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Abstract: Earth system predictions, from sub-seasonal to seasonal timescales, remain a challenging
task, and the representation of predictability sources on seasonal timescales is a complex work.
Nonetheless, advances in technology and science have been making continuous progress in seasonal
forecasting. In a previous paper, a performance for temperature prediction by a modelling system
named e-kmf® was carried out in comparison with observations and climatology for a year of data; a
low level of predictability in the sub-seasonal range, particularly in the second month, was observed
over the Italian peninsula. Therefore, in this study, we focus our investigations specifically on
the performance between the fifth and the eighth week of temperature forecasts over six years of
simulations (2012–2018) to investigate the capability of the weather model to better reproduce the
behavior of temperatures in the second month of the forecast. Although some differences in seasons
are present, results have globally shown how temperature predictions have the potential to be quite
skillful, with an average skill score of about 68%, with climatology used as reference; additionally, an
overall anomaly correlation coefficient equal to 0.51 was shown, providing useful information for
applications in planning, sales, and supply of natural energy resources.

Keywords: sub-seasonal prediction; temperature forecasts; model performance; benchmark analysis;
applied climatology; statistical indexes

1. Introduction and Context of Application

The use of weather forecasts is widely prevalent among governments, businesses, and
individuals worldwide. The availability of accurate forecasts, ranging from a few hours
to a few days in advance, significantly influences numerous decisions in various sectors
of the global economy. As commercial activities, security concerns, and the management
of natural resources become more intricate and globally interconnected due to climate
change, the value and significance of weather and climate forecasts are expected to increase
further [1,2]. While short-term forecasts already play a crucial role, many critical decisions
may require advanced planning several weeks or even months ahead to anticipate favorable
or disruptive environmental conditions [3]. The timely movement of emergency and
disaster-relief supplies, which can take weeks or months, is a pertinent issue. Additionally,
pre-positioning of resources in areas which are susceptible to an infectious disease outbreak,
for instance, could save lives and optimize the effectiveness of limited resources.

There are numerous examples of instances where advanced planning and forecasting
can be beneficial. For instance, naval and commercial shipping planners meticulously
chart routes well in advance to strategically position assets, avoid potential hazards, and
capitalize on favorable conditions [4]. By leveraging improved knowledge of precipitation
and drought likelihood, farmers can make informed decisions when purchasing seed
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varieties, aiming to boost yields and minimize costs. Similarly, water resource managers
face multiple decisions regarding reservoir levels over upcoming weeks, months, and
seasons, considering water consumption and availability, particularly in regions where
water scarcity necessitates wiser use of this vital resource [5].

Seasonal forecasts, which cover extended periods such as three months, provide
insights into average oceanic and atmospheric conditions. These forecasts are typically
issued with lead times ranging from a month to several seasons [6,7]. On the other hand,
sub-seasonal forecasts extend over a week or more, with lead times typically ranging
from 2 to 6 weeks [8]. While there have been improvements in seasonal and sub-seasonal
predictions in recent years, there remains ample room for further enhancement in terms of
accuracy, range of forecasted variables, and availability of regular forecast products [9,10].
The advancements in environmental prediction have immense potential to maximize
various benefits, such as saving lives, protecting property, promoting economic growth,
preserving the environment, and enabling well-informed policy decisions.

Despite this significant potential, predicting Earth system behavior on sub-seasonal–
seasonal timescales remains a daunting task. While it is increasingly acknowledged that
Earth systems exhibit multiple sources of predictability over seasonal timescales, effectively
representing these sources is a complex undertaking. Models must accurately capture the
initial conditions of the atmosphere, ocean, land surface, and cryosphere, as well as the
interactions or coupling between these different components. Moreover, the longer lead
times associated with seasonal predictions pose challenges in representing uncertainty
and conducting verification, making it more computationally demanding than everyday
numerical weather prediction. Nevertheless, advancements in technology and scientific
understanding contribute to continuous progress in seasonal forecasting.

