct
memory access) implemented within network interface cards [41].

5 DATA PROCESSING SYSTEMS

DPSs aim to perform complex computations (long-lasting jobs) on large volumes of data. Most of
today’s DPSs inherit from the seminal MapReduce system [38]: to avoid the hassle of concurrent
programming and to simplify scalability, they organize each job into a dataflow graph where ver-
tices are functional operators that transform data and edges are the flows of data across operators.
Each operator is applied in parallel to independent partitions of its input data, and the system au-
tomatically handles data partitioning and data transfer across workers. Following an established
terminology, we denote as batch processing systems those that take in input static (finite) datasets,
and stream processing systems those that take in input streaming (potentially unbounded) datasets.
In practice, many systems support both types of input, and we do not use the distinction between
batch and stream processing as the main factor to organize our discussion. Instead, after discussing
the aspects in our model that are common to all DPSs (Section 5.1), we classify dataflow systems
based on the key aspect that impacts their implementation: if they deploy individual tasks on acti-
vation (Section 5.2) or entire jobs on registration (Section 5.3). Finally, we present systems designed
to support computations on large graph data structures. They evolved in parallel with respect to
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dataflow systems, which originally were not suited for iterative computations that are typical in
graph algorithms (Section 5.4).

5.1 Overview

Functional Model. Most DPSs use a leader-workers architecture, where one of the processes that
compose the system (denoted the leader) has the special role of coordinating other workers. Such
systems always allow submitting the driver program to the leader for system-side execution. Some
of them also allow client-side driver execution, such as Apache Spark [99] and Apache Flink [24].
Other systems, such as Kafka Streams [18] and timely dataflow [71], are implemented as libraries
where client processes also act as workers. Developers start one or more client processes, and the
library handles the distributed execution of jobs onto them. Stream processing systems support
asynchronous invocation of (continuous) jobs, whereas batch processing systems may offer syn-
chronous or asynchronous job invocation APIs, or both. All DPSs support sources and sinks, as
they are typically used to read data from external systems (sources), perform some complex data
analysis and transformation (jobs), and store the results into external systems (sinks). Sources are
passive in the case of batch processing systems and active in the case of stream processing systems.
Most batch processing systems are stateless: output data is the result of functional transformations
of input data. Stream processing systems can persist a (task) state across multiple activations of a
continuous job. We model iterative graph algorithms as continuous jobs where tasks (associated
with vertices, edges, or sub-graphs) are activated at each iteration and store their partial results
(values associated with vertices, edges, or sub-graphs) in task state. DPSs assume a cluster deploy-
ment, as job execution typically involves exchanging large volumes of data (input, intermediate
results, and final results) across workers.

Jobs. All dataflow systems provide libraries to explicitly define the execution plan of jobs. In-
creasingly often, they also offer higher-level abstractions for specific domains, such as relational
data processing [2, 12, 23], graph computations [46], or machine learning [69]. Some of these APIs
are declarative in nature and make the definition of the execution plan implicit. Task communica-
tion is always implicitly defined and controlled by the system’s runtime. Concerning jobs, dataflow
systems differ with respect to the following aspects. The first is generality. MapReduce [38] and
some early systems derived from it only support two processing stages with fixed operators,
whereas later systems like Spark support any number of processing stages and a vast library of
operators. The second is support for iterations. Systems like HaLoop [21] extended MapReduce
to efficiently support iterations by caching data accessed across iterations in workers. Spark in-
herits the same approach and, together with Flink, supports some form of iterative computations
for streaming data. Timely dataflow [71] generalizes the approach to nested iterations. The third
is dynamic creation of tasks. Among the systems we analyzed, only CIEL [72] enables dynamic
creation of tasks depending on the results of processing.

Data parallelism is key to dataflow systems, and all operators in their jobs definition API are data
parallel. Jobs are one-shot in the case of batch processing and continuous in the case of stream
processing. In the latter case, jobs may implicitly define some task state, such as by expressing
computations that operate on a recent portion (window) of data rather than on individual data
elements. Jobs cannot control task placement explicitly, but many systems provide configuration
parameters to guide placement decisions—for instance, to force or inhibit the colocation of certain
tasks. An exception to the preceding rules is represented by graph processing systems, which are
based on a programming model where developers define the behavior of individual vertices [68]:
the model provides explicit primitives to access the state of a vertex and to send messages between
vertices (explicit communication).
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All DPSs compile jobs on driver execution. For other characteristics related to jobs compilation,
deployment, and execution, we distinguish between systems that perform task-level deployment
(discussed in Section 5.2) and systems that perform job-level deployment (discussed in Section 5.3).

Data and State Management. Deployment and execution strategies affect the implementation of
the data bus. In the case of job-level deployment, the data bus is implemented using ephemeral,
push-based communication channels between tasks (e.g., direct TCP connections). In the case of
task-level deployment, the data bus is mediated and implemented by a persistent service (e.g., a
distributed filesystem or a persistent message queuing system) where upstream tasks push the
results of their computation and downstream tasks pull them when activated. A persistent data
bus can be replicated for fault tolerance, as in the case of Kafka Streams, which builds on repli-
cated Kafka topics. CIEL [72] and Dryad [51] support hybrid bus implementations, where some
connections may be direct while others may be mediated. Data elements may range from arbitrary
strings (unstructured data) to specific schemas (structured data). The latter offer opportunities for
optimizations in the serialization process, such as allowing for better compression or for selective
deserialization of only the fields that are accessed by a given task. In general, DPSs do not provide
shared state. Stream processing and graph processing systems include a task state to persist in-
formation across multiple activations of a continuous job (i.e., windows). In the absence of shared
state, DPSs do not provide group atomicity or isolation properties. Almost all systems provide ex-
actly once delivery, under the assumption that sources can persist and replay data in the case of
failure and sinks can distinguish duplicates. The concrete approaches to provide such guarantee
depend on the type of deployment (task level or job level) and are discussed later in Sections 5.2 and
5.3. Order is relevant for stream processing systems: with the exception of Storm [94], all stream
processing systems support timestamped data (event or ingestion time semantics). Most systems
deliver events in order, under the assumptions that sources either produce data with a pre-defined
maximum delay or inform the system about the progress of time using special metadata denoted
as watermark. Kafka Streams takes a different approach: it does not wait for out-of-order elements
and immediately produces results. In the case in which new elements arrive out of order, it retracts
updates the previous results.

Fault Tolerance. All DPSs detect faults using a leader-worker architecture, and in absence of
a shared state, they recover from failures through the mechanisms that guarantee exactly once
delivery.

Dynamic Reconfiguration. DPSs use dynamic reconfiguration to adapt to the workload by adding
or removing slots. Systems that adopt task-level deployment can decide how to allocate resources
to individual tasks when they are activated, whereas systems that adopt job-level deployment need
to suspend and resume the entire job, which increases the overhead for performing a reconfigu-
ration. The mechanisms that dynamically modify the resources (slots) available to a DPS can be
activated either manually or by an automated service that monitors the utilization of resources and
implements the allocation and deallocation policies. All commercial systems implement automated
reconfiguration, frequently by relying on external platforms for containerization, such as Kuber-
netes, or for cluster resources management, such as YARN. The only exceptions for which we could
not find official support for automated reconfiguration are Storm [94] and Kafka Streams [18].

5.2 Dataflow with Task-Level Deployment

Systems that belong to this class deploy tasks on activation, when their input data becomes avail-
able. Tasks store intermediate results on a persistent data bus, which allows to selectively restart
them in the case of failure. This approach is best suited for long running batch jobs and was
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pioneered in the MapReduce batch processing system [38]. It has been widely adopted in var-
ious extensions and generalizations. HaLoop optimizes iterative computations by caching loop-
invariant data and by co-locating tasks that reuse the same data across iterations [21]. Dryad [51]
generalizes the programming model to express arbitrary dataflow plans and enables developers to
flexibly select the concrete channels (data bus in our model) that implement the communication
between tasks. CIEL [72] extends the dataflow model of Dryad by allowing tasks to create other
tasks dynamically, based on the results of their computation. Spark is the most popular system of
this class [99]: it inherits the dataflow model of Dryad and supports iterative execution and data
caching like HaLoop. Spark Streaming [98] implements streaming computations on top of Spark by
splitting the input stream into small batches and by running the same job for each batch. It imple-
ments task state using native Spark features: the state of a task after a given invocation is implicitly
stored as a special data item that the task receives as input in the subsequent invocation.

In systems with task-level deployment, job compilation considers dynamic information to create
tasks. For instance, the number of tasks instantiated to perform a data-parallel operation depends
on how the input data is partitioned. Similarly, the deployment phase uses dynamic information
to submit tasks to workers running as close as possible to the their input data. Hadoop (the open
source implementation of MapReduce) and Spark adopt a delay scheduling [97]. They put jobs (and
their tasks) in a FIFO queue. When slots become available, the first task in the queue is selected: if
the slot is located near to the input data for the task, then the task is immediately deployed, and
otherwise each task can be postponed for some time to wait for available slots closer to their input
data. Task-level deployment enables sharing of compute resources with other applications: in fact,
most of the systems that use this approach can be integrated with cluster management systems.

Task-level deployment also influences how systems implement fault tolerance and ensure ex-
actly once delivery of results. Batch processing systems simply re-execute the tasks involved in
the failure. In absence of state, the results of a task depend only on input data and can be recom-
puted at need. Intermediate results may be persisted on durable storage and retrieved in the case
of a failure or recomputed from the original input data. Spark Streaming [98] adopts the same
fault tolerance mechanism for streaming computations. It segments a stream into a sequence of
so-called micro-batches and executes them in order. Task state is treated as a special form of data;
it is periodically persisted to durable storage and is retrieved in the case of a failure. Failure recov-
ery may require activating failed tasks more than once, to recompute the task state from the last
state persisted before the failure.

Dynamic reconfiguration is available in all systems that adopt task-level deployment. Systems
that do not provide any state abstraction can simply exploit new slots to schedule tasks when
they become available and remove workers when idle. In the presence of task state, migrating a
task involves migrating its state across activations: as in the case of fault tolerance, this is done by
storing task state on persistent storage.

5.3 Dataflow with Job-Level Deployment

In the case of job-level deployment, all tasks of a job are deployed onto the slots of the computing
infrastructure on job registration. As a result, this class of systems is better suited for streaming
computations that require low latency: indeed, no scheduling decision is taken at runtime and
tasks are always ready to receive and process new data. Storm [94] and its successor Heron [56]
are stream processing systems developed at Twitter. They offer a lower-level programming API
than dataflow systems discussed previously, asking developers to fully implement the logic of
each processing step using a standard programming language. Flink [24] is a unified execution
engine for batch and stream processing. In terms of a programming model, it strongly resembles
Spark, with a core API to explicitly define job plans as a dataflow of functional operators, and
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domain-specific libraries for structural (relational) data, graph processing, and machine learning.
One notable difference involves iterative computations: Flink supports them with native operators
(within jobs) rather than controlling them from the driver program. Timely dataflow [71] offers a
lower-level and more general dataflow model than Flink, where jobs are expressed as a graph of
(data-parallel) operators and data elements carry a logical timestamp that tracks global progress.
Management of timestamps is explicit, and developers control how operators handle and prop-
agate them, which enables various execution strategies. For instance, developers may choose to
complete a given computation step before letting the subsequent one start (mimicking a batch
processing strategy as implemented in MapReduce or Spark), or they may allow overlapping of
steps (as it happens in Storm or Flink). The flexibility of the model allows for complex workflows,
including streaming computations with nested iterations, which are hard or even impossible to
express in other systems. The preceding systems rely on direct and ephemeral channels (typically,
TCP connections) to implement the data bus. Kafka Streams [18] and Samza [74], instead, build a
dataflow processing layer on top of Kafka [55] durable channels. In systems that adopt job-level
deployment, job compilation and deployment only depend on static information about the com-
puting infrastructure. For instance, the number of tasks for data-parallel operations only depends
on the total number of slots made available in workers. As a result, this class of systems does
not support sharing resources with other applications: all resources need to be acquired at job
compilation, which prevents scheduling decisions across applications at runtime.

We observed three approaches to implement fault tolerance and delivery guarantees. First, sys-
tems such as Flink and MillWheel [7] periodically take a consistent snapshot of the state. The
command to initiate a snapshot starts from sources and completes when it reaches the sinks. In
the case of failure, the last completed snapshot is restored and sources replay data that was pro-
duced after that snapshot, in the original order. If sinks can detect and discard duplicate results,
this approach guarantees exactly once delivery. Second, Storm acknowledges each data element
delivered between two tasks: developers decide whether to use acknowledgements (and retrans-
mit data if an acknowledgement is lost), providing at least once delivery, or not, providing at most
once delivery. Third, Kafka Streams relies on the persistency of the data bus (Kafka): it stores the
task state in special Kafka topics and relies on two-phase commit to ensure that upon activation a
task consumes its input, updates its state, and produces results for downstream tasks atomically. In
the case of failure, a task can resume from the input elements that were not successfully processed,
providing exactly once delivery (unless data elements are received out of order, in which case it
retracts and updates previous results leading to at least once delivery). These three mechanisms
are also used for dynamic reconfiguration, as they allow a system to resume processing after a
new deployment.

5.4 Graph Processing

Early dataflow systems were not well suited for iterative computations, which are common in
graph processing algorithms. To overcome this limitation, an alternative computational model
was developed for graph processing, known as vertex-centric [68]. In this model, pioneered by the
Google Pregel system [66], jobs are iterative: developers provide a single function that encodes the
behavior of each vertex v at each iteration. The function takes in input the current (local) state of
v and the set of messages produced for v during the previous iteration; it outputs the new state of
v and a set of messages to be delivered to connected vertices, which will be evaluated during the
next iteration. The job terminates when vertices do not produce any message at a given iteration.
Vertices are partitioned across workers and each task is responsible for a given partition. Jobs are
continuous, as tasks are activated multiple times (once for each iteration) and store the vertex state
across activations (in their task state). Tasks only communicate by exchanging data (messages
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between vertices) over the data bus, which is implemented as direct channels. One worker acts
as a leader and is responsible for coordinating the iterations within the job and for detecting
possible failures of other workers. Workers persist their state (task state and input messages) at
each iteration: in the case of a failure, the computation restarts from the last completed iteration.
Several systems inherit and improve the original Pregel model in various ways: (i) by using
a persistent data bus, where vertices can pull data when executed, to reduce the overhead for
broadcasting state updates to many neighbor vertices [62]; (ii) by decoupling communication and
processing in each superstep, to combine messagess and reduce the communication costs [45];
(iii) by allowing asynchronous execution of supersteps, to reduce synchronization overhead and
inactive time [62]; (iv) by optimizing the allocation of vertices to tasks based on topological
information, to reduce the communication overhead; (v) by dynamically migrating vertices
between tasks (dynamic reconfiguration) across iterations, to keep the load balanced or to place
frequently communicating vertices on the same worker [30]; and (vi) by offering sub-graph
centric abstractions, suitable to express graph mining problems that aim to find sub-graphs with
given characteristics [91]. For the sake of space, we do not discuss all systems derived from Pregel
here, but the interested reader can refer to the detailed survey by McCune et al [68].

6 OTHER SYSTEMS

This section includes all systems that do not clearly fall in either of the two classes identified
previously. Due to their heterogeneity, we do not provide a common overview, but we organize
and discuss them within three main classes: (i) systems that support analytical jobs on top of
shared state abstractions, (ii) systems that propose new programming models, and (iii) systems
that integrate concepts from both DMSs and DPSs in an attempt to provide a unifying solution.

6.1 Computations on DMSs

DMSs are designed to execute lightweight jobs that read and modify a shared state. We identified
a few systems that support some form of heavy-weight job.

6.1.1 Incremental Computations. Percolator [76] builds on top of the BigTable column store
and incrementally updates its shared state. It adopts observer processes that periodically scan the
shared state: when they detect changes, they start a computation that may update other tables
with its results. In Percolator, computations are broken down into a set of small updates to the
current shared state. This differentiates it from DPSs, which are not designed to be incremental.
For instance, Percolator can incrementally update Web search indexes as new information about
Web pages and links become available. Percolator jobs may involve multiple shared-state elements,
and the system ensures group atomicity using using two-phase commit and group isolation using
a timestamp-based protocol.

