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Abstract
3D Concrete Printing (3DCP) is a rapidly evolving technology that allows for the efficient and accurate construction of
complex concrete objects. In this paper, a numerical modelling approach is presented for the simulation of the printing
process of cementitious materials, based on the homogeneous fluid assumption. To cope with the large deformations of
the domain and the nonlinearity resulting from the use of a non-Newtonian rheological law, the Navier–Stokes equations are
solved in the framework of the Particle Finite Element Method (PFEM). Furthermore, tailored solutions have been formulated
and implemented for the time-dependent moving boundary conditions at the nozzle outlet and for the efficient handling of
the inter-layer contact in the same PFEM framework. The overall computational cost is decreased by the implementation
of an adaptive de-refinement technique, which drastically reduces the number of degrees of freedom in time. The proposed
modelling approach is finally validated by simulating the printing process of six rectilinear layers and one multi-layer “wall”.
The results show good agreement with the experimental data and provide valuable insights into the printing process, paving
the way for the use of numerical modelling tools for the optimization of materials and processes in the field of 3D Concrete
Printing.

Keywords Numerical modelling · Particle Finite Element Method · Non-Newtonian fluid · Additive manufacturing · 3D
concrete printing · Layer deposition

1 Introduction

Additive manufacturing (AM) techniques are nowadays
established in different industrial sectors, including automo-
tive, aerospace, and healthcare, where they contribute greatly
to the optimization of the production process.However, in the
construction industry, these techniques are still not affirmed
and much research is going on to explore their potential
and practical feasibility. Some of the most promising digital
construction technologies are reported in [1], among them,
3D Concrete Printing (3DCP) is probably the most well-
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known. In 3DCP a cementitious mortar is extruded through a
digitally controlled nozzle and the target shape of the archi-
tectural/structural artefact is progressively generated out of
layers of material. Therefore, 3DCP offers the possibility
to easily cope with the construction of free-form topologi-
cally optimized shapes, avoiding the use of any formwork
[2]. Moreover, 3DCP can reduce drastically building times
and costs with respect to more traditional building technolo-
gies, and it could also turn out to be a key factor in lowering
the environmental impact of concrete constructions.

Nonetheless, this technology is not ready yet for large-
scale adoption, because of the technical issues still to be
addressed and the many uncertainties linked to the extrusion
process and its outcomes. The progress of numerical models
is expected to cover this gap and to provide the designer with
better knowledge and control of 3DCP [3].

Modelling 3DCP is a complex task, because of differ-
ent physical phenomena occurring at different space and
time scales. As a consequence, a comprehensive numerical
tool has not yet been developed, and different approaches,
mainly derived from standard simulations of fresh concrete,
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are being investigated. Similar to what is reported in [4]
for standard concrete modelling, it is possible to subdivide
numerical simulation techniques for 3DCP into three main
groups: continuum single-phase approaches (solid or fluid)
and discrete methods. The first two groups model the mate-
rial as a homogeneous continuum, either solid if the focus of
the simulation is on the structural behaviour of the printed
object (e.g., buildability analysis), or fluid if the interest is
on the extrusion process and on the fresh state behaviour. On
the contrary, discrete approaches reproduce the material as a
set of interacting discrete elements (such as particles) and in
principle, they could be applied to simulate different stages
of the 3DCP process.

The first attempts to simulate 3DCP have been conducted
with the FEM, in a solid single-phase framework, with the
aim of assessing the stability of the object during printing.
In [5], the printing process of a cylindrical column was stud-
ied with the commercial software ABAQUS, by sequentially
activating the layers of material. Using a similar technique,
implemented in the 3D printed-dedicated plugin of the com-
mercial softwareATENA, in [6] itwas carried out the stability
analysis of a small set of 3D-printed intersecting walls.

Subsequently, other researchers focused on the task of
including uncertainties and time dependency in the mate-
rial parameters governing 3DCP simulations. In [7] a 2D
Stochastic Finite Element Method (SFEM) was formulated
with this aim and applied to the virtual printing of a 2D recti-
linear wall. To further improve the accuracy of the simulation
the finite elements were activated one by one. However, for
three-dimensional objects with complex geometry, it is chal-
lenging to generate in advance the finite elements and assign
their correct order of activation. For this reason, in [8] two
Grasshopper plugins were developed to generate automati-
cally the ABAQUS input files needed for the analysis of the
printing of arbitrary shapes.

A different approach, based on a discrete lattice model
was studied in [9]. The printed object was replaced by a net-
work of Timoshenko beams and the extrusion process was
reproduced with an “element birth technique”, consisting in
deactivating and reactivating the beams during the analysis.
The above-mentioned solid continuummethods successfully
predict failure duringprinting, but they cannot give a compre-
hensive understanding of the material flow during extrusion.
From the physical point of view, in fact, fresh concrete is a
suspension of particles in a fluid matrix.

Depending on its workability, it can behave similarly to a
granular material, suggesting researchers to employ discrete
particle approaches for its simulation. The Discrete Element
Method (DEM), originally developed in [10], reproduces the
material as a set of independent particles interacting through
specific “contact laws”. DEM is often applied for the simula-
tion of the extrusion in 3DCPwith the aim to capture specific
aspects associated with the heterogeneity of the material. To

name a few examples: assessing fibres orientations during
extrusion [11]; accounting for the presence of aggregates
of different sizes, according to the granulometric curve and
the mix design [12]; modelling of the mixing and pumping
phases [13]. In DEM simulations to obtain accurate results
it is necessary to use a large number of particles, leading to
a very high computational cost. Another drawback lies in
the difficulty of determining proper contact laws to establish
how the particles interact during simulation. In fact, differ-
ently from continuum approaches, for which physical-based
constitutive equations are generally available, in DEM, the
contact laws are directly calibrated from the experiments.

For this reason, other methods, relying on the continuous
single-phase fluid approach have also been explored. The
underlying assumption is that fresh concrete can be treated
as a homogeneous viscous fluid. In this view, the Navier–
Stokes equations govern the problem and Computational
Fluid Dynamic (CFD) techniques are used to solve them.
Overall, CFD methods can realistically reproduce the flow
of the material, but they also require a quite high computa-
tional effort.

