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A B S T R A C T

In this study we present a branch-and-cut algorithm for a skip pick-up and delivery problem. The study is
motivated by a real-life problem in which full skips are transported from waste drop-off stations to treatment
facilities where they are emptied, and then brought back to the original drop-off station. The transportation
of the skips is done by trucks with the capacity of carrying two containers at a time. The planning problem
is to design the routes of the trucks that perform the collection to satisfy a number of requests in a planning
period. A truck route starts at the first pick-up, the truck then performs a sequence of pick-ups, treatments,
and deliveries, and the route ends at the last delivery. From the truck perspective, the three actions of pick-up,
treatment, and delivery can be performed in any order that respects the vehicle capacity of two and the route
duration constraint, but for the single request, the three actions must be performed in the stated order. The
problem is formulated as a mixed integer linear problem and several classes of valid inequalities are proposed
and integrated into a branch-and-cut algorithm.
1. Introduction

In this paper, we present a branch-and-cut algorithm for the skip
pick-up and delivery problem with fixed return (SPDP-R) first presented
by Wøhlk and Laporte (2022). In the SPDP-R, a fleet of vehicles must
satisfy a set of transportation requests. Each request is characterized
by a pick-up location and a corresponding treatment location. The
vehicle’s operation consists of retrieving a large container (skip) at
the pick-up location, transport it to the treatment location where the
skip is emptied, and then return the empty skip to the original pick-
up location. Given the size of the skips, each vehicle can carry up to
two skips at a time. A sufficiently large fleet of vehicles is available to
perform the service of the requests. Routes are limited to a maximum
time duration. Each vehicle start its route at the first pick-up and end
at the last delivery, and the objective is to minimize the travel costs
and the fixed costs of using each vehicle to serve all the requests.

The SPDP-R originates from the transportation of skips between
recycling centers and recycling treatment facilities. Recycling centers
are at the disposal of citizens to drop materials for recycling, which
accumulate in the skips. When skips are full, they are transported to
a treatment facility which depends on the content of the skip. There,
the skip is emptied and then returned to its origin. In addition to waste
collection, similar situations arise in other contexts, such as within the
building industry (Rabbani et al., 2016).
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From the vehicle’s perspective, there are three actions: (1) pick-up
a full skip, (2) empty a skip at the treatment facility, and (3) return an
empty skip to its delivery location, which coincides with the original
pick-up location of that skip. For a given request, those actions must
be performed in the stated order, but not necessarily in sequence. This
means that empty skips must be returned by the same vehicle, but
other actions can take place before its return. Since each vehicle has
a capacity of carrying two skips, the possible load of a vehicle is a
combination of empty and full skips with none, one, or two skips. The
complexity of the problem stem from the combinatorial nature of the
possible actions combined with the fact that skips must return to their
original location. In Fig. 1, we illustrate how actions depend on the
current load of a vehicle.

The SPDP-R falls into a more general classification of problems
addressed in the literature as pick-up and delivery problems (PDPs).
The class of PDPs is large and rich (see Berbeglia et al. (2007), Parragh
et al. (2008), and Battarra et al. (2014) for comprehensive reviews).
In the PDP, objects or people have to be transported from an ori-
gin to a destination. These problems are classified into three main
groups. Firstly, many-to-many problems allow any point to act as a
source or destination for any commodity. Secondly, one-to-many-to-
one problems involve commodities initially at the depot and destined
for customer vertices, and vice versa. Lastly, in one-to-one problems,
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Fig. 1. Illustration of how the possible actions depend on the current load of the vehicle. Full skips are shown in black, while empty skips are shown in white. For example, the
lower right illustration shows that for a vehicle carrying two full skips, the only possible next action is to empty one of them.
Source: Wøhlk and Laporte (2022).
each commodity has a specific origin and destination, typical in courier,
door-to-door transportation services. While the SPDP-R falls into the
last category, our problem is double-paired: one-to-one assignment with
delivery at the origin by the same vehicle.

Table 1 summarizes the literature on PDPs that is most relevant to
our work. We report assumptions regarding the capacity of the vehicles
(number of skips), number of disposal sites, the inclusion of return trips,
and solution method. De Meulemeester et al. (1997) was the first to
present a PDP as a problem of transporting full and empty skips. The
authors consider the capacity of vehicles to be one skip, one disposal
site, and two type of customers. Similar assumptions are considered
by Bodin et al. (2000), Archetti and Speranza (2005), and Rabbani
et al. (2016). Several variants of skip PDPs have been studied, and
their main assumptions include more than one disposal site (Aringhieri
et al., 2004; Archetti et al., 2005; Baldacci et al., 2006; Benjamin and
Beasley, 2010; Wy et al., 2013; Li et al., 2018; Raucq et al., 2019; Wøhlk
and Laporte, 2022), time windows (Benjamin and Beasley, 2010; Wy
et al., 2013; Li et al., 2018; Raucq et al., 2019), driver’s rest time (Ben-
jamin and Beasley, 2010; Wy et al., 2013), precedence constraints (Li
et al., 2018), and heterogeneous fleet (Raucq et al., 2019). While
many papers approach the skip PDP variations with heuristics (Bodin
et al., 2000; Aringhieri et al., 2004; Archetti and Speranza, 2005;
Benjamin and Beasley, 2010; Wy et al., 2013; Rabbani et al., 2016;
Wøhlk and Laporte, 2022), several studies also take a mathematical
programming approach to optimizing the problem. De Meulemeester
et al. (1997) approaches the problem using branch-and-bound, Baldacci
et al. (2006) utilizes branch-and-cut, Li et al. (2018) employs Benders
decomposition, and Raucq et al. (2019) applies column generation.

Few studies consider the case where vehicles can carry two skips
at a time. Archetti et al. (2005) study the problem of delivering skips
from a joint depot to customers, and show that if the vehicle capacity
is two, then the problem can be solved in polynomial time, but if it is
larger than two, then the problem is NP-hard. However, it should be
noted that the problem has a less complex structure than our problem,
as they do not consider the return of skips. The problem studied
in Raucq et al. (2019) origins from transport of full and empty skips
in the context of industrial waste. Two types of vehicles that can carry
either one or two skips are used, and the problem is approached by
a heuristic columns generation algorithm, as opposed to our problem,
they consider these transports independently, whereas in our problem,
the skips stay on the vehicle after being emptied. Also originating from
a waste application, Wøhlk and Laporte (2022) study the SPDP-R as
well as a version of the problem which allows for more flexibility
regarding the return of skips. Mathematical models are presented for
both versions, and they are solved by a meta-heuristic inspired by a
variable neighborhood search. It is the version of their problem with
fixed return that we consider in this paper. As presented in Table 1,
2

our paper focuses on an exact solution method for the SPDP-R with
capacity of two skips.

The contribution of this paper is twofold. First, taking the model
of Wøhlk and Laporte (2022) as a starting point, we derive several
classes of valid inequalities for the SPDP-R and propose an improved
mathematical formulation. Second, we integrate them into and branch-
and-cut algorithm, and, through extensive computational experiments,
show that our valid inequalities yield a stronger model.

The rest of this paper is structured as follows. In Section 2, we
describe the problem and present the mathematical model. Section 3
presents a mathematical model for the SPDP-R. In Section 4, we present
the valid inequalities we use to strengthen our mathematical model. We
divide this section into two parts: first, presenting the valid inequalities
presented in Wøhlk and Laporte (2022), and, second, the new inequali-
ties we propose for the problem. Section 5 describes the branch-and-cut
algorithm. In Section 6 we present the results of our computational
experiments. Finally, Section 7 presents conclusions and future work.

2. Problem description

Let 𝑅 be a set of 𝑛 requests to satisfy. Each request consists of the
transportation of a full skip from a pick-up location to a treatment
facility, where the skip is emptied; and the delivery of the empty skip
to the original pick-up location. Each request is assigned to a vehicle
which must perform services of the requests within a fixed time limit
𝑇 . We assume that there is a sufficiently large set 𝐾 of vehicles to
meet the requests. The vehicles have the capacity of carrying two skips
which can be moved in any order. Each vehicle performs an open route
which starts at its first pick-up and ends at its final delivery. Each of
the three operations – pick-up, treatment, and delivery – has a fixed
operation time.

The objective of the problem is to identify the set of routes that
satisfy all requests that minimizes the total costs and respect the time
limits and the capacity of the vehicles. The total cost includes both
the transportation costs and the fixed cost for each vehicle used in the
solution.

2.1. Mathematical model

In this section, we provide the mathematical model for the problem
as it is stated in Wøhlk and Laporte (2022). However, to ease the
description, we formulate the model based on a complete graph and
define a set of arcs 𝐴0 which contains the arcs that are not included
in the graph of that paper. Below, we merely fix the corresponding
variables to zero.

We define the problem on a complete directed graph 𝐺(𝑁,𝐴), with
a node set 𝑁 = {0,… , 3𝑛+1} and an arc set 𝐴. Nodes 0 and 𝑑 = 3𝑛+1 are
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Table 1
Skip pick-up and delivery problems related to our work. MC: multi-commodity, TW: time windows, DR: driver rest time, PC:
precedence constraints, HF: heterogeneous fleet, E: exact, H: heuristic.
Reference Vehicle capacity Disposal sites Return Constraints Solution method

De Meulemeester et al. (1997) 1 1 No MC E, H
Bodin et al. (2000) 1 1 No H
Aringhieri et al. (2004) 1 Many No H
Archetti and Speranza (2005) 1 1 No H
Archetti et al. (2005) 2 Many No H
Baldacci et al. (2006) 1 Many No E
Benjamin and Beasley (2010) 1 Many No TW, DR H
Wy et al. (2013) 1 Many No TW, DR, MC H
Rabbani et al. (2016) 1 1 No H
Li et al. (2018) 1 Many No TW, PC E, H
Raucq et al. (2019) 2 Many No TW, MC, HF E, H
Wøhlk and Laporte (2022) 2 Many Yes H

Our paper 2 Many Yes E
a
t
c
(
t

dummy nodes which denote the origin and destination dummy nodes,
respectively. The remaining nodes of 𝑁 correspond to three nodes for
each request, one for each type of operation. We define three node
subsets: 𝑁𝑃 = {1,… , 𝑛} for pick-up nodes, 𝑁𝑇 = {𝑛 + 1,… , 2𝑛} for
treatment nodes, and 𝑁𝐷 = {2𝑛 + 1,… , 3𝑛} for delivery nodes. With
this notation, each request 𝑖 is associated with a pick-up node 𝑖 ∈ 𝑁𝑃 ,

treatment node 𝑛 + 𝑖 ∈ 𝑁𝑇 , and a delivery node 2𝑛 + 𝑖 ∈ 𝑁𝐷. Each
ode 𝑖 ∈ 𝑁 is associated with a service time 𝑠𝑖. Each arc (𝑖, 𝑗) ∈ 𝐴, is

associated with a travel cost 𝑐𝑖𝑗 , a travel time 𝑡𝑖𝑗 , and a fixed cost 𝑐 is
associated with each vehicle used in the solution. We do not assume
that the triangle inequality is respected since it is not always the case
in the real life data used in Wøhlk and Laporte (2022), but we do
assume that both travel costs and travel times are symmetric. Because
the vehicles perform open routes, we have 𝑐0𝑗 = 𝑡0𝑗 = 𝑐𝑗𝑑 = 𝑡𝑗𝑑 = 0 for
ll nodes 𝑗 ∈ 𝑁 and 𝑠0 = 𝑠𝑑 = 0. Define 𝑠𝑖 = 𝑠𝑖 + 𝑠𝑛+𝑖 + 𝑠2𝑛+𝑖 ∀𝑖 ∈ 𝑁𝑃 ,

𝑠𝑖 = 𝑠𝑖 + 𝑠𝑛+𝑖 ∀𝑖 ∈ 𝑁𝑇 , and 𝑠𝑖 = 𝑠𝑖 ∀𝑖 ∈ 𝑁𝐷.
Each node is associated with a physical location, namely the lo-

cation of the corresponding recycling center or treatment facility. We
define 𝐿 as the set of locations, and for each request 𝑖, we use 𝛼(𝑖) to
enote the pick-up and delivery location, while 𝛽(𝑖) denotes the location

of the associated treatment facility.
Let 𝐻 = {1,… , 2𝑛} be a set of indices in which the first 𝑛 values

represent full skips and the remaining values represent empty skips.
For each node 𝑖 ∈ 𝑁 and each ℎ ∈ 𝐻 , we define the load parameter 𝑞ℎ𝑖
as follows:

𝑞ℎ𝑖 =

⎧

⎪

⎨

⎪

⎩

1 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 , 𝑖 = ℎ,
−1 𝑖 ∈ 𝑁𝑇 ∪𝑁𝐷, 𝑖 = ℎ + 𝑛,
0 otherwise.

In addition, we define auxiliary decision variables 𝑄ℎ
𝑖 for all nodes

∈ 𝑁 and for ℎ ∈ 𝐻 as follows:
ℎ
𝑖 = fraction of skip ℎ (full or empty) on the vehicle

when it leaves node 𝑖 ∀𝑖 ∈ 𝑁,∀ℎ ∈ 𝐻.

The constraints in the model force all 𝑄ℎ
𝑖 variables to take binary

values. We define 𝑄ℎ
𝑖 for the dummy nodes 0 and 𝑑, and fix 𝑄ℎ

0 = 𝑄ℎ
𝑑 = 0

for all ℎ ∈ 𝐻 . We fix 𝑄ℎ
𝑖 = 1 for nodes 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 for the cases where

𝑖 = ℎ, since it represents particular pick-up and empty operations.
Furthermore, we fix 𝑄ℎ

𝑖 = 0 for nodes 𝑖 ∈ 𝑁𝑇 ∪𝑁𝐷 in the cases where
𝑖 = 𝑛 + ℎ since it represents particular empty, or delivery operations.
We define ′

0 and 1 as the subset of 𝑄ℎ
𝑖 -variables thereby fixed to

zero and one, respectively.
For all arcs (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)} we define the following decision

variables:

𝑥𝑖𝑗 =
{

1 if arc (𝑖, 𝑗) is used,
0 otherwise,

The integer variable 𝑥0,𝑑 represents the number of unused vehicles. Due
3

to infeasibility of sequences of actions, some arcs in the graph are not T
allowed. We denote this set of arcs as 𝐴0, and define it a follows:

𝐴0 = {(0, 𝑗), 𝑗 ∈ 𝑁𝑇 ∪𝑁𝐷} ∪ {(𝑖, 𝑑), 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 } ∪ {(𝑖, 2𝑛 + 𝑖), 𝑖 ∈ 𝑁𝑃 } ∪

{(𝑛 + 𝑖, 𝑖), 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 } ∪ {(2𝑛 + 𝑖, 𝑖), 𝑖 ∈ 𝑁𝑃 } ∪ {(𝑑, 0)}

In the model, we fix the variables corresponding to the arcs in 𝐴0 to
zero.

For all nodes 𝑖 ∈ 𝑁 ⧵ {𝑑} we define the following time variables:

𝐵𝑖 = time when a vehicle arrives at node 𝑖 ∈ 𝑁.

The problem can be formulated as:

minimize
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 +

∑

𝑗∈𝑁𝑃

𝑐𝑥0𝑗 (1)

subject to
∑

𝑗∈𝑁𝑃 ∪{𝑑}
𝑥0𝑗 = |𝐾| (2)

∑

𝑖∈𝑁𝐷∪{0}
𝑥𝑖𝑑 = |𝐾| (3)

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 1 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (4)

∑

𝑗∶(𝑗,𝑖)∈𝐴
𝑥𝑗𝑖 = 1 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (5)

𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁 ∶ (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝐴 ⧵ 𝐴0 (6)

𝐵0 = 0 (7)
𝐵𝑖 ≤ 𝐵𝑛+𝑖 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 (8)

𝐵𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝐵𝑗 ≤ (1 − 𝑥𝑖𝑗 )𝑀 (𝑖, 𝑗) ∈ 𝐴, 𝑗 ≠ 𝑑 (9)

𝑄ℎ
𝑖 = 0 𝑄ℎ

𝑖 ∈ ′
0 (10)

𝑄ℎ
𝑖 = 1 𝑄ℎ

𝑖 ∈ 1 (11)

𝑄ℎ
𝑗 ≥ 𝑄ℎ

𝑖 + 𝑞ℎ𝑗 − (1 − 𝑥𝑖𝑗 ) (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)}, ℎ ∈ 𝐻 (12)

𝑄ℎ
𝑗 ≤ 𝑄ℎ

𝑖 + 𝑞ℎ𝑗 + (1 − 𝑥𝑖𝑗 ) (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)}, ℎ ∈ 𝐻 (13)

0 ≤
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (14)

0 ≤ 𝑄ℎ
𝑖 ≤ 1 𝑖 ∈ 𝑁,ℎ ∈ 𝐻 (15)

0 ≤ 𝐵𝑖 ≤ 𝑇 − 𝑠𝑖 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (16)
𝑥𝑖𝑗 = 0 (𝑖, 𝑗) ∈ 𝐴0 (17)

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)} (18)

𝑥0𝑑 ≥ 0 and integer. (19)

The objective function (1) minimizes the sum of both the travel costs
nd fixed costs of using each of the vehicles. Constraints (2) ensures
hat vehicles leave the dummy origin, and constraint (2) ensures vehi-
les enter the dummy destination. For non-dummy nodes, constraints
4) and (5) ensure that nodes are visited exactly once. This enforces
he continuity of the routes. Constraints (6) prevents two-nodes cycles.
he time of the visit to the nodes is controlled by constraints (7), (8),
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and (9). In constraint (9), it is sufficient to use 𝑀 = 𝑇 + max𝑖∈𝑁{𝑠𝑖} +
ax(𝑖,𝑗)∈𝐴{𝑡𝑖𝑗}. The flow of skips is controlled by constraints (10)–(13).
onstraints (14) define the capacity of the vehicles. Finally, constraints
15)–(19) define the domain of the variables 𝑄ℎ

𝑖 , 𝐵𝑖, and 𝑥𝑖𝑗 .

. Improved mathematical model

We have made a number of improvements to the model presented
n Section 2. In this section, we present our model, which we will refer
o in the following as the BASE model.

Because constraints (6) are not necessary for the feasibility of the
odel, we do not include them in our BASE model, and as they are

urther dominated by constraints described in Section 4, we do not add
hem in our algorithm either. Furthermore, we note that constraints (8)
an be tightened as in constraints (26) below, where we note that the
ultiplication by 𝑥𝑖,𝑛+𝑖 is necessary because the triangle inequality is
ot necessarily satisfied.

By the definition of ′
0 and 1, some 𝑄ℎ

𝑖 -variables are fixed to zero
r one. However, it can be observed that further variables can be fixed
o zero as follows. When we pick up a full skip, the corresponding
mpty skip cannot be on the vehicle, thus we fix 𝑄ℎ

𝑖 = 0 for nodes
∈ 𝑁𝑃 in the cases where ℎ = 𝑛 + 𝑖. Using a similar argument, we fix
ℎ
𝑖 = 0 for nodes 𝑖 ∈ 𝑁𝑇 in the cases where 𝑖 = 𝑛 + ℎ and for nodes
∈ 𝑁𝐷 in the cases where 𝑖 = 2𝑛 + ℎ. We define ′′

0 as the subset of
ℎ
𝑖 -variables thereby fixed to zero, and set 0 = ′

0 ∪ ′′
0 . This affects

onstraints (10) (constraints (28) in the model below).
Furthermore, we have tightened the ‘Big-𝑀 ’ value in constraints (9)

constraints (27) in our model below) to 𝑀𝑖𝑗 = 𝑇−�̄�𝑖+𝑠𝑖+𝑡𝑖𝑗 , and tighten
he lower bounds 𝑏𝑖 for 𝐵𝑖 from zero to

𝑏𝑛+𝑖 = min{𝑠𝑖 + 𝑡𝑖,𝑛+𝑖, 𝑚1
𝑛+𝑖, 𝑚

2
𝑛+𝑖, 𝑚

3
𝑛+𝑖}, 𝑛 + 𝑖 ∈ 𝑁𝑇

𝑏2𝑛+𝑖 = min{𝑠𝑖 + 𝑠𝑛+𝑖 + 𝑡𝑛+𝑖,2𝑛+𝑖, 𝑚4
2𝑛+𝑖, 𝑚

5
2𝑛+𝑖, 𝑚

6
2𝑛+𝑖}, 2𝑛 + 𝑖 ∈ 𝑁𝐷

where
𝑚1
𝑛+𝑖 = min𝑗∈𝑁𝑃 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑗 + 𝑡𝑗,𝑛+𝑖}

𝑚2
𝑛+𝑖 = min𝑛+𝑗∈𝑁𝑇 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑗 + 𝑠𝑛+𝑗 + 𝑡𝑛+𝑗,𝑛+𝑖}

𝑚3
𝑛+𝑖 = min2𝑛+𝑗∈𝑁𝐷 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑗 + 𝑠𝑛+𝑗 + 𝑠2𝑛+𝑗 + 𝑡2𝑛+𝑗,𝑛+𝑖}

𝑚4
2𝑛+𝑖 = min𝑗∈𝑁𝑃 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑛+𝑖 + 𝑠𝑗 + 𝑡𝑗,2𝑛+𝑖}

𝑚5
2𝑛+𝑖 = min𝑛+𝑗∈𝑁𝑇 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑛+𝑖 + 𝑠𝑗 + 𝑠𝑛+𝑗 + 𝑡𝑛+𝑗,2𝑛+𝑖}

𝑚6
2𝑛+𝑖 = min2𝑛+𝑗∈𝑁𝐷 ,𝑗≠𝑖{𝑠𝑖 + 𝑠𝑛+𝑖 + 𝑠𝑗 + 𝑠𝑛+𝑗 + 𝑠2𝑛+𝑗 + 𝑡2𝑛+𝑗,2𝑛+𝑖}

while we keep 𝑏𝑖 = 0 for 𝑖 ∈ 𝑁𝑃 , 𝑏0 = 0, and set 𝐵0 = 0.
Finally, we have performed an extensive analysis of constraints

(12)–(14), and show that they can be replaced by constraints (30)–(62)
below. Note, that even though it seems to be more constraints, there are
actually significantly fewer. Because the argument for this replacement
is quite elaborate, we have devoted Appendix A to this analysis.

This leaves us with the following BASE model, where (21)–(29)
and (63)–(67) are identical to constraints (2)–(11) and (15)–(19) in
the original model, except from the above mentioned changed to
constraints (8) and (10) (corresponding to constraints (26) and (28) in
the model below), and the exclusion of constraints (6). As stated above,
constraints (30)–(62) replace constraints (12)–(14).

(BASE)

minimize
∑

(𝑖,𝑗)∈𝐴
𝑐𝑖𝑗𝑥𝑖𝑗 +

∑

𝑗∈𝑁𝑃

𝑐𝑥0𝑗 (20)

subject to
∑

𝑗∈𝑁𝑃 ∪{𝑑}
𝑥0𝑗 = |𝐾| (21)

∑

𝑖∈𝑁𝐷∪{0}
𝑥𝑖𝑑 = |𝐾| (22)

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 = 1 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (23)

∑

𝑗∶(𝑗,𝑖)∈𝐴
𝑥𝑗𝑖 = 1 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (24)

𝐵 = 0 (25)
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𝐵𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑛+𝑖𝑥𝑖,𝑛+𝑖 ≤ 𝐵𝑛+𝑖 ∀𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 (26)

𝐵𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝐵𝑗 ≤ (1 − 𝑥𝑖𝑗 )𝑀𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 ⧵ 𝐴0, 𝑖 ≠ 0, 𝑗 ≠ 𝑑 (27)

𝑄ℎ
𝑖 = 0 𝑄ℎ

𝑖 ∈ 0 (28)

𝑄ℎ
𝑖 = 1 𝑄ℎ

𝑖 ∈ 1 (29)
𝑥𝑖,𝑛+𝑖 − 1 ≤ −𝑄ℎ

𝑖 +𝑄ℎ
𝑛+𝑖 ≤ 1 − 𝑥𝑖,𝑛+𝑖

𝑖 ∈ 𝑁𝑃 , ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖} (30)
𝑥𝑖𝑗 ≤ 𝑄𝑖

𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (31)
𝑥𝑖𝑗 − 1 ≤ −𝑄ℎ

𝑖 +𝑄ℎ
𝑗 ≤ 1 − 𝑥𝑖𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (32)
𝑥𝑖,𝑛+𝑗 ≤ 𝑄𝑖

𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (33)

𝑥𝑖,𝑛+𝑗 ≤ 𝑄𝑗
𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (34)

𝑥𝑖,𝑛+𝑗 − 1 ≤ −𝑄ℎ
𝑖 +𝑄ℎ

𝑛+𝑗 ≤ 1 − 𝑥𝑖,𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (35)
𝑥𝑖,2𝑛+𝑗 ≤ 𝑄𝑖

2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (36)

𝑥𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗
𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (37)

𝑥𝑖,2𝑛+𝑗 − 1 ≤ −𝑄ℎ
𝑖 +𝑄ℎ

2𝑛+𝑗 ≤ 1 − 𝑥𝑖,2𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (38)
𝑥𝑛+𝑖,2𝑛+𝑖 − 1 ≤ −𝑄ℎ

𝑛+𝑖 +𝑄ℎ
2𝑛+𝑖 ≤ 1 − 𝑥𝑛+𝑖,2𝑛+𝑖

𝑖 ∈ 𝑁𝑃 , ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖} (39)
𝑥𝑛+𝑖,𝑗 ≤ 𝑄𝑛+𝑖

𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (40)
𝑥𝑛+𝑖,𝑗 − 1 ≤ −𝑄ℎ

𝑛+𝑖 +𝑄ℎ
𝑗 ≤ 1 − 𝑥𝑛+𝑖,𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (41)
𝑥𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑗

𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (42)

𝑥𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑛+𝑖
𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (43)

𝑥𝑛+𝑖,𝑛+𝑗 − 1 ≤ −𝑄ℎ
𝑛+𝑖 +𝑄ℎ

𝑛+𝑗 ≤ 1 − 𝑥𝑛+𝑖,𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (44)
𝑥𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑖

2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (45)

𝑥𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗
𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (46)

𝑥𝑛+𝑖,2𝑛+𝑗 − 1 ≤ −𝑄ℎ
𝑛+𝑖 +𝑄ℎ

2𝑛+𝑗 ≤ 1 − 𝑥𝑛+𝑖,2𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (47)
𝑥2𝑛+𝑖,𝑗 +𝑄𝑖

𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (48)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑗
2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (49)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑛+𝑖
𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (50)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑛+𝑗
2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (51)

𝑥2𝑛+𝑖,𝑗 − 1 ≤ −𝑄ℎ
2𝑛+𝑖 +𝑄ℎ

𝑗 ≤ 1 − 𝑥2𝑛+𝑖,𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (52)
𝑥2𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑗

2𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (53)
𝑥2𝑛+𝑖,𝑛+𝑗 − 1 ≤ −𝑄ℎ

2𝑛+𝑖 +𝑄ℎ
𝑛+𝑗 ≤ 1 − 𝑥2𝑛+𝑖,𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (54)
𝑥2𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗

2𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (55)
𝑥2𝑛+𝑖,2𝑛+𝑗 − 1 ≤ −𝑄ℎ

2𝑛+𝑖 +𝑄ℎ
2𝑛+𝑗 ≤ 1 − 𝑥2𝑛+𝑖,2𝑛+𝑗

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗} (56)
𝑥2𝑛+𝑖,𝑑 +

∑

ℎ∈𝐻
𝑄ℎ

2𝑛+𝑖 ≤ 1 2𝑛 + 𝑖 ∈ 𝑁𝐷 (57)

𝑥0,𝑖 +
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁𝑃 (58)

∑

2𝑛+𝑖∈𝑁𝐷 ,𝑖≠𝑗
𝑥2𝑛+𝑖,𝑛+𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑗 ≤ 2 𝑛 + 𝑗 ∈ 𝑁𝑇 (59)

∑

𝑥2𝑛+𝑖,2𝑛+𝑗 +
∑

𝑄ℎ
2𝑛+𝑗 ≤ 1 2𝑛 + 𝑗 ∈ 𝑁𝐷 (60)
2𝑛+𝑖∈𝑁𝐷 ,𝑖≠𝑗 ℎ∈𝐻
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∑

𝑗∈𝑁𝑃 ,𝑗≠𝑖
𝑥𝑖,𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁𝑃 (61)

∑

𝑗∈𝑁𝑃 ,𝑗≠𝑖
𝑥𝑛+𝑖,𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑖 ≤ 2 𝑛 + 𝑖 ∈ 𝑁𝑇 (62)

0 ≤ 𝑄ℎ
𝑖 ≤ 1 𝑖 ∈ 𝑁,ℎ ∈ 𝐻 (63)

𝑏𝑖 ≤ 𝐵𝑖 ≤ 𝑇 − 𝑠𝑖 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (64)
𝑥𝑖𝑗 = 0 (𝑖, 𝑗) ∈ 𝐴0 (65)

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)} (66)

𝑥0𝑑 ≥ 0 and integer. (67)

. Valid inequalities

In this section we present several families of valid inequalities that
an be included into the model presented in Section 3 in order to
trengthen its linear relaxation. First, in Section 4.1 we present the valid
nequalities proposed by Wøhlk and Laporte (2022) for the skip pick-
nd-delivery problem. Second, in Section 4.2 we show the new valid
nequalities we have proposed for this problem. More emphasis in the
escription of the inequalities is put in the new inequalities rather than
he ones proposed in the original paper. In Appendix B, we state two
urther classes of valid inequalities which were originally presented
n Wøhlk and Laporte (2022) and Cubillos (2022), respectively. Our
ranch-and-cut does not find these inequalities to be violated for any of
he tested instances, and we conjecture that they are redundant for our
mproved model. Indeed, we prove this for one of them in the appendix.

.1. Known valid inequalities

In capacitated routing problems, rounded capacity inequalities are
sually included as valid inequalities to establish capacity lower
ounds. The same logic can be used in our problem based on the fact
hat a vehicle can carry at most two skips. In (68) we present a family
f inequalities with the lower bound of the number of vehicles that can
nter or leave specific subset of nodes. Even though these inequalities
re pairwise equivalent, we choose to state them as they are presented
n the source.
∑

𝑖∈𝑁𝑃

∑

𝑗∈𝑁𝑇 ∪𝑁𝐷∪{0} 𝑥𝑗𝑖 ≥ ⌈𝑛∕2⌉
∑

𝑖∈𝑁𝑃

∑

𝑗∈𝑁𝑇 ∪𝑁𝐷
𝑥𝑖𝑗 ≥ ⌈𝑛∕2⌉

∑

𝑖∈𝑁𝑇

∑

𝑗∈𝑁𝑃 ∪𝑁𝐷
𝑥𝑗𝑖 ≥ ⌈𝑛∕2⌉

∑

𝑖∈𝑁𝑇

∑

𝑗∈𝑁𝑃 ∪𝑁𝐷
𝑥𝑖𝑗 ≥ ⌈𝑛∕2⌉

∑

𝑖∈𝑁𝐷

∑

𝑗∈𝑁𝑃 ∪𝑁𝑇
𝑥𝑗𝑖 ≥ ⌈𝑛∕2⌉

∑

𝑖∈𝑁𝐷

∑

𝑗∈𝑁𝑃 ∪𝑁𝑇 ∪{𝑑} 𝑥𝑖𝑗 ≥ ⌈𝑛∕2⌉.

(68)

Similar rounded capacity constraints can also be added when we
onsider a specific action at the same location. Let 𝑁𝑃

|𝑙
be the set of

odes associated with a pick-up of a container at location 𝑙. Similarly,
et 𝑁𝑇

|𝑙
and 𝑁𝐷

|𝑙
be the sets of nodes corresponding to emptying and

elivery at location 𝑙, respectively. The family of valid inequalities for
pecific location and action are presented in (69):
∑

𝑖∈𝑁𝑃
|𝑙

∑

𝑗∈{0}∪(𝑁𝑃 ⧵𝑁𝑃
|𝑙 )∪𝑁𝑇 ∪𝑁𝐷

𝑥𝑗𝑖 ≥ ⌈|𝑁𝑃
|𝑙
|∕2⌉ 𝑙 ∈ 𝐿

∑

𝑖∈𝑁𝑇
|𝑙

∑

𝑗∈𝑁𝑃 ∪(𝑁𝑇 ⧵𝑁𝑇
|𝑙 )∪𝑁𝐷

𝑥𝑗𝑖 ≥ ⌈|𝑁𝑇
|𝑙
|∕2⌉ 𝑙 ∈ 𝐿

∑

𝑖∈𝑁𝐷
|𝑙

∑

𝑗∈𝑁𝑃 ∪𝑁𝑇 ∪(𝑁𝐷⧵𝑁𝐷
|𝑙 )

𝑥𝑗𝑖 ≥ ⌈|𝑁𝐷
|𝑙
|∕2⌉ 𝑙 ∈ 𝐿.

(69)

Traditional subtour elimination constraints can be lifted to pick-
p and delivery problems as shown in Cordeau (2006). For each pair
+𝑖, 𝑛+𝑗 ∈ 𝑁𝑇 and triplets 𝑛+𝑖, 𝑛+𝑗, 𝑛+ℎ ∈ 𝑁𝑇 of nodes, we have added
he lifted subtour elimination constraints of Cordeau (2006) for pairs
nd triplets. In (70) we show the case for pairs of nodes. The extension
o the case of triplets of nodes is straightforward and results from a
hange of the right-hand side to 2 instead of 1.

𝑥𝑛+𝑖,𝑛+𝑗 + 𝑥𝑛+𝑖,𝑗 + 𝑥𝑛+𝑗,𝑛+𝑖 + 𝑥𝑛+𝑗,𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗.
(70)
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𝑥𝑛+𝑖,𝑛+𝑗 + 𝑥2𝑛+𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,𝑛+𝑖 + 𝑥2𝑛+𝑗,𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗.
Wøhlk and Laporte (2022) shows that the constraints lifted by
ordeau (2006) can be lifted even further for pairs of triplets in 𝑁𝑃 and

𝑁𝐷 based on the specific structure of the problem for pairs and triplets
n 𝑁𝑃 and 𝑁𝐷. This provides the two sets of constraints in (71) for pairs
f nodes. The extension to triplets is straightforward and results from
change of the right-hand side to 2 instead of 1.

𝑥𝑖𝑗 + 𝑥𝑛+𝑖,𝑗 + 𝑥2𝑛+𝑖,𝑗 + 𝑥𝑗𝑖 + 𝑥𝑛+𝑗,𝑖 + 𝑥2𝑛+𝑗,𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

𝑥2𝑛+𝑖,2𝑛+𝑗 + 𝑥2𝑛+𝑖,𝑛+𝑗 + 𝑥2𝑛+𝑖,𝑗 + 𝑥2𝑛+𝑗,2𝑛+𝑖
+𝑥2𝑛+𝑗,𝑛+𝑖 + 𝑥2𝑛+𝑗,𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗.

(71)

We included families of symmetry breaking constraints. Let 𝛼(𝑖)
and 𝛽(𝑖) be the pick-up and treatment locations for the request 𝑖,
respectively. The first set of inequalities (72) eliminates the symmetries
when two equal actions are performed sequentially. The family of equa-
tions in (73) eliminates the symmetry of different actions performed in
sequence at the same location.

𝑥𝑖𝑗 = 0 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝛼(𝑖) = 𝛼(𝑗), 𝑖 > 𝑗

𝑥𝑖𝑗 = 0 𝑖, 𝑗 ∈ 𝑁𝑇 , 𝛽(𝑖) = 𝛽(𝑗), 𝑖 > 𝑗

𝑥𝑖𝑗 = 0 𝑖, 𝑗 ∈ 𝑁𝐷, 𝛼(𝑖) = 𝛼(𝑗), 𝑖 > 𝑗;

(72)

𝑥𝑖𝑗 = 0 𝑖 ∈ 𝑁𝑃 , 𝑗 ∈ 𝑁𝐷, 𝛼(𝑖) = 𝛼(𝑗)

𝑥𝑖𝑗 = 0 𝑖 ∈ 𝑁𝑇 , 𝑗 ∈ 𝑁𝑃 , 𝛽(𝑖) = 𝛼(𝑗)

𝑥𝑖𝑗 = 0 𝑖 ∈ 𝑁𝐷, 𝑗 ∈ 𝑁𝑇 , 𝛼(𝑖) = 𝛽(𝑗).

(73)

In (74) we consider the case of two requests that are exactly the
same – same pick-up and same treatment –, in which case the request
with the smallest ID should be picked up first, or at least not later than
the other.

𝐵𝑖 ≤ 𝐵𝑗 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 < 𝑗, 𝛼(𝑖) = 𝛼(𝑗), 𝛽(𝑖) = 𝛽(𝑗); (74)

Finally, we consider a lower bound of the number of vehicles needed
to service all requests to be the sum of the travel and service times
divided by the maximum time available for one vehicle. We add this
lower bound using (75):

∑

𝑗∈𝑁𝑃

𝑥0𝑗 ≥

⌈

(
∑

𝑟∈𝑅
𝑡𝛼(𝑟)𝛽(𝑟) +

∑

𝑖∈𝑁
𝑠𝑖)∕𝑇

⌉

, (75)

where 𝑡𝑖𝑗 is the fastest travel time from 𝑖 to 𝑗.1 Note that due to the
vehicle capacity of 2, we only consider the traveling from pick-up to
treatment, and not the return trip.

4.2. New inequalities

In this section, we propose six new families of valid inequalities
for the problem. Some families consist of a significant number of
inequalities and in those cases, we only argue for validity of the first
one. Besides these new inequalities, the standard sub tour elimination
constraints are also valid for this problem
∑

𝑖∈𝑆

∑

𝑗∈𝑆,𝑗≠𝑖
𝑥𝑖𝑗 ≤ |𝑆| − 1 ∀𝑖, 𝑗 ∈ 𝑆 ⊆ 𝑁 ⧵ {0, 𝑑}, |𝑆| > 2 (76)

1 Note that the same lower bound was used in Wøhlk and Laporte (2022)
xcept that they used 𝑡𝑖𝑗 instead of 𝑡𝑖𝑗 . However, because the triangle inequality

might not be respected, we use 𝑡𝑖𝑗 . For completeness, we have checked all 80
instances used in that paper with respect to changes caused by this. Three
instances are affected by this change: The bound changes from 4 to 3 for
instance C6, from 10 to 9 for instance C18, and from 14 to 13 for instance

D12. We confirm that all numbers reported in that paper are still valid.
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Fig. 2. Illustration of constraint (77).

Fig. 3. Illustration of constraint (78).

Fig. 4. Illustration of constraint (79).

4.2.1. Cross inequalities
We consider a family of valid inequalities that arise from the order

of actions that can be performed for two requests. Let 𝑖 ∈ 𝑁𝑃 and
onsider first 𝑛 + 𝑗 ∈ 𝑁𝑇 . In this case, it can easily be argued that (77)
olds. This is illustrated in Fig. 2. The figure represents two requests
nd its respective pick-ups (𝑖, 𝑗), treatments (𝑛 + 𝑖, 𝑛 + 𝑗) and delivery

(2𝑛 + 𝑖, 2𝑛 + 𝑗) nodes. The arcs represent travels between nodes.

𝑥𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,𝑖 + 𝑥2𝑛+𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,2𝑛+𝑖 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (77)

In fact, this constraint is valid for any 𝑗 ∈ 𝑁 ⧵{0, 𝑑, 𝑖, 𝑛+𝑖, 2𝑛+𝑖}, but
e can lift it by considering two possible sets in which 𝑗 can belong:
ick-up or delivery. In the first case, where 𝑗 ∈ 𝑁𝑃 , we can lift the
nequality by adding the two terms shown in (78). This is illustrated in
ig. 3. The argument for (78) is based on the fact that if we use one of
he two arcs between nodes 𝑖 and 2𝑛 + 𝑗, we cannot use an arc in the
pposite direction, between nodes 2𝑛 + 𝑖 and 𝑗. This is because an arc
etween 2𝑛+ 𝑖 and 𝑗 involves the delivery of 𝑖, which conflicts with the
act that the other arc involves pick-up of 𝑖 which has to happen before.
urthermore, using one of the arcs between 𝑖 and 𝑗 together with any of
he arcs involving a delivery node, would result in a conflict regarding
he corresponding treatment node.

𝑖𝑗 + 𝑥𝑗𝑖 + 𝑥2𝑛+𝑖,𝑗 + 𝑥𝑗,2𝑛+𝑖 + 𝑥𝑖,2𝑛+𝑗 + 𝑥2𝑛+𝑗,𝑖 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (78)

The second case, when 2𝑛+ 𝑗 ∈ 𝑁𝐷, follows a similar argument and
esults in the inequality shown in (79). This case is illustrated in Fig. 4.

𝑖,2𝑛+𝑗 + 𝑥2𝑛+𝑗,𝑖 + 𝑥2𝑛+𝑖,2𝑛+𝑗 +𝑥2𝑛+𝑗,2𝑛+𝑖 + 𝑥2𝑛+𝑖,𝑗 + 𝑥𝑗,2𝑛+𝑖 ≤ 1

𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖.
(79)

Two additional families of inequalities can be added, with a similar
rgument, when considering crossing arcs between pick-up and treat-
ent, and crossing arcs between treatment and deliveries. The first case

s illustrated in the left side of Fig. 5 and given in (80). In this case, the
rgument of the constraint is that if we use one of the two arcs from a
ick-up 𝑖 to a treatment 𝑛 + 𝑗, we cannot use one of the arcs from or
6

o a pick-up 𝑗 to a treatment 𝑛 + 𝑖. The same is true for a crossing arcs
etween treatments and deliveries, which is illustrated in the right side
f Fig. 5 and given as a constraint in (81).

𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,𝑖 + 𝑥𝑗,𝑛+𝑖 + 𝑥𝑛+𝑖,𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (80)

𝑥𝑛+𝑖,2𝑛+𝑗 + 𝑥2𝑛+𝑗,𝑛+𝑖 + 𝑥𝑛+𝑗,2𝑛+𝑖 + 𝑥2𝑛+𝑖,𝑛+𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (81)

4.2.2. Asymmetric cross inequalities
We consider the asymmetric case of cross inequalities as described

in Section 4.2.1, when one of the symmetric arcs travels to a different
node – and not follows the opposite direction of the arc, adding a
different variable to the inequality. For all pairs of nodes 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗
we can add the following valid inequality:

𝑥𝑖,𝑗 + 𝑥𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,𝑖 + 𝑥𝑛+𝑖,𝑗 + 𝑥2𝑛+𝑗,𝑖 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (82)

Inequality (82) is illustrated in the left side of Fig. 6. The inequality
comes from removing the arc from 𝑗 to 𝑛+ 𝑖 from the left side of Fig. 5
and adding arcs from 𝑖 to 𝑗 and from 2𝑛 + 2 to 𝑖. Following the same
logic, we can add inequality (83), which is illustrated in the right side
of Fig. 6.

𝑥𝑛+𝑖,𝑛+𝑗 + 𝑥𝑛+𝑖,2𝑛+𝑗 + 𝑥2𝑛+𝑗,𝑛+𝑖 + 𝑥2𝑛+𝑖,𝑛+𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (83)

Finally, we can flip inequalities (82) and (83) as illustrated in Fig. 7.
These two cases are presented in (84) and (85), respectively.

𝑥2𝑛+𝑗,2𝑛+𝑖 + 𝑥2𝑛+𝑗,𝑛+𝑖 + 𝑥2𝑛+𝑖,𝑛+𝑗 + 𝑥𝑛+𝑗,2𝑛+𝑖 + 𝑥2𝑛+𝑖,𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖.

(84)

𝑥𝑛+𝑗,𝑛+𝑖 + 𝑥𝑛+𝑗,𝑖 + 𝑥𝑛+𝑖,𝑗 + 𝑥𝑗,𝑛+𝑖 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑗 ≠ 𝑖. (85)

4.2.3. 𝑄-Inequalities
Based on a similar kind of logic as we applied for the Cross inequal-

ities in Section 4.2.1, but now with focus on the load variables 𝑄ℎ
𝑖 , we

obtain the following valid inequalities

𝑄𝑗
𝑖 +𝑄𝑛+𝑗

𝑖 +𝑄𝑖
𝑗 +𝑄𝑛+𝑖

𝑗 ≤ 1, 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (86)

𝑄𝑗
2𝑛+𝑖 +𝑄𝑛+𝑗

2𝑛+𝑖 +𝑄𝑖
2𝑛+𝑗 +𝑄𝑛+𝑖

2𝑛+𝑗 ≤ 1, 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (87)

4.2.4. Capacity inequalities for triples
As shown in Ropke et al. (2007), the classical capacity inequalities

can be lifted for the pick-up and delivery problem with pairs of pick-
up and delivery locations. In this section, we show how the capacity
inequalities can be lifted for our problem, when considering triples of
nodes. More specifically, we consider the capacity inequality of the
form
∑

𝑖∈𝑆

∑

𝑗∈𝑆
𝑥𝑖𝑗 ≤ 𝜌, 𝑆 ⊂ 𝑁 ⧵ {0, 𝑑}, |𝑆| = 3, (88)

and determine appropriate values for 𝜌 based on the types of the three
nodes in 𝑆. For example, is 𝑆 consists of three pick-up nodes, then only
a single arc among the nodes can be used due to the capacity of two.
However, if 𝑆 consists of two pick-up nodes and a treatment node, then
two arcs among them can be used if the treatment node corresponds to
the same skip as one of the two pick-up nodes, but only one arc can be
used if the treatment node corresponds to a different skip.

We consider all possible subsets 𝑆 ⊂ 𝑁 ⧵ {0, 𝑑} with |𝑆| = 3. For
this, we define the following sets: 𝑆𝑃 = 𝑆 ∩ 𝑁𝑃 , 𝑆𝑇 = 𝑆 ∩ 𝑁𝑇 , and
𝑆𝐷 = 𝑆 ∩ 𝑁𝐷. In Table 2, we have listed all possible combinations
of three nodes in 𝑆, their associated sizes of their subsets (|𝑆𝑃 |, |𝑆𝑇 |,
|𝑆𝐷|), and the appropriate right hand side (𝜌) for inequality (88). Note
that, in cases 1 to 10, the three nodes are associated with three different
request, while cases 11 to 19 with nodes associated with 2 requests, and

case 20 with only one request.
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Fig. 5. Illustration of constraints (80) and (81).
Fig. 6. Illustration of inequalities (82) and (83).
Fig. 7. Illustration of inequalities (84) and (85).
Table 2
Capacity constraint with |𝑆| = 3.

Case Nodes in S (|𝑆𝑃 |, |𝑆𝑇 |, |𝑆𝐷|) 𝜌

1 𝑖, 𝑗, 𝑘 ∈ 𝑁𝑃 (3,0,0) 1
2 𝑛 + 𝑖, 𝑛 + 𝑗, 𝑛 + 𝑘 ∈ 𝑁𝑇 (0,3,0) 1
3 2𝑛 + 𝑖, 2𝑛 + 𝑗, 2𝑛 + 𝑘 ∈ 𝑁𝐷 (0,0,3) 1
4 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑛 + 𝑘 ∈ 𝑁𝑇 (2,1,0) 1
5 𝑖, 𝑗 ∈ 𝑁𝑃 , 2𝑛 + 𝑘 ∈ 𝑁𝐷 (2,0,1) 2
6 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑗, 𝑛 + 𝑘 ∈ 𝑁𝑇 (1,2,0) 1
7 𝑛 + 𝑖, 𝑛 + 𝑗 ∈ 𝑁𝑇 , 2𝑛 + 𝑘 ∈ 𝑁𝐷 (0,2,1) 1
8 𝑖 ∈ 𝑁𝑃 , 2𝑛 + 𝑗, 2𝑛 + 𝑘 ∈ 𝑁𝐷 (1,0,2) 2
9 𝑛 + 𝑖 ∈ 𝑁𝑇 , 2𝑛 + 𝑗, 2𝑛 + 𝑘 ∈ 𝑁𝐷 (0,1,2) 1
10 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑗 ∈ 𝑁𝑇 , 2𝑛 + 𝑘 ∈ 𝑁𝐷 (1,1,1) 2

11 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑛 + 𝑖 ∈ 𝑁𝑇 (2,1,0) 2
12 𝑖, 𝑗 ∈ 𝑁𝑃 , 2𝑛 + 𝑖 ∈ 𝑁𝐷 (2,0,1) 1
13 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑖, 𝑛 + 𝑗 ∈ 𝑁𝑇 (1,2,0) 2
14 𝑛 + 𝑖, 𝑛 + 𝑗 ∈ 𝑁𝑇 , 2𝑛 + 𝑖 ∈ 𝑁𝐷 (0,2,1) 2
15 𝑖 ∈ 𝑁𝑃 , 2𝑛 + 𝑖, 2𝑛 + 𝑗 ∈ 𝑁𝐷 (1,0,2) 1
16 𝑛 + 𝑖 ∈ 𝑁𝑇 , 2𝑛 + 𝑖, 2𝑛 + 𝑗 ∈ 𝑁𝐷 (0,1,2) 2
17 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑖 ∈ 𝑁𝑇 , 2𝑛 + 𝑗 ∈ 𝑁𝐷 (1,1,1) 2
18 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑗 ∈ 𝑁𝑇 , 2𝑛 + 𝑖 ∈ 𝑁𝐷 (1,1,1) 1
19 𝑗 ∈ 𝑁𝑃 , 𝑛 + 𝑖 ∈ 𝑁𝑇 , 2𝑛 + 𝑖 ∈ 𝑁𝐷 (1,1,1) 2
20 𝑖 ∈ 𝑁𝑃 , 𝑛 + 𝑖 ∈ 𝑁𝑇 , 2𝑛 + 𝑖 ∈ 𝑁𝐷 (1,1,1) 2

4.2.5. Lifted capacity inequalities

In this section, we present lifted capacity inequalities for our prob-
lem. For this, let 𝑆 ⊂ 𝑁 ⧵ {0, 𝑑} be a set of nodes such that if a pick-up
node 𝑖 ∈ 𝑁𝑃 is in 𝑆, then the corresponding delivery node 2𝑛+ 𝑖 ∈ 𝑁𝐷
is also in 𝑆, and vice versa.

The set 𝑆 can naturally be the set of nodes corresponding to one or
several geographically close locations (for example one recycling center
and two treatment facilities). This is illustrated in Fig. 8, with pick-up,
7

treatment, and delivery nodes in each their column, and with arrows
indicating which nodes correspond to the same skip. There are three
cases of possible skip situations that can occur in 𝑆:

• Case A: The skip is picked up in 𝑆, emptied outside 𝑆, and
delivered in 𝑆. There are 𝑛𝐴 = 3 such requests in the example.

• Case B: All actions related to the skip (pick-up, treatment, and
delivery) are inside 𝑆. There is 𝑛𝐵 = 1 such request in the
example.

• Case C: The skip is treated in 𝑆, but picked up and delivered
outside 𝑆. There are 𝑛𝐶 = 2 such requests in the example.

We refer to 𝑛𝐴, 𝑛𝐵 , and 𝑛𝐶 to the number of requests of case A, B,
and C, respectively. There are seven cases if we consider the different
combinations of cases A, B, and C, and we analyze each case below. We
derive capacity constraints in the form of (89) to determine the number
of times a vehicle must enter 𝑆 by finding the proper right hand side
(𝛾) for the following inequality:
∑

𝑖∈𝑆

∑

𝑗∉𝑆
𝑥𝑖𝑗 ≥ 𝛾 𝑆 ⊂ 𝑁 ⧵ {0, 𝑑} ∶ 𝑖 ∈ 𝑆 ⇔ 2𝑛 + 𝑖 ∈ 𝑆, |𝑆| ≥ 2 (89)

(1) Only A: 𝑛𝐴 > 0, 𝑛𝐵 = 𝑛𝐶 = 0. The vehicle will have to enter empty
the first time to pick up the first two requests. After emptying them out
of S, it will then enter again to deliver these, and can immediately pick
up the next two. It can continue like this and will thus have to enter
once for the first pick-up, and thereafter ⌈𝑛𝐴∕2⌉ times for the deliveries.
Hence, 𝛾 = 1 + ⌈𝑛𝐴∕2⌉.

(2) Only B: 𝑛𝐵 > 0, 𝑛𝐴 = 𝑛𝐶 = 0. All B-requests can be handled se-
quentially by a single vehicle (assuming that time allows). The vehicle
only has to enter once. Hence 𝛾 = 1.
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Fig. 8. Illustration the three cases of skips in relation to the set 𝑆.

(3) Only C, 𝑛𝐶 > 0, 𝑛𝐴 = 𝑛𝐵 = 0. For the C-requests, vehicles
enter full, with two full skips, and leave full, with two empty skips,
so 𝛾 = ⌈𝑛𝐶∕2⌉.

(4) A and B: 𝑛𝐴 > 0, 𝑛𝐵 > 0, 𝑛𝐶 = 0. This case is similar to the
case with only A, because when the vehicle enters the first time, it can
handle the B-requests before picking up the first A-requests. On the
other hand, the B-requests cannot decrease the number of entrances
needed to handle the A-requests. Hence, 𝛾 = 1 + ⌈𝑛𝐴∕2⌉.

(5) A and C: 𝑛𝐴 > 0, 𝑛𝐵 = 0, 𝑛𝐶 > 0. We first note, that the trivial
ower bound on the number of times we need to enter 𝑆 with load is
𝑛𝐴+𝑛𝐶

2 ⌉. We are interested in identifying situations in which we can
lift this lower bound by one unit.

(i) Consider first the situation where 𝑛𝐴 + 𝑛𝐶 is odd and 𝑛𝐶 > 𝑛𝐴.
Suppose that the vehicle enters the first time with a full skip of
a C-request and pick up an A-request. After leaving S, empty the
A-request, leave the C-request and take another C-request. Enter
again and deliver the A-request, pick up another and empty
the C-request. By repeating this process, after 𝑛𝐴 + 1 entries
in S, all A-requests and 𝑛𝐴 + 1 C-requests have been handled.
The remaining number of C-requests, 𝑛𝐶 − (𝑛𝐴 + 1), are even
because 𝑛𝐴 + 𝑛𝐶 is odd. Thus, the total number of entries in S
is 𝑛𝐴 + 1 + 𝑛𝐶−(𝑛𝐴+1)

2 = 𝑛𝐴+𝑛𝐶+1
2 = ⌈

𝑛𝐴+𝑛𝐶
2 ⌉ and it is not possible

to lift the trivial lower bound.
(ii) Let us see that one unit is added to the trivial lower bound in

the remaining situations.

(ii.1) Consider now the situation where 𝑛𝐴 + 𝑛𝐶 is odd and
𝑛𝐴 > 𝑛𝐶 . Following an argument similar to (i), after
having been in S 𝑛𝐶 times, all C-requests and 𝑛𝐶 − 1 A-
requests have been handled. The number of the remaining
A-requests is 𝑛𝐴 − (𝑛𝐶 − 1), an even number because
𝑛𝐴 + 𝑛𝐶 is odd. Thus, the total number of entries in S is
𝑛𝐶+1+

𝑛𝐴−(𝑛𝐶−1)
2 = 1+ 𝑛𝐴+𝑛𝐶+1

2 = 1+⌈ 𝑛𝐴+𝑛𝐶
2 ⌉. Suppose now

that in the last entry in S of the sequence described in the
previous paragraph the vehicle does not carry the last C-
request, i.e. it only enters with an empty A-request. Then,
by delivering this A-request, it can pick up two full A-
requests. Thus, as in (1), we can handle all the remaining
A-requests, but we need an additional entry for the last
8

S

Table 3
Summary of the values of 𝛾 for the lifted capacity constraint.

Case In S 𝛾

1 𝑛𝐴 > 0, 𝑛𝐵 = 𝑛𝐶 = 0 1 + ⌈𝑛𝐴∕2⌉

2 𝑛𝐵 > 0, 𝑛𝐴 = 𝑛𝐶 = 0 1

3 𝑛𝐶 > 0, 𝑛𝐴 = 𝑛𝐵 = 0 ⌈𝑛𝐶∕2⌉

4 𝑛𝐴 > 0, 𝑛𝐵 > 0, 𝑛𝐶 = 0 1 + ⌈𝑛𝐴∕2⌉

5 𝑛𝐴 > 0, 𝑛𝐵 = 0, 𝑛𝐶 > 0
⌈(𝑛𝐴 + 𝑛𝐶 )∕2⌉ if 𝑛𝐴 + 𝑛𝐶 is odd and 𝑛𝐶 > 𝑛𝐴
1 + ⌈(𝑛𝐴 + 𝑛𝐶 )∕2⌉ otherwise

6 𝑛𝐴 = 0, 𝑛𝐵 > 0, 𝑛𝐶 > 0
1 + ⌈𝑛𝐶∕2⌉ if 𝑛𝐶 is even

⌈𝑛𝐶∕2⌉ if 𝑛𝐶 is odd

7 𝑛𝐴 > 0, 𝑛𝐵 > 0, 𝑛𝐶 > 0
⌈(𝑛𝐴 + 𝑛𝐶 )∕2⌉ if 𝑛𝐴 + 𝑛𝐶 is odd and 𝑛𝐶 > 𝑛𝐴
1 + ⌈(𝑛𝐴 + 𝑛𝐶 )∕2⌉ otherwise

C-request, so the total number of entries is again equal to
the lower bound plus one.

(ii.2) Finally, consider the situation where both 𝑛𝐴 + 𝑛𝐶 are
even. In this case, we can repeat the arguments of (i)
or (ii.1), and the only difference is that the number of
remaining A-requests or C-requests are odd, which adds
one extra unit to the lower bound.

Summing everything up, we obtain

𝛾 =

{

⌈

𝑛𝐴+𝑛𝐶
2 ⌉ if 𝑛𝐴 + 𝑛𝐶 is odd and 𝑛𝐶 > 𝑛𝐴

⌈

𝑛𝐴+𝑛𝐶
2 ⌉ + 1 otherwise

(6) B and C: 𝑛𝐴 = 0, 𝑛𝐵 > 0, 𝑛𝐶 > 0. If 𝑛𝐶 is even, there is no benefit
n combining C-requests with B-requests, and the vehicle will therefore
ave to enter once for the B-requests and ⌈𝑛𝐶∕2⌉ for the C-requests. If

𝑛𝐶 is odd, we need ⌊𝑛𝐶∕2⌋ entrances to service all but one C-requests.
We then need to enter once more for the final C-request and upon that
entrance, the vehicle has an empty slot which can be used to service
all B-requests sequentially. Hence, in this case, we need ⌈𝑛𝐶∕2⌉. Putting
this together, we have:

𝛾 =
{

1 + ⌈𝑛𝐶∕2⌉ if 𝑛𝐶 is even
⌈𝑛𝐶∕2⌉ if 𝑛𝐶 is odd

(7) A, B, and C: 𝑛𝐴 > 0, 𝑛𝐵 > 0, 𝑛𝐶 > 0. Because 𝑛𝐴 > 0, the
vehicle will have at least one empty slot upon the first entrance towards
servicing A-requests. This slot can be used to service all B-requests
without leaving 𝑆 before picking up the first A-request. Thereby, this
case reduces to case 5, and we have:

𝛾 =

{

⌈

𝑛𝐴+𝑛𝐶
2 ⌉ if 𝑛𝐴 + 𝑛𝐶 is odd and 𝑛𝐶 > 𝑛𝐴

⌈

𝑛𝐴+𝑛𝐶
2 ⌉ + 1 otherwise

We summarize the values of 𝛾 in Table 3.

5. Branch-and-cut algorithm

In this section, we describe our branch-and-cut algorithm and the
separation of the valid inequalities. We use the model (20)–(67) pre-
sented in Section 3 as our BASE model.

Based on tuning experiments, we initialize our branch-and-cut al-
gorithm by adding the valid inequalities (68)–(71) as well as the
symmetry breaking constraints (72)–(74) and the bound on the number
of vehicles (75) to our BASE model in the root of the branching tree.
In each node of the branching tree, we dynamically add inequalities
(76)–(89) to the model when they are violated.

The majority of the valid inequalities can be separated exact in time
𝑂(|𝑁|

2) or 𝑂(|𝑁|

3) using total enumeration. There are two exceptions
o this: The subtour elimination constraints (76) stated in the beginning
f Section 4.2, and the lifted capacity inequalities (89) presented in
ection 4.2.5 with Table 3 providing the values of 𝛾.
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Table 4
Results obtained for the two BASE models using default CPLEX settings and no CPLEX cut generation.
Instance WL-BASE𝑛𝑐 BASE𝑛𝑐

LB𝑟𝑜𝑜𝑡 Time𝑟𝑜𝑜𝑡 LB GAP LB𝑟𝑜𝑜𝑡 Time𝑟𝑜𝑜𝑡 LB GAP

A1 128.5 0.1 661.0 0.0 150.7 0.1 661.0 0.0
A2 104.0 0.2 159.0 75.3 118.0 0.1 168.0 74.0
A3 106.0 0.2 120.0 80.9 106.0 0.1 135.5 78.4
A4 92.0 1.0 96.0 86.7 117.0 0.8 209.0 71.0
A5 126.0 1.0 162.5 77.6 155.0 1.1 216.7 70.1
A6 150.0 2.5 156.5 87.4 156.7 0.9 256.7 79.3
A7 141.0 2.7 161.5 87.1 152.7 0.5 191.3 84.7
A8 214.0 8.1 214.0 84.2 263.5 2.7 313.9 76.9
A9 183.5 7.8 184.0 85.3 208.4 4.5 225.2 82.0
A10 123.0 36.4 131.0 90.0 204.5 22.0 213.5 83.8
A11 148.0 36.8 148.0 89.0 165.0 8.2 176.7 86.8
B1 184.5 20.4 229.0 82.7 217.0 3.2 262.6 80.1
B2 58.0 21.5 61.0 94.7 83.2 9.7 98.3 91.4
C1 224.5 1.3 270.6 80.1 251.9 0.6 332.3 75.6
C2 310.0 1.2 384.0 74.1 357.1 0.4 493.5 66.7
C3 454.0 10.9 553.0 76.3 589.8 4.5 663.4 71.5
C4 228.0 21.0 244.0 88.0 218.3 4.3 275.6 86.5
The subtour elimination (76) are separated heuristically as follows.
ased on the current values of the 𝑥𝑖𝑗 , variables, we first identify
onnected components. For each of these connected components 𝑆, we

then check if the solution satisfies inequality (76) and add it to the
model if it is not satisfied by the current solution. The separation runs
in time 𝑂(𝑛2).

The lifted capacity inequalities (89) are separated heuristically as
follows. Remember that multiple requests share the physical location
for their pick-up or delivery, and let 𝑝 and 𝑝 be the smallest and largest
distance between any two physical locations, respectively. For each
physical location 𝑙 ∈ 𝐿, we let 𝑆𝛿(𝑙) ⊂ 𝑁 ⧵ {0, 𝑑} be the set of nodes for
which the associated location is within a radius of 𝛿 from 𝑙. For each
of the three values 𝛿 ∈ {0.001, 9

10 𝑝 +
1
10 𝑝,

7
10 𝑝 +

3
10 𝑝} and for each sets

𝑆𝛿(𝑙), we then check if the solution satisfies inequality (89) and add it
to the model if it is not satisfied by the current solution. The separation
runs in time 𝑂(𝑛3).

6. Computational experiments

In this section, we present the main results of our computational
experiments with the purpose of investigating the strength of the valid
inequalities presented in Section 4.2. The implementation is done in
C++ in MS Visual Studio Professional 2015 and executed on an Intel
Xeon CPU with 12 cores running at 3.5 GHz and 64 GBs RAM, using
CPLEX 12.8.

All experiments are performed on a single thread, and we have used
one hour computation limit. We initialize all experiments by an upper
bound (UB) obtained from Table C.13 in the appendix of Wøhlk and
Laporte (2022). No better upper bounds are identified by the models
or by our branch-and-cut. All optimality gaps are computed as 𝐺𝐴𝑃 =
100𝑈𝐵−𝐿𝐵

𝑈𝐵 , where 𝐿𝐵 is the best global lower bound obtained after the
llowed computation time.

In our experiments, we use the 17 instances from Wøhlk and Laporte
2022) that were used in the exact optimization in that paper. These
nstances have 5 to 20 requests and include a fixed cost of 𝑐 = 500 for
ach vehicle used. The service time is the same for all pick-ups, i.e.
𝑖 = 𝑠𝑗 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , and similarly 𝑠𝑖 = 𝑠𝑗 ∀𝑖, 𝑗 ∈ 𝑁𝑇 and 𝑠𝑖 = 𝑠𝑗 ∀𝑖, 𝑗 ∈ 𝑁𝐷.

In the first experiment, we focus on the pure effect of the tightening
the model presented in Section 3. For this purpose, we run the two
models (1)–(19) (WL-BASE𝑛𝑐) and (20)–(67) (BASE𝑛𝑐) using default

PLEX settings and with CPLEX’s automatic cut generation disabled
the 𝑛𝑐 subscripts indicates this CPLEX setting).

Our results are shown in Table 4, where we show the value of the
P-relaxation (𝐿𝐵𝑟𝑜𝑜𝑡), the time in seconds to obtain it (𝑇 𝑖𝑚𝑒𝑟𝑜𝑜𝑡), the

best lower bound obtained within one hour of computation (𝐿𝐵), and
the optimality gap after one hour (𝐺𝐴𝑃 ), for each of the two models.
9

For the first instance, both models solve the problem to optimality, with
a computation time of 377 and 84.5 s, respectively.

We observe that, except from instance A3, where the root relaxation
is the same, our BASE𝑛𝑐 model consistently yields better relaxations
in roughly 1% of the computation time. Similarly, our model yields
dominating results after one hour of computation. Both models solve
instance A1 to optimality, and our model does so more than four times
faster.

However, knowing that the fixed cost for use of vehicles is 500, it
is clear that both models need constraint (75) to provide reasonable
lower bounds. We therefore add this constraint to the BASE models in
all following experiments (indicated by a + superscript).

In the second experiment, we focus on the effect of adding the valid
inequalities presented in this paper. For this, we still use default CPLEX
settings and disable CPLEX’s automatic cut generation. We compare
four models:

1. WL-BASE+
𝑛𝑐 : Our rerun of the BASE model (1)–(19) of Wøhlk and

Laporte (2022) with the inclusion of the vehicle lower bound
(75).

2. BASE+
𝑛𝑐 : Our BASE model (20)–(67) with the inclusion of the

vehicle lower bound (75).
3. BASE+

𝑛𝑐wl-cuts: A simplified version of our B&C, which in initi-
ated by (20)–(67) and (68)–(75), and where (B.1) are dynami-
cally added when they are violated. Inequalities (B.1) appear in
Appendix B.

4. B&C-nc: Our complete B&C as outlined in Section 5.

Our results are shown in Tables 5 and 6. In Table 5, we first show
the instance name and the initial upper bound. Next, the table shows
the lower bound value of the root node as well as the time to solve
the root node, for each of the four models. In Table 6, we provide the
value of the best lower bound as well as the optimality gap for each
of the four models after one hour of computation time. In the cases
where optimality was proved, we state the computation time in seconds
instead. We also provide the average gap over all instances.

We first note, by comparing Tables 5 and 6 to Table 4, that the
inclusion of constraint (75) significantly increases the lower bounds
both at the root node and after one hour of computation, thereby
confirming the importance of this constraint. In fact, our BASE model
is now able to solve four instances to optimality within one hour,
compared to one instance without this constraint.

The addition of valid inequalities has multiple effects, which are
observed by moving towards the right in the two tables: (1) more
instances can be solved to optimality. The number is now up to eight.
(2) The instances that are solved to optimality are solved faster when

all inequalities are used rather than merely the previously known
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Table 5
Results for the root node regarding for the four models using default CPLEX settings and no CPLEX cut generation.
Instance Initial WL-BASE+

𝑛𝑐 BASE+
𝑛𝑐 BASE+

𝑛𝑐wl-cuts B&C-nc

UB LB𝑟𝑜𝑜𝑡 Time LB𝑟𝑜𝑜𝑡 Time LB𝑟𝑜𝑜𝑡 Time LB𝑟𝑜𝑜𝑡 Time

A1 661 617.0 0.1 648.5 0.1 653.5 0.1 653.5 0.1
A2 645 579.5 0.2 591.0 0.1 619.6 0.3 619.6 0.3
A3 628 606.0 0.2 606.0 0.1 619.0 0.2 625.3 0.3
A4 720 592.0 1.0 617.0 1.2 679.5 1.1 705.0 2.6
A5 724 623.5 1.1 652.0 0.9 696.0 1.1 710.2 1.9
A6 1240 1150.0 2.7 1155.0 0.9 1224.5 1.7 1228.7 2.6
A7 1248 624.0 2.5 645.9 0.5 672.6 2.0 732.3 4.5
A8 1356 1201.0 7.7 1257.0 5.2 1301.9 4.8 1312.9 6.6
A9 1253 1169.0 7.6 1208.0 9.5 1244.4 5.2 1245.8 6.5
A10 1316 1139.0 37.6 1202.1 14.2 1280.0 26.3 1286.2 43.3
A11 1342 1148.0 35.4 1165.0 6.2 1282.4 16.1 1290.0 40.1
B1 1323 1175.4 21.1 1206.0 3.7 1278.2 8.2 1281.0 11.9
B2 1148 1052.0 21.7 1074.0 4.5 1120.3 10.0 1121.7 15.9
C1 1362 693.5 1.1 719.3 0.5 798.3 1.1 869.3 2.4
C2 1481 1280.8 1.2 1322.7 0.4 1397.8 0.7 1416.1 1.0
C3 2331 1955.0 11.0 2064.0 3.4 2223.6 5.9 2228.3 9.6
C4 2034 1212.7 20.5 1209.0 4.5 1390.6 10.4 1477.8 31.2

Average 10.2 3.3 5.6 10.6
Table 6
Results after one hour of computation time for the four models using default CPLEX settings and no CPLEX cut generation.
Instance WL-BASE+

𝑛𝑐 BASE+
𝑛𝑐 BASE+

𝑛𝑐wl-cuts B&C-nc

LB GAP Time LB GAP Time LB GAP Time LB GAP Time

A1 661.0 – 2.8 661.0 – 0.4 661.0 – 0.4 661.0 – 0.1
A2 645.0 – 2965.5 645.0 – 99.4 645.0 – 19.4 645.0 – 17.6
A3 628.0 – 1632.5 628.0 – 259.8 628.0 – 41.7 628.0 – 8.6
A4 596.0 17.2 – 707.3 1.8 – 720.0 – 770.1 720.0 – 621.6
A5 650.0 10.2 – 715.0 1.2 – 724.0 – 3407.4 724.0 – 48.9
A6 1152.0 7.1 – 1234.2 0.5 – 1240.0 – 243.2 1240.0 – 73.1
A7 659.0 47.2 – 678.0 45.7 – 717.2 42.5 – 737.0 40.9 –
A8 1214.0 10.5 – 1306.1 3.7 – 1331.5 1.8 – 1332.7 1.7 –
A9 1184.6 5.5 – 1213.0 3.2 – 1253.0 – 3286.1 1253.0 – 930.4
A10 1149.8 12.6 – 1227.0 6.8 – 1284.0 2.4 – 1288.0 2.1 –
A11 1148.0 14.5 – 1186.0 11.6 – 1284.5 4.3 – 1294.5 3.5 –
B1 1225.7 7.4 – 1256.1 5.1 – 1286.7 2.7 – 1287.9 2.7 –
B2 1053.0 8.3 – 1093.0 4.8 – 1122.8 2.2 – 1125.3 2.0 –
C1 739.5 45.7 – 825.8 39.4 – 852.3 37.4 – 894.3 34.3 –
C2 1356.0 8.4 – 1481.0 – 1711.9 1481.0 – 192.4 1481.0 – 121.4
C3 2063.7 11.5 – 2181.8 6.4 – 2274.9 2.4 – 2271.4 2.6 –
C4 1244.0 38.8 – 1292.8 36.4 – 1420.2 30.2 – 1485.5 27.0 –

14.4 9.8 7.4 6.9
ones. (3) For all instances that are not solved to optimality, the lower
bounds strictly increase (hence, the gap strictly decreases) as more valid
inequalities are used, both in the root node and after one hour. The only
exceptions are instance A1, where the root-relaxation is not improved2

nd instance B1 after one hour of computation. (4) The run time for
olving the root node neither consistently decreases or increases with
he addition of the valid inequalities, but the average time increases.

In the third experiment, we compare our B&C algorithm as stated
n Section 5 to two previous works:

1. The model from Wøhlk and Laporte (2022) (WL), which cor-
responds to (1)–(19), (68)–(75), and (B.1) with all inequalities
given to CPLEX directly.

2. A preliminary version of our B&C (B&C-2022), which was pub-
lished in Cubillos (2022), and which roughly corresponds to our
algorithm except from the following.

(a) In that version, the substitution of constraints (12)–(14)
with (30)–(62) as described in Appendix A had not been
performed, but constraints (A.6)–(A.17) were included as
cutting planes.

2 For instance A2, the improvement is not seen due to rounding. With three
igits, we have LB (BASE+ wl-cuts) = 619.568 and LB (B&C-nc) = 619.621.
10

𝑟𝑜𝑜𝑡 𝑛𝑐 𝑟𝑜𝑜𝑡
(b) In that version, constraints (86), (87), and (89), were not
included.

(c) In that version, constraints (B.1)–(B.19) were included.

Note that we have rerun the results of both studies due to the
corrected constraint (75).

In all three cases, we allow CPLEX to generate cutting planes based
on default settings. The algorithms are run with a time limit of one
hour using a single thread. Bases on tuning using four instance, we use
the following CPLEX parameter settings: strong branching (VarSel=3),
emphasize optimality over feasibility (MIPEmphasis=2), and use a mod-
erate probing level (probe=2) in our B&C. All other CPLEX parameters
are at their default values. For the other two algorithms, we use the
CPLEX settings used in those studies.

Our results are shown in Table 7. For each of the three algorithms,
we provide the lower bound value of the root node and the lower bound
and optimality gap after one hour of computation time. Again, we
provide computation time instead of optimality gap when optimality
is proved. We also provide the average gap.

We observe that the five instances that are solved to optimality by
the other two algorithms are solved to optimality faster by our B&C,
in some cases with significant speedup, and our B&C can solve three
further instances to optimality.
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Table 7
Comparison our B&C to previous studies.
Instance WL rerun B&C-2022 rerun B&C

LB𝑟𝑜𝑜𝑡 LB GAP Time LB𝑟𝑜𝑜𝑡 LB GAP Time LB𝑟𝑜𝑜𝑡 LB GAP Time

A1 654.4 661.0 – 1.2 657.7 661.0 – 1.1 653.5 661.0 – 0.1
A2 619.1 645.0 – 100.6 605.0 645.0 – 76.7 623.1 645.0 – 41.9
A3 619.0 628.0 – 87.9 613.3 628.0 – 205.7 625.4 628.0 – 2.1
A4 681.4 712.9 1.0 – 670.9 706.4 1.9 – 705.0 720.0 – 1085.9
A5 694.0 712.1 1.6 – 672.8 717.0 1.0 – 712.6 724.0 – 134.4
A6 1227.0 1240.0 – 536.1 1212.0 1240.0 – 1177.7 1229.1 1240.0 – 79.6
A7 673.8 702.0 43.7 – 657.6 676.8 45.8 – 733.3 743.5 40.4 –
A8 1289.5 1307.9 3.5 – 1269.8 1298.8 4.2 – 1313.7 1340.9 1.1 –
A9 1231.7 1245.8 0.6 – 1211.1 1214.4 3.1 – 1249.4 1253.0 – 298.9
A10 1283.0 1283.0 2.5 – 1224.0 1231.5 6.4 – 1287.7 1290.0 2.0 –
A11 1258.0 1260.8 6.1 – 1196.3 1197.0 10.8 – 1291.1 1305.1 2.7 –
B1 1263.7 1270.1 4.0 – 1248.0 1256.9 5.0 – 1283.5 1295.5 2.1 –
B2 1108.6 1113.8 3.0 – 1098.7 1105.8 3.7 – 1122.2 1129.5 1.6 –
C1 802.8 842.4 38.1 – 778.7 816.0 40.1 – 869.8 899.6 33.9 –
C2 1413.3 1481.0 – 1712.1 1422.4 1481.0 – 318.5 1421.2 1481.0 – 291.6
C3 2185.6 2222.3 4.7 – 2180.0 2214.9 5.0 – 2241.1 2293.8 1.6 –
C4 1364.9 1382.4 32.0 – 1330.4 1358.8 33.2 – 1482.6 1493.0 26.6 –

Average 8.3 9.4 6.6
Table 8
Number of valid inequalities added by our B&C.

Inst. (76) (77)–(79) (80)–(81) (82)–(85) (86)–(87) (88) (89)

A1 0 3 1 2 2 1 1
A2 1 3 0 1 6 64 4
A3 0 0 0 2 0 7 3
A4 4 21 0 6 12 212 4
A5 1 6 1 1 11 43 9
A6 1 5 0 0 4 10 4
A7 16 51 2 19 43 180 12
A8 0 17 1 6 11 212 10
A9 1 3 0 2 4 76 4
A10 0 0 0 2 0 249 5
A11 1 4 0 6 8 142 8
B1 0 17 0 1 14 121 3
B2 2 14 3 6 5 151 2
C1 7 48 0 13 41 298 7
C2 1 20 0 0 14 38 11
C3 0 19 1 2 16 80 7
C4 1 39 0 0 11 67 6

Sum 36 270 9 69 202 1951 100
Time per cut 140 393 133 687 602 23 1160 11 858

Of the 17 instances, there were nine that our B&C could not solve
o optimality within the allowed computation time. For these instances,
e obtain an average gap of 12.4%. The corresponding average gaps
f the other two algorithms for these instances are 15.3% and 17.1%,
espectively, showing the superiority of our algorithm. Except from
wo instances, the value of to root relaxation is also higher for our
lgorithm.

Finally, Table 8 presents the number of valid inequalities from
ach class added by our B&C. The last line of the table shows time
er cut, measured as the total time (in milliseconds) spend searching
or each class of cuts divided by the number of violated constraints
ound. We observe that, as in other capacity routing problems, most of
he violated constraints encountered are capacity constraints (88) and
89). Moreover, they are the only ones found in all instances, although
or constraints (77)–(79), (82)–(85) and (86)–(87) they are not found
n two or three instances. Note that very few subtour elimination
onstraints (76) are found, indicating that the graph induced by the
olution is connected.

. Conclusions

In this work, we present a branch-and-cut algorithm for a skip pick-
p and delivery problem, based in a real-life problem in which full
11
skips are transported from waste drop-off stations to treatment facilities
where they are emptied, and then brought back to the original drop-
off station. We analyze and strengthen the restrictions of the integer
model for the problem, proposed by Wøhlk and Laporte (2022), and
propose new valid inequalities for it. Computational results show that
our model provides better lower bounds with lower CPU time. We
are able to optimally solve 3 more instances with significant run time
improvements and reduce the gap of unsolved instances from 15.3% to
12.4%.

Future research directions include the search for new valid inequali-
ties that allow more instances to be solved optimally and also the study
of the case where flexible return locations, depending of the kind of
skip, are considered.
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Appendix A. Derivation of