Another key challenge lies in enhancing the practical applicability of sub-seasonal–
seasonal forecasts for users. These forecasts exhibit lower skill compared to shorter-term
predictions and may involve communicating probabilistic information that is less familiar
to many users [11,12]. Hence, following the needs of application in management of natural
resource supply, a sub-seasonal–seasonal forecast was developed by the Eni company at
the beginning of the previous decade, intended for applications in energy management [13].
In fact, the efficient organization of energy and gas distribution systems often requires
outlook prediction which accounts for energy and gas demand, which is strictly related to
weather and climatic trends [14–16]

For instance, Liu et al. [17] conducted a review that explores the historical trends and
future challenges of natural gas consumption. They found that long-term forecasting is
primarily influenced by variables in production, population, and economy. Medium-term
forecasting, on the other hand, is mainly influenced by economic and temperature variables.
In terms of short-term forecasting, temperature variables, weather conditions, and the type
of date play a significant role as influencing factors. Therefore, a prevailing considera-
tion is that sub-seasonal temperature forecasts in the two–twelve-week horizon between
medium-range and seasonal–multi-seasonal prediction poses complex issues. Indeed,
characterizing a sub-seasonal atmospheric forecast challenge is not as straightforward as a
typical initial value weather forecast problem, where the time spans are shorter and there
is a risk of losing initial value data, or a boundary value climate-prediction problem that
relies on prescribed surface temperature anomalies to drive early seasonal climate forecast
systems. Nonetheless, recent studies indicate the potential for predictability across all
timescales, as highlighted by Hoskins [18] and the World Meteorological Organization [19].
Evidence suggests that a forecast model encompassing the ocean–atmosphere–ice–land
system (as depicted in Figure 1) integrates information from initial conditions across the
interconnected system, including slowly changing components, such as the ocean, sea ice,
and land hydrology. Consequently, this integrated model yields sub-seasonal forecasts
that demonstrate considerable skill in traditional weather variables, often comparable to
seasonal forecasts, as observed in research conducted by Dutton et al. [20,21].
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Figure 1. The integrated system for the modeling of the short–medium–sub-seasonal range for the
present eni-kassandra meteo forecast (e-kmf®) system.

Moreover, in the sub-seasonal range, different techniques have been used to improve
temperature forecasts, including machine learning [22,23], statistical models trained on
dynamical models [24], and data-driven methods using random forest techniques [25].

Under this framework, in this current study, we extended a past investigation [13]
where a benchmark analysis was only shown on data of one year for sub-seasonal and
seasonal forecasts of temperatures by our meteorological model. The application of the
model was intended to support the prediction of energy demand and improve the man-
agement, purchase, and sale of natural gas stocks [26]. The analysis primarily focused
on assessing the long-term temperature predictions of two models, specifically the eni-
kassandra meteo forecast (e-kmf®) and CFS-NCEP (Climate Forecast System—National
Centers for Environmental Prediction), across three regions in Italy (north, center, and
south, excluding the main Italian islands). In order to evaluate these models, daily temper-
ature forecasts were collected from regular initialization runs. These forecasts were then
averaged to create weekly predictions for each model grid point within the three macro
areas of Italy. Subsequently, the temperature forecasts were further averaged to derive a
single temperature prediction for each week in each macro area. By employing the mean
absolute error (MAE) metric, it was observed that the e-kmf® model outperformed the
CFS-NCEP model in the majority of areas and forecast-initiation months. On average,
the e-kmf® model demonstrated a skill at 35% compared to climatology, which signifies a
statistical analysis of weather conditions observed from 1984 to 2008 used as a reference
for the data of the specific year being analyzed. During the initial month of the forecast,
the e-kmf® model exhibited a strong correlation between the predicted and measured
temperature data. However, a decline in model performance was noticed between the 5th
and 8th week of the prediction period.