The commercial CFD software FLOW-3D based on the
Finite Volume Method (FVM) was adopted in [14, 15],
to simulate the extrusion process and to predict the cross-
sectional shapes of a few rectilinear layers. Also in [16],
FLOW-3D is employed to study the printing process and to
asses the layer’s quality.

A different option consists of the use of the Particle Finite
Element Method (PFEM) [17, 18]. To cope with the large
deformations proper of fluid simulations and the tracking
of the free surface. PFEM combines a standard Lagrangian
FEMformulationwith a re-meshing scheme. It has the advan-
tage to be strictly related to the standard and well-known
FEM, allowing for the use of familiar constitutive models. It
has been extensively employed in a variety of applications
(e.g., dam break, slide simulations, metal forming, mould
casting) and also to reproduce rheological tests on concrete
in [19–21]. More recently PFEM was applied to simulate
3DCP in [22, 23] and also in [24].

Thisworkdescribes the formulationof a three-dimensional
single-phase fluid PFEM numerical model of 3DCP. The
Lagrangian nature of PFEM intrinsically allows for the track-
ing of the free surface. In addition, to facilitate the imposition
of themoving time-dependent boundary conditions typical of
3DCP problems, an original Arbitrary Lagrangian–Eulerian
formulation is presented and used for the boundary nodes.
Differently from [22, 23], an explicit solver is chosen to cope
with the nonlinearities associated with the large deformation
regime, the non-Newtonian rheological law and the complex
boundary conditions. Moreover, a new cost-effective way is
also presented to treat contact and self-contact in PFEM,
which improves mass conservation and can reduce the errors
associated with the re-meshing algorithm [22, 23]. Finally,
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an adaptive de-refinement technique is proposed and imple-
mented to decrease the computational cost, without affecting
too much the overall accuracy.

The structure of the paper is organized as follows. In
Sect. 2, the theoretical framework is presented, starting with
a general discussion of the main underlying assumptions
and then detailing the governing equations. Subsequently,
in Sect. 3 the numerical discretization of the equations is
reported and in Sect. 4 the PFEM is introduced. The specific
computational tools developed to simulate the extrusion pro-
cesses of 3DCP are instead covered more in-depth in Sect. 5.
Section6 presents the benchmarks used to validate themodel,
for which the experimental data were available in the liter-
ature. The key findings derived from the simulation of the
printing scenarios described in the benchmarks are also sum-
marised there. Finally, in Sect. 7, the conclusions are drawn,
also addressing potential issues and topics deserving further
research.

2 Governing equations

Fresh concrete is composed of a mixture of particles and
aggregates suspended in a fluid matrix. This dual nature
of fluid and granular material motivates the use of both
continuum and discrete numerical approaches for concrete
simulation. In [25] it was shown how both these families of
methods can successfully capture the experimental results
of the slump and channel flow tests. More in the specific,
as stated in [4], assimilating fresh concrete to a homoge-
neous fluid is justified by the use of an appropriate scale of
observation with respect to the phenomenon to be described.
The 3DCP process can be subdivided into different phases,
involving different physical phenomena and characteristic
dimensions. According to [3] the most relevant phases in
3DCP are: mixing, pumping and extrusion, layer deposition,
stability and shape retention of the printed object. The focus
of this work is on the simulation of the extrusion and filament
deposition processes, which are associated with characteris-
tic lengths of the order of the nozzle width and of the filament
height (i.e., generally about a few centimetres). Therefore a
scale of observation of one order ofmagnitude larger than the
coarsest particle size (which amounts to a few millimetres),
would be enough to consider the material as a continuum
and at the same time capture the main physics of the prob-
lem. Some examples ofworks adopting the single-phase fluid
approach to simulate 3DCP extrusion are reported in [26].

In the homogeneous fluid assumption, the Navier–Stokes
equations govern the problem and standard CFD techniques
(e.g., FEM) can be used to compute the solution. The
Navier–Stokes equations are a system of partial differen-
tial equations, accounting for the physical conservation of
momentum,mass, and energy in fluid dynamics. Theweakly-

compressible fluid hypothesis will be adopted, motivated by
the fact that for fresh concrete standard applications the com-
pressibility effects are almost negligible. In fact, the Mach
number (Ma), computed by taking the ratio between the aver-
age fluid velocity for a generic 3DCP application (v f = 0.1
m/s) and the speed of a dilatational wave in fresh concrete
(∼ 500 m/s), results to be in the order of Ma = 2 × 10−4

(the incompressible limit is obtained for Ma = 0). More-
over, the weakly-compressible framework is preferred to
the incompressible one since relaxing the incompressibility
constraint facilitates the numerical solution. Because of the
weakly-compressible assumption, an equation of state will
be required to link the pressure and the density.

2.1 Momentum balance andmass conservation

Standard CFD simulations usually adopt an Eulerian frame-
work. Solving the governing equations on a fixed com-
putational grid can be particularly advantageous to avoid
problems related to mesh distorsion. Additionally, the Eule-
rian framework allows for straightforward management of
inflow and outflow boundary conditions. Based on these con-
siderations, an Eulerian point of view seems convenient to
study 3DCP, where large deformations are present and a
steady-state inflow condition must be specified at the noz-
zle outlet.

However, in the Eulerian description, it is difficult to deal
with evolving domains and interfaces. A Lagrangian frame-
work is generally preferred when a transient free surface
needs to be tracked, such as the concrete-air interface in
3DCP.Moreover, it facilitates the treatment of materials with
history-dependent constitutive laws.

A third option consists of the use of the Arbitrary
Lagrangian-Eulerian (ALE) description, which combines the
advantages of both the Eulerian and the Lagrangian frame-
works [27]. In the ALE framework, neither the material
coordinates nor the spatial coordinates are taken as reference,
but instead, the reference system is related to the computa-
tional mesh. In this view, the motion of the physical points
becomes decoupled from the mesh movement. Let v be the
mesh velocity and u the physical velocity at a certain mate-
rial point. The ALE framework will determine the presence
of a convective term in the balance equations, depending on
the convective (or relative) velocity c = u − v between the
physical points and the mesh nodes. The Lagrangian and the
Eulerian description are recovered as particular sub-cases of
the ALE by imposing respectively that the convective veloc-
ity is null c = 0 (i.e., v = u ) and that the convective velocity
is coincident with the physical one c = u (i.e., v = 0).