6.1.2 Long-Running Jobs. F1 [83] implements a SQL query executor on top of Spanner. It sup-
ports long-running jobs, which are compiled to execution plans where the tasks (or at least part of
them) are organized into a dataflow to enable distributed execution as in DPSs. F1 also introduces
optimistic transactions (jobs), which consist of a read phase to retrieve all the data needed for the
computation and a write phase to store the results. The read phase does not block other concurrent
jobs, so they can run for long time (as in the case of analytical jobs). The write phase completes
only if no conflicting updates from other jobs occurred during the read phase.

6.1.3 Graph Processing. In graph data stores, long-running jobs appear as computations that
traverse multiple hops of the graph (e.g., jobs that search for paths or patterns in the graph) or as
iterative analytical jobs (e.g., vertex-centric computations). Trinity [80] inherits the same model of
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NoSQL graph stores such as TAO but implements features designed specifically to support long-
running jobs. It lets users define the communication protocols that govern the exchange of data
over the data bus, to optimize them for each specific job. For instance, data may be buffered and
aggregated at the sender or at the receiver. It checkpoints the intermediate state of a long-running
jobs to resume it in the case of failure.

6.2 New Programming Models

6.2.1 Stateful Dataflow. The absence of shared mutable state in the dataflow model forces de-
velopers to encode all information as data that flows between tasks. However, some algorithms
would benefit from the availability of state that can be modified in-place, such as machine learn-
ing algorithms that iteratively refine a set of parameters. Thus, several systems propose exten-
sions to the dataflow programming model that accommodate shared mutable state. In Stateful

Dataflow Graphs (SDGs) [43], developers write a driver program using imperative (Java) code
that includes state and methods to access and modify it. Code annotations are used to specify
state access patterns within methods. The resulting jobs are compiled into a dataflow graph where
operators access the shared state. If possible, state elements are partitioned across workers, and
otherwise they are replicated in each worker and the programming model supports user-defined
functions to merge changes applied to different replicas. Deployment and execution rely on a DPS
with job-level deployment [26].

Tangram [50] implements task-based deployment and allows tasks to access and update an in-
memory key-value store as part of their execution. By analyzing the execution plan, Tangram can
understand which parts of the computation depend on mutable state and which parts do not, and
optimizes fault tolerance for the job at hand.

TensorFlow [1] is a library to define machine learning models. Jobs represent models with trans-
formations (tasks) and variables (shared state elements). As strong consistency is not required for
the application scenario, tasks can execute and update variables asynchronously, with only barrier
synchronization at each step of an iterative algorithm. TensorFlow was conceived for distributed
execution, whereas other machine learning libraries such as PyTorch were initially designed for
single-machine execution and later implemented distributed training using the same approach as
TensorFlow.

6.2.2 Relational Actors. ReactDB [79] extends the actor-based programming model with data
management concepts such as relational tables, declarative queries, and transactional semantics.
It builds on logical actors that embed state in the form of relational tables. Actors can query their
internal state using a declarative language and asynchronously send messages to other actors.
ReactDB lets developers explicitly control how the shared state is partitioned across actors. Jobs are
submitted to a coordinator actor that governs their execution. The system guarantees transactional
semantics for the entire duration of the job, across all actors that are directly or indirectly invoked
by the coordinator.

6.3 Hybrid Systems

Several works aim to integrate data management and processing within a unified solution.
S-Store [27] integrates stream processing capabilities within a transactional database. It uses an
in-memory store to implement the shared state (visible to all tasks), the task state (visible only to
individual tasks of stream processing jobs), and the data bus (where data flowing from task to task
of stream processing jobs is temporarily stored). S-Store uses the same concepts as VoltDB [89]
to offer transactional guarantees with low overhead. Data management and stream processing
tasks are scheduled on the same engine in an order that preserves transactional semantics and
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is consistent with the dataflow. S-Store unifies input data (for streaming jobs) and invocations (of
data management jobs, in the form of stored procedures): this is in line with the conceptual view
we provide in Section 2.

SnappyData [70] has a similar goal to S-Store but a different programming and execution model.
It builds on Spark and Spark Streaming, and augments them with the ability to access a key-value
store (shared state) during their execution. In the attempt to efficiently support heterogeneous
types of jobs, SnappyData lets developers select how to organize the shared state, such as in terms
or format (row oriented or column oriented), partitioning, and replication. It supports group atom-
icity and isolation using two-phase commit and multi-version concurrency control, and integrates
fault detection and recovery mechanisms for Spark tasks and their effects on the shared state.

StreamDB [31] and TSpoon [5] take the opposite approach with respect to S-Store by integrat-
ing data management capabilities within a stream processor. StreamDB models database queries
as stream processing jobs that receive updates from external sources and output new results to
sinks. Stream processing tasks can read and modify portions of a shared state: all database queries
that need to access a given portion will include the task responsible for that portion. StreamDB
ensures group atomicity and isolation without explicit locks: invocation of jobs are timestamped
when first received by the system, and each worker executes tasks from different jobs in timestamp
order. TSpoon does not provide a shared state but enriches the dataflow model with (i) the ability
to read (query) task state on demand and (ii) transactional guarantees in the access to task state.
Developers can identify portions of the dataflow graph (denoted as transactional sub-graphs) that
need to be read and modified with group atomicity and isolation. TSpoon implements atomicity
and isolation by decorating the dataflow graph with additional operators that act as transaction
managers. It supports different levels of isolation (from read committed to serializable) with differ-
ent tradeoffs between guarantees and overhead.

Hologres [53] is used within Alibaba to execute both analytical jobs and interactive jobs. The
system is designed to support high volume ingestion data from external sources and continuous
jobs that derive information to be stored in the shared state or to be presented to external sinks.
The shared state is partitioned across workers. A worker stores an in-memory representation of the
partition it is responsible for and delegates durability to an external storage service. The distinctive
features of the system are (i) a structured data model where state is represented as tables that can be
physically stored row-wise or column-wise depending on the access pattern, and (ii) a scheduling
mechanism where tasks are deployed and executed onto workers based on load balancing and
prioritization of jobs that require low latency.

7 DISCUSSION

In building and discussing our model and taxonomy, we derived several observations. We report
them in this section, pointing out ideas for future research.

State and Data Management. The dichotomy between DMSs and DPSs is frequently adopted in the
literature but not defined in precise terms. Our model makes the characteristics that contribute to
this dichotomy clear and explicit, introducing the state component and a sharp distinction between
shared and task state. DMSs offer primitives to read and modify a mutable shared state, whereas
DPSs target computationally expensive data transformations and do not support state at all, or
support it only within individual tasks. This distinction brings together other differences (which
we made explicit with the classification criteria in Table 4) such that the two classes of systems
complement each other and are often used in combination to support heterogeneous workloads.

This complementarity pushed researchers to extend their DMSs or DPSs to break the dichotomy,
adding features typical of the other class. For instance, some DMSs, such as AsterixDB, support
long-lasting queries using the dataflow processing model typical of DPSs, whereas recent versions
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of stream DPSs, such as Flink and Kafka, started to offer primitives to access their task state with
read-only queries (one-shot jobs). This triggered interesting research on declarative APIs that in-
tegrate streaming data and state changes into a unifying abstraction [78]. A few systems, such as
S-Store and TSpoon, pushed this effort even further, integrating transactional semantics within
stream DPSs.

Future research efforts could continue to explore approaches that extend the capabilities of indi-
vidual systems, with the goal of better supporting hybrid workloads that demand both state man-
agement and data processing capabilities, reducing the need to deploy many different systems,
thus simplifying the overall architecture of data-intensive applications.

Coordination Avoidance. In distributed scenarios, the coordination between workers may easily
become a bottleneck. Avoiding or reducing coordination is a recurring principle we observed in
all data-intensive systems. Most DPSs circumvent this problem by forcing developers to think in
terms of functional and data-parallel transformations. As state is absent or local to tasks, tasks may
freely proceed in parallel. Coordination, if present, is limited to barrier synchronization in systems
that support iterative jobs (e.g., iterative dataflow systems and graph processing systems).

Conversely, DMSs require coordination to control concurrent access to shared state from mul-
tiple jobs. Indeed, the approach to coordination is the main criterion we used to classify them in
Section 4. NoSQL systems partition state by key: they either only support jobs that operate on
individual keys or relinquish group guarantees for jobs that span multiple keys, effectively treat-
ing accesses to different keys as if they came from independent jobs that do not coordinate with
each other. NewSQL systems do not entirely avoid coordination but try to limit the situations
in which it is required or its cost. In our analysis, we identified four main approaches to reach
this goal: (i) use of precise clocks [34], (ii) pre-ordering of jobs and deterministic execution [92],
(iii) explicit partitioning strategies to maximize jobs executed (sequentially) in a single slot [89],
and (iv) primary-based protocols that delegate the scheduling of all read-write jobs to a single
worker [95]. In addition, all DMSs adopt strategies that optimize the execution of read-only jobs
and minimize their impact on read-write jobs. They include the use of replicas to serve read-only
jobs and multi-version concurrency control to let read-only jobs access a consistent view of the
state without conflicting with read-write jobs.

An open area of investigation for future research is a detailed study of the assumptions and
performance implications of coordination avoidance strategies under different workloads. This
study could guide the selection of the best strategies for the scenario at hand and open the room
for dynamic adaptation mechanisms.

Architectures for Data-Intensive Applications. Data-intensive applications typically rely on complex
software architectures that integrate different data-intensive systems to harness their complemen-
tary capabilities [37]. For instance, many scenarios require integrating OLTP (online transaction
processing) workloads, which consist of read-write jobs that mutate the state of an application
(e.g., user requests in an e-commerce portal), and OLAP (online analytical processing) workloads,
which consist of read-only analytic jobs (e.g., analysis of sales segmented by time, product, and
region). To support these scenarios, software architectures typically delegate OLTP jobs to DMSs
that efficiently support concurrent read-only and read-write queries (e.g., relational databases),
and use DMSs optimized for read-only queries (e.g., wide-column stores) for OLAP jobs. The
process of extracting data from OLTP systems and loading it into OLAP systems is denoted as
ETL (extract, transform, load), and is handled by DPSs that pre-compute and materialize views
to speedup read queries in OLAP systems (e.g., by executing expensive grouping, joins, and
aggregates, as well as building secondary indexes). Traditionally, ETL was executed periodically
by batch DPSs, with the downside that analytical jobs do not always access the latest available
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data, whereas recent architectural patterns (e.g., lambda and kappa architectures [60]) advocate
the use of stream DPSs for this task.

In general, the architectural patterns of data-intensive applications are in continuous evolu-
tion [37], and our study highlights a vast choice of diverse data-intensive systems, with partially
overlapping features. Future research could build on our model and classification to simplify the
design of applications. Indeed, although the primary goal of our model was to present the key char-
acteristics of data-intensive systems to researchers and practitioners with diverse backgrounds, it
may inspire high-level modeling frameworks to capture the requirements of data-intensive appli-
cations and guide the design of a suitable software architecture for the specific scenario at hand.
Recent work already explored similar model-driven development in the context of stream process-
ing applications [47].

Modular Implementations. Several data-intensive systems have a modular design, where the func-
tionalities of the system are implemented by distinct components that can be developed and de-
ployed independently. This approach is well suited for cloud environments where individual com-
ponents are offered as services and can be scaled independently depending on the workload. In
addition, the same service can be used in multiple products—for example, storage services, log ser-
vices, lock services, and key-value stores may be used as stand-alone products or adopted as build-
ing block of a relational DMS. We observed this strategy in systems developed at Google [29, 34],
Microsoft [11], and Amazon [95].

Future research could bring this idea forward, proposing more general component models that
promote reusability and adaptation to heterogeneous scenarios. Our work may guide the identifi-
cation of the abstract components that build data-intensive systems, the interfaces they offer, the
assumptions they rely on, and the functionalities they provide. These research efforts may com-
plement the aforementioned study of architectural patterns, promoting the definition of complex
architectures from pre-defined components.

Wide Area Deployment. The systems we analyzed are primarily designed for cluster deployment.
In DPSs, tasks exchange large volumes of data over the data bus and the limited bandwidth of
wide-area deployment may easily become a bottleneck. Some DMSs support wide-area deployment
through replication, but in doing so they either drop consistency guarantees or implement mech-
anisms to reduce the cost for updating remote replicas. For instance, deterministic databases [92]
define an order for jobs and force all replicas to follow this order, with no need to explicitly syn-
chronize job execution.

However, increasingly many applications work at a geographical scale and the edge computing
paradigm [82] is emerging to exploit processing and storage resources at the edge of the network,
close to the end users. Designing data-intensive systems that embrace this paradigm is an impor-
tant topic of investigation.

New and Specialized Hardware. The use of specialized hardware to improve the performance of
data-intensive systems is an active area of research. Recent works study hardware acceleration for
DPSs [49] and DMSs [42, 58] using GPUs or FPGAs. Offloading of tasks to GPUs is also supported
in recent versions of DPSs, such as Spark, and is a key feature for systems that target machine
learning problems, such as TensorFlow [1].

Open research problems in the area include devising suitable programming abstractions to sim-
plify the deployment of tasks onto hardware accelerators, building new libraries of tasks that may
run onto hardware accelerators, and exploring new types of accelerators. More in general, the
availability of new hardware solutions stimulates the definition of design choices that better ex-
ploit the characteristics of those solutions. In the context of DMSs, non-volatile memory offers
durability at nearly the same performance as main memory. The interested reader can refer to
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the work by Arulraj and Pavlo [13] that discusses the use of non-volatile memory to implement a
database system. As pointed out in recent studies, another area of investigation consists of using
remote memory access to better exploit data locality and reduce data access latency. The potential
of remote memory access has been pointed out in recent studies both in the domain of DMSs [102]
and in the domain of DPSs [40].

Dynamic Adaptation. Our model captures the ability of some systems to adapt to mutating work-
load conditions (see Table 8). Many works use this feature to implement automated control systems
for DPSs that monitor the use of resources and adapt the deployment to meet the quality of service
specified by the users while using the minimum amount of resources. The interested reader can
refer to recent work on dynamic adaptation for batch [17] and stream [25] DPSs.

Future studies in the area of dynamic adaptation could intersect with topics already presented in
this section: in particular, they may consider the availability of geographically distributed process-
ing, memory, and storage resources, as well as heterogeneous and specialized hardware platforms.

8 CONCLUSION

This article presented a unifying model for distributed data-intensive systems, which defines a
system in terms of abstract components that cooperate to offer the system functionalities. The
model precisely captures the possible design and implementation strategies for each component,
with the assumptions they rely on and the guarantees they provide. From the model, we derived a
list of classification criteria that we use to organize state-of-the-art systems into a taxonomy and
survey them, highlighting their commonalities and distinctive features. Our work can be useful
not only for engineers who need to deeply understand the range of possibilities to select the best
systems for their application but also to researchers and practitioners who work on data-intensive
systems, to acquire a wide yet precise view of the field.

APPENDICES

A SUMMARY OF TERMS AND CONCEPTUAL MAP

This section presents additional resources to help the reader navigate through the concepts dis-
cussed in the article.

Figure 4 organizes the entities introduced in our model into a map, which highlights their
relations. The map adopts a UML-like notation, where entities are characterized by a (possibly
empty) list of attributes and may be connected to each other through different types of relations:
(i) specialization (empty arrow), when an entity is a specialization of a more general entity; (ii)
aggregation (empty diamond), when an entity is included into a more comprehensive entity; (iii)
composition (filled diamond), when an entity is constituting part of another entity; and (iv) depen-

dency (dashed arrow), when an entity depends or uses another entity, in which case we also denote
the type of use as a label of the arrow.

Table 11 complements this map by reporting the definition of all the terms we introduced in our
unifying model for data-intensive systems (Section 2) and used throughput the article to classify
and describe individual systems.
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Table 11. Summary of Terms Introduced in the Unifying Model for Data-Intensive Systems (Section 2)

Term Definition

Client
Software component that exploits the functionalities offered by a data-intensive system by registering and starting
driver programs.

Driver program
Part of the application logic that interacts with the data-intensive system and exploits its functionalities by invoking
one or more jobs.

Node Physical or virtual machine.

Worker Process running on a node.

Slot Processing resource unit offered by a worker.

Distributed computing infrastructure Set of nodes on top of which a distributed data-intensive system runs.