Therefore, this paper specifically addresses this last critical issue: analyzing tempera-
ture forecasts against observations and climatology in this sub-seasonal range over several
years of forecast (2012–2018) for the same three macro areas of Italy, with the same adopted
methodology. In particular, the behavior of our model in the sub-seasonal range has been
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analyzed here, considering that some anomalies appeared for the 2010 simulations in the
previous study; hence, this study explored the question of whether those variances depend
on some peculiarities of that particular year (2010), instead of some model biases which
turned out to be mostly depending on inner sources of predictability of that year, and not
by a general model’s bias. Since the model has been developed, we have now analyzed
this sub-seasonal range forecasts, keeping the model version and the climatological mean
unchanged, without modifying the reference data. Hence, the aim of this study is to quan-
tify, through statistical indexes, how temperature forecasts from the meteorological model
perform in respect to the observed data and climatological behavior for the three Italian
macro areas in the sub-seasonal range, particularly in the second month of the forecast.

2. The Area of Study

The focus of this study is the Italian peninsula, which has been divided into three
sub-regions or macro areas: north, center, and south (as shown in Figure 2). These divisions
are based on the major climate variations across the country, as well as the differences
in energy demand and market. The Po Valley, located in the northern region, stands out
as the most densely populated and industrialized area, with a high energy consumption
rate. In contrast, central and southern Italy have lower population densities and exhibit
comparatively lower energy demands. The climate in northern Italy is predominantly
characterized by a humid continental climate, primarily influenced by the presence of
the Po Valley. On the other hand, central and southern Italy, along with the coastal
areas in the northern regions, experience a Mediterranean climate. Additionally, the
Italian climate is significantly influenced by two prominent mountain ranges, namely the
Alps and the Apennines. These mountains play a crucial role in shaping the weather
patterns across the country. Situated in the middle of the Mediterranean basin, the Italian
Peninsula is subject to various factors that impact its weather and climate. The passage
of cyclonic systems and associated fronts largely controls the weather conditions, and
their occurrence and frequency are influenced by the distribution of land masses, sea
surface temperature gradients, and the orientation of baroclinic zones. The Mediterranean
area is highly populated by cyclones, especially in the winter season, determining the
weather and climate [27], despite being located south of the global mid-latitude climatic
belt. The Mediterranean region possesses a complex geography characterized by various
landforms, such as mountains, basins, gulfs, islands, and peninsulas. The Mediterranean
Sea is encircled by towering mountain ranges on almost all sides, resulting in distinct
climatic patterns compared to other parts of the world. Among these mountain ranges,
the highest is the Alps, which soar up to 4800 m and experience extensive snowfall during
winter. The presence of islands, peninsulas, regional seas, and basins further adds to
the intricate distribution of land and sea in the region. These geographical features have
significant implications for both the circulation of sea and atmosphere, creating substantial
spatial variations. Additionally, the abundance of sub-regional land mesoscale features
complicates short- and medium-term predictions.

Nonetheless, planetary-scale patterns exert a significant influence on the climate of the
Mediterranean region. The intricate nature of regional characteristics, which are influenced
by these large-scale forces, adds complexity in terms of temporal and spatial behavior.
The interplay between orography, the physical features of the land, and the distribution
of land and sea is crucial in shaping the climate on a basin level and establishing its
connections with global weather patterns. The intricate nature of basin topography gives
rise to mesoscale features and inter-seasonal variations, which would otherwise be more
uniform and enduring. Most studies [28–30] considered winter and summer regimes
especially, while characterizations of spring and autumn are more uncertain; this reveals,
presumably, the transient nature of these two seasons in the Mediterranean region.
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Figure 2. The three regions of Italy (north, center, and south) are depicted by green rectangles,
representing the grid points of the models. Within these regions, the e-kmf® model grid is visualized
with orange dots. Additionally, the main Italian weather stations located below 500 m above sea
level, which were used for gathering observed data and calculating the climatological mean from
1984 to 2008, are indicated by red dots. The models’ horizontal grid points are arranged in a regular
latitude–longitude grid with a 1◦ spacing. This illustration is adapted from [13].