In this work, the Navier–Stokes equations will be writ-
ten in the more general ALE framework. However, different
mesh velocities will be specified in different regions of the
computational domain. In the majority of the fluid domain
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the standard Lagrangian description, associated with all the
advantages discussed before, is recovered (see Sect. 5). At
the nozzle outlet, to facilitate the imposition of the time-
dependentmoving boundary conditions, theALEdescription
is exploited, by specifying a mesh velocity equal to the pre-
scribed printing velocity (see Sect. 5 for further details).

Let an evolving fluid domain�t be considered in the inter-
val [0, T ]. In this domain, X are the position vectors in the
material configuration, x the position vectors at time t in the
local “or current” configuration and χ the position vectors in
a reference system associated with the mesh. Consequently,
the momentum balance and mass continuity equations, writ-
ten in the ALE form, read:

ρ

(
∂u
∂t

∣∣∣
χ

+ (c · ∇x)u
)

= ∇x · σ + ρb

in �t × [0, T ], (1)(
∂ p

∂t

∣∣∣
χ

+ c · ∇x p

)
+ K∇x · u = 0

in �t × [0, T ], (2)

where σ = σ (x, t) is the Cauchy stress tensor, b is the vector
of the body forces in the local configuration, u = u(x, t) is
the velocity field, p = p(ρ, t) is the pressure field and K is
the bulk modulus of the material. Additionally, to formulate
the rheological law, the Cauchy stress tensor is decomposed
in an isotropic and a deviatoric part:

σ = −p I + τ , (3)

where I is the identity tensor and τ is the deviatoric stress
tensor. Once the governing equations are defined, a suitable
set of initial and boundary conditions must be prescribed:

u(X, t = 0) = u0 in �0, (4)

u(x, t) = ũ(x, t) on �D × (0, T ), (5)

σ · n = h(x, t) on �N × (0, T ), (6)

p(X, t = 0) = p0 in �0, (7)

where u0, ũ, h, p0 are prescribed known functions and n
is the outward normal to the boundary �t = ∂�t , which is
subdivided in two non-overlapping subsets �D and �N , such
that �D ∪ �N = �t and �D ∩ �N = ∅.

2.2 Rheological law

The rheological behaviour of fresh concrete is characterized
by the existence of a yield stress [28, 29], consisting of a stress
threshold which separates the perfectly rigid behaviour of
thematerial from the flowing fluid regime. A non-Newtonian
rheological law is necessary to accurately represent this char-

acteristic. One commonly adopted model for this purpose is
the Bingham law [30], which reads:

τ (u) = 2με(u) + τ0
ε(u)

‖ε(u)‖ if ‖τ‖ > τ0, (8)

ε(u) = 0 otherwise. (9)

In Eqs. (8) and 9, τ is the deviatoric stress tensor introduced
in (3), μ is the fluid viscosity, τ0 is the yield stress and ε(u)

is the deviatoric strain rate defined as:

ε(u) = 1

2
(∇xu + ∇xuT ) − 1

3
(∇xu)I . (10)

In the Bingham law, the yield stress represents a sharp
discontinuity which prevents a straightforward numerical
implementation. Therefore, to avoid possible instabilities and
convergence issues the regularization proposed in [31], con-
sisting of an exponential approximation of the Bingham law,
is here adopted:

τ (u) =
[
2μ + τ0

‖ε(u)‖ (1 − e−m‖ε‖)
]

ε(u). (11)

Fig. 1 shows for the mono-dimensional case that as the expo-
nent m in Eq. (11) increases, a better approximation of the
Bingham law is obtained. In this work, the valuem = 1000 s
is chosen, as it is high enough to quite accurately reproduce
the Bingham law at the lower strain rates (see Fig. 1), while
preserving the numerical stability of themodel. Lower values
of m could bring to a model exhibiting excessive deforma-
bility.

Fig. 1 Papanastasiou exponential approximation of the Bingham law
for different values of the regularization parameter m

123



Computational Mechanics (2024) 73:277–295 281

2.3 Equation of state

The mass continuity Eq. (2) is written in the assumption of
weakly compressible fluid, therefore an equation of state is
necessary to relate the pressure p and the density ρ. The
modified Tait equation of state is adopted, since, according
to [32], it gives a good approximation of the compressibility
of a fluid with a density of the same order of magnitude of
water, under pressures comparable to the atmospheric one.
Moreover, as reported in [33], if the modified Tait equation is
used, the energy equation becomes decoupled from the con-
tinuity and momentum equations and, assuming isothermal
conditions, it can be disregarded. The Tait equation directly
links the pressure and the density fields:

ρ(p) = ρ0

(
p − p0
K

+ 1

) 1
γ

, (12)

with p0 and ρ0 respectively the pressure and the density in
the reference configuration (atmospheric conditions) and γ

the specific heat ratio. In the applications section of Sect. 6,
following [32], γ = 7 will be used.

3 Numerical solution

The Navier–Stokes equations can rarely be solved in closed
form. Typically, numerical solutions based on discretization
techniques such as the Finite Element Method (FEM) are
necessary for standard engineering applications. To compute
an approximate numerical solution, the first step consists of
the reformulation of the balance Eqs. (1)–(2) into the weak
(or variational) form.

Following the standard Galerkin formulation, the spaces
of the trial functions are introduced on the domain �, for the
velocity Su and for the pressure S p [34]. For the velocity, the
space of the test functions Su0 is also defined, which requires
the functions to vanish on the Dirichlet portion of the bound-
ary. On the contrary, S p suffices also as a test space, since
there are no explicit boundary conditions on the pressure.

