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Abstract 

Within the paradigm of industry 5.0, manufacturing systems are seeking for human-centred production, where the operator finds 
high-level supervision tasks. In this context, low-level decision making should be performed by machines themselves. In this paper, 
a hybrid prognosis algorithm is developed to automatically inspect the cutting edges of drill-bits and to predict their Remaining 
Useful Life (RUL) and the associated probability density function. The solution relies on the automatic measurement of flank wear 
through convolutional filtering and edge detection. Prognosis exploits particle filter, which updates multi-layer perceptron with 
online data, to adaptively predict drill-bits RUL. The solution reduces the experimental preliminary run-to-failures needed for 
training standard machine learning algorithms, exploiting them in a real-time adaptive scenario, while predicting tool RUL under 
untested and variable cutting process operations. The algorithm uses direct wear observations, taken during set-up times (e.g., tool 
changes, workpiece change), thus not interfering with the process. 
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1. Introduction 

The new paradigm of Industry 5.0 added to Industry 4.0 societal goals as an objective for industry and production 
systems, only reachable through human-centric production processes [1]. Within this scenario, the operator tasks must 
reflect his new position. Thus, low-level decision making should be performed through machine intelligence, while 
high-level supervision and decision-making should be assigned to the machine operator. Consequently, monitoring  
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the manufacturing process and supporting maintenance decision-making become useful means to reach this goal. 
Cutting tools monitoring and prognosis is an active research topic in the manufacturing field, due to cutting tools 

high impact on machine downtimes [2], production system economy [3] and rare materials usage [4]. Nevertheless, 
effective monitoring and prognosis solutions are far from being widely and robustly applied in industry. Indirect 
inspection and monitoring makes use of process measurements, like vibrations [5]–[7], cutting forces [5]–[9] and 
cutting power [10] to estimate the cutting tool condition in real-time. Signal features (e.g. mean, standard deviation, 
harmonic amplitudes and ranges, wavelet decompositions, etc.) [11], are generally passed to statistical-based and data-
driven models to estimate whether the cutting tool has failed or not. Nevertheless, the above features are influenced 
by process parameters [8], like feed and spindle speed for a drilling application, while statistical-based algorithms 
(e.g., Auto-Regressive Moving-Average models) or data-driven models (e.g., Artificial Neural Networks) need a high 
quantity and quality of data to properly work [12]. The combination of these two characteristics makes state-of-art 
solutions not suitable for industrial applications. This is especially true for one-of-a-kind or small batch production, 
where cutting is performed under varying cutting conditions, where system retraining is needed and only limited 
training data are available [8]. On the other side, direct inspection makes use of point wise scanning, profilometric 
acquisitions [13] or 2D/3D calibrated pictures analysis [14] to evaluate the flank wear of the tool. However, these 
techniques are available only when the cutting tool is not processing the workpiece. 

Both the inspection strategies can be used to feed prognosis algorithms with the goal of estimating the Remaining 
Useful Life (RUL) of cutting tools. State-of-art prognosis techniques can be categorized in four groups: model-based, 
statistical-based, data-driven and experience-based algorithms [12]. Despite these solutions are valuable for mass 
production, where high quantity of data are available for a limited pool of products, the need for a high number of 
run-to-failures (RTFs) and process parameter combinations is not affordable for small batch production realities. 

In this paper, a hybrid solution is proposed, that fuses multiple algorithm categories, i.e., data-driven and statistical 
approaches, in order to forecast drill-bits wear starting from tool pictures. The solution adapts to different cutting 
parameters and unseen degradation trends, by leveraging on particle filter (PF) capability to adapt multi-layer 
perceptron (MLP) architectures (demonstrated in different domains, i.e. structural health monitoring [15] and batteries 
prognosis [16]). The solution needs a single training RTF to predict new drill-bits RUL and RUL probability density 
function (PDF). The predictions are updated as long as new drill-bit pictures come from the field. The conceived 
approach features generalisability (i.e., the MLP is a universal fitter and can adapt to different degradation trends) and 
scalability (i.e., MLPs can be deepened, widened, or substituted with other architectures, including even other inputs).  