Job Largest unit of execution that can be offloaded onto the distributed computing infrastructure.

One-shot job
Job that is executed once and terminates. Invoking the same jobs multiple times leads to separate executions of the
same code.

Continuous job
Job that persists across invocations (in this case, we call them activations of the same job). It may persist in some state
across activations.

Task Elementary unit of execution. Tasks derive from the compilation of a job. They are executed sequentially on a slot.

Data (elements) Immutable units of information. Delivered through the data bus.

State (elements) Mutable units of information. Split into state portions. Stored within workers.

Task state State that is private to / accessible from a single task.

Shared state State that can be accessed simultaneously from multiple tasks, belonging to the same or different jobs.

Data bus Communication channel that distributed data elements and jobs invocations.

Source Component that provides input data for the data-intensive system.

Passive source Source that provides a static input dataset.

Active source Source that provides a dynamic input dataset—that is, continuously produces new data.

Sink Component that consumes output data from the data-intensive system.

Execution plan A workflow of tasks: it is the result of the compilation of a job.

Data-parallel API API where a computation is defined for a single data element but executed in parallel on multiple elements.

Placement-aware API API where developers can control or influence the placement of tasks onto slots.

Resources information Information about the resources of the distributed computing infrastructure and their use.

Static resources information Resources information that only considers the resources available in the distributed computing infrastructure.

Dynamic resources information Resources information that considers the use of the resources available in the distributed computing infrastructure.

Group atomicity
Property of a group of tasks: ensures that either all of the tasks complete successfully or none of them (and none of
their effects become visible).

Group isolation Property that constrains how tasks belonging to different groups can interfere with each other.

Delivery guarantees
Define how external components (driver programs, sources, sinks) observe the effects of a single input data element
(or invocation).

Order guarantees
Define the order in which external components (driver programs, sources, sinks) observe the effects of multiple data
element (or invocation).

Event time Timestamp associated with a data element by the original source.

Ingestion time Timestamp associated with data elements when they first enter the data-intensive system.

Watermark
Special input element containing a timestamp t . It is delivered by input components (e.g., sources) and indicates that
the components will not produce any further data element with a timestamp lower than t .

Checkpointing Process that stores a copy of state on durable storage.

Logging Process that stores individual operations or state changes on durable storage.

Dynamic reconfiguration Ability of a system to modify the deployment and execution of jobs at runtime.

B DATA MANAGEMENT SYSTEMS

This section details individual Data Management Systems (DMSs). Tables 12, 13, 14, 15, 16, 17,
18, 19 summarize the characteristics of these systems with respect to the classification criteria
presented in Section 2.

B.1 NoSQL Systems

B.1.1 Key-Value Stores Dynamo. Dynamo [39] is a NoSQL key-value store used by Amazon to
save the state of its services. State elements are arbitrary values (typically, binary objects) iden-
tified by a unique key. Jobs consist of operations on individual state elements: retrieve the value
associated with a key (get) or insert/update a value with a given key (put). Dynamo builds a dis-
tributed hash table: workers have an associated unique identifier, which determines the portion of
shared state (set of keys) they are responsible for. Shared state is replicated, so multiple workers
are responsible for the same key. When a worker receives a client request for a key, it forwards
the request to one of the workers responsible for that key. Clients may also be aware of the dis-
tribution of shared state portions across workers and use this information to better route their
requests. Dynamo uses a quorum-based approach where read and write operations on a key need
to be processed by a quorum of the replicas responsible for that key. Users can set the number of
replicas for each key, the read quorum, and the write quorum to trade consistency and durability
for performance and availability. After a write quorum is reached, updates are asynchronously
propagated to remaining replicas. In the case of transient unavailability of one replica, another

ACM Computing Surveys, Vol. 56, No. 1, Article 16. Publication date: August 2023.



16:38 A. Margara et al.

Fig. 4. Conceptual map of all the concepts introduced in the unifying model for data-intensive systems
(Section 2) and their relations.
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Table 12. Data Management Systems: Functional Model

Driver Exec Driver Exec Time Invoc of Jobs Sources Sinks State Deployment

NoSQL Systems

Dynamo client reg sync no no yes wide
DynamoDB client reg sync no yes yes wide

Redis client+sysSP reg+startSP sync no yes yes hybrid

BigTable client+sysSP reg+startSP sync no no yes hybrid
Cassandra client reg sync+async no yes yes wide
MongoDB client reg sync active yes yes cluster
CouchDB client reg sync no yes yes hybrid
AsterixDB client reg sync both no yes cluster

InfluxDB client+sysSP reg+startSP sync+async active yes yes cluster
Gorilla client reg unknown active no yes cluster

Monarch client+sysSP reg+startSP unknown active yes yes wide
Peregreen client reg unknown no no yes cluster
TAO client reg unknown no no yes wide

Unicorn client+sysSP reg sync no no yes cluster

NewSQL Systems

Deuteronomy client reg sync no no yes cluster+wide
FoundationDB client reg sync no no yes cluster+wide
SolarDB client reg sync no no yes cluster+wide
Spanner client reg sync+async no no yes cluster+wide
CockroachDB client reg sync no no yes wide
Calvin client reg implem dep no no yes cluster+wide

VoltDB sysSP+client startSP(+reg) sync+async no yes yes hybrid
Aurora client reg sync no no yes cluster+wide
Socrates client reg sync no no yes cluster
Tango client reg sync no no yes cluster
A1 client reg sync no no yes cluster

SP, stored procedures.

node can temporarily store writes on its behalf, which avoids blocking write operations while
preserving the desired degree of replication for durability. When Dynamo is configured to trade
consistency for availability, replicas may diverge due to concurrent writes: to resolve conflicts,
Dynamo adopts a versioning system, where multiple versions of a given key may exist at differ-
ent replicas. Upon write, clients specify which version they want to overwrite: Dynamo uses this
information to trace causality between updates and automatically resolves conflicts when it can
determine a unique causal order of updates. In the case of concurrent updates, Dynamo preserves
conflicting versions and presents them to clients (upon a read) for semantic reconciliation. Dy-
namic reconfiguration is a key feature of Dynamo. Nodes can be added and removed dynamically,
and shared state portions automatically migrate. Dynamo adopts a distributed (gossip based) fail-
ure detection model, whereas failure recovery takes place by simply redistributing state portions
over remaining nodes.

DynamoDB. DynamoDB2 is an evolution of Dynamo that aims to simplify operational concerns:
it is fully managed and offered as a service. It exposes the same data model as Dynamo but uses a
single-leader replication protocol, where all writes for a key are handled by the leader for that key,
which propagates them synchronously to one replica (for durability) and asynchronously to an-
other replica. Read operations can be either strongly or weakly consistent: the former are always
processed by the leader, whereas the latter may be processed by any replica, even if the replica
lags behind of updates. Replicas can be located in different data centers to support wide-area de-
ployments. DynamoDB stores data on disk using B-trees and buffers incoming write requests in
a WAL. It supports secondary indexes that are asynchronously updated from the log upon write.
Recent versions of DynamoDB enable automated propagation of changes to external sinks. They
also offer an API to group individual operations in transactions that provide group atomicity and
configurable group isolation. Transactions can be configured to be idempotent, thus offering ex-
actly once delivery. To detect failures, the leader of each partition periodically sends heartbeats

2http://aws.amazon.com/dynamodb/.
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Table 13. Data Management Systems: Jobs Definition

Jobs Def API
Exec Plan

Def
Task

Comm
Exec Plan

Struct
Iter

Dyn
Creat

Nature
of Jobs

State Man
Data Par

API
Placem

-Aware API

NoSQL systems

Dynamo crud impl impl 1 task (put / get) no no one-shot expl no no
DynamoDB crud+scan impl impl 1 task (put / get) no no one-shot expl no no

Redis
crud+scan

+ops on vals
impl impl 1 task (put / get) no no one-shot expl no no

BigTable crud+scan impl impl 1 task (put / get) no no one-shot expl no no

Cassandra
crud+scan

+ops on vals
impl impl 1 task (put / get) no no one-shot expl no no

MongoDB
crud+scan

+ops on vals+aggs
impl impl 1 task (put / get) no no one-shot expl no no

CouchDB
crud+scan

+ops on vals
impl impl 1 task (put / get) no no one-shot expl no no

AsterixDB SQL-like impl impl dataflow no no one-shot expl no no

InfluxDB
crud+scan

+aggs
impl impl workflow no no one-shot expl no no

Gorilla crud+scan expl impl 1 task (put / get) no no one-shot expl no no
Monarch SQL-like impl impl workflow (tree) no no one-shot expl no no
Peregreen crud impl impl workflow (tree) no no one-shot expl no no
TAO crud+relations impl impl task (put / get) no no one-shot expl no no
Unicorn search impl impl hierar workflow yes yes one-shot expl no no

NewSQL systems

Deuteronomy crud+scan impl impl 1 task (put / get) no no one-shot expl no no
FoundationDB crud+scan impl impl 1 task (put / get) no no one-shot expl no no
SolarDB crud+scan impl impl 1 task (put / get) no no / yes one-shot expl no no
Spanner declar DSL impl impl workflow no no one-shot expl no no
CockroachDB SQL impl impl dataflows+coord no no one-shot expl no yes
Calvin API agnostic impl impl workflow no no one-shot expl no no
VoltDB Java + SQL impl impl workflow no no one-shot expl no yes
Aurora SQL impl impl workflow no no one-shot expl no no
Socrates SQL impl impl workflow no no one-shot expl no no
Tango library impl impl workflow no no one-shot expl no no
A1 library expl expl graph yes no one-shot expl yes no

Table 14. Data Management Systems: Jobs Compilation and Execution

Jobs Comp Time Use Resources Info (Comp) Granul of Depl Depl Time Use Resources Info (Depl) Manag of Res

NoSQL Systems

Dynamo exec static job job comp static sys-only
DynamoDB exec static job job comp static sys-only
Redis exec static job job comp static sys-only
BigTable exec static job job comp static shared
Cassandra exec static job job comp static sys-only
MongoDB exec static job job comp static sys-only
CouchDB exec static job job comp static sys-only
AsterixDB exec static task task activ static sys-only
InfluxDB reg static job job comp static sys-only
Gorilla exec static job job comp static sys-only
Monarch reg static job job comp static sys-only
Peregreen exec static job job comp static sys-only
TAO exec static job job comp static sys-only
Unicorn exec static job job comp static sys-only

NewSQL Systems

Deuteronomy exec static job job comp static sys-only
FoundationDB exec static job job comp static sys-only
SolarDB exec static job job comp static sys-only
Spanner exec static job job comp dynamic shared
CockroachDB exec static job job comp dynamic sys-only
Calvin exec static job job comp static sys-only
VoltDB reg static job job comp static sys-only
Aurora exec static job job comp static sys-only
Socrates exec static job job comp static sys-only
Tango exec static job job comp static sys-only
A1 exec static job job comp static sys-only

to all replicas. After some heartbeats are lost, the remaining nodes use the Paxos consensus al-
gorithm to elect a new leader. As an additional fault tolerance mechanism, B-trees and logs are
periodically checkpointed to durable storage. Amazon offers automatic scaling of DynamoDB as
a service: users can select the expected read and write throughput for a given table (blocks of
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Table 15. Data Management Systems: Data Management

Elem Struct Temp Elem Bus Conn Bus Impl Bus Persist Bus Partition Bus Repl Bus Inter

NoSQL Systems

Dynamo key-value no direct net chan ephemeral yes no pull
DynamoDB key-value no direct net chan ephemeral yes no pull
Redis key-value no direct net chan ephemeral yes no pull
BigTable wide-col yes direct net chan ephemeral yes no pull
Cassandra wide-col no direct net chan ephemeral yes no pull
MongoDB document no direct net chan ephemeral yes no pull
CouchDB document no direct net chan ephemeral yes no pull
AsterixDB document no direct net chan ephemeral yes no pull
InfluxDB time series yes direct net chan ephemeral yes no pull
Gorilla time series yes direct net chan ephemeral yes no pull
Monarch time series yes direct net chan ephemeral yes no pull
Peregreen time series yes direct net chan ephemeral yes no pull
TAO typed graph yes direct net chan ephemeral yes no pull
Unicorn typed graph yes direct net chan ephemeral yes no pull

NewSQL Systems

Deuteronomy key-value no direct net chan ephemeral yes no pull
FoundationDB key-value no direct net chan ephemeral yes no pull
SolarBD key-value no direct net chan ephemeral yes no pull
Spanner semi-relational no direct net chan ephemeral yes no pull
CockroachDB relational no direct net chan ephemeral yes no pull
Calvin structure agnostic no direct net chan ephemeral yes no push
VoltDB relational no direct net chan ephemeral yes no pull
Aurora relational no direct net chan ephemeral yes no pull
Socrates relational no direct net chan ephemeral yes no pull
Tango object no direct net chan ephemeral yes no pull
A1 typed graph no direct remote mem ephemeral yes no pull

Table 16. Data Management Systems: State Management

Elem Struct
Stor

Medium
Stor

Struct
Task St Shared St St Part Repl Repl Consist Repl Prot

Update
Propag

NoSQL systems

Dynamo key-value agnostic agnostic no yes yes yes conf
quorum
+confl

op

DynamoDB key-value disk B-trees no yes yes yes conf leader unknown

Redis key-value mem user-def no yes yes yes weak
leader (clus)
confl (wide)

op

BigTable wide-col hybrid LSM trees no yes yes
backup (clus)

yes (wide)
weak confl op

Cassandra wide-col hybrid LSM trees no yes yes yes conf
quorum
+confl

op

MongoDB document agnostic agnostic no yes yes yes conf leader op

CouchDB document disk B-trees no yes yes yes conf
quorum
+confl

op

AsterixDB document hybrid LSM trees no yes yes no n.a. n.a. n.a.
InfluxDB time series hybrid LSM trees no yes yes yes weak leader state
Gorilla time series mem TSMap no yes yes yes weak leader state
Monarch time series mem user-def no yes yes yes weak leader state
Peregreen time series agnostic agnostic no yes yes yes strong leader unknown

TAO graph serv
MySQL+

memcache
no yes yes yes weak leader op

Unicorn graph mem indexes no yes yes backup n.a. n.a. n.a.

NewSQL Systems

Deuteronomy key-value agnostic agnostic no yes yes yes strong leader n.a.
FoundationDB key-value disk B-trees no yes yes yes strong leader state
SolarDB key-value hybrid LSM trees no yes yes backup n.a. leader op
Spanner relational disk B-trees no yes yes yes strong leader op
CockroachDB relational hybrid LSM trees no yes yes yes strong cons op

Calvin agnostic agnostic agnostic no yes yes yes strong
leader
or cons

op

VoltDB relational mem B-trees no yes yes yes
strong (clus)
weak (wide)

cons (clus)
+confl (wide)

op

Aurora relational disk
log+

B-trees
no yes yes yes strong leader op

Socrates relational serv+disk log no yes yes yes strong leader op
Tango object serv log no yes yes backup n.a. n.a. n.a.
A1 graph mem user-def no yes yes backup n.a. n.a. n.a.
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Table 17. Data Management Systems: Group Atomicity, Group Isolation, Delivery, and Order

Aborts Protocol Assumptions Level Impl Assumptions Delivery Nature of Ts Order

NoSQL Systems

Dynamo n.a. n.a. n.a. n.a. n.a. n.a. conf (most / exact) no n.a.
DynamoDB sys unknown cluster deployment conf unknown cluster depl conf (most / exact) no n.a.
Redis n.a. n.a. n.a. n.a. n.a. n.a. most no n.a.
BigTable n.a. n.a. n.a. coord free SEQ 1P exact event n.a.
Cassandra n.a. n.a. n.a. coord free SEQ 1P conf (most / exact) no n.a.
MongoDB sys+job blocking n.a. blocking ts none conf (most / exact) no n.a.
CouchDB n.a. n.a. n.a. n.a. n.a. n.a. conf (most / exact) no n.a.
AsterixDB n.a. n.a. n.a. blocking lock 1P exact no n.a.
InfluxDB n.a. n.a. n.a. n.a. n.a. n.a. exact event n.a.
Gorilla n.a. n.a. n.a. n.a. n.a. n.a. most event n.a.
Monarch n.a. n.a. n.a. n.a. n.a. n.a. most event n.a.
Peregreen n.a. n.a. n.a. coord free SEQ 1P most no n.a.
TAO n.a. n.a. n.a. n.a. n.a. n.a. most event n.a.
Unicorn n.a. n.a. n.a. n.a. n.a. n.a. most event n.a.