The weak form of the momentum balance is obtained
by multiplying Eq. (1) for the generic vector test function
w ∈ Su0 and integrating over the computational domain �.
Analogously, the weak form of the mass conservation is
achieved by multiplying Eq. (2) for the generic scalar test
function q ∈ S p and integrating over the computational
domain �. The weak formulation of the problem, therefore,
consists of computing u ∈ Su and p ∈ S p that satisfy:

∫
�t

w ·
(

ρ
∂u
∂t

+ c · ∇xu
)
d�

=
∫

�t

w · (∇x · (τ − p I) + ρb)d� ∀ w ∈ Su0 , (13)

∫
�t

q

[
∂ p

∂t
+ (c · ∇x) p

]
d�

+
∫

�t

Kq (∇x · u) d� = 0 ∀ q ∈ S p. (14)

From the weak forms, it is possible to obtain a finite-
dimensional problem by introducing an isoparametric finite
element discretization of the velocity and pressure fields:

ui (x, t) =
ne∑
a=1

Nu
a (x)Ui,a(t), (15)

p(x, t) =
ne∑
a=1

N p
a (x)Pa(t), (16)

where ne represents the number of nodes in the element, Ui

is the vector of nodal velocities in the i-th direction, P is
the vector of the nodal pressures and Nu

a , N
p
a are the shape

functions for the velocity and the pressure respectively. The
integrals in Eqs. (13) and (14) can then be evaluated sep-
arately over each element, leading to the semi-discretized
in-space balance equations:

Mu(t)
∂U
∂t

= Fext − (
Kμ + Ku

c

)
U + DT P, (17)

Mp(t)
∂ P
∂t

+ K p
c P + K DU = 0, (18)

where Mu(t) and Mp(t) are the velocity and the pressure
mass matrices, Ku

c and K p
c are the matrices containing the

convective terms related to the velocity and to the pressure,
Kμ is the viscous matrix, Fext is the vectors of the exter-
nal forces and D is the discrete gradient operator matrix
(see [35]).

The equation of state (12) instead does not need any space
discretization, as it is evaluated point-wise at the FE nodes:

Ra = R0a

(
Pa − P0a

K
+ 1

) 1
γ

, (19)

where P0a and R0a are the reference nodal values of pressure
and density.

Subsequently, the time history can be subdivided into a
finite set of time steps �t and the equations are enforced
only at discrete time instants. A forward Euler scheme is
used to approximate time derivatives. The fully discretized
counterparts of Eqs. (1), (2) and (12), at the generic discrete
time instant tn , read:

Mn
uU

n+1 = Mn
uU

n + �tn
(
Fn
ext − Fn

int

)
, (20)

Mn
p
Pn+1 − Pn

�tn
+ K p,n

c Pn + K DnUn = 0, (21)
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Rn+1
a = R0a

(
Pn+1
a − P0a

K
+ 1

) 1
γ

, (22)

where Fint is the vector of the internal forces, which includes
all contributions written explicitly in Eq. (17). The forward
Euler scheme is explicit, therefore, to avoid instability, the
Courant-Friedrichs-Lewy (CFL) condition must not be vio-
lated. At each iteration, the stable time step is adapted based
on:

�t = β min
e

(
he
ce

)
, (23)

where he is a characteristic element size of the distorted
elements, β is a scaling safety factor and ce is the speed
of propagation of a dilatational pressure wave in the mate-
rial. Based on the studies on setting concrete done in [36],
it emerges that the velocity of a P-wave in fresh concrete
amounts to 200–500 m/s. These values, which are rather low
if compared to the velocity of sound in the water (1400 m/s),
are attributed to the granular nature of concrete.

Finally, it isworthmentioning that the choice of an explicit
solver allows for an effortless treatment of nonlinearities.
In addition, explicit solvers are generally easier to be par-
allelized than implicit ones and, as the dimension of the
problem increase, they become computationally more effi-
cient.

4 Particle Finite Element Method

The numerical model of 3DCP has been formulated in the
ALE framework, to facilitate the imposition of the steady-
state, moving boundary conditions at the nozzle outlet.
However, except for a few nodes positioned in correspon-
dence with this region, the majority of the computational
domain is treated in a standard Lagrangian fashion, by spec-
ifying a zero convective velocity.

Problems characterized by large deformations, if studied
in theLagrangian frameworkwill suffer from the distortion of
the computational domain. If themesh becomes too distorted,
accuracy and instability problems may arise. Therefore, a
possible solution consists in the use of the so-called “Parti-
cle Finite Element Method (PFEM)” [17]. The PFEM is a
mesh-based Lagrangian approach originally intended for the
simulation of free surface flows and breaking wave problems
[37].

Afterwards, because of its capacity to deal with large
deformation and topology changes of the domain, it was
applied also in other fields, such as landslide simulations [38,
39], geotechnical tests on soil [40], fresh concrete flow tests
[19–21] andmulti-phase flows [41]. Additionally, PFEM can
efficiently be coupled with other methods to study complex

particle-ladenflows [42] andfluid–structure interaction prob-
lems [43, 44].

Another advantage of PFEM stands in its ability to treat
complex contact interaction,which explains the large number
of PFEM works on the simulation of manufacturing pro-
cesses, to name a few [45, 46]. The use of PFEM to model
challenging additive manufacturing (AM) processes involv-
ing a fluid-to-solid phase transitionwas also explored in [47].
All these aspects make PFEM a promising candidate for the
simulation of 3DCP. In particular, recently, PFEM has been
adopted in [22, 23] and also in [24] to reproduce numeri-
cally the 3D printing process of a few rectilinear layers of
cementitious mortar.

In the PFEM the continuum is discretized with a finite
element mesh having the nodes coincident with the mate-
rial fluid particles. As the particles move according to their
Lagrangian nature, the mesh will start to deteriorate in time.
The underlying idea in the PFEM is to adopt a re-meshing
scheme to generate a newmesh every time it becomes overly
distorted. The main phases of the re-meshing algorithm are
illustrated with reference to Fig. 2. During the analysis the
mesh distortion is monitored, and, whenever it becomes
excessive, the mesh is deleted and only the nodes are main-
tained, as shown in Fig. 2a. Then, a new connectivity is
generated with the Delaunay algorithm [48]. The triangu-
lation resulting from this process coincides with the convex
hull of the given set of points (Fig. 2b). For this reason, the “α-
shapemethod” [18, 49] is then applied to recover the physical
fluid domain. In the specific, the α-shape method is a tech-
nique which distinguishes between physical and unphysical
elements based on their distortion: the more distorted the ele-
ment the less it is likely to belong to the fluid domain. With
the application of the α-shape method, all the unphysical
elements are removed and the original boundary of the fluid
domain is approximately reconstructed, as shown in Fig. 2c.