3. Model and Data Analysis

This section provides a description of the model and measurements used in this study,
focusing on temperature data for both climatology and daily observations. The statistical
analysis procedure is also outlined, which closely follows the approach developed by [13].
The evaluation of temperature forecasts includes commonly used standard statistical
indexes found in scientific literature [31–33]. These metrics are utilized to assess the
reliability of 2 m air temperature forecasts in three specific geographical areas in Italy,
namely the north, center, and south. The statistical analysis involves comparing the model
forecasts and the climatological mean with the observed temperature data for the second
month. Specifically, the second month refers to an average of the 5th, 6th, 7th, and 8th
weeks. The analysis covers the years between 2012 and 2018, with a focus on the lead
time forecast.

3.1. The Kassandra Meteo Forecast Model

The e-kmf® global forecast system employs a combination of models and ensemble
techniques [34–37] to generate temperature predictions for different timeframes. These
forecasts encompass short–medium terms, typically ranging from 1 to 10 days, as well as
sub-seasonal periods of approximately 2–12 weeks [38]. Short- and medium-term predic-
tions utilize regional and limited area models (LAMs), with grid sizes varying from 1.25 km
to 10 km. On the other hand, long-term forecasts, such as the one in this case study, involve
two global models with 20 perturbed initial conditions, along with one control member,
resulting in a multi-model ensemble of 40 forecasts plus two control members. While the
e-kmf® system currently utilizes global models with improved horizontal and vertical reso-
lution, historical data from 2012 to 2018 were obtained using the same models as described
in [13]. The first global model employed had a horizontal spectral triangular truncation
of 126 waves (T126) and 42 sigma pressure hybrid layers (L42). The second model was a
modified global version of the WRF-ARW (Weather Research and Forecasting—Advanced
Research WRF) model, featuring 42 vertical levels and a horizontal grid of approximately
90 km. The resulting output of the multi-model ensemble is presented on a regular latitude–
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longitude grid with a spacing of 1◦, providing temporal outputs every 6 h and a forecast
horizon of 90 days. Initial conditions are derived from the global forecasting system (GFS)
model’s initial condition, which is based on the grid-point statistical interpolation (GSI)
global data assimilation system (GDAS) and incorporates a 3D-Var method to continuously
update the background fields used for the initial condition. The model incorporates global
sea surface temperature (SST) boundary conditions [39], utilizing SST anomaly simula-
tions from a mixed-layer model. Each ensemble simulation employs various physical and
dynamical schemes for micro-physics [40,41], the planetary boundary layer (PBL), the
surface layer [42–47], cumulus parameterization [48,49], radiation [50–52], and land surface
physics [53–56]. In the proposed benchmark, a selection process is applied to the ensembles
of the two models to obtain a single value which can be compared with observed and
climatological data. This procedure involves computing a measure based on the distance
between each member and the best member of the ensembles. Various normalized model
variables are used for this computation, and values outside of a predefined range are
excluded based on this measure. The overall final value is obtained by taking a weighted
average of the remaining members, which are also used to provide boundary conditions to
the local ensemble prediction system (LEPS) for high-resolution forecasts in limited areas.

3.2. Observations and Climatology

The weather stations used in the previous analysis, both for climatology and daily
observations, are maintained with the same characteristics as those employed in the present
study. Data from various official weather stations located in the three macro areas in Italy
were utilized, as documented in ([13], Table 1). The observations were conducted between
2012 and mid-2018, utilizing the SYNOP (surface synoptic observations) and METAR
(meteorological aerodrome report). Temperature readings were recorded at intervals
ranging from half-hourly to three-hourly each day and stored in a database to compile
comprehensive observational information. To facilitate a long-term comparison between
forecasts and observations, temperature data were aggregated to generate weekly mean
values for each reference area in Italy (north, center, and south). These weekly mean values
were then utilized for both comparing observed and forecasted data and constructing the
climatology for each reference area. The same 25-year reference period (1984–2008) used
in the previous study was equally kept for a homogeneity of comparison. Lastly, a mean
climatological temperature value for the second month ahead has been obtained and used
as reference for the current comparison with observations and forecasts.