NewSQL Systems

Deuteronomy sys+job blocking none blocking lock+ts none exact no n.a.
FoundationDB sys+job blocking none blocking ts (OCC) none exact no n.a.
SolarDB sys+job blocking none blocking ts (OCC) none exact no n.a.
Spanner sys+job blocking none blocking lock+ts none exact no n.a.
CockroachDB sys+job blocking none blocking lock+ts none exact no n.a.
Calvin job blocking DC blocking ts DC exact no n.a.
VoltDB sys+job blocking DC blocking ts DC exact no n.a.
Aurora sys+job coord free 1W coord free ts 1W exact no n.a.
Socrates sys+job coord free 1W coord free ts 1W exact no n.a.
Tango sys+job blocking none blocking ts none exact no n.a.
A1 sys+job blocking none blocking ts none conf (most / exact) no n.a.

DC, jobs are deterministic; SEQ, jobs are executed sequentially, with no interleaving; 1W, a single worker handles all

writes; 1P, jobs access a single state portion; OCC, optimistic concurrency control.

Table 18. Data Management Systems: Fault Tolerance

Detection Scope Comput Recov State Recov Guarantees for State Assumptions

NoSQL Systems

Dynamo p2p shared st n.a. repl none none
DynamoDB lead-work shared st n.a. log+checkp+repl same REPL
Redis p2p shared st n.a. log+checkp+repl conf (none or same) REPL
BigTable lead-work shared st n.a. log+repl same STOR
Cassandra p2p shared st n.a. log+repl none none
MongoDB lead-work shared st n.a. log+repl conf (none or same) REPL
CouchDB manual shared st n.a. log+repl none none
AsterixDB n.a. shared st n.a. log+checkp same STOR
InfluxDB lead-work shared st n.a. log+repl none none
Gorilla lead-work shared st n.a. log+repl none none
Monarch unknown shared st n.a. log+repl none none
Peregreen p2p shared st n.a. repl same REPL
TAO unknown shared st n.a. repl none none
Unicorn unknown shared st n.a. repl none none

NewSQL Systems

Deuteronomy lead-work shared st n.a. log+checkp+repl same STOR
FoundationDB lead-work shared st n.a. log+repl same STOR
SolarDB lead-work shared st n.a. log+checkp+repl same STOR
Spanner lead-work shared st n.a. log+checkp+repl same STOR
CockroachDB lead-work shared st n.a. log+repl same STOR
Calvin n.a. shared st n.a. log+checkp+repl same DC
VoltDB p2p shared st n.a. log+checkp+repl same (cluster) / none (hybrid) DC
Aurora lead-work shared st n.a. log+checkp same STOR
Socrates lead-work shared st n.a. log+checkp same STOR
Tango lead-work shared st n.a. log+repl same REPL
A1 lead-work shared st n.a. repl conf (none or same) STOR

STOR, storage layer is durable; REPL, replicated data is durable.

key-value pairs), and DynamoDB automatically increases the amount of resources dedicated to
that table to meet the requirements.

Redis. Redis [64] is a single-node in-memory key-value store. Since version 3.0, Redis Cluster pro-
vides a distributed implementation of the store. In terms of a data model, Redis differs from other
key-value stores in that it provides typed values and optimized operations for those types. For
instance, a value may be declared as a list, which supports appending new elements without over-
writing the entire list. Redis provides a scripting language to express driver programs (stored pro-
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Table 19. Data Management Systems: Dynamic Reconfiguration

Goal Automated State Migration Task Migration Add / Del Slots Restart

NoSQL systems

Dynamo load balan+elast yes yes n.a. yes no
DynamoDB load balan+elast yes yes n.a. yes no
Redis load balan no yes n.a. yes no
BigTable load balan yes yes n.a. yes no
Cassandra load balan yes yes n.a. yes no
MongoDB load balan yes yes n.a. yes no
CouchDB load balan no yes n.a. yes no
AsterixDB n.a. n.a. n.a. n.a. n.a. n.a.
InfluxDB load balan no yes n.a. yes no
Gorilla load balan yes yes n.a. yes no
Monarch load balan yes yes n.a. yes no
Peregreen load balan+elast unknown yes n.a. yes no
TAO unknown unknown unknown n.a. unknown unknown
Unicorn unknown unknown unknown n.a. unknown no

NewSQL systems

Deuteronomy elast no yes n.a. yes no
FoundationDB elast no yes n.a. yes no
SolarDB elast no yes n.a. yes no
Spanner change schema+load balan yes yes n.a. yes no
CockroachDB elast yes yes n.a. yes no
Calvin n.a. n.a. n.a. n.a. n.a. n.a.
VoltDB n.a n.a. n.a. n.a. n.a. n.a.
Aurora elast yes yes n.a. yes no
Socrates elast no yes n.a. yes no
Tango n.a. n.a. n.a. n.a. n.a. n.a.
A1 unknown unknown unknown n.a. unknown unknown

cedures) that run system-side. Redis supports data dispatching to sinks in the form of a publish-
subscribe service: clients can subscribe to a given key and be notified about the changes to that key.
Users can configure their desired level of durability (for fault tolerance), with options ranging from
no persistence to using periodic checkpointing to CL. Redis Cluster partitions data by key and uses
single-leader asynchronous replication. Alternative solutions are available for wide-area deploy-
ments, where redirecting all writes to a single leader may be unfeasible. For instance, Redis CRDTs
offer multi-leader replication with automated conflict resolution based on conflict-free replicated
data types. Dynamic reconfiguration with migration of shared state portions is supported but not
automated.

Other Key-Value Stores. Several other stores implement the key-value model with design and im-
plementation strategies that are similar to those presented earlier. For the sake of space, we only
discuss their key distinguishing factors. Voldemort3 and Riak KV4 follow the same design as Dy-
namo. Like Redis, Aerospike [84] adopts single-leader replication within a single data center and
multi-leader replication for wide-area deployments. It focuses on both horizontal scalability (with
workers on multiple nodes) and vertical scalability (with multiple workers on the same node). It
adopts a hybrid storage model where key indexes are kept in memory but concrete values can be
persisted on disk, and a threading model that reduces locking and contention by assigning indepen-
dent shared state portions to threads. PNUTS [33] provides single-leader replication in wide-area
deployments: it uses an intermediate router component to dispatch jobs invocations to responsible
workers, and relies on an external messaging system to implement the data bus that propagates up-
dates to replicas. The same service can also notify external sinks. Thanks to their simple interface,
key-value stores are sometimes used as building blocks in distributed software architectures: Mem-
cached is used as a memory-based distributed cache to reduce data access latency at Facebook [73].
RocksDB5 is used to persist task state in the Flink stream processing system (also discussed later).

3https://www.project-voldemort.com/.
4https://riak.com/products/riak-kv/.
5https://rocksdb.org.
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Other data stores offering a key-value model are presented in the following as part of NewSQL
databases.

B.1.2 Wide-Column Stores BigTable. BigTable [29] and its open source implementation HBase6

use a wide-column data model: shared state is organized in tables, where each row is associated
with a fixed number of column families. A column family typically contains multiple columns that
are frequently accessed together. Tables associate a value (binary object) to a row and a column
(within a column family), and they are range partitioned across workers by row and physically
stored (compressed) per column family. Jobs can read and update individual values and perform
table scans. Rows are units of isolation: accesses to columns of the same row from different jobs
are serialized, and this is the only task grouping guarantee that BigTable offers. BigTable adopts
a leader-worker deployment, where a leader is responsible for assigning shared state portions to
workers. Initially, each table is associated with a single worker, but it is automatically split when it
increases in size. Clients retrieve and cache information about state distribution and submit their
requests (tasks) involving a given state portion to the worker responsible for that state portion.
BigTable can store multiple versions for each value. Versions are also visible to clients, which can
retrieve old versions and control deletion policies. Writes always append new versions of a value,
which improves write throughput to support frequent updates. Workers store recent versions in
memory in LSM trees and use an external storage service (the GFS distributed filesystem) for dura-
bility. Background compaction procedures prune old versions from memory and from the storage.
BigTable uses replication only for fault tolerance. Specifically, it relies on the replication of the GFS
storage layer, where it also saves a command log. In the case of failure of a worker, the latest snap-
shot of its shared state portion is restored from GFS and from the commands in the log that were
not part of the snapshot. BigTable supports wide-area deployments by fully replicating the data
store in each data center. Replicas in other data centers may be only used for fault tolerance or they
can serve client invocations, in which case they provide eventual consistency. Similar to key-value
stores, BigTable provides dynamic reconfiguration by migrating state across available workers.

Cassandra. Cassandra [57] combines the wide-column data model of BigTable and the distributed
architecture of Dynamo. Like BigTable, Cassandra uses LSM trees with versioning and background
compaction tasks to improve the performance of write-intensive workloads. It offers a richer job
definition language that includes pre-defined and user-defined types and operations. It supports
task grouping only for compare-and-swap operations within a single partition. Like Dynamo, it
uses a distributed hash table to associate keys to workers, and provides replication both in cluster
and wide-area deployments, using a quorum-based approach for consistency. The quorum protocol
can be configured to trade consistency and durability for performance, setting the number of local
replicas (within a data center) and global replicas (in the case of wide-area deployments) that need
to receive and approve a task before the system returns to the client. In the case of weak (eventual)
consistency, Cassandra uses an anti-entropy protocol to periodically and asynchronously keep
replicas up-to-date, using automated conflict resolution (last write wins).

B.1.3 Document Stores MongoDB. MongoDB [32] is representative of document stores, an ex-
tension of key-value stores where values are semi-structured documents, such as binary JSON in
the case of MongoDB. MongoDB jobs can insert, update, and delete entire documents but also
scan, retrieve, and update individual values within documents. Recent versions of MongoDB sup-
port simple data analytic jobs expressed as pipelines of data transformations. External systems can
register as sinks to be notified about changes to documents. Shared state partitioning can be either

6https://hbase.apache.org.
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hash-based or range-based. Clients are oblivious of the location of state portions and interact with
the data store through a special worker component that acts as a router. Shared state portions
can be replicated for fault tolerance only or also to serve read queries. Replication is implemented
using a single-leader protocol with semi-synchronous propagation of changes, where clients can
configure the number of replicas that need to synchronously receive an update, thus trading dura-
bility and consistency for availability and response time. By default, only single-document jobs are
atomic. Recent versions also support distributed transactions using two-phase commit for atomic-
ity and multi-version concurrency control for snapshot isolation.

CouchDB. CouchDB [10] adopts the same document data model as MongoDB. Early versions only
support complete replication of shared state, allowing clients to read and write from any replica to
improve availability. Replicas are periodically synchronized and conflicts are handled by storing
multiple versions of conflicting documents or fields, delegating resolution to users. Since version
2.0, CouchDB provides a cluster mode with support for shared state partitioning and quorum-
based replication, where users can configure the number of replicas for shared state portions, and
quorum for read and write operations, thus balancing availability and consistency. CouchDB is
conceived for Web applications and provides a synchronous HTTP API for job invocation. It makes
the list of changes (change feed) to a document available for external components, which can
consume it either in pull mode or in push mode (thus representing the sink components in out
model). CouchDB lets users define multiple views for each document. In our model, we can see
views as the results of registered jobs that are triggered by changes to documents. Computations
that create views are restricted to execute on individual documents, but their results can then be
aggregated by key (mimicking the MapReduce programming model). CouchDB supports dynamic
reconfiguration with addition and removal of nodes, and redistribution of shared state portions
across nodes. However, reconfiguration is a manual procedure.

AsterixDB. AsterixDB7 is a semi-structured (document) store born as a research project that in-
tegrates ideas from NoSQL databases and distributed processing platforms. AsterixDB offers an
SQL-like declarative language that integrates operators for individual documents as well as for
multiple document (like joins, group by). Jobs are converted into a dataflow format and run on the
Hyracks data-parallel platform [19]. Interestingly, the platform deploys jobs task by task but does
not rely on a persistent data bus. Rather, when all input data for a task become ready, it dynamically
establishes network connections from upstream tasks that deliver the results of their computation
before terminating. AsterixDB supports querying shared state as well as external data from active
and passive sources. Like BigTable and Cassandra, it stores state in LSM trees, which improve the
performance of write operations [9]. It supports partitioning but does not currently support repli-
cation. As part of its shared state, AsterixDB can store indexes to simplify accessing external data.
It offers isolation only for operations on individual values, using locking to update indexes. Its data
structure offer fault tolerance through logging, but it does not currently implement fault detection
nor dynamic reconfiguration mechanisms.

B.1.4 Time-Series Stores InfluxDB. InfluxDB8 is a DMS for time-series data. Shared state is or-
ganized into measurements, which are sparse tables resembling wide columns in BigTable and
Cassandra. Each row maps a point in time (primary key) to the values of one or more columns.
Developers need to explicitly state which columns are indexed and which are not, thus balancing
read and write latency. InfluxDB uses a storage model (time structured merge trees) that derives
from LSM trees. It stores measurements column-wide and integrates disk-based storage and an

7https://asterixdb.apache.org.
8https://www.influxdata.com.
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in-memory write cache to improve write performance. Jobs are defined in the InfluxQL declara-
tive language and are restricted to single measurements. InfluxDB supports active sources, and
mimics continuous jobs through periodic execution of one-shot jobs, which write their results in-
side the database and/or send them to sinks. InfluxDB partitions and replicates shared state across
workers. Write operations are propagated semi-synchronously across replica workers for fault tol-
erance. Read operations can access any of the replica workers that contain the requested data,
leading to weak consistency. InfluxDB adopts a leader-worker approach, where leader nodes store
meta-data about membership, data partitioning, continuous queries, and access rights, and worker
nodes store the actual data. Leader nodes are replicated with strong consistency for fault tolerance,
using the Raft consensus protocol. InfluxDB offers dynamic reconfiguration to migrate data and
add new workers, but the process is manual.

Gorilla. Gorilla [75] is an in-memory time-series store that Facebook uses as a cache to an HBase
data store. HBase stores historical data compressed with a coarser time granularity, whereas Gorilla
persists the most recent data (26 hours) in memory. Gorilla uses a simple data model where values
for each measure always consist of a 64-bit timestamp and a 64-bit floating point number. It uses
an encoding scheme based on bit difference that reduces the data size by 12 times on average.
Jobs in Gorilla only perform simple read, write, and scan operations. A few ad hoc jobs have been
implemented to support correlation between time series and in-memory aggregation, which is
used to compress old data before writing it to HBase. Gorilla supports geo-replication for disaster
recovery but trades durability for availability. Written data is asynchronously replicated, and it
can be lost before it is made persistent. Gorilla supports dynamic adaptation by redistributing the
key space across workers.

Monarch. Monarch [3] is a geo-distributed in-memory time-series store designed for monitoring
large-scale systems and used within Google. Its data model stores time-series data as schematized
tables. Each table consists of multiple key columns that form the time-series key, and a value col-
umn, which stores one value for each point in the history of the time series. Key columns include a
target field, which is the entity that generates the time series, and a metrics field, which represents
the aspect being measured. Monarch has a hierarchical architecture. Data is stored in the zone
(data center) in which it is generated and sharded (by key ranges, lexicographically) across nodes
called leaves. Data is stored in main memory and asynchronously persisted to logs on disk, trading
durability to reduce write delay. Monarch offers a declarative, SQL-like language to express jobs,
which can be either one-shot or continuous. In the latter case, they are evaluated periodically and
store their results in new derived tables (materialized views). Jobs are evaluated hierarchically:
nodes are organized in three layers (global, zone level, leaves), and the job plan pushes tasks as
close as possible to the data they need to consume. Each level also stores an approximate view
(compressed index) of what the nodes in the lower-level store. This enables optimizing commu-
nication across levels by avoiding pushing tasks to nodes that have no data related to that task.
Monarch supports dynamic reconfiguration: it monitors lower-level nodes and redistributes data
(key ranges) across nodes to adapt to changes in the load.