Sometimes, the re-meshing scheme alone may not be
sufficient to improve the quality of the mesh, particularly
in situations where node concentrations become too dense
or too sparse in certain regions. Furthermore, in 3D, the
mesh generated by the Delaunay tessellation is not optimal
and can frequently include badly shaped tetrahedra, named
“slivers”. In these cases, it is useful to perform additional
operations aimed at repositioning some of the nodes in the
domain, either locally (without modifying the connectivity)
or globally (modifying the connectivity and thus requiring
re-meshing) [18, 50].

One of the critical aspects of PFEM is that during the
re-meshing the elemental information stored at the Gauss
points is lost. Therefore, all the relevant elemental data must
be saved at the nodes, inevitably introducing some degree
of approximation. To facilitate this operation it is a common
approach in PFEM to employ linear shape functions. In this
way, the finite element nodes have a one-to-one correspon-
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Fig. 2 Re-meshing scheme in PFEM: initial set of points (a); Delaunay
triangulation (b); newmesh after the application of the α-shape method
(c)

dence with the physical points (or particles) and no mapping
is required between the old and the new mesh.

In this work, the domain is discretized with isoparamet-
ric tetrahedral finite element using linear shape functions

for the approximation of both the velocity and pressure
fields. However, by using equal-order finite elements the
Ladyzhenskaya-Babuška-Brezzi (LBB) condition is vio-
lated. Consequently, even if the assumption of weakly-
compressible fluid tends tomitigate the instability behaviour,
it is still necessary to introduce an appropriate stabilization. In
the present work the stabilizing effect is achieved by adding
a new term in the mass conservation, based on the local L2

polynomial projection of the pressure field onto a lower-order
interpolation space [51, 52].

5 Computational strategies for 3DCP

In the PFEM framework, different computational strategies
have been implemented to enhance the accuracy of the sim-
ulations of the printing process. In the specific, this section
presents: the use of theALE framework to impose simultane-
ously the boundary conditions regarding the material’s flow
and the printing velocity at the nozzle outlet; two algorithms
to improve contact with the ground and among different lay-
ers; an adaptive de-refinement technique to reduce the total
number of the degrees of freedom in the model.

5.1 Continuousmaterial flow during printing

This work focuses on the simulation of the extrusion and
layer deposition processes in 3DCP.Therefore, since themix-
ing and pumping phases have been disregarded, the problem
arises of how to achieve a continuous flow of the material
from the nozzle. A possible solution would be to impose a
steady state inflow boundary condition at the nozzle outlet
by means of the mixed Lagrangian-Eulerian technique pre-
sented in [35]. A layer of Eulerian nodes is introduced at the
nozzle outlet with a prescribed velocity profile. However,
because the Eulerian nodes are fixed, this operation would
prevent the possibility to assign the printing velocity (see
Fig. 3) to the nozzle. Here, the use of the ALE formulation,
already described in sect. 2.1, is proposed to overcome the
problem. The key idea of the ALE is to introduce a computa-
tional meshwhich canmove independently from thematerial
particles. The ALE description is particularly advantageous
if there is a clearmesh-updating algorithm,which enables the
automatic prescription of the mesh movement [27]. In 3DCP
this is easily accommodated, as the nozzle motion (i.e., its
velocity history) is prescribed and thus known a priori .

In this view, the discrete boundary at the nozzle outlet �

(see Fig. 3b) will be represented as a set of ALE nodes. The
position of these nodes is updated in time with a mesh veloc-
ity equal to the printing velocity v = v pr int . The remaining
nodes of the computational domain �\� are instead always
treated in a standard Lagrangian fashion Figure (4a), by pre-
scribing amesh velocity coincidentwith the physical velocity
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Fig. 3 Boundary conditions at the nozzle outlet � at different times of the extrusion process t1 and t2, with t1 < t2

Fig. 4 ALE description to simultaneously impose the inflow and the
printing velocity at the nozzle outlet: initial nodes configuration (a);
Lagrangian nodes flowing away from the ALE ones (b); insertion of a
new layer of Lagrangian nodes and re-meshing (c)

v = u. The mesh velocity v is thus defined at each node i of
the computational domain, at every time instant, as:

vi =
{

v pr int if i ∈ � → ALE node,

ui if i ∈ �\� → Lagrangian node.
(24)

At each time step the position of the nodes is updated based
on the mesh velocity v:

xt+1
i = xti + vi�t . (25)

Having modelled arbitrary nozzle translations by specify-
ing a proper mesh velocity, it becomes possible to assign
to the ALE nodes the fluid inflow velocity u = u f low as a
boundary condition. Therefore, independently from the noz-
zle movements, a continuous vertical material flow from the
nozzle outlet can always be obtained. In this view, the ALE
description is just exploited to impose the time-dependent
moving boundary condition at the nozzle outlet. Moreover,
it can be observed that the Lagrangian nodes connected to
the inflow boundary, in time, according to their Lagrangian
nature, will move down causing a local stretching of themesh
(Fig. 4b). To cope with this issue the layer of elements con-
nected to the boundary nodes is monitored. Whenever these
elements become overly stretched, a new set of Lagrangian
nodes is added in themiddle (Fig. 4c). The solution at the new
nodes is computed by interpolation using the shape functions
and the nodal values from the current mesh. Finally, at the
beginning of the next time step, a re-meshing operation is
performed. The procedure described above is summarised in
Algorithm 1.

Algorithm 1 Continuos material flow
At the generic time tn :

- update nodal positions with eq. (25)
- compute the mean volume Vm(tn) of the elements connected to the
nozzle

if Vm(tn) > ηVm(t0), with η � 2 then
add a new layer of intermediate nodes
interpolate the solution at the new nodes
request for a new mesh

end if

5.2 Contact with the base plane and inter-layer
contact

As underlined in [53], PFEM re-meshing operations can
affect the mass conservation. The application of the α-shape
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Fig. 5 Contact between the first layer and the ground: standard PFEM approach leading to some volume variation (a); present approach “freezing”
the nodes below the dot-dashed plane (b)

method to detect the new boundaries can in fact alter the
topology of the computational domain, causing an artificial
change in the global volume. Generally, refining the mesh
can be sufficient to reduce these volume variations.