Table 1. The MAE for all years over the three Italian areas.

North Center South
Clima e-kmf® Clima e-kmf® Clima e-kmf®

2012 1.68 0.85 1.78 0.91 1.39 0.60
2013 1.18 0.77 1.19 0.83 0.98 0.54
2014 1.81 1.03 1.67 1.00 1.21 0.77
2015 1.45 0.76 1.37 0.65 0.94 0.46
2016 1.05 0.57 1.15 0.65 0.76 0.44
2017 1.60 0.70 1.56 0.71 1.00 0.51
2018 1.62 0.84 1.71 0.63 0.94 0.30

3.3. Methodology of the Benchmark Analysis

The 2 m temperature forecasts by e-kmf® model were evaluated by comparing them
to observed data and climatology. This evaluation involved the use of straightforward
statistical indexes to assess the model performance. The analysis focused on the weekly
forecasted data for three macro areas, employing the same methodology as proposed
by [13]. This means that each macro area’s weekly forecast was obtained according to the
following Equations (1)–(4):
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where Tj,i,d,k is the air temperature in the grid point, j, for the six-hour time interval, i, of

the simulated day, d, corresponding to the model initialization, k; Ti
j,k,d is the mean daily

temperature of the day, d, in the grid point, j, corresponding to the model initialization, k;

Tik

j,d is the mean daily temperature of the day, d, in the grid point, j, averaged over the
model initializations; Twj is the mean weekly temperature in the grid point, j; Taj is the
mean weekly temperature averaged over the N grid points within the macro area.

Since the aim of the study was to determine the performance of the model for the
second month ahead, once the weekly means were obtained, the temperature forecasts
of the 5th, 6th, 7th, and 8th weeks were averaged out to obtain one single value to be
compared with climatology and observed data.

4. Results and Discussion

In order to assess the predictability and reliability of the temperature forecasts and to
analyze their performance, a statistical analysis was conducted. This analysis involved com-
paring the forecast model and climatology mean during the observation period (2012–2018).
The results presented here focus on the performance of the second month as a lead time fore-
casted by our e-kmf® model; no further comparisons with other existing forecast systems
were carried out in the current study. The evaluation employed three indexes: the mean
absolute error (MAE), the climatological skill score (SSclim), and the anomaly correlation
coefficient (ACC). These indexes were used to evaluate and discuss the performance of the
temperature forecasts.

Data Analysis

A graphical sequence during the observation period (OP) is shown in Figure 3 for
the observed, climatological, and e-kmf® model data for the second month of the forecast
for the northern Italy macro area. Comparable picture sequences have been obtained for
central and southern Italy (not shown here for the sake of brevity).

At first sight, a good match by the e-kmf® model with observed data is shown,
although a general underestimation is present over the six analyzed years, especially for
historical climatological data. This is especially evident when looking at Figure 4, where the
MAE for each year of the OP is illustrated, and a difference of about 1 ◦C among the two
sets of data is displayed. This slight underestimation of the 2 m temperature for each year
in all areas is much greater for the climatological data than for the e-kmf® forecast: in fact, a
mean bias is found to be 0.94 and 0.98 in the analyzed OP, respectively. This is an expected
result, since all these years have been generally warmer than normal throughout Italy ([57],
periodically updated here: www.isac.cnr.it/climstor, accessed on 27 September 2023).

www.isac.cnr.it/climstor
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Figure 3. Sequence of 2 m air temperature in northern Italy for observations (green line), clima-
tology (blue line), and for the second month of forecasts by the e-kmf® model (dark yellow line).
Unfortunately, there is a lack of data at the beginning of 2012 and 2018.
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Figure 4. Italy’s MAE (◦C) for all years in the OP for both the climatological data and e-kmf® forecast.
The x denotes the mean, while the bar indicates the median of the sample north, center, and south
of Italy.