Peregreen. The design of the Peregreen [96] time-series database aims to satisfy the following
requirements. First, cloud deployment of large volumes of historical data: as the scale of data
is prohibitive for in-memory solutions, Peregreen relies on storage services such as distributed
filesystems or block storage. It limits a raw data footprint by supporting only numeric values
and by representing them in a compressed columnar format: each column is split into chunks
and data in each chunk is represented using differences between adjacent values (delta encoding),
further compressed to form a single binary array. Second, fast retrieval of data through index-
ing: Peregreen uses a three-tier data indexing, where each tier pre-computes aggregated statistics
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(minimum, maximum, average, etc.) for the data it references. This allows to quickly identify
chunks of data that satisfy some conditions based on the pre-computed statistics and to mini-
mize the number of interactions with the storage layer. Peregreen jobs can only insert, update,
delete, and retrieve data elements. Retrieval supports limited conditional search (only based on
pre-computed statistics) and data transformation. Chunks are versioned, and a new version is cre-
ated in the case of modifications. Peregreen is designed for cluster deployments and uses the Raft
algorithm to reach consensus on the workers available at any point in time and the state portions
(indexes to the storage layer) they are responsible for. This enables dynamic adaptation, with ad-
dition and removal of workers for load balancing and elasticity. State portions are replicated at
multiple workers for fault tolerance.

B.1.5 Graph Stores TAO. TAO [20] is a data store that Facebook developed to manage its social
graph, which contains billions of entities (e.g., people and locations) and relations between them
(e.g., friendship). TAO offers a simple data model where entities and relations have a type and may
contain data in the form of key-value pairs. It provides a restricted API for job definition, to create,
delete, and modify entities and relations, and to query relations for a given entity. With respect to
other graph data stores, it does not support queries that search for sub-graphs that satisfy specific
constraints (path queries or sub-graph pattern queries). TAO is designed to optimize the latency
of read jobs, as it needs to handle a large number of simultaneous user-specific queries. To do
so, TAO implements shared state in two layers: a persistent storage layer based on a relational
database (MySQL) and a key-value in-memory cache based on memcache. TAO is designed for
wide-area deployments. Within a single data center, both the persistent layer and the cache are
partitioned. The cache is also replicated using a single-leader approach: clients always interact
with follower cache servers, which reply to read operations in the case of cache hit and propagate
read operations in the case of cache miss as well as write operations to the leader cache server,
which is responsible for interacting with the storage layer and for propagating changes. Across
data centers, the storage layer is fully replicated with a single-leader approach: reads are served
using the data center local cache or storage layer, so they do not incur latency, whereas all write
operations are propagated to the leader data center for the storage layer. Data is replicated between
the storage layer and the cache as well as across data centers asynchronously, which provides weak
consistency and durability. Dynamic reconfiguration is possible in the case of failures: in the case
in which a leader cache or storage server fails, replicas automatically elect a new leader.

Unicorn. Unicorn [35] is an indexing system used at Facebook to search its social graph. The shared
state of Unicorn consists of inverted indexes that enable retrieving graph entities (vertices) based
on their relations (edges) and the data associated with them. For instance, in a social graph, one
could use an index on relations to retrieve all people (vertices) that are in a friend relation with a
given person, or a string prefix index to retrieve all people with a name that starts with a given
prefix. Unicorn is optimized for read-only queries (jobs), in the form of index lookups and set
operations (union, intersection, difference) on lookup results. Jobs are evaluated by exploiting a
hierarchical organization of workers into three layers: (i) index servers store the shared state
(the indexes) partitioned by results, meaning that any index server will store a subset of the re-
sults for each index lookup; (ii) a rack aggregator per rack is responsible for merging the (partial)
query results coming from individual index servers; and (iii) a top aggregator is responsible for
merging the (partial) query results coming from each rack. Interestingly, Unicorn jobs can dynam-
ically start new tasks: this feature is implemented as an apply function that performs new lookups
starting from the results obtained in previous ones. This feature can be used to implement itera-
tive computations—for instance, to find the friends of friends of a given person, Unicorn can first
retrieve the direct friends and then lookup for all their friends, using result set of the first lookup
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(direct friends) as a parameter for the second lookup. Unicorn indexes are kept up-to-date with
the content of the social graph using a periodic procedure that runs on an external computation
engine. Unicorn tolerates failures through replication. However, it is possible for some shared state
portions to remain temporarily unavailable: this may result in incomplete results when searching
(if some index serves do not reply), which is acceptable in its specific application domain.

B.2 NewSQL Systems

B.2.1 Key-Value Stores Deuteronomy. Deuteronomy [59] is a data store designed for wide-
area deployments that decouples storage functionalities from transactional execution of jobs. In
Deuteronomy, the driver program runs client-side and submits jobs (queries) to a transaction com-
ponent. The component ensures group atomicity and isolation for all read and write operations
performed on the shared state, using a locking protocol. The actual storage is implemented in a sep-
arate layer. Deuteronomy supports any distributed storage component that offers read and write
operations for individual elements (e.g., a key-value store), and is oblivious of the actual location
of the workers implementing the storage component, which may be geographically distributed.
Deuteronomy provides fault tolerance through logging and replication, and enables dynamic re-
configuration by independently scaling both the transactional and the storage component.

FoundationDB. FoundationDB [100] is a transactional key-value store, which aims to offer the core
building blocks (hence the name) to build scalable distributed DMSs with heterogeneous require-
ments. The use of key-value abstractions provides flexibility in the data model, on top of which
developers can build various types of abstractions. For instance, each element may encode a re-
lation indexed by its primary key. Jobs consist of a group of read and write requests issued by a
driver program that runs client-side. Like Deuteronomy, FoundationDB is organized into layers,
each of them offering one of the core functionalities of a transactional DMS and each implemented
within a different set of workers, thus enabling independent scaling. A storage layer persists data
and serves read and write requests. A log layer manages a WAL. A transaction system handles iso-
lation and atomicity for multiple read and write requests. Transactional semantics is enforced by
assigning timestamps to operations and by checking for conflicts between concurrent transactions
after they have been executed: in the case of conflicts, the transaction aborts and the driver pro-
gram is notified. Fault tolerance is implemented by replicating both the log layer (synchronously)
and the storage layer (asynchronously). Replication of the storage layer is also used to serve read
requests in parallel. Moving data between workers that implement the storage layer and the log
layer is also used when adding or removing workers for scalability (dynamic reconfiguration).

Solar. Like Deuteronomy and FoundationDB, Solar [101] is a transactional key-value store that
decouples storage of shared state from transaction processing. The transaction layer uses a
timestamp-based optimistic concurrency control and stores a WAL in main memory. The storage
layer persists checkpoints of the shared state. Together, they form an LSM tree. The key distinguish-
ing feature of Solar is that the transaction layer is implemented as a centralized service, replicated
for fault tolerance of the WAL.

B.2.2 Structured and Relational Stores Time-Based protocols Spanner. Spanner [34] is a semi-
relational database: shared state is organized into tables, where each table has an ordered set of
one or more primary key columns and defines a mapping from these key columns to non key
columns. Spanner provides transactional semantics and replication with strong consistency for
cluster and wide-area deployments. At its core, Spanner uses standard database techniques: two-
phase locking for isolation, two-phase commit for atomicity, and synchronous replication of jobs
results using Paxos state machine replication. Jobs are globally ordered using timestamps, and
workers store multiple versions of each state element (multi-version concurrency control). This
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way, read-only jobs can access a consistent snapshot of the shared state and do not conflict with
read-write jobs. A consistent snapshot preserves causality, meaning that if a job reads a version
of a state element (cause) and subsequently updates another state element (effect), the snapshot
cannot contain the effect without the cause. Traditional databases ensure causality by acquiring
read and write locks to prevent concurrent accesses, but this could be too expensive in a distributed
environment. The key distinguishing idea of Spanner is to serve a consistent snapshot to read-only
jobs without locking. To do so, it uses an abstraction called TrueTime, which returns real (wall-
clock) time within a known precision bound using a combination of GPS and atomic clocks. Tasks
of read-write jobs first obtain the locks for all the data portions they access: a coordinator for the
job assigns that job with a timestamp at the end of its time uncertainty range, then it waits until
this timestamp is passed for all workers in the system, releases the locks, and writes the results
(commits). The waiting time ensures that jobs with later timestamps read all writes of jobs with
earlier timestamps without explicit locking. Using TrueTime, Spanner also supports consistent
reconfiguration—for instance, to change the database schema or to move data for load balancing.
More recently, Spanner has been extended with support for distributed SQL query execution [14].

CockroachDB. CockroachDB [90] is a relational database for wide-area deployments. It shares many
similarities with Spanner and integrates storage and processing capabilities within each node. As a
storage layer, it relies on RocksDB, a disk-based key-value store that organizes data in LSM trees. It
replicates data across nodes, ensuring strong consistency through Raft consensus. On top of this,
it partitions data with transactional semantics: it uses an isolation mechanism based on hybrid
physical and logical clocks (similar to Spanner) but integrates it with an optimistic protocol that,
in the case of conflicts, attempts to modify the timestamp of a job to a valid one rather than re-
executing the entire job. CockroachDB compiles SQL queries into a plan of tasks that can be either
fully executed on a single worker or in a distributed dataflow fashion. Interestingly, CockroachDB
also enables users to configure data placement across data centers. For instance, a table can be
partitioned across a Region column to ensure that all data about one region is stored within a single
data center. This may improve access time from local client and enforce privacy regulations.

Deterministic Execution Calvin. Calvin [92] is a job scheduling and replication layer to provide
transactional semantics and replication consistency on top of non-transactional distributed data
stores such as Dynamo, Cassandra, and MongoDB. It is currently implemented within the Fauna
database.9 The core Calvin layer is actually agnostic with respect to the specific data and query
model. In fact, Fauna supports document and graph-based models in addition to the relational
model. Calvin builds on the assumption that jobs are deterministic. Its core idea is to avoids as
much as possible expensive coordination during job execution by defining a global order for tasks
before the actual execution. In Calvin, workers are organized in regions: each region contains a
single copy of the entire shared state, and each worker in a region is fully replicated in every other
region. All workers that contain a replica of the same state portion in different regions are referred
to as a replication group. Invocations from clients are organized in batches: all workers in a replica-
tion group receive a copy of the batch, and they coordinate to agree on a global order of execution.
Under the assumption of deterministic jobs, this approach ensures consistent state across all repli-
cas in a replication group. Replicas are used both to improve access for read-only jobs, which can
be executed on any replica, and for fault tolerance, as in the case of a failure remaining replicas can
continue to operate without interruption. Invocations are stored in a durable log, and individual
workers can be resumed from a state snapshot by reapplying all invocations that occurred after
that snapshot. Calvin supports different replication protocols with different tradeoffs between job

9https://fauna.com.
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response time and complexity in fail over. Deterministic jobs executed in the same order lead to
the same results in all (non-failing) replicas. Specifically, they either commit or abort in all (non-
failing) replicas. Accordingly, under the assumption that at least one replica for each shared state
portion does not fail, Calvin can provide atomicity without expensive protocols such as the classic
two-phase commit: if some tasks may abort due to violation of integrity constrains, they simply
inform other tasks of the same transaction with a single (one-phase) communication. Global exe-
cution order is also used for isolation: Calvin exploits a locking mechanism where tasks acquire
locks on their shared state portion in the agreed order. This requires knowing up front the exact
state portions accessed within each job: when they cannot be statically determined (e.g., due to
state-dependent control flow), Calvin runs reconnaissance jobs that perform all read accesses to
determine the state portions of interest. However, during the actual execution, shared state may
have changed, and the real jobs may deviate from reconnaissance jobs and try to access differ-
ent portions, in which case they are deterministically restarted. Interestingly, Calvin provides the
same strong semantics both for cluster and for wide-area deployments. The initial coordination
increases the latency to schedule a batch of jobs, affecting the response time of individual jobs in
wide-area deployments, but the batching mechanisms can preserve throughput.

Explicit Partitioning and Replication Strategies VoltDB. VoltDB [89] is an in-memory relational
database developed from the HStore research project [88]. In VoltDB, clients register stored proce-
dures, which are driver programs written in Java and executed system-side. They include multiple
jobs, are compiled on registration, and are executed on invocation. Jobs can also write data to sinks.
The key idea of VoltDB is to let users control database partitioning and replication, so they can
optimize most frequently executed jobs. In particular, VoltDB preserves the same (transactional) ex-
ecution semantics as centralized databases while minimizing the overhead of concurrency control.
By default, all tasks that derive from a single driver program represent a transaction and are guar-
anteed to execute with group atomicity and isolation. In the worst case, this is achieved through
blocking coordination (two-phase commit for atomicity and timestamp-based concurrency control
for isolation). However, VoltDB avoids coordination for specific types of jobs by exploiting user-
provided data about data partitioning and replication. Users can specify that a relational table is
partitioned based on the value of a column. For instance, a Customer table may be partitioned
by region, meaning that all customers that belong to the same region (have the same value for
the attribute region) are stored in the same shared state portion. Jobs that only refer to a given
region can then be executed by the single worker responsible for that state portion, sequentially,
without incurring expensive concurrency control overhead. Every table that is not partitioned is
replicated in every worker, which optimizes read access from any worker at the cost of replicating
state changes. Users need to select the best partitioning and replication schema to improve perfor-
mance for the most frequent jobs. VoltDB also supports replicating tables (including partitioned
ones) for fault tolerance. Replicas are kept up-to-date by propagating and executing tasks to all
replicas, under the assumption that tasks are deterministic. VoltDB is designed for cluster deploy-
ment as clock synchronization and low latency are necessary to guarantee that timestamp-based
concurrency control and replication work well in practice. However, VoltDB also provides a hy-
brid deployment model where a database is fully replicated at multiple geographical regions. These
replicas can be used only as an additional form of fault tolerance (with asynchronous propagation
of state) or can serve local clients. In this case, consistency across regions is not guaranteed, and
conflicts get resolved using pre-defined automatic rules. VoltDB supports manual reconfiguration
of both partitioning and workers but requires stopping and restarting the system.

Primary-Based Protocols Aurora. Aurora [95] is a relational database offered as a service by Ama-
zon. Aurora builds on two key design choices: (i) decouple the storage layer from the query pro-
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cessing layer and (ii) store the log of changes (WAL) in the storage layer instead of the actual shared
state. Shared state is materialized only to improve read performance, and materialization can be
performed asynchronously without increasing write latency. The storage layer—that is, the write
log—is replicated both to improve read performance and for fault tolerance. To ensure consistency,
read and write operations use a quorum-based approach. The processing layer accepts jobs from
clients in the form of SQL queries, which are always executed within a single worker. Specifically,
to guarantee isolation, Aurora assumes that a single worker is responsible for processing all read-
write jobs at any given point in time. Read-only jobs can be executed on any worker, which can
read a consistent snapshot of the state without conflicting with concurrent writes. In Aurora, the
storage and processing layers can scale independently: the processing layer is stateless, whereas
the storage layer only needs to replicate the log.

Socrates. Socrates [11] is a relational database offered as a service in the Azure cloud platform
(under the name SQL DB Hyperscale).10 Like Aurora, Socrates decomposes the functionality of a
DMS and implements them as independent services. Its design goals include quick recovery from
failure and fast reconfiguration. To do so, it relies on four layers, each implemented as a service
that can scale out when needed. First, compute nodes handle jobs, including protocols for group
atomicity and isolation. There is one primary compute node that processes read-write jobs and an
arbitrary number of secondary nodes that handle read-only jobs and may become primary in the
case of failure. Compute nodes cache shared state pages in main memory and on SSD. Second, a
log service logs write requests with low latency. Third, a storage service periodically applies writes
from the log to store the shared state durably. Fourth, a backup service stores copies of the storage
layer for fault tolerance.

B.2.3 Objects Stores Tango. Tango [16] is a service for storing metadata. Application code (the
driver program) executes client-side and reads and accesses a shared state consisting of Tango
objects. Clients store their view of Tango objects locally in-memory, and this view is kept up-
to-date with respect to a distributed (partitioned) and durable (replicated) totally ordered log of
updates. Tango objects can contain references to other Tango objects, thus enabling the definition
of complex linked data structures such as trees or graphs. Although the log is physically partitioned
across multiple computers, all operations are globally ordered through sequence numbers, which
are obtained through a centralized sequencer service: the authors demonstrate that this service
does not become a bottleneck for the system when serving hundreds of thousands of requests
per second. Clients check if views are up-to-date before performing updates, thus ensuring totally
ordered, linearizable updates. Tango also guarantees group atomicity and isolation using the log
for optimistic concurrency control.