As observed in [22], in 3DCP the fictitious volume varia-
tions tend to sum up over time, progressively increasing the
total volume and eventually affecting the geometry of the
printed filament. The origin of this behaviour is associated
with the contact between different portions of the fluid or the
fluid and the base plane. As already observed, this behaviour
can be controlled by reducing the mesh size. However, to
improve accuracy also with quite coarse meshes, two tech-
niques to minimize the volume gain in the contact regions
are hereafter proposed.

Algorithm 2 Contact with the base plane
At the generic time tn :
for i = 1, ..., Nnodes do

if zi < ztol then
“freeze” node i: ui = ui = 0

end if
end for

The first one considers the contact of the first layer of cemen-
titious mortar with the ground. Typically, in the PFEM the
ground plane is materialized by a set of fixed nodes. When
the fluid nodes approach the fixed ones, some unphysical ele-
ments could be generated (see Fig. 5a). In this work, the base
plane is not present and the coordinates of the Lagrangian
nodes are instead monitored during the analysis. As soon as
their z-coordinates become lower than a fixed threshold ztol ,
the nodes are “frozen”byprescribing zeroDirichlet boundary
conditions, as shown in Fig. 5b. In this way, it is as if only
one object (the fluid) is present, avoiding contact and any
related fictitious volume variation. The procedure described

is schematically reported inAlgorithm 2.More complex base
plane conditions (e.g., inclined or non-planar surfaces) can
also be treated in a similar way by defining the ground con-
straint with an analytical equation or by approximating it
through proper interpolation.

On the contrary, inter-layer contact requires to be treated in
a more structured way. In order to create a general algorithm,
valid in any printing scenario, also with coarse meshes, some
underlying operations are performed:

1. Refinement of the free surface of the current layer.
2. Removal of the internal nodes of the previous layerwhich

are too close to the possible interfacewith the current one.

Both these improvements are performed for the entire dura-
tion of the analysis and turn out to be quite helpful in
preventing the formation of a locally degenerate mesh at the
interface (elements in red in Fig. 6a), thus guaranteeing an
optimal straight interface (Fig. 6b). The general idea behind
the technique for treating interlayer contact is to modify the
α-shape algorithm to detect the elements forming between
the outer surfaces of different layers. If the detected elements
have a volume above a certain fixed tolerance they are simply
deleted (green element in Fig. 6b). Otherwise, if their volume
is below the fixed tolerance (green element in Fig. 7a), they
are still deleted, but, additionally, their nodes belonging to
the upper layer are also removed. In this second case, a re-
meshing is then performed to obtain a new updated interface
between the two layers, as shown in Fig. 7b. Notice that, the
interface between the two layers after contact consists only
of nodes from the lower layer. These nodes will be shared
between the elements of the top layer and those on the lower
layer. The main steps of this technique are reported in Algo-
rithm 3. The contact algorithms developed help to control
the volume variations and they have a limited computational
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Fig. 6 Degenerate mesh causing an irregular contact interface (a). Rectilinear contact interface obtained with free surface refinement of layer 1
and with the removal of the internal nodes of layer 2 too close to the free surface (b). The green element will be deleted by the contact algorithm

Fig. 7 Free surface elements between different layers (such as the green element in the figure) are deleted (a). Additionally, if their volume decreases
below a tolerance value, their nodes belonging to the upper layer are also removed and a new triangulation is performed (b)

cost. In particular, the second technique, which is the most
elaborate, because it relies on a modification of the α-shape
method, it does not increase the computational cost.

5.3 Adaptive mesh de-refinement

Typically, adaptive mesh refinement consists of moving the
nodes towards the zones of strong solution gradient [27]. In
fluid single-phase 3Dprinting simulations based on the FEM,
a quite refined mesh is needed from the beginning in order
to correctly reproduce the geometry and obtain precisely

the free surface evolution. However, since the computational
domain is constantly expanding, maintaining such a refined
mesh everywhere during the whole analysis is excessively
expensive.

A recent work [54] has shown the huge potential of com-
bining PFEM with mesh adaptive refinement techniques. In
the following, we present an adaptive mesh de-refinement
algorithm, based on a geometric criterion, which has been
integrated with the numerical model of 3DCP. The idea is
to subdivide the computational domain into three different
portions, which are reported in Fig. 8a. Inside each sector, a
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Fig. 8 Adaptive mesh
de-refinement: definition of the
different regions and mesh sizes
(a); finite element mesh (b);
velocity field magnitude (c)

Algorithm 3 Interlayer contact
At the generic time tn :

- Refine free surface of current layer
- Remove internal nodes of previous layer too close to the interface

for j = 1, ..., Nelements do
if all nodes of are free surface, but not from the same layer then

delate element j
if vol ≤ tol then

delete nodes of element j belonging to the upper layer
request for a new mesh

end if
end if

end for

different concentration of nodes is kept in order to achieve
differentmesh sizes: h1, h2 and h3. In particular, each node is
monitored at the generic time step to asses whether it belongs
to a certain region or not, by evaluating its distance from
the nozzle centre r . In the first region (r ≤ r1) contain-
ing the nozzle outlet the most refined mesh is employed,
with element size h1 = h. This reference mesh size is deter-
mined as a trade-off between accuracy (i.e., h is small enough
with respect to the characteristic dimensions of the problem)
and computational performances. The comparison with the