Table 1 summarizes the MAE for each year in the OP for the climatological and e-kmf®

forecast data over the three macro areas. The mean absolute error for the three macro areas
is calculated as follows (Equation (5)):

MAE =
1
n∑n

i=1|Fi −Oi| (5)

where Oi is the observed value, Fi is the forecasted or climatological value, and n is the
number of analyzed data.

These achieved outcomes are independent from areas or seasons, as shown in Figure 5,
where the model indicates a better performance in summer and a lower performance in
winter, in agreement with the Mediterranean climate of the area [58]. As expected, the MAE
for the climatological data (with an overall underestimation of temperatures) is nearly the
same for winter and autumn, and slightly lower in summer.
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Compared to the previous analysis of data from 2010 [13], in this paper, better results
have been obtained by the e-kmf® model in the sub-seasonal prediction range. In fact,
overall values of MAE were equal to 1.74 ◦C, 1.29 ◦C, and 1.20 ◦C for the second month
of forecast in the north, center, and south of Italy, respectively; meanwhile, in the current
study, we achieved scores below 1 ◦C in the whole OP with average values of 0.79 ◦C,
0.77 ◦C, and 0.52 ◦C over the three macro areas (north, center, and south), respectively.

Looking at the comparison between forecasts and observations, the slight underesti-
mation of mean temperatures in the second month of lead time for all three areas (north,
center, and south) is shown in Figure 6a–c, respectively. This was especially the case at the
higher temperatures in the northern and central areas of Italy. However, high values of the
determination coefficient (R2) denote a good performance by the e-kmf® model; this effect
was more significant in the south of Italy between the 5th and 8th weeks of prediction.

A similar comparison is shown in Figure 7 between climatological data and observa-
tions for northern Italy. The picture confirms the lower performance using only climatolog-
ical data compared to the e-kmf® model forecasts with the greater error found at warmer
temperatures due to an underestimation; this outcome highlights how a useful forecasting
system can more effective than climatology [59]. The same behavior is found for central
and southern Italy (not shown here for the sake of brevity).

To better enhance the substantial contribution by the e-kmf® model, the skill score
gives an idea of the relative improvement (or worsening) of the forecasting model in
relation to certain reference values; in this case study, the climatological mean has been
used (as reference), so the skill score has been later named as SSclim. The SSclim is calculated
as follows (Equation (6)):

SSclim =
MSE f orecast −MSEclim

MSEobs −MSEclim
= 1−

MSE f orecast

MSEclim
(6)

where the MSE forecast, clim, and obs are the mean square errors for the forecasted,
climatological, and observed data, respectively. The MSE equation is calculated as follows
(Equation (7)):

MSE =
1
n∑n

i=1(Fi −Oi)
2 (7)
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Figure 6. Observations vs. forecasts for the second month as lead time in northern (a), central (b),
and southern (c) Italy; the blue dotted line shows the tendency.
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Table 2 shows the results in the entire OP and in each season.

Table 2. Average values of the climatological skill score (SSclim) for each season over the Italian macro
areas in the OP.

SSclim 2012–2018 North Center South

DJF 0.61 0.55 0.61
MAM 0.69 0.74 0.74

JJA 0.81 0.82 0.85
SON 0.55 0.54 0.61
Year 0.67 0.66 0.70

As it is shown using the e-kmf® model, there is a significant enhancement in almost all
seasons and in all areas: the average score for all three areas is about 68% in the whole OP.
This means that the e-kmf® model can improve forecasting capability and obtains better
results for 2 m air temperature compared to the use of climatological averages. The highest
climatological skill scores are found in summer, and this outcome is in line with what has
been depicted in Figure 5, where the lowest values of the MAE are observed for the e-kmf®

meteorological model, and the greatest ones are observed for climatology. This confirms
and highlights the greater relevance of weather predictions in comparison with common
climatology, which can be used as a reference, especially in a season which is normally
affected by stable conditions. However, as shown in Table 3, the number of days for stable
and unstable conditions was almost equivalent during the analyzed OP (2012–2018).

Table 3. Number of days with unstable/stable synoptic situations for each season and OP years.
Some data have been missed for spring 2014.