B.2.4 Graph Stores A1. A1 [22] is an in-memory database that resembles TAO and Trinity in
terms of data model (typed graphs) and jobs (changes to graph entities and graph pattern matching
queries). The distinguishing characteristic of A1 is that it builds on a distributed shared memory
abstraction that uses RMDA implemented within network interface cards [41]. A1 stores all the
elements of the graph in a key-value store. Jobs may traverse the graph and read and modify its
associated data during execution. A1 provides strong consistency, atomicity, and isolation using
timestamp-based concurrency control. Fault tolerance is implemented using synchronous repli-
cation in memory and asynchronous replication to disk. In the case of failures, users can decide
whether to recover the last available state or only state that is guaranteed to be transactionally
consistent.

10https://docs.microsoft.com/en-us/azure/azure-sql/database/.
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C DATA PROCESSING SYSTEMS

This section details individual Data Processing Systems (DPSs). Tables 20, 21, 22, 23, 24, 25, 26, 27
summarize the characteristics of these systems with respect to the classification criteria presented
in Section 2.

C.1 Task-Level Deployment

MapReduce. MapReduce [38] is a distributed processing model and system developed at Google
in the early 2000s, and later implemented in open source projects such as Apache Hadoop.11 Its
programming and execution models represent a paradigm shift in distributed data processing that
influenced virtually all DPSs discussed in this article: developers are forced to write jobs as a se-
quence of functional transformations, avoiding by design the complexity and cost associated with
state management. In the specific case of MapReduce, jobs are constrained to only two processing
steps: (i) map transforms each input element into a set of key-value pairs, and (ii) reduce aggre-
gates all values associated with a given key. Both functions are data parallel: developers specify the
map function for a single input element and the reduce function for a single key, and the system
automatically applies them in parallel. The data bus is implemented using a distributed filesystem.
The system schedules map tasks as close as possible to the physical location of their input in the
filesystem. It then automatically redistributes intermediate results by key before scheduling the
subsequent reduce tasks. Fault detection is implemented using a leader-worker approach. Tasks
that did not complete due to a failure are simply rescheduled. The same approach is used for tasks
that take long to complete (stragglers): they are scheduled multiple times if some workers are avail-
able, to increase the probability of successful completion. Dynamic scheduling at the granularity
of tasks simplifies implementation of dynamic reconfiguration mechanisms to promote elasticity.
For instance, Hadoop supports scheduling policies based on user-defined quality of service re-
quirements, such as expected termination time: the scheduler tunes the use of resources (possibly
shared with other applications) to meet the expectation while minimizing the use of resources.
Several works build on top of MapReduce to offer a declarative language similar to SQL to express
analytical queries that are automatically translated into MapReduce jobs [2, 23].

Table 20. Data Processing Systems: Functional Model

Driver Exec Driver Exec Time Invoc of Jobs Sources Sinks State Deployment

Dataflow Task Deployment Systems

MapReduce sys reg sync passive yes no cluster
Dryad sys reg unknown passive yes no cluster
HaLoop sys reg unknown passive yes no cluster
CIEL sys reg async passive yes no cluster
Spark configurable reg sync+async passive yes no cluster
Spark Streaming configurable reg async both yes yes cluster

Dataflow Job Deployment Systems

MillWheel sys reg async both yes yes cluster
Flink configurable reg async both yes yes cluster
Storm sys reg async both yes yes cluster
Kafka Streams client reg async both yes yes cluster
Samza / Liquid client reg async both yes yes cluster
Timely dataflow client reg sync both yes yes cluster

Graph Processing Systems

Pregel sys reg unknown passive yes yes cluster
GraphLab sys reg unknown passive yes yes cluster
PowerGraph sys reg unknown passive yes yes cluster
Arabesque sys reg unknown passive yes yes cluster
G-Miner sys reg unknown passive yes yes cluster

11https://hadoop.apache.org.
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Table 21. Data Processing Systems: Jobs Definition

Jobs Def API
Exec Plan

Def
Task

Comm
Exec Plan

Struct
Iter

Dyn
Creat

Nature
of Jobs

State Man
Data Par

API
Placem

-Aware API

Dataflow Task Deployment Systems

MapReduce lib expl impl dataflow no no one-shot absent yes no
Dryad lib expl impl dataflow no no one-shot absent yes no
HaLoop lib expl impl cycl dataflow yes no one-shot absent yes no
CIEL lib expl impl dyn dataflow no yes one-shot absent yes no
Spark lib (+DSLs) expl (+impl) impl dataflow no no one-shot absent yes no
Spark Streaming lib (+DSLs) expl (+impl) impl dataflow no no cont impl yes no

Dataflow Job Deployment Systems

MillWheel lib expl impl dataflow no no cont impl yes no

Flink lib (+DSLs) expl (+impl) impl dataflow limited no
one-shotB

contS
impl yes no

Heron lib expl impl dataflow no no cont impl yes no

Kafka Streams lib (+DSL) expl (+impl) impl dataflow no no
one-shotB

contS
impl yes no

Samza / Liquid lib expl impl dataflow no no
one-shotB

contS
impl yes no

Timely dataflow lib expl impl cycl. dataflow yes no cont impl yes no

Graph Processing Systems

Pregel lib expl expl graph yes no cont expl yes yes
GraphLab lib expl expl graph yes no cont expl yes yes
PowerGraph lib expl expl graph yes no cont expl yes yes
Arabesque lib expl expl graph yes no cont expl yes yes
G-Miner lib expl expl graph yes yes cont expl yes yes

B, in batch processing; S, in stream processing.

Table 22. Data Processing Systems: Jobs Compilation and Execution

Jobs Comp Time Use Resources Info (Comp) Granul of Depl Depl Time Use Resources Info (Depl) Manag of Res

Dataflow Task Deployment Systems

MapReduce reg dynamic task task activ dynamic shared
Dryad reg dynamic task task activ dynamic sys-only
HaLoop reg dynamic task task activ dynamic shared
CIEL reg dynamic task task activ dynamic sys-only
Spark reg dynamic task task activ dynamic shared
Spark Streaming reg dynamic task task activ dynamic shared

Dataflow Job Deployment Systems

MillWheel reg static job job compil static sys-only
Flink reg static job job compil static sys-only
Heron reg static job job compil static sys-only
Kafka Streams reg static job job compil static sys-only
Samza / Liquid reg static job job compil dynamic shared
Timely dataflow reg static job job compil static sys-only

Graph Processing Systems

Pregel reg static job job compil static shared
GraphLab reg static task task activ static sys-only
PowerGraph reg static task task activ static sys-only
Arabesque reg static job job compil static sys-only
G-Miner reg static task task activ static sys-only
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Table 23. Data Processing Systems: Data Management

Elem Struc Temp Elem Bus Conn Bus Impl Bus Persist Bus Partition Bus Repl Bus Inter

Dataflow Task Deployment Systems

MapReduce general no mediated distr fs persist yes no hybrid

Dryad general no
direct

or mediated
configurable

persist
or ephem

yes no
push

or hybrid

HaLoop general no mediated distr fs persist yes no hybrid

CIEL general no
direct

or mediated
configurable

persist
or ephem

yes no
push

or hybrid

Spark general+spec no mediated distr fs (+cache) persist yes no hybrid
Spark Streaming general+spec yes mediated distr fs (+cache) persist yes no hybrid

Dataflow Job Deployment Systems

MillWheel general yes direct RPC ephem yes no push
Flink general+spec yes direct net chan ephem yes no push
Storm general yes direct net chan ephem yes no push
Kafka Streams general+spec yes mediated kafka persist yes yes hybrid
Samza / Liquid general yes mediated kafka persist yes yes hybrid
Timely dataflow general yes direct net chan ephem yes no push

Graph Processing Systems

Pregel typed graph no direct net chan ephem yes no push
GraphLab typed graph no direct mem persist yes no hybrid
PowerGraph typed graph no direct mem persist yes no hybrid
Arabesque typed graph no direct net chan ephem yes no push
G-Miner typed graph no direct net chan ephem yes no pull

Table 24. Data Processing Systems: State Management

Elem Struct
Stor

Medium
Stor

Struct
Task St Shared St St Part Repl Repl Consist Repl Prot

Update
Propag

Dataflow Task Deployment Systems

MapReduce n.a. n.a. n.a. no no n.a. n.a. n.a. n.a. n.a.
Dryad n.a. n.a. n.a. no no n.a. n.a. n.a. n.a. n.a.
HaLoop n.a. n.a. n.a. no no n.a. n.a. n.a. n.a. n.a.
CIEL n.a. n.a. n.a. no no n.a. n.a. n.a. n.a. n.a.
Spark n.a. n.a. n.a. no no n.a. n.a. n.a. n.a. n.a.
Spark Streaming n.a. n.a. n.a. yes no n.a. n.a. n.a. n.a. n.a.

Dataflow Job Deployment Systems

MillWheel n.a. n.a. n.a. yes no n.a. n.a. n.a. n.a. n.a.

Flink n.a. n.a. n.a. noB / yesS no n.a. n.a. n.a. n.a. n.a.
Storm n.a. n.a. n.a. yes no n.a. n.a. n.a. n.a. n.a.

Kafka Streams n.a. n.a. n.a. noB / yesS no n.a. n.a. n.a. n.a. n.a.

Samza / Liquid n.a. n.a. n.a. noB / yesS no n.a. n.a. n.a. n.a. n.a.
Timely dataflow n.a. n.a. n.a. yes no n.a. n.a. n.a. n.a. n.a.

Graph Processing Systems

Pregel vertex mem user-def yes no n.a. n.a. n.a. n.a. n.a.
GraphLab vertex/edge mem user-def yes no n.a. n.a. n.a. n.a. n.a.
PowerGraph vertex/edge mem user-def yes no n.a. n.a. n.a. n.a. n.a.
Arabesque sub-graph mem user-def yes no n.a. n.a. n.a. n.a. n.a.
G-Miner sub-graph mem user-def yes no n.a. n.a. n.a. n.a. n.a.

B, in batch processing; S, in stream processing.

Dryad. Several systems developed in parallel and after MapReduce inherit and extend the core con-
cepts in its programming and execution models. Dryad [51] generalizes the programming model,
representing jobs as arbitrary acyclic dataflow graphs. Like MapReduce, it uses a leader-worker
approach, where a leader schedules individual tasks (operators in the dataflow graph), but it en-
ables different types of channels (data bus in our model), including shared memory on the same
machine, TCP channels across machines, or distributed filesystems. The leader is also responsible
for fault detection. Jobs are assumed to be deterministic, and in the case of failure, the failing task
is re-executed: in the case of ephemeral channels, also upstream tasks in the dataflow graph are
re-executed to re-create the input for the failing task.

HaLoop. Systems like MapReduce and Dryad are constrained to acyclic job plans and cannot na-
tively support iterative algorithms. HaLoop [21] addresses this limitation with a modified ver-
sion of MapReduce that (i) integrates iterative MapReduce jobs as first class programming con-
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Table 25. Data Processing Systems: Group Atomicity, Group Isolation, Delivery, and Order

Aborts Protocol Assumptions Level Impl Assumptions Delivery Nature of Ts Order

Dataflow Task Deployment Systems

MapReduce n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
Dryad n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
HaLoop n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
CIEL n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
Spark n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
Spark Streaming n.a. n.a. n.a. n.a. n.a. n.a. exact no or ingest always

Dataflow Job Deployment Systems

MillWheel n.a. n.a. n.a. n.a. n.a. n.a. exact ingest always
Flink n.a. n.a. n.a. n.a. n.a. n.a. exact no or ingest always
Storm n.a. n.a. n.a. n.a. n.a. n.a. most / least / exact no n.a.
Kafka Streams n.a. n.a. n.a. n.a. n.a. n.a. least no or ingest eventually
Samza / Liquid n.a. n.a. n.a. n.a. n.a. n.a. least no or ingest eventually
Timely dataflow n.a. n.a. n.a. n.a. n.a. n.a. exact event always

Graph Processing Systems

Pregel n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
GraphLab n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
PowerGraph n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
Arabesque n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
G-Miner n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.

Table 26. Data Processing Systems: Fault Tolerance

Detection Scope Comput Recov State Recov Guarantees for State Assumptions

Dataflow Task Deployment Systems

MapReduce lead-work comput task n.a. n.a. REPLAY
Dryad lead-work comput task n.a. n.a. REPLAY
HaLoop lead-work comput task n.a. n.a. REPLAY
CIEL lead-work comput task n.a. n.a. REPLAY
Spark lead-work comput task n.a. n.a. REPLAY
Spark Streaming lead-work comput+task st task log+checkp valid or same REPLAY

Dataflow Job Deployment Systems

MillWheel lead-work comput+task st job log+checkp same REPLAY
Flink lead-work comput+task st job log+checkp valid or same REPLAY
Storm lead-work comput+task st task ack+checkp none or valid or same REPLAY
Kafka Streams lead-work comput+task st job log+checkp valid or same REPLAY
Samza / Liquid lead-work comput+task st job log+checkp valid or same REPLAY
Timely dataflow lead-work comput+task st job log+checkp same REPLAY

Graph Processing Systems

Pregel lead-work comput+task st job checkp same n.a.
GraphLab lead-work comput+task st job checkp valid n.a.
PowerGraph lead-work comput+task st job checkp valid or same n.a.
Arabesque lead-work comput+task st job checkp valid n.a.
G-Miner lead-work comput+task st tas checkp valid n.a.

REPLAY, sources are replayable.

Table 27. Data Processing Systems: Dynamic Reconfiguration

Goal Automated State Migration Task Migration Add / Del Slots Restart

Dataflow Task Deployment Systems

MapReduce elast yes n.a. n.a. yes no
Dryad n.a. n.a. n.a. n.a. n.a. n.a.
HaLoop elast yes n.a. n.a. n.a. no
CIEL n.a. n.a. n.a. n.a. n.a. n.a.
Spark elast yes n.a. n.a. yes no
Spark Streaming elast yes yes yes yes no

Dataflow Job Deployment Systems

MillWheel load balan yes yes yes yes no
Flink elast yes yes yes yes yes
Storm elast no yes yes yes yes
Kafka Streams elast no yes yes yes no
Samza / Liquid elast no yes yes yes no
Timely dataflow n.a. n.a. n.a. n.a. n.a. n.a.

Graph Processing Systems

Pregel load balan yes yes yes no no
GraphLab load balan yes yes yes no no
PowerGraph load balan yes yes yes no no
Arabesque load balan yes yes yes no no
G-Miner load balan yes yes yes no no
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cepts, (ii) optimizes task scheduling by co-locating tasks that reuse the same data across iterations,
(iii) caches and indexes loop-invariant data to optimize access across iterations, and (iv) caches
and indexes results across iterations to optimize the evaluation of fixed point conditions for termi-
nation.

CIEL. CIEL [72] extends the dataflow programming model of Dryad by allowing tasks to dynam-
ically create other tasks. This enables defining the job plan dynamically based on the results of
data computation, which can be used to implement iterative algorithms. The programming model
ensures that tasks cannot have cyclic dependencies, thus avoiding deadlocks in the execution. The
execution model and the fault tolerance mechanism remain identical to Dryad, the only exception
being that the list of tasks that the leader schedules and tracks can dynamically change during the
execution, thus allowing the execution flow to be defined at runtime based on the actual content
of input data.

Spark. Spark [99] inherits the dataflow programming model of Dryad and supports iterative ex-
ecution and data caching like HaLoop. First, Spark jobs are split in sequences of operations that
do not alter data partitioning, called stages. Multiple tasks are scheduled for each stage, to imple-
ment data parallelism. Second, the driver program can run either client-side or system-dice, and
can dynamically spawn new jobs based on the results collected from previous jobs. This enables
data-dependent control flow under the assumption that control flow conditions are evaluated in
the driver program, and is used to implement iterative algorithms. Third, as in HaLoop, interme-
diate results that are reused by the same or different jobs (as in the case of iterative computations)
can be cached in main memory to improve efficiency. Spark provides domain-specific libraries
and languages for structured (relational) data [12], graphs [46], and machine learning computa-
tions [69], which often include ad hoc job optimizers. Spark also inherits the fault tolerance model
of MapReduce: as tasks are stateless, failing tasks are simply re-executed starting from their input
data; if the input data is not available anymore (e.g., in the case of intermediate results not persisted
on any other node), all tasks necessary to reconstruct the input are also re-executed. Task-level
deployment also enables runtime reconfiguration to provide elasticity.