experimental data in Sect. 6 will further justify the choice of
h. In the other two regions, characterized by r1 < r < r2 and
r > r2, mesh sizes which are multiples of the most refined
one are prescribed, respectively h2 = c2h and h3 = c3h. The
constants c2 and c3 are both larger than one and c2 < c3. They
are selected to guarantee the presence of at least a couple of
finite elements along the height and width of the filament.
To obtain the target mesh sizes, the average distance of each
node from its adjacent neighbourhoods is compared to the
prescribed mesh size in that region multiplied by a parame-
ter ζ (which is taken between 0.6−0.8 ) and it is established
whether the node must be removed or not. The use of this
geometric criterion is motivated by the plot of the velocity
field, reported in Fig. 8b. The highest gradient is close to
the nozzle region, while the variations in the velocity field
tend to fade moving away from the nozzle. Therefore, the
radius r1 must be carefully chosen in such a way that the
region with the most refined mesh encloses the nozzle neigh-
bourhoods. On the contrary, radius r2 should be selected to
ensure the presence of a smooth transition region between
the refined and the coarse mesh. Finally, the adaptive de-
refinement main steps are summarized in Algorithm 4. In
conclusion, the adaptive de-refinement technique presented
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allows for a drastic reduction of the number of degrees of
freedom in the model, leading to a substantial decrease in
computational times. Moreover, because the distribution of
themesh sizes reflects the gradient of the solution, the overall
loss in accuracy isminimal. It is also important to specify that
at the free surface the most refined mesh size is prescribed
everywhere. However, in time, the adaptive de-refinement
may lead to a deterioration of the free surface mesh. To avoid
any problem related to this aspect, an automatic procedure
is implemented for adding and removing nodes on the free
surface where the mesh quality is compromised.

Algorithm 4 Adaptive de-refinement
At the generic time tn :
for i = 1, ..., Nnodes do

compute distance node i to nozzle centre: ri
compute mean distance node i to adjacent nodes: di = ∑m

j=1
di j
m

if ri ≤ r1 then
do nothing

else if r1 < ri ≤ r2 and di < ζh2 then
remove node i
request new mesh

else if ri > r2 and di < ζh3 then
remove node i
request new mesh

end if
end for

6 Results and discussion

6.1 Single-layer filament deposition for different
printing scenarios

The first benchmark consists of the extrusion of a single recti-
linearfilament of cementitiousmortar along a300mmlength,
under different printing conditions. The material and print-
ing parameters necessary for the simulations are taken from
[14], where also some experimental data is available.

The nozzle employed is cylindrical with a diameter of
25 mm. The rheological behaviour of the cement paste was
obtained in [14] by performing rotational rheometric tests
and resulted in the following Bingham parameters: viscosity
μ = 7.5 Pa · s; yield stress τ0 = 750 Pa. Six different case
studies have been obtained by changing the imposed flow
velocity out of the nozzle outlet u f low, the printing velocity
vprint and the nozzle height from the ground hnozzle. The
printing parameters are reported for each one of the six cases
in Table 1.

Regarding the numerical parameters, an initial mesh
size of about h =1.5 mm was assigned in the region
below the nozzle. Furthermore, the dimensions of the de-
refinement regions and the associated characteristic mesh

Table 1 Printing parameters

Case ID hnozzle [mm] vprint [mm/s] u f low [mm/s]

1 7.5 40 35.1

2 7.5 50 40.5

3 12.5 30 33.6

4 12.5 40 31.6

5 17.5 40 46.1

6 17.5 50 36.9

Table 2 Mesh refinement parameters

Case ID h2/h h3/h r1/hnozzle r2/hnozzle

1 1.5 2.0 1.2 1.5

2 1.5 2.0 1.2 1.5

3 2.0 3.0 1.1 1.3

4 2.0 4.0 1.1 1.3

5 2.0 4.0 1.0 1.2

6 3.0 6.0 1.0 1.2

sizes were appropriately chosen depending on the nozzle
height (hnozzle). To ensure a correct discretization of the
problem, it is safe to always provide at least a couple of
finite elements in the vertical direction. The prescribed mesh
sizes h2, h3 and the radii determining the sizes of the de-
refinement regions r1, r2 are reported in a dimensionless form
in Table 2 for each one of the six cases. The results were
post-processed to extract the cross-section profiles in corre-
spondence of themid span of the filaments. This locationwas
chosen to minimize boundary disturbances. The comparison
of the results with both the experimental and the numeri-
cal cross-sectional shapes reported in [14] are illustrated in
Fig. 9. The experimental data, reported as a single dashed
line, consists approximately in the average of the various
experimental curves shown in [14]. Figure9 indicates very
good agreement between the present work numerical results
and the experimental data, with maximum differences of a
couple of millimetres. However, overall, the present model
tends to be slightly more deformable than the experiments: it
underestimates the cross-sectional height and overestimates
the width. It is worth noticing that this behaviour is also
present in the results obtained from the models employed
in [14], suggesting a numerical origin of the phenomenon.
Additionally, the present results seem to better capture the
geometry of the printed layer, especially when compared to
the Generalized Newtonian Fluid (GNF) model outcomes.
This could be due to some differences in the numerical mod-
els or it could also be a consequence of how the Bingham law
was implemented: using Papanastasiou exponential smooth-
ing in the present work and with a bi-viscous regularization
of the viscosity function in [14]. Figure10 shows the top
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Fig. 9 Comparison of the cross-sectional shapes obtained for printing scenarios (a–f) from the present model, the experimental data (EXP) and
the numerical models reported in [14]: generalized Newtonian fluid model (GNF), elasto-visco-plastic model (EVP)
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view of the filament during the different printing scenarios.
It is evident how much the overall layer shape can change
by varying the printing parameters. For cases 1 and 2, as the
nozzle height is very low hnozzle = 7.5 mm and the flow
velocity is quite high, a very shallow and flat filament is
obtained (Fig. 10a, b). On the contrary, in cases 5 and 6 a
much taller and rounded layer is achieved (Fig. 10e, f). This
is mainly due to an increased nozzle height of hnozzle = 17.5
mm, employed in conjunction with high printing speeds.
Generally, an optimal layer shape for 3DCP is obtained for
intermediate values, such as those of cases 3 or 4 (Fig. 10c,
d). Case 3 was also selected in [14] for the simulation of the
three superimposed layers.

While the geometry of the layers is a crucial aspect, it
should not be the sole focus when assessing the outcome of
the simulation. Figure11 reports the plots of the velocity and
pressure fields along a longitudinal section for all the printing
scenarios. In cases 1 and 2 the pressure under the nozzle
outlet rises up to 3500 Pa, while much lower values, limited
to more or less 1000 Pa, are obtained in case 6. As observed
in [23] the pressure increment below the nozzle outlet, due
to the dynamic impact of the material flowing out the nozzle,
turns out to be a relevant parameter to be monitored during
printing.