2012 2013 2014 2015 2016 2017 2018 Total

Winter stable 52 42 52 44 55 64 44 353
unstable 39 48 38 46 36 26 46 279

Spring stable 42 34 31 53 36 42 28 266
unstable 50 58 32 39 56 50 64 349

Summer stable 37 46 37 55 47 57 46 325
unstable 55 46 55 37 45 35 46 319

Autumn Stable 43 44 54 39 50 48 49 327
unstable 48 47 37 52 41 43 42 310
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This analysis, regarding the number of days with stable and unstable situations, is
computed in terms of a synoptic classification of atmospheric circulation patterns into
weather types and scaled on the Italian area using a self-organizing map (SOM) technique.
The intention was to relate these patterns to the temperature forecast quality [60], which
is usually higher in stable- and fair-weather situations compared to synoptically unstable
conditions. In the analyzed OP, a greater persistence of synoptic stable situations was found
in the winter season, while the number of unstable situations is quite large in springtime,
as expected; in summer and autumn they are nearly the same.

To evaluate the effectiveness of a forecasting system, the anomaly correlation coeffi-
cient (ACC) is often employed to measure the correlation between forecasts and observed
data. However, directly comparing forecasts and observations can lead to inflated corre-
lation values due to seasonal variations. Therefore, a common practice is to subtract the
climate average from both the forecast and verification data, allowing for the assessment of
the forecast and the observed anomalies using the ACC. This index ranges from −1 to 1,
with a perfect score of 1 indicating a strong correlation. The ACC is calculated as follows
(Equation (8)):

ACC =
∑n

i=1
(
(Fi − Ci)−

(
F− C

))
·
(
(Oi − Ci)−

(
O− C

))√
∑n

i=1
(
(Fi − Ci)−

(
F− C

))2
√

∑n
i=1
(
(Oi − Ci)−

(
O− C

))2
(8)

where Oi, Fi, and C are the observed, forecasted, and climatological values, respectively; the
overbars O-C and F-C refer to the average values of the differences between observations
or forecasts and climatological data, respectively; n is the number of analyzed data.

In the previous study by [13], a worsening of the e-kmf® model performance was
observed between the 5th and 8th weeks of prediction, with an average value for the
second month of lead time forecast equal to 0.47, 0.43, and 0.25 for the northern, central,
and southern macro areas, respectively, with a related mean value of 0.38. To better
investigate this issue, we focused this study on examining the ACC for the second month
of the forecast (Table 4).

Table 4. Average values of the seasonal anomaly correlation coefficient for the OP and each Italian
macro area.

ACC 2012–2018 North Center South

DJF 0.86 0.63 0.83
MAM 0.56 0.45 0.67

JJA 0.36 0.38 0.55
SON 0.29 0.18 0.37
Year 0.52 0.41 0.61

As shown in Table 4, on average, an improvement (ACC equal to 0.51 over the three
regions) is achieved, particularly in the south macro area. There are some large disparities
among the seasons in the entire OP, with high scores in the DJF and low values for the SON;
this means that the model can only partly capture some sources of predictability across the
years. Again, the effects related to the presence of stable or unstable situations in terms of
synoptic circulation patterns (Table 2) may be reflected in the ACC results in the different
seasons. Of course, this is an average result throughout the analyzed years and significant
deviations from this general behavior may exist in shorter periods.

Lastly, it is worth noting that no correlations between the seasonal ACC and MAE
can be drawn; relatively higher values of ACC correspond to greater values of MAE
for temperature in winter. This is not surprising, as the anomaly correlation coefficient
describes the strength of the linear relationship between forecast and observed anomalies,
and it is not sensitive to forecast bias; hence, a good anomaly correlation does not guarantee
accuracy. The higher values of the MAE in winter may be due to frequent thermal inversions
in the cold season, which may be difficult to predict over a region with pronounced
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orography. However, since our aim was to verify the overall model performance in the
second month of temperature forecast, both the MAE and ACC have shown a noticeable
improvement over the OP compared to the outcomes found in the previous one-year
study [13] for the same forecast month.