Spark Streaming. Spark Streaming [98] implements streaming computations on top of Spark by
splitting the input stream into small batches and by running the same jobs for each batch. Spark
Streaming implements task state using native Spark features: the state of a task after a given invo-
cation is implicitly stored as a special data item that the task receives as input in the subsequent in-
vocation. This also enables reusing the fault tolerance mechanism of Spark to persist or recompute
state as any other data element. Another benefit of using the Spark system is simple integration
of static and streaming input data. The main drawback of the approach is latency: since input data
needs to be accumulated in batches before processing, Spark Streaming can only provide latency
in the range of seconds.

C.2 Job-Level Deployment

MillWheel. MillWheel [7] is a framework to build general-purpose and large-scale stream process-
ing systems. Jobs consist of data-parallel tasks expressed using an imperative language. As part
of their computation, tasks can use the MillWheel API to access (task local) state, for logical time
information, and to produce data for downstream tasks. MillWheel implements the communica-
tion between tasks (the data bus) using point-to-point remote procedure calls, and uses an external
storage service to persist task state and metadata about global progress (watermarks). Upstream
tasks are acknowledged when downstream tasks complete, and the storage service is kept consis-
tent with atomic updates of state and watermarks. In the case of failure, individual tasks can rely
on the external storage to restore a consistent view of their state, and they can discard duplicate
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invocations from upstream tasks in the case some acknowledgements are lost. The same approach
is also used for dynamic load distribution and balancing.

Flink. Flink [24] is a unified execution engine for batch and stream processing. In terms of a pro-
gramming model, it strongly resembles Spark, with a core API to explicitly define job plans and
domain-specific libraries for structural (relational) data, graph processing, and machine learning.
One notable difference involves iterative computations: Flink supports them with native operators
(within jobs) rather than controlling them from the driver program. Flink adopts job-level deploy-
ment and implements the data bus using direct TCP channels. This brings several implications.
First, tasks are always active and compete for workers resources. For each processing step in the
execution plan, Flink instantiates one (data-parallel) task for each CPU core available on work-
ers. In practice, each CPU core receives one task for each step and scheduling is delegated to the
operating system that hosts the worker. Second, in the case of stream processing, tasks can contin-
uously exchange data, which traverses the graph of computation leading to a pipelined execution.
As there is no need to accumulate input data in batches, this processing model may reduce latency.
Third, as tasks cannot be deployed independently, fault tolerance requires restarting an entire job.
In the case of stream processing jobs, Flink takes periodic snapshots of task states: in the case of
a failure, it restores the last snapshot and replays all input data that was not part of the snapshot
(assuming it remains available). Fourth, dynamic reconfiguration builds on the same mechanism:
when the number of available slots changes, the system needs to restart and resume jobs from a
recent snapshot.

Storm. Storm [94] and its successor Heron [56] are stream processing systems developed at Twit-
ter. They offer lower-level programming API than previously discussed dataflow systems, where
developers fully implement the logic of each processing step. At the time of writing, both Storm
and Heron have experimental higher-level APIs that mimic the functional approach of Spark and
Flink. Storm and Heron adopt job-level deployment and implement the data bus as direct network
channels between workers. They implement fault tolerance by acknowledging every message. If a
message is not acknowledged within a given timeout, the sender replays it, which leads to at least
once delivery (messages may be duplicated). The same applies in the case of state: state is check-
pointed but may be modified more than once in the case of duplication. Dynamic reconfiguration
is possible but required redeploying and restarting the entire job.

Kafka Streams. Kafka [55] is a distributed communication platform designed to scale in terms of
clients, data volume, and production rate. Kafka offers logical communication channels named top-

ics: producers append immutable data to topics and consumers read data from topics. Topics are
persistent, which decouples data production and consumption times. Topics may be partitioned
to improve scalability: multiple consumers may read in parallel from different partitions, possi-
bly hosted on different physical nodes. Topics may also be (semi-synchronously) replicated for
fault tolerance. With respect to our model in Section 2, Kafka represents the implementation of a
persistent data bus that external clients can use to exchange immutable data. Kafka Streams [18]
implements batch and stream processing functionalities on top of Kafka. Its programming model
is similar to that of Spark and Flink, with a core functional API and a higher-level DSL for rela-
tional data processing (KSQL). As in Flink, all tasks for a job are instantiated and scheduled when
the job starts and continuously communicate in a pipelined fashion using Kafka as the data bus.
Each channel in the job logical plan is implemented as a Kafka topic, and data parallelism exploits
topic partitioning, allowing multiple tasks to simultaneously read from different partitions. Inter-
estingly, Kafka Streams does not offer resource management functionalities but runs the driver
program and the tasks within clients: each job definition is associated with a unique identifier, and
clients can offer resources for a job—that is, become workers—by referring to the job identifier. The

ACM Computing Surveys, Vol. 56, No. 1, Article 16. Publication date: August 2023.



16:58 A. Margara et al.

policy for allocating tasks to slots is similar to that of Flink: each slot represents a physical CPU
core and receives one task for each computation step in the logical plan. Task state for streaming
jobs is stored on Kafka, following the same idea of persisting state as a special element in the data
bus that we already found in Spark Streaming. Fault detection relies on Kafka ability to detect
when consumers disconnect. For fault recovery, Kafka Streams adopts a two-phase commit proto-
col to ensure that upon activation a task consumes its input, updates its state, and produces results
for downstream tasks atomically. In the case of failure, a task can resume from the input elements
that were not successfully processed, providing exactly once delivery of individual elements. We
still classify the system as offering at least once delivery, because, in the case of timestamped el-
ements, it does not implement any mechanism to process them in timestamp order but retracts
and updates its results upon receiving elements out of order (resulting in visible changes at the
sinks). Storing both data and task state on Kafka allows for dynamic reconfiguration that involves
addition and removal of clients (workers) at runtime. The same approach of Kafka Streams is used
at LinkedIn in the Samza system [74], which is the core for the platform to integrate data from
multiple sources and offer a unique view to the back-end system, updated incrementally as new
data becomes available.

Timely Dataflow. Timely dataflow [71] is a unified programming model for batch and stream pro-
cessing, which is lower level and more general than the dataflow model of systems such as Flink.
In timely dataflow, jobs are expressed as a graph of (data-parallel) operators and data elements
carry a logical timestamp that tracks global progress. Management of timestamps is explicit, and
developers control how operators handle and propagate them. This enables implementing various
execution strategies. For instance, developers may choose to complete a given computation step
before letting the subsequent one start (mimicking a batch processing strategy as implemented in
MapReduce or Spark), or they may allow overlapping of steps (as it happens in Storm or Flink).
The flexibility of the model allows for complex workflows, including streaming computations with
nested iterations, which are hard or even impossible to express in other systems. Timely dataflow
is currently implemented as a Rust library:12 as in Kafka Streams, developers write a program that
defines the graph of computation using the library API, and run multiple instances of the program,
each of them representing a worker in our model. At runtime, the program instantiates the con-
crete tasks, which communicate with each other either using shared memory (within one worker)
or TCP channels (across workers). Timely dataflow provides API to checkpoint task state and to
restore the last checkpoint for a job. Dynamic reconfiguration is currently not supported.

C.3 Graph Processing

Pregel. Pregel [66] is a programming and execution model for computations on large-scale graph
data structures. Pregel jobs are iterative: developers provide a single function that encodes the
behavior of each vertex v at each iteration. The function takes in input the current (local) state of
v and the set of messages produced for v during the previous iteration; it outputs the new state of
v and a set of messages to be delivered to connected vertices, which will be evaluated during the
next iteration. The job terminates when vertices do not produce any message at a given iteration.
Vertices are partitioned across workers, and each task is responsible for a given partition. Jobs are
continuous, as tasks are activated multiple times (once for each iteration) and store the vertex state
across activations (in their task state). Tasks only communicate by exchanging data (messages be-
tween vertices) over the data bus, which is implemented as direct channels. One worker acts as a
leader and is responsible for coordinating the iterations within the job and for detecting possible

12https://github.com/TimelyDataflow.
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failures of other workers. Workers persist their state (task state and input messages) at each iter-
ation: in the case of a failure, the computation restarts from the last completed iteration. Several
systems inherit and improve the original Pregel model in various ways: we discuss some key vari-
ants through the systems that introduced them. The interested reader can find more details and
systems in the survey by McCune et al. [68].

GraphLab. GraphLab [62] abandons the synchronous model of Pregel, where all vertices execute
an iteration before any can move to the subsequent one. GraphLab schedules the execution of
tasks that update vertices. During execution, tasks can read the value of neighboring vertices and
edges (rather than receiving update messages, as in Pregel), and can update the value of outgoing
edges. We model this style of communication as a pull-based persistent data bus.13 Tasks are sched-
uled and execute asynchronously, without barriers between iterations. This paradigm is suitable
for machine learning and data mining computations that do not require synchronous execution
for correctness and can benefit from asynchronous executions for performance. GraphLab still
supports some form of synchronization between tasks. For instance, users can grant exclusive or
non-exclusive access to neighboring edges and vertices. GraphLab implements this synchroniza-
tion constraints either with a locking protocol or with scheduling policies that prevent execution
of potentially conflicting tasks.

PowerGraph. PowerGraph [45] observes that vertex-centric execution may lead to unbalanced
work in the (frequent) scenario of skewed graphs. It proposes a solution that splits each itera-
tion into four steps: (i) gather collects data from adjacent vertices and edges, (ii) sum combines
the collected data, (iii) apply updates the state of the local vertex, and (iv) scatter distributes data
to adjacent edges for the next iteration. These steps can be distributed across all workers and exe-
cuted in a MapReduce fashion. PowerGraph tasks can be executed synchronously, as in Pregel, or
asynchronously, as in GraphLab, depending on the specific problem at hand.

Sub-Graph Centric Systems. Graph mining problems typically require retrieving sub-graphs with
given characteristics. A class of systems designed to tackle these problems uses a sub-graph centric
approach. We model these systems by considering the input graph as a static data source and by
storing the state of each sub-graph in task state. Arabesque [91] explores the graph in synchronous
rounds: it starts with candidate sub-graphs consisting of a single vertex and at each round expands
the exploration by adding one neighboring vertex or edge to a candidate. G-Miner [30] spawns a
new task for each candidate sub-graph, allowing tasks to proceed asynchronously. When sched-
uled for execution, a task can update its (task) state. G-Miner supports dynamic load balancing
with task stealing.

D OTHER SYSTEMS

This section details data-intensive systems that do not clearly fall within the categories of Data
Management Systems and Data Processing Systems. Tables 28, 29, 30, 31, 32, 33, 34, 35 summarize
the characteristics of these systems with respect to the classification criteria in Section 2.

D.1 Computations on DMSs

Percolator. Percolator [76] builds on top of BigTable and is used to automatically and incrementally
maintain views when BigTable gets updated. For instance, it is used within Google to incremen-
tally maintain the indexes of its search engine as Web pages and links change. Percolator enables

13Another way to model this communication paradigm is by saying that tasks have access to a global shared state repre-

senting vertices and edges. However, this would not capture the strong connection between tasks and the vertices they

update.
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Table 28. Other Systems: Functional Model

Driver Exec Driver Exec Time Invoc of Jobs Sources Sinks State Deployment

Computations on Data Management Systems

Percolator sys start sync active yes yes cluster
F1 client reg sync+async both yes yes cluster + wide
Trinity client reg unknown no no yes cluster

New Programming Models

SDG sys reg sync active yes yes cluster
TensorFlow client reg sync passive yes yes cluster
Tangram sys reg sync passive yes no cluster
ReactDB sys start sync+async no no yes cluster (not impl)

Hybrid Systems

S-Store sys reg sync+async active yes yes cluster (not impl)
SnappyData sys reg sync+async both yes yes cluster
StreamDB sys start async active yes yes cluster
TSpoon configurable reg sync+async active yes yes cluster
Hologres client reg unknown both yes yes cluster

Table 29. Other Systems: Jobs Definition

Jobs Def API
Exec Plan

Def
Task

Comm
Exec Plan

Struct
Iter

Dyn
Creat

Nature
of Jobs

State Man
Data Par

API
Placem

-Aware API

Computations on Data Management Systems

Percolator
imperative

+BigTable jobs
impl impl task (put / get) no no one-shot expl no no

F1 SQL impl impl datafl+coord no no one-shot expl no no

Trinity crud+lib impl+expl impl + expl
task (put / get)

+graph
yes no one-shot expl yes no

New Programming Models

SDG imperative impl impl stateful datafl yes no cont expl yes no
TensorFlow lib impl impl stateful datafl yes yes one-shot expl yes yes
Tangram lib expl impl stateful datafl yes no one-shot expl yes no
ReactDB lib impl+expl expl workfl yes no one-shot expl no no

Hybrid Systems

S-Store lib+SQL impl+expl impl workfl+datafl yes no
one-shotB

contS
expl+impl yes no

SnappyData lib+SQL impl+expl impl workfl+datafl no no
one-shotB

contS
expl yes yes

StreamDB lib expl impl datafl no no cont expl yes yes
TSpoon lib expl impl datafl no no cont impl yes no
Hologres declarative DSL impl impl workfl unknown yes one-shot expl no no

B, in batch processing; S, in stream processing.

Table 30. Other Systems: Jobs Compilation and Execution

Jobs Comp Time Use Resources Info (Comp) Granul of Depl Depl Time Use Resources Info (Depl) Manag of Res

Computations on Data Management Systems

Percolator reg static job job compil static shared
F1 exec static job job compil static sys-only
Trinity exec static job job compil static sys-only

New Programming Models

SDG exec static job job compil static sys-only
TensorFlow exec static task task activ static sys-only
Tangram exec dynamic task task activ dynamic shared
ReactDB reg static job job compil static sys-only

Hybrid Systems

S-Store exec static job job compil static sys-only
SnappyData exec static task task activ dynamic sys-only
StreamDB reg static job job compil static sys-only
TSpoon exec static job job compil static sys-only
Hologres exec static task task activ dynamic sys-only

developers to register driver programs within the system, which are invoked when a given
BigTable column changes. Each driver program is executed on a single process server-side, and
can start multiple jobs that read and modify BigTable columns. All these jobs are executed as a
group ensuring group atomicity through two-phase commit and group isolation (snapshot iso-
lation) through timestamps. Percolator relies on an external service to obtain valid timestamps
to interact with BigTable and saves metadata about running transactions on additional BigTable
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Table 31. Other Systems: Data Management

Elem Struc Temp Elem Bus Conn Bus Impl Bus Persist Bus Partition Bus Repl Bus Inter

Computations on Data Management Systems

Percolator wide-column yes direct net chan + RPC ephem yes no pull
F1 relational no direct net chan ephem yes no push
Trinity typed graph no direct net chan ephem yes no push

New Programming Models

SDG general no direct net chan ephem yes no push
TensorFlow tensors no direct net chan ephem yes no push
Tangram general no mediated distr fs persist yes yes hybrid
ReactDB relational no direct net chan ephem yes no push

Hybrid Systems

S-Store relational yes
direct

+mediatedS
net chan

+DBS
ephem

+persistS
yes yes+no

push
or hybrid

SnappyData relational no mediated distr fs (+cache) persist yes yes hybrid
StreamDB relational no direct net chan ephem yes no push
TSpoon general yes direct net chan ephem yes no push
Hologres structural no direct net chan ephem yes no pull

S, in stream processing.

Table 32. Other Systems: State Management

Elem Struct
Stor

Medium
Stor

Struct
Task St Shared St St Part Repl Repl Consist Repl Prot

Update
Propag

Computations on Data Management Systems

Percolator wide-col hybrid LSM trees no yes yes backup n.a. n.a. n.a.
F1 relational service Spanner no yes yes yes strong leader op
Trinity typed graph hybrid map no yes yes yes weak leader unknown

New Programming Models

SDG general mem user-def no yes yes no n.a. n.a. n.a.
TensorFlow general mem user-def no yes yes no n.a. n.a. n.a.
Tangram general mem key-val no yes yes no n.a. n.a. n.a.
ReactDB relational mem unknown no yes yes no n.a. n.a. n.a.