6.2 Multi-layer filament deposition

The second application proposed regards the printing of three
superimposed rectilinear layers 300 mm long. Again the
material and printing properties are taken from [14]. In the
specific, a cementitious mortar characterized by yield stress
τ0 = 750 Pa and viscosityμ = 7.5Pa · s has been employed.
The printing parameters are those of case 3 in the previ-
ous benchmark: nozzle height hnozzle = 12.5 mm, printing
velocity vprint = 30 mm/s and flow velocity u f low = 33.6
mm/s. At the end of each layer, the nozzle was raised of
�z = hnozzle without stopping the virtual printer, creating
a single continuous filament wall (Fig. 12). Regarding the
numerical parameters for the mesh refinement instead, main-
taining the notation introduced in the previous benchmark,
the following values were assigned: h2 = 2h, h3 = 3h,
r1 = 1.1hnozzle and r2 = 1.3hnozzle. Fig. 12 also shows
how the contact algorithm illustrated in Sect. 5.2 performed
reasonably well in maintaining a sharp outline between
the different layers. Moreover, the good inter-layer bonding
observed in the experimental data is also confirmed by the
uniform and compact cross-sections obtained in the numeri-
cal simulations.

In Fig. 13 the extracted cross-sections are compared with
the experimental data and the numerical results reported in
[15]. A very good agreement is found for the single layer
and two layers cross sections. However, for the cross-section
involving three layers, the present model shows particularly

Fig. 10 Top view of the filaments at the end of the different printing
cases (a–f)

high deformability. This could be partially imputed to the
fact that the rheological parameters are kept constant dur-
ing the analysis, while in reality time-dependent effects, due
to thixotropy or early age formation of hydration products,
may be playing a role. However, in [15] it is reported that
a retarder admixture was used to minimize time-dependent
effects in the printed material. Therefore, the main causes
of this discrepancy could be associated to two other factors.
The first one is that in [15] an elasto-visco-plastic material
constitutive lawwas used, while in the present model the rhe-
ological law is not accounting for elastic contributions. The
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Fig. 11 Filament deposition process, velocity field magnitude and pressure field for the various printing scenarios (a–f)
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Fig. 12 Different phases a–c of the printing of the multi-layer wall

second cause is related to the uncertainties on the estimate
given for the velocity of the compression wave on fresh con-
crete, which may lead to an excessive compressibility of the
model.

Finally, the velocity and pressure fields during the printing
of the multi-layer wall are analysed. In Fig. 14 the velocity
field is reported at different times. It appears that the velocity
assumes zero values almost everywhere, except in the vicin-
ity of the nozzle. This is the target behaviour in 3DCP, which
indicates that the already extrudedmaterial is able to retain its
shape and possibly also sustain the subsequent layers. From
Fig. 15 some insights into the pressures that develop during
the printing process can also be obtained. As the number of
layers grows, the average pressure at the base increases up
to a 500 Pa. Much higher and localized pressures are instead
observed during the printing process below the nozzle. It is
interesting to notice that a larger portion of the material is
affected by this pressure increment during the printing of
the first layer. This is because, for the first layer, the dis-
tance between the nozzle and the ground is exactly 17.5 mm.
Instead, for the successive layers, due to the squashing of the
filaments underneath, the distance between the nozzle and
the free surface of the previous layer becomes slightly more
than 17.5 mm, allowing the material more space to flow.

Fig. 13 Comparison of the cross-sections obtained from the print of one (a), two (b) and three (c) layers for the present work with the experimental
data (EXP) and the elasto-visco-plastic model (EVP) results presented in [15]
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Fig. 14 Velocity field magnitude during the printing of the first (a),
second (b) and third (c) layer of the wall

Fig. 15 Pressure field during the printing of the first (a), second (b) and
third (c) layer of the wall

7 Conclusion

The work reported in this paper has presented a detailed
single-phase fluid computational model for the simulation of
the extrusion and layer deposition processes of cementitious
materials. To handle the large deformations typically encoun-
tered in3DCPsimulations, theNavier–Stokes equationswere
discretized using the PFEM method. Specifically, the pre-
sented model included the following innovative aspects:

• The governing equations were developed in the Arbitrary
Lagrangian-Eulerian description to facilitate the imposi-
tion of the time-dependent moving boundary conditions
at the nozzle outlet.

• An explicit time integration scheme was used, allowing
for an easy treatment of the nonlinearities and simplifying
the parallelization of the code.

• Mass conservation in thePFEMframeworkwas improved
trough the implementation of a contact algorithm, based
on a modification of the α-shape method.

• The computational cost was reduced by applying a mesh
de-refinement technique.

The model was applied to the simulation of the printing of
six rectilinear single-layer filaments and one multi-layer fila-
ment of cementitiousmortar. The cross-sectional shapeswere
validated against the experimental data provided in [14, 15].
The simulations also proved the efficiency of the numerical
strategies illustrated before.

The model can be exploited to gain further insights
about the extrusion process by performing parametric studies
exploring more printing velocities and printing conditions.
The gathered knowledge is fundamental to predict and
avoid unwanted behaviours during extrusion such as fila-
ment tearing or filament coiling, but also to better control
the filament shapes by calibrating the rheological properties.
Alternatively, the model could be a valuable substitute to
experimental tests for developing new and improved print-
able cementitious mixes. Other possible applications regard
the evaluation of the effect of different nozzle shapes on the
printed filament or the study of more complex printing con-
ditions, such as printing along curvilinear toolpath and on
non-planar layers. As in this study, the focus was on the
extrusion process and on the early ages shape prediction at
the scale of the filament, a rheological law with constant
parameters was adopted. However, for longer printing times
simulations (i.e., on the scale of minutes or hours) the time-
dependent behaviour of the material due to early-age creep
[55], thixotropic effects [56] and the fluid-to-solid phase tran-
sition (i.e., hydration reaction)might start becoming relevant.
Future works will address these issues and will focus on fur-
ther reducing the computational cost, aiming to enable the
model to simulate the printing process at the scale of the
printed object and to study its structural properties.
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