The structure of the paper is as follows: in section 2, the inspection phase is presented; then, direct drill-bit 
prognosis, through the hybridization of MLP and PF, is detailed, followed by the experimental campaign description., 
Results are discussed in section 3, followed by conclusions (section 4). 

2. Materials and methods 

In this section, the conceived solution is described in all its parts. The structure of the developed approach is 
schematized in Fig. 1. The conceived solution is based on a two layer architecture: an inspection layer processes drill-
bits’ cutting edges pictures to extract measurements of their flank wear; a prognosis layer, forecasts the evolution of 
drill-bit flank wear, starting from a limited knowledge of degradation trends and adapting to the unseen degradation 
trend when new pictures are available (Fig. 1). These layers will be explained in detail in the following subsections. 
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Fig. 1. Schematization of the conceived methodology. 
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2.1. Inspection phase 

The direct inspection of the drill-bit starts with flank pictures, each following four automatic pre-processing steps 
to centre images on the drill-bit flank (pre-processing 1, Fig. 2): 

1. A grayscale transformation of the image is performed to reduce the image feature space [17]. 
2. Binarization with 120 as intensity threshold is performed to highlight the cutting edge. 
3. The image is centred on the centre of mass of the masked area. 
4. The image is cropped at a resolution of 900x400 pixels. 

Five pre-processing steps follow (pre-processing 2, Fig. 2) to align reference drill-bit edges among different images: 
5. Gaussian image blurring: an 11x11 Gaussian kernel is applied to smooth image noise. 

Nomenclature 

APE Absolute prediction error 
MLP Multi-Layer Perceptron 
MRR Material Removal Rate 
PDF Probability density function 
PF Particle filter 
PH Prognostics horizon 
RTF Run-to-failure 
RUL Remaining Useful Life 
𝛼𝛼 Maximum allowable error 
𝛽𝛽 Minimum desired probability threshold 
𝜆𝜆 Normalized tool life 
𝜽𝜽𝑓𝑓 MLP weights/biases array at iteration 𝑓𝑓 
𝜃𝜃𝑠𝑠 MLP parameters (weight and biases) 
𝜏𝜏𝑚𝑚 Feed axis motor transmission ratio 
𝜅𝜅𝑡𝑡 Drill-bit cutting-lip taper angle 
𝑎𝑎(⋅) MLP activation function 
𝑐𝑐 Feed per tooth 
𝒅𝒅𝑓𝑓 Vector of process disturbances of PF 
𝑓𝑓 Flank wear measurement index 
ℎ Undeformed chip thickness 
𝑖𝑖�̅�𝑐𝑐𝑐𝑡𝑡 Feed axis cutting current 
𝑖𝑖�̅�𝑚𝑚𝑚𝑚𝑚𝑠𝑠 Measured feed axis current 
𝑖𝑖�̅�𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 Feed axis current absorption (no cut) 
𝑖𝑖 Index for the hole number 
�̃�𝑘𝑐𝑐,𝑚𝑚 Current axial cutting pressure 

 