Hybrid Systems

S-Store relational mem unknown yesS yes yes n.a. n.a. n.a. n.a.

SnappyData relational mem key-val yesS yes yes backup n.a. n.a. n.a.
StreamDB relational mem unknown no yes yes yes strong no readable st unknown
TSpoon n.a. n.a. n.a. yes no n.a. n.a. n.a. n.a. n.a.
Hologres structural service LSM tree no yes yes no n.a. n.a. n.a.

S, in stream processing.

Table 33. Other Systems: Group Atomicity, Group Isolation, Delivery, and Order

Aborts Protocol Assumptions Level Impl Assumptions Delivery Nature of Ts Order

Computations on data management systems

Percolator sys+job blocking n.a. blocking ts none exact event n.a.
F1 sys+job blocking none blocking lock+ts none exact no n.a.
Trinity n.a. n.a. n.a. blocking SEQ 1P most no n.a.

New programming models

SDG n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
TensorFlow n.a. n.a. n.a. config barrier n.a. exact no n.a.
Tangram n.a. n.a. n.a. n.a. n.a. n.a. exact no n.a.
ReactDB sys+job blocking none blocking ts none exact no n.a.

Hybrid systems

S-Store sys+job blocking DC blocking ts DC exact ingest always
SnappyData sys+job blocking none blocking lock+ts none exact no or ingest always
StreamDB job coord free dataflow coord free ts dataflow exact no n.a.
TSpoon sys+job (task) blocking none conf conf none exact no or ingest always
Hologres sys+job blocking none n.a n.a. n.a. exact no n.a.

DC, jobs are deterministic; SEQ, jobs are executed sequentially, with no interleaving; 1P, jobs access a single

state portion.

columns. Changes performed during the execution of a driver program may trigger the execution
of other driver programs. However, these executions are independent, and atomicity and isolation
are not guaranteed across them.

F1. F1 [83] builds a relational database on top of the storage, replication, and transactional features
of Spanner. F1 inherits all features of Spanner and adds distributed SQL query evaluation, support
for external data sources and sinks, and optimistic transactions. F1 converts SQL queries into a plan
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Table 34. Other Systems: Fault Tolerance

Detection Scope Comput Recov State Recov Guarantees for State Assumptions

Computations on Data Management Systems

Percolator lead-work shared st n.a. log+repl same STOR
F1 lead-work shared st n.a. log+checkp+repl same STOR
Trinity p2p comput+shared st job checkp+repl none none

New Programming Models

SDG lead-work comput+task st job log+checkp valid REPLAY
TensorFlow n.a. shared st n.a. checkp valid STOR
Tangram lead-work comput+shared st task checkp valid REPLAY
ReactDB n.a. n.a. n.a. n.a. n.a. n.a.

Hybrid systems

S-Store lead-work comput+shared st job log+checkp valid or same REPLAY
SnappyData p2p comput+task st+shared st task checkp+repl valid or same REPLAY
StreamDB n.a. n.a. n.a. n.a. n.a. n.a.
TSpoon lead-work comput+task st job log+checkp valid or same REPLAY
Hologres lead-work shared st unknown log same STOR

STOR, storage layer is durable; REPLAY, sources are replayable.

Table 35. Other Systems: Dynamic Reconfiguration

Goal Automated State Migration Task Migration Add /Del Slots Restart

Computations on Data Management Systems

Percolator load balan yes yes n.a. yes no
F1 change schema+load balan yes yes no yes no
Trinity avail yes yes yes unknown no

New Programming Models

SDG elast yes yes yes yes no
TensorFlow n.a. n.a. n.a. n.a. n.a. n.a.
Tangram n.a. n.a. n.a. n.a. n.a. n.a.
ReactDB n.a. n.a. n.a. n.a. n.a. n.a.

Hybrid Systems

S-Store n.a. n.a. n.a. n.a. n.a. n.a.
SnappyData n.a. n.a. n.a. n.a. n.a. n.a.
StreamDB n.a. n.a. n.a. n.a. n.a. n.a.
TSpoon elast no yes yes yes yes
Hologres load balan+elast yes yes yes yes no

that can be either fully executed on a single coordinator worker or include dataflow sub-plans that
are executed on multiple workers and managed by the coordinator. This execution mode mimics
dataflow DPSs. To optimize read-intensive, analytical jobs, F1 introduces optimistic transactions.
They are split into two phases: the first one reads all data needed for processing, and the second
one attempts to write results. The read phase does not block any other transaction, and so it can be
arbitrary long (as in the case of complex data analytics). The subsequent write phase will complete
only if no conflicting updates from other transactions occurred during the read phase.

Trinity. Trinity [80] is a graph data store developed at Microsoft with similar characteristics as TAO
in terms of data model (typed graphs), storage model (in-memory key-value store backed up in a
shared distributed filesystem), and guarantees (weak consistency without transactions). The main
distinguishing feature of Trinity is the ability to perform more complex computations on graphs,
including those that require traversing multiple hops of the graph (e.g., graph pattern matching)
and iterative analytical jobs (e.g., vertex-centric computations, as introduced by Pregel [66]). To
support these computations, Trinity lets users define different communication protocols that gov-
ern data exchange over the data bus during job execution. For instance, data may be buffered and
aggregated at sender side or at receiver side. For fault tolerance, Trinity stores the association be-
tween shared state portions and workers on the distributed filesystem, and updates it in the case
of failure. It also uses checkpoints within long-lasting iterative computations to resume them in
the case of failure.

D.2 New Programming Models

D.2.1 Stateful Dataflow SDG. SDG [43] is a programming model that extracts a dataflow graph
of computation from imperative code (Java programs). In SDG, developers write driver programs
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that include mutable state and methods to access and modify it. Code annotations are used to
specify state access patterns within methods. The program executor (a client-side compiler) ana-
lyzes the program to extract state elements and task elements, representing shared state and data-
parallel tasks in our model. If possible, state elements are partitioned across workers. Similarly,
task elements are converted into multiple concrete tasks, each accessing one single state element
from the shared state portion of the worker it is deployed on. For instance, consider a program
including a matrix of numbers and two methods to update a value in the matrix and to return the
sum of a row. The matrix would be converted into a state element partitioned by row (since both
methods can work on individual rows). Each method would be converted into a data-parallel task,
with one instance of the task per matrix partition. State elements that cannot be partitioned are
replicated in each worker, and the programming model supports user-defined functions to merge
changes applied to different replicas. In terms of execution, SDGs are similar to stream processing
systems such as Storm or Flink: jobs are continuous, and tasks communicate through direct TCP
channels. SDGs rely on periodic snapshots and re-execution for fault tolerance: the same mecha-
nism is adopted to dynamically scale in and out individual task elements depending on the input
load they receive [26].

TensorFlow. TensorFlow [1] is a system for large-scale machine learning that extends the dataflow
model with explicit shared mutable state. Jobs represent machine learning models and include
operations (data transformations) and variables (shared mutable state elements representing the
parameters of the machine learning model). Frequently, jobs are iterative and update variables at
each iteration. The specific application scenario does not require strong consistency guarantees
for accessing shared state, so tasks are allowed to execute and read/write variables asynchronously.
If needed, TensorFlow permits some form of barrier synchronization—for instance, to guarantee
that all tasks perform an iteration step using a given value of variables before they get updated
with the results of that step. TensorFlow tasks can be executed on heterogeneous devices (e.g.,
hardware accelerators), and users can express explicit placement constraints. Since version 2, part
of the dataflow plan may be defined at runtime, meaning that tasks can dynamically define and
spawn downstream tasks based on the input data. Variables can be periodically checkpointed to
durable storage for fault tolerance. In the case of failure, workers can be restarted and they restore
the latest checkpointing available, with no further consistency guarantees. TensorFlow has been
conceived from the very beginning as a distributed platform, but many other libraries for machine
learning, initially designed for a single machine, inherited its stateful dataflow execution model:
the most prominent and most widely adopted example is PyTorch.14

Tangram. Tangram [50] is a data processing framework that extends the dataflow model with ex-
plicit shared mutable state. It implements task-based deployment but allows tasks to access and
update an in-memory key-value store as part of their execution, which enables optimizing algo-
rithms that benefit from fine-grained updates of intermediate states of computations (e.g., itera-
tive algorithms or graph processing algorithms). By analyzing the execution plan, Tangram can
understand which parts of the computation depend on mutable state and which parts do not, and
optimizes fault tolerance for the job at hand. Immutable data is recomputed using the same (lin-
eage) approach of MapReduce and Spark, thus re-executing only tasks that are necessary to rebuild
the data. Mutable state is periodically checkpointed. In general, Tangram does not provide group
atomicity or isolation for state: simultaneous accesses to the same state portions from multiple
tasks may be executed in any order.

14https://pytorch.org.
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D.2.2 Relational Actors ReactDB. ReactDB [79] extends the actor-based programming model
with database concepts such as relational tables, declarative queries, and transactional execution
semantics. ReactDB builds on the abstraction of reactors, which are logical actors that embed state
in the form of relational tables. Each reactor can query its internal state using a declarative lan-
guage (SQL) or can explicitly invoke other reactors. Invocations across reactors are asynchronous
and retain transactional semantics: clients invoke a root reactor and all invocations it makes be-
long to the same root-level transaction, and are atomic and isolated. The core idea of ReactDB is
that developers control data partitioning across reactors and distributed execution: on one extreme,
they can place all state in a single reactor and mimic a centralized database; on the other extreme,
they can assign a single table (or a single partition of a table) to each reactor, which maximizes dis-
tributed execution. With this model, the execution plan is partly implicit (within a single reactor)
and partly explicit (calls between reactors). ReactDB is currently a research prototype. As such,
it lacks a distributed implementation, replication, fault tolerance, and dynamic reconfiguration
mechanisms.

D.3 Hybrid Systems

S-Store. S-Store [27] integrates stream processing capabilities within a transactional database sys-
tem. It builds on H-Store [88], the research prototype that later evolved into VoltDB [89], and
adopts the same approach to implement transactional guarantees with limited overhead. It ex-
tends H-Store by enabling stream processing jobs, represented as a dataflow graph of tasks that
may access local task state as part of their processing. S-Store exploits the database state to imple-
ment the shared state (visible to all tasks), the task state (visible only to individual tasks of stream
processing jobs), and the data bus (that stream processing tasks use to exchange data streams). In-
put data (for streaming jobs) and transaction invocations (for data management jobs) are handled
by the same engine, which schedules task execution ensuring that dataflow order is preserved for
stream processing jobs. S-Store supports two fault tolerance mechanisms, one ensuring same state
recovery through a command log and a periodic snapshot, and one ensuring valid state by replay-
ing streaming data. Although the S-Store prototype is not distributed, we included it in the survey
for its original integration of data management and data stream processing, and because its core
concepts can easily lead to a distributed implementation.

SnappyData. SnappyData [70] aims to unify data processing abstractions (both for static and for
streaming data) with mutable shared state. To do so, it builds on Spark and Spark Streaming as job
execution engines but extends them to enable writing to a distributed key-value store. Users write
jobs as declarative SQL queries. SnappyData analyzes jobs and classifies them as lightweight (trans-
actional) or heavy (analytical): in the first case, it directly interacts with the underlying key-value
store, whereas in the latter case, it compiles them into an Spark dataflow execution plan. Based
on the application at hand, users can decide how to store shared state (e.g., in row or in column
format) and how to partition and replicate it, and how to associate shared state portions to work-
ers, to maximize co-location of state elements that are frequently accessed together. Interestingly,
SnappyData also supports probabilistic data and query models that may sacrifice precision to re-
duce latency. SnappyData supports group atomicity and group isolation (up to the repeatable-read
isolation model) using two-phase commit and multi-version concurrency control. Fault detection
is performed in a distributed manner, to avoid single points of failures. Fault recovery is based on
replication of the key-value store, which is also used to persist the checkpoints of the data used by
Spark during long-running one-shot and continuous jobs.

StreamDB. StreamDB [31] integrates shared state and transactional semantics within a dis-
tributed stream processing system. From stream processing systems, StreamDB inherits a dataflow
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execution plan with job-level deployment. As in DMSs, tasks have access to a shared state, which
represents relational tables that can be replicated and partitioned horizontally and/or vertically
across workers. Each worker is responsible for reading and updating its portion of the shared
state. Input requests represent invocations of jobs: they are timestamped when received by the
system and each worker executes tasks from multiple jobs in timestamp order, thus ensuring that
jobs are executed in a sequential order without using explicit locks (group isolation). The results
of a job are provided to sinks that subscribed to them. StreamDB is a research prototype and cur-
rently requires developers to explicitly define how to partition the shared state and to write the
dataflow execution plan for all the jobs. It lacks fault tolerance and reconfiguration mechanisms.

TSpoon. Like StreamDB, TSpoon [5] also integrates data management capabilities within a dis-
tributed stream processing system. Unlike StreamDB, it does not provide a shared state. Instead,
it builds on the programming and execution models of Flink and enriches them with (i) the pos-
sibility to read (query) task state on demand and (ii) transactional guarantees in the access to task
state. TSpoon considers each input data element as a notification of some change occurred in the
environment in which the system operates. Developers can identify portions of the dataflow graph
(denoted as transactional sub-graphs) that need to be read and modified in a consistent way, mean-
ing that each change should be reflected in all task states or none (group atomicity) and the effects
of changes should not overlap in unexpected ways (group isolation). TSpoon implements atomic-
ity and isolation by decorating the dataflow graph with additional operators that act as transaction
managers. It supports atomicity under the assumption that jobs abort either due to a system fail-
ure or due to some inconsistency during the update to the state of individual tasks. It supports
different levels of isolation (from read committed to serializable) with different tradeoffs between
guarantees and runtime overhead. It supports different isolation protocols, both based on locks
and on timestamps.

Hologres. Hologres [53] is a system developed at Alibaba to integrate analytical (long-running)
and interactive (lightweight) jobs. The system is designed to support high volume data ingestion
from external sources, continuously compute derived information, store it into a shared state, and
make it available to external sinks. Hologres uses a modular approach, where the storage layer is
decoupled from the processing layer and delegated to external services (e.g., a distributed filesys-
tem). It adopts a leader-worker approach: the shared state is partitioned across workers, and each
worker stores a log of updates for the partition it is responsible for and an in-memory store that
is periodically flushed on the durable storage service. Hologres supports a structured data model,
where data is organized into tables that can be stored row-wise, column-wise, or both depending
on the access pattern, element by element rather than for range scan or aggregation. A distinctive
feature of the system is its scheduling mechanism. Each job is decomposed into tasks, and jobs
execution is orchestrated by a coordinator, which assigns tasks to workers based on their current
load and their priority. For instance, analytical tasks may be assigned a lower priority to guaran-
tee low response time for interactive queries. Hologres supports group atomicity using two-phase
commit, but it does not support group isolation. Replication of the shared state is not currently
implemented. Fault tolerance relies on logging and checkpointing and assumes that the storage
layer is durable. Dynamic reconfiguration is a design concern, and includes migration of shared
state portions but also reconfiguration of execution slots to enforce load balancing or user-defined
specification of priorities.

E RELATED SURVEYS AND STUDIES

This section presents related surveys and studies that complement our work, putting it in a broader
context.
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The book by Kleppmann [54] presents the main design and implementation strategies to build
data-intensive applications. It is complementary to our work, as it discusses key design concepts
in greater detail, but it does not provide a unifying model nor a taxonomy of systems.

The work on highly available transactions by Bailis et al. [15] provides a conceptual framework
that unifies various guarantees associated with data management in distributed systems. It influ-
enced our discussion of task grouping and replication management.

Various works by Stonebraker and colleagues [85–88] guided our classification of DMSs and the
terminology we adopted for the NoSQL and NewSQL classes. In this area, Davoudian et al. [36]
present a survey of NoSQL stores, which expands some of the concepts presented in this article,
particularly those related to data models and storage structures. Other works explore approaches
dedicated to specific data models, such as time-series management [52] and graph processing [68],
or strategies to adapt to multiple data models [63].

In the domain of DPSs, the dataflow model has received much attention, with work focusing
on state management [93], handling of iterations [44], parallelization and elasticity strategies [77],
and optimizations for stream processing [48].
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