5. Conclusions

Predicting weather patterns and climate conditions on sub-seasonal–seasonal timescales
remains a challenging endeavor. While there are numerous sources of predictability within
Earth systems on seasonal timescales, effectively representing them poses a complex task.
Energy companies in particular utilize the relationship between meteorological variabil-
ity and energy demand to establish efficient scheduling and protect themselves against
market fluctuations during critical periods. Through having advanced knowledge of
temperature forecasts for specific geographical areas and analyzing potential abnormal
trends, it becomes possible to enhance the planning of natural gas sales and supplies. This
proactive approach helps to minimize potential losses resulting from unusual weather and
climate conditions.

Following the approach of the one-year analysis conducted in a past study [13], we
have here extended our research to a wider period between 2012 and 2018, focusing on the
same regions of the Italian peninsula, with special attention paid to the sub-seasonal range.
The daily temperature forecasts obtained from daily initialization runs were averaged to
generate a weekly forecast for each model grid point associated with the three Italian macro
areas. Subsequently, the weekly temperature forecasts for each model grid point were
once again averaged, this time to derive a single temperature forecast value over each
macro area specifically for the second month in advance. Statistical indexes were used to
calculate the performance analysis by comparing the observed data, climatological mean,
and model forecasts.

In this paper, we focused on the projections of the average between the 5th and 8th
week, analyzing the temperature forecast compared to observations and climatology for
this second month as the lead time. In fact, the previous analysis was prompted by the
presence of anomalies observed in simulations conducted for 2010 data. Hence, here, we
conducted an investigation to determine whether these inconsistencies were attributable
to specific characteristics unique to that particular year (2010) rather than model biases.
Our exploration revealed that the anomalies were primarily influenced by internal sources
of predictability specific to that year, rather than being a result of general biases within
the model.

The results illustrate some performances of the model temperature forecast in the
sub-seasonal range, which is an important target for energy and gas applications. The
MAEs are significantly lower than those previously obtained using climate data, and an
improvement of about 68% was found on the base of the climatological skill score. The
anomaly correlation coefficient shows the capability of the model to retain some sources
of predictability, and to reproduce the general behavior of measured temperatures in the
second month of forecast (high correlation in winter and lower in autumn), when, on the
contrary, it had shown some weakness in the one-year analysis of our past work.

Therefore, the use of the e-kmf® model instead of the common climatological data used
to describe future seasonal or sub-seasonal trends can improve the reliability of long-term
temperature forecasting; additionally, it can provide an alternative and a better solution to
those of statistical systems based on historical data only. In the future, we plan to explore
the behavior of the model in different climate regimes across Europe; this will allow us
to investigate its capability in predicting temperatures in the sub-seasonal and seasonal
ranges over large scales. In addition—since, in this study, we did not intend to assess
our e-kmf® model’s performance in comparison with other existing forecast systems—a
follow-up development might be to compare its performance with other meteorological
models for longer observation periods.



Forecasting 2023, 5 613

Author Contributions: A.C. developed and carried out the benchmark analysis; R.S. developed the
model and made all model simulations; G.G. contributed to the scientific and methodological analysis
of the work and coordinated the project. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors received no financial support for the research of this article.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare that they have no competing interests.

Abbreviations

Madden Julian Oscillation MJO
mean absolute error MAE
eni-kassandra meteo forecast® e-kmf®

Climate Forecast System—National Centers for Environmental Prediction CFS-NCEP
Weather Research and Forecasting—Advanced Research WRF WRF-ARW
global forecasting system GFS
grid-point statistical interpolation GSI
global data assimilation system GDAS
sea surface temperature SST
planetary boundary layer PBL
local ensemble prediction system LEPS
surface synoptic observations SYNOP
meteorological aerodrome report METAR
observation period OP
anomaly correlation coefficient ACC
limited area models LAMs
December–January–February DJF
March–April–May MAM
June–July–August JJA
September–October–November SON
self-organizing map SOM
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