�̃�𝑘𝑐𝑐𝑠𝑠,𝑚𝑚 Current axial specific cutting pressure 
𝑘𝑘𝑐𝑐,𝑚𝑚 Axial cutting pressure 
𝑘𝑘𝑐𝑐𝑠𝑠,𝑡𝑡 Tangential specific cutting pressure 
𝑘𝑘𝑐𝑐,𝑡𝑡 Tangential cutting pressure 
𝐾𝐾𝑚𝑚 Feed axis motor constant 
𝑛𝑛 Spindle speed 
𝑛𝑛𝑓𝑓 Noise of PF measurements 
𝑛𝑛𝑝𝑝 PF number of particles 
�̅�𝑃𝑐𝑐𝑐𝑐𝑡𝑡 Spindle cutting power 
�̅�𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 Measured spindle power 
�̅�𝑃𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 Spindle power absorption (no cut) 
𝑝𝑝 PF particle (i.e., MLP) 
𝑄𝑄 Disturbances intensity 
𝑅𝑅 Noise variance 
𝑅𝑅𝑅𝑅𝐿𝐿𝑓𝑓 RUL PDF estimation at iteration 𝑓𝑓 
𝑅𝑅𝑅𝑅𝐿𝐿𝑝𝑝,𝑓𝑓 RUL estimated at iteration 𝑓𝑓 by particle 𝑝𝑝 
𝑅𝑅𝑅𝑅𝐿𝐿𝑡𝑡𝑡𝑡𝑐𝑐𝑚𝑚 True RUL of a specific drill-bit 
𝑟𝑟 Drill-bit radius 
𝑠𝑠 MLP parameter index 
𝑢𝑢 MLP activation function generic input 
𝑉𝑉𝑉𝑉 Cutting edge flank wear measurement 
𝑉𝑉𝑉𝑉𝑚𝑚 Drill-bit cutting edges’ flank wear mean  
𝑣𝑣𝑐𝑐 Cutting speed 
𝑣𝑣𝑓𝑓  Feed speed 

               
      

         
   

     
    

     
    

       
    

      
    

       
    

      
       

       
       

  
         

                                

Fig. 2. Inspection phase workflow. 
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6. Detecting edge 1: a 2D convolutional filter highlights the vertical reference edge (in particular, edge 1). 
7.  Alignment 1: all the images are rotated to keep edge 1 vertical. 
8. Detecting edge 2: a 2D convolutional filter is applied to the blurred image, followed by an  tsu’s binarization 

[18] to highlight the oblique reference edge (edge 2). 
9. Intersecting edges: intersection of the two edges is computed and becomes the reference point for the 

placement of the nominal cutting tool flank mask. 
At last, the mean flank wear is computed. The worn drill-bit flank is masked through a binarization with 70 as 

intensity threshold (within nominal mask bounds). The difference between the nominal area and the highlighted area, 
divided by the flank length is the mean flank wear (𝑉𝑉𝑉𝑉) measurement of the cutting edge for that image. Since the 
drill-bit is made of two cutting edges, the flank wear measure is computed as the mean of the two at each stop, and it 
is indicated as 𝑉𝑉𝑉𝑉𝑚𝑚. Kernels of the pre-processing filters presented above are reported in Table 1. 

Table 1. Convolutional layers' kernels. 

Layer Edge 1 detection Edge 2 detection 

Kernel [
−4 0 4.5
−4 0 4.5
−4 0 4.5

]  [
−1.5 … −1.5
0 … 0
1.8 … 1.8

]     [3𝑥𝑥20]  

2.2. Prognostics phase 

Prognostics goal is to predict RUL of drill-bits. Prognostics phase forecasts the evolution of the mean flank wear 
𝑉𝑉𝑉𝑉𝑚𝑚 and estimates the time at which it will overcome a preselected threshold. Two main features characterize the 
conceived prognostic approach: adaptivity to cutting parameters, i.e., the solution should be capable to predict RUL 
in an adaptive fashion starting from a limited set of training data in fixed working conditions (here, a single RTF is 
used); prediction of the RUL PDF, required by international standards but generally not provided by state-of-art 
approaches. Indeed, in this paper, a hybrid prognosis framework is conceived, similarly to crack growth propagation 
and Li-ion batteries prognosis [15], [16]. The solution consists in the integration of MLP (universal curve fitter) to fit 
flank wear degradation curves, and PF, to provide a Bayesian adaptive online training of multiple MLPs.  

2.2.1. Multi-layer perceptron 
MLP represents a naïve neural network, mapping between the input features and the outputs. In our problem, MLP 

maps 𝑉𝑉𝑉𝑉𝑚𝑚 as a function of the hole number 𝑖𝑖. Thus, the MLP has one input neuron and a single output neuron. To 
limit the MLP complexity, we introduce a single hidden layer with three neurons. The resulting MLP structure is 
shown in Fig. 3. The resulting MLP equation is presented in the following (Eq. (1)): 

𝑉𝑉𝑉𝑉𝑚𝑚(𝑖𝑖) = 𝜃𝜃10+∑ 𝜃𝜃𝑠𝑠+6 𝑎𝑎(𝜃𝜃𝑠𝑠 𝑖𝑖 + 𝜃𝜃𝑠𝑠+3)3
𝑠𝑠=1   (1) 

 1  4

 ( )+   

 3
  

 ( )+   

 ( )+    +  2  5
 8  10

Fig. 3. Adopted multi-layer perceptron 
architecture. 

 

 

  

Fig. 4. Experimental set-up: a) balancing machine RB50A; b) workpiece flange; c) 
measurement set-up and DAQ; d) Optika SZN-T microscope. 



 Luca Bernini  et al. / Procedia Computer Science 232 (2024) 201–210 205
 Author name / Procedia Computer Science 00 (2023) 000–000  5 

where 𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3, 𝜃𝜃7, 𝜃𝜃8, 𝜃𝜃9 and 𝜃𝜃4, 𝜃𝜃5, 𝜃𝜃6, 𝜃𝜃10 are the weights and biases of the MLP, respectively; 𝑎𝑎(⋅) is the 
activation function, defined by Eq. (2): 

𝑎𝑎(𝑢𝑢) = 𝑢𝑢/(1 + |𝑢𝑢|)  (2) 

where 𝑢𝑢 is a generic input. Thus, given the hole number 𝑖𝑖 as input, the MLP returns the correspondent predicted 
flank wear 𝑉𝑉𝐵𝐵𝑚𝑚(𝑖𝑖). The MLP is trained upon a single RTF test. 

2.2.2. Particle filter 
PF is an evolution of Kalman filter dealing with non-linear dynamical systems and non-gaussian measurement 

noise and process disturbances. PF approximates the dynamical system state PDF through a set of 𝑛𝑛𝑝𝑝 particles (here, 
𝑛𝑛𝑝𝑝 = 250). In the developed solution, PF represents a mean to update the MLP fitting of 𝑉𝑉𝐵𝐵𝑚𝑚, whenever a flank wear 
measurement becomes available. Moreover, a flank wear image is assumed available every 5 holes (we will call the 
associated index 𝑓𝑓, with 𝑓𝑓 = 0,5,10, …). Therefore, PF updates the MLP with 5 holes as sampling frequency. The 
developed PF observes the following dynamical system (Eq. (3)): 

{
𝜽𝜽𝑓𝑓+1 = 𝜽𝜽𝑓𝑓 + 𝒅𝒅𝑓𝑓

𝑉𝑉𝐵𝐵𝑚𝑚,𝑓𝑓(𝑖𝑖) = 𝜃𝜃10,𝑓𝑓 + ∑ 𝜃𝜃𝑠𝑠+6,𝑓𝑓 𝑎𝑎(𝜃𝜃𝑠𝑠,𝑓𝑓 𝑖𝑖 + 𝜃𝜃𝑠𝑠+3,𝑓𝑓)3
𝑠𝑠=1 + 𝑛𝑛𝑓𝑓

 (3) 

where 𝜽𝜽𝑓𝑓 is the state of the dynamical system containing weights and biases of the MLP observed at hole 𝑓𝑓; 𝒅𝒅𝑓𝑓 
represents the process disturbances, assumed gaussian with null mean and diagonal covariance, proportional to 𝜽𝜽𝑓𝑓 
through disturbance intensity 𝑄𝑄 (here, 𝑄𝑄 = 0.1). The first equation is called process equation and it explores the 
weights and biases space at each PF iteration. The second equation is the measurement equation, and it provides the 
estimation of the measured quantity (i.e., 𝑉𝑉𝐵𝐵𝑚𝑚) with the updated MLP. 𝑛𝑛𝑓𝑓 is the measurement noise, assumed gaussian 
with null mean and standard deviation 𝑅𝑅 (here, 𝑅𝑅 = 30). 

At each PF cycle a set of particles is sampled through the process equation. Thus, each particle 𝑝𝑝 corresponds to a 
different state value, ending up in a different MLP. Resampling is the second PF step, which selects the most 
representative particles. Selection is performed by assigning a weight to each particle, proportional to the measurement 
likelihood (see [15], [16] for a detailed description of the resampling stage). 

In order to perform prognostics, at each PF iteration, each resampled MLP (𝑝𝑝) is evaluated to find the hole number 
corresponding to the threshold intersection (here, 150 𝜇𝜇𝜇𝜇). The correspondent hole number is 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝,𝑓𝑓. RUL PDF 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓) estimated at the 𝑓𝑓-th PF iteration is thus approximated through 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝,𝑓𝑓, with 𝑝𝑝 = 1,… , 𝑛𝑛𝑝𝑝. In order to evaluate 
the performances of the conceived prognostics solution, two prognostic metrics were computed: absolute prediction 
error (APE) and prognostics horizon (PH), computed through the 𝛼𝛼 − 𝛽𝛽 criterion, with 𝛼𝛼 = 0.20 and 𝛽𝛽 = 0. 5 [19]. 
APE is computed as a function of the normalized tool life 𝜆𝜆 (Eq. (4)): 

𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆) = |𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴[𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓]|  (4) 

where 𝜆𝜆 = 𝑓𝑓/𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the actual hole number at which the flank wear overcame the threshold; 
𝐴𝐴[𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓] is the expected value of the estimated RUL PDF at the PF iteration 𝑓𝑓. PH is a measure of how long in 
advance the algorithm correctly predicts the RUL. Details on PH computation can be found in [19].  

2.3. Experimental set-up and campaign 

2.3.1. Set-up 
The experimental set-up is composed of a CNC balancing machine RB50A from Balance Systems S.r.l. company 

(Fig. 4a). The experimental campaigns are performed on AISI303 stainless steel (Fig. 4b) using a drill-bit with 5.5 𝜇𝜇𝜇𝜇 
diameter and a cutting-lip taper angle 𝜅𝜅𝑡𝑡 of 70°. For the characterization of drill-bit wear during the RTFs, an Optika 
SZN-T microscope was used (Fig. 4d), with the help of a 3D-printed support for drill-bit positioning. In an industrial 
application scenario, the microscope can be substituted with cameras featuring macro lenses. Furthermore, a 
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supplementary acquisition system was installed to characterize the cutting process in the considered cutting 
parameters. The acquisition system consisted of an external DAQ from National Instruments (NI) DAQ9174 and two 
NI acquisition boards NI9205, to acquire a set of five analog and digital signals (Fig. 4c): machining/approaching 
(digital); feed speed, feed current, spindle speed and spindle power (analog). All the measured quantities were acquired 
at a sampling frequency of 1 kHz. In order to characterize the cutting process in the tested conditions, power and 
current measurements from the machine are firstly averaged on the stationary sections of a hole, and then non-cutting 
contributions (�̅�𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑖𝑖�̅�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) removed, in order to obtain �̅�𝑃𝑐𝑐𝑐𝑐𝑚𝑚 and 𝑖𝑖�̅�𝑐𝑐𝑐𝑚𝑚, respectively. 

 Then, specific cutting pressures are extracted from the two quantities (Eq. (5)): 

𝑘𝑘𝑐𝑐,𝑚𝑚 = �̅�𝑃𝑐𝑐𝑐𝑐𝑚𝑚/𝑀𝑀𝑀𝑀𝑀𝑀
�̃�𝑘𝑐𝑐,𝑎𝑎 = 𝑘𝑘𝑐𝑐,𝑎𝑎/(𝜏𝜏𝑚𝑚𝐾𝐾𝑚𝑚) = 𝑖𝑖�̅�𝑐𝑐𝑐𝑚𝑚/(2𝑐𝑐𝑐𝑐)

  (5) 

where 𝑘𝑘𝑐𝑐,𝑚𝑚 and 𝑘𝑘𝑐𝑐,𝑎𝑎 are the tangential and axial cutting pressures; 𝑀𝑀𝑀𝑀𝑀𝑀 is the material removal rate of the drilling 
operation; 𝜏𝜏𝑚𝑚 is the feed axis motor transmission ratio; 𝐾𝐾𝑚𝑚 is the feed axis motor constant; 𝑐𝑐 is the feed per tooth and 
𝑐𝑐 is the drill-bit radius. Since the motor transmission ratio and constant were unknown, only �̃�𝑘𝑐𝑐,𝑎𝑎  was estimated 
(proportional to the axial cutting pressure). Kronenberg’s cutting pressures exponential models [20] are then derived 
from cutting pressures estimated by Eq. (5), through Eq. (6): 

𝑘𝑘𝑐𝑐,𝑚𝑚 = 𝑘𝑘𝑐𝑐𝑐𝑐,𝑚𝑚ℎ−𝑥𝑥𝑡𝑡 
�̃�𝑘𝑐𝑐,𝑎𝑎 = �̃�𝑘𝑐𝑐𝑐𝑐,𝑎𝑎ℎ−𝑥𝑥𝑎𝑎 

  (6) 

where 𝑘𝑘𝑐𝑐𝑐𝑐,𝑚𝑚  and 𝑥𝑥𝑚𝑚 , and �̃�𝑘𝑐𝑐𝑐𝑐,𝑎𝑎  and 𝑥𝑥𝑎𝑎 , are the specific cutting pressures in the tangential and axial direction, 
depending on the workpiece material-cutting tool pair; ℎ is the chip thickness, equal to 𝑐𝑐 sin(𝜅𝜅t), where 𝜅𝜅𝑚𝑚 is the drill-
bit cutting-lip taper angle. 

2.3.2. Campaign 
The experimentation consisted of two phases: experiments to characterize the cutting process and RTFs to develop 

and test drill-bit prognosis. Each hole consisted of 5  pecks, accounting for a total of   𝑚𝑚𝑚𝑚  hole depth, in dry 
conditions. For the two experiment phases, a full-factorial design of experiments (DoE) with central point and 
validations was performed. The parameters of the DoE for the characterization phase, consisting of 25 cutting tests, 
were reported in Table 2, while the DoE parameters for the 12 RTFs were reported in Table 3. The test order was 
randomized. 

3. Results and discussion 

In this section, the results are reported following the order of the previously discussed experimental campaigns. 
The characterization of the cutting process is firstly presented through the estimation of specific cutting pressures. 
Secondly, inspection and prognosis results are discussed with regards to the RTF experimentation. 

Table 2. DoE for cutting process characterization. 

ID 𝑐𝑐 [level] 𝑣𝑣𝑐𝑐 [level] 𝑐𝑐 [𝑚𝑚𝑚𝑚/𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ]  𝑣𝑣𝑐𝑐 [𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚]  𝑣𝑣𝑓𝑓 [𝑚𝑚𝑚𝑚/𝑠𝑠]  𝑚𝑚 [𝑐𝑐𝑟𝑟𝑚𝑚]  Replicas 

1 Low Low 0.020 52 2.0 3000 4 

2 Low High 0.020 70 2.7 4051 4 

3 High Low 0.040 52 4.0 3000 4 

4 High High 0.040 70 5.4 4051 4 

5 Mid Mid 0.030 61 3.5 3526 5 

6 Val Val 0.035 66 4.4 3788 2 

7 Mid Low 0.030 52 3.0 3000 2 
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 Table 3. DoE for run-to-failure tests. 

3.1.  Cutting process characterization 

 This experimental campaign had the goal to check the cutting parameters adequacy for the drill-bit and workpiece 
material pair. Cutting pressures 𝑘𝑘𝑐𝑐,𝑡𝑡 and �̃�𝑘𝑐𝑐,𝑎𝑎 trends, with respect to the undeformed chip thickness ℎ were shown in 
Fig. 5. �̃�𝑘𝑐𝑐,𝑎𝑎  and 𝑘𝑘𝑐𝑐,𝑡𝑡  trends were modelled through exponentials [20]. Model fits were good and described the 
behaviour of the two cutting pressures as a function of chip thickness ℎ (with R-squared coefficients of 0.78 and 0.80, 
respectively). Simultaneous curve bounds (not including new observation variability) were reported, too. The 
observations fell inside the confidence bounds, including most of the validation data. The estimated model coefficients 
were �̃�𝑘𝑐𝑐𝑐𝑐,𝑎𝑎 = 0.42 𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐/𝑚𝑚𝑚𝑚2 , 𝑥𝑥𝑎𝑎 = 0.41 , 𝑘𝑘𝑐𝑐𝑐𝑐,𝑡𝑡 = 1 33 𝑀𝑀𝑀𝑀𝑀𝑀  and 𝑥𝑥𝑡𝑡 = 0.30 . The obtained values for tangential 
cutting pressures were usual for austenitic stainless steels, confirming a proper execution of the cutting process. 

3.2. Run-to-failures 

As explained in section 2.3, 12 RTFs were performed with different combinations of cutting speeds and feed per 
tooths. Direct inspection phase was applied to the RTFs. The wear progression during a sample RTF (test 1 (1)) was 
shown in Fig. 8, while the evolutions of the flank wears (i.e., the results of the application of the direct inspection 
phase) were shown in Fig. 7. The associated true End-of-Life of each test was reported in Table 4. Fig. 7 also 
demonstrates how the cutting speed and feed rate influence the flank wear evolution of the drill-bits. These relations 
were well known and higher cutting speeds, as well as higher feed rates, increase the wear rate of the drill-bit. 
However, the variability of degradation rates was high, even when the same parameters were used (same colours). 
This is the main reason why prognosis gained attention in the industrial scenario. Prognosis phase must face such 
variability in the flank wear evolutions and manage the effects of cutting parameters on tool wear rates, too. In order 
to predict the evolution of flank wear of drill-bits, prognostics was implemented. The algorithm was trained on one 
RTF (test 5 (1)) and tested on all the others, in order to show the adaptivity feature of the conceived solution. 
Prognostics results were shown in Fig. 6. This figure represents the trend of the estimated RUL over the normalized 
tool life 𝜆𝜆. Image with label RTF 5 (1), represented the case where the algorithm was tested on the training RTF. It is 
important to track how the predicted RUL mean (blue solid line) and RUL 95% confidence intervals (RUL CIs, blue 
dashed lines) were positioned with respect to the true RUL (red solid line) and the acceptability region (red dashed 

 

ID 𝑐𝑐 [level] 𝑣𝑣𝑐𝑐 [level] 𝑐𝑐 [𝑚𝑚𝑚𝑚/𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ]   𝑣𝑣𝑐𝑐 [𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚]  𝑣𝑣𝑓𝑓 [𝑚𝑚𝑚𝑚/𝑠𝑠]  𝑚𝑚 [𝑟𝑟𝑟𝑟𝑚𝑚]  Replicas 

1 Low Low 0.020 52 2.0 3000 2 

2 Low High 0.020 70 2.7 4051 2 

3 High Low 0.040 52 4.0 3000 2 

4 High High 0.040 70 5.4 4051 2 

5 Mid Mid 0.030 61 3.5 3526 2 

6 Mid Low 0.030 52 3.0 3000 2 

Fig. 5. Tangential and axial cutting pressure exponential model fitting. 
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Table 4. True End-of-Life (EoL) and prognosis horizon (PH) of the 12 drill-bits used in run-to-failures. 

Test 1 (1) 1 (2) 2 (1) 2 (2) 3 (1) 3 (2) 4 (1) 4 (2) 5 (1) 5 (2) 6 (1) 6 (2) 

EoL 381 77 365 122 24 104 185 134 102 158 314 213 

PH [%] 11 0 22 100 0 14 0 19 10 9 2 26 

Fig. 6. Prognosis results when training is performed on test 5 (1). 

Fig. 7. Mean flank wear 𝑉𝑉𝐵𝐵𝑚𝑚 evolution during the 12 run-to-failures. 

Fig. 8. RTF 1 (1) drill-bit cutters flank wear images. 
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lines) [19]. RUL CIs included the true RUL, and the RUL mean was included in the acceptability regions for most 
of the RTF execution. In Fig. 9, the associated APE was shown, which was almost constant and close to 0. 

More attention should be given to the unseen cutting tests and parameters. The analysis should also consider that 
the results refer to a first application of the prognosis algorithm (only one run-to-failure available for training). New 
cutting tests, which become available from the field, should be included in the algorithm training. In each graph, the 
evolutions of 𝑉𝑉𝐵𝐵𝑚𝑚 of training and test RTFs were shown in orange, to graphically compare the curves. Test 1 (1) 
showed the maximum difference between the two. All the tests shown in Fig. 6, converged to the correct RUL, except 
for test 1 (2) and 3 (1). The APE for those tests were almost constant and around 30 and 100 holes respectively (Fig. 
9). Indeed, a lack of adaptivity was detected only for these two RTFs. Correspondingly, in Table 4, the PH for these 
two tests was null, highlighting that RUL could not be predicted in advance. All the other tests faced converging RUL 
predictions or constant limited APEs. Table 4 reported that almost all the PHs were over the 10% of tool lives, meaning 
that the RUL could be robustly predicted in advance with a minimum of 10% leading time (i.e., allowing for their 
proper substitution). It must be noted that the PH was expressed as the last hole where the 95% of the estimated RUL 
PDF was included in the acceptability region (i.e., a restrictive condition), indicating that the confidence on a correct 
prediction was extremely high. Thus, PH were tendentially low (test 4 (1) faced a null PH, too), despite the errors in 
the prediction mean were limited in general (Fig. 9), with particular reference to RTFs 2 (1), 3 (2), 4(2) and 6 (1). This 
was not related to specific cutting conditions, but on the restrictive choice of 𝛽𝛽 for the PH computation. Fig. 6 and 
Fig. 9 highlighted the algorithm reliability and stability (i.e., predictions gradually converge to the ground truth). 

4. Conclusions 

In this paper, a prognosis strategy was developed for drill-bits. Directly inspected flank wears were the inputs for 
a hybrid adaptive prognosis solution. The main advantages of the proposed solution were summarised in the following: 
• Direct inspection allowed to automatically measure mean flank wear of a drill-bit starting from pictures of drill-bit 

cutting edges’ flanks.  
• Since in industrial scenarios cutting edge pictures are available only at pit-stops, prognosis was updated every 5 

holes, forecasting the flank wear evolution of the drill-bit adaptively. 
• Prognosis gave estimates of the RUL probability density function online, providing a tool to statistically support 

the maintenance decision making. 
• Adaptivity of the conceived approach allowed to predict drill-bit wear evolution under unseen process parameters, 

using just one training run-to-failure (with 7 out of 12 RTFs predicted with a prognosis horizon greater than 10% 
and only three RTFs with a null prognosis horizon). This allows its implementation when worn data are scarce 
(small batch production or one-of-a-kind production). 

• The algorithm performances were compared with respect to the original separated components (i.e., MLP and PF). 
The hybrid solution outperformed both the algorithms: PF scored three 21% prognostics horizons and nine null 
ones; MLP scored three prognostics horizons of 100% and nine null ones. 

Fig. 9. Prognosis absolute prediction error when training is performed on test 5 (1). 
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Future works will consist in the development of a heterogeneous prognosis approach, where specific cutting pressures 
will be included in the prediction of flank wear, providing a cutting parameter independent feature, to update the RUL 
predictions even when a pit-stop is not an option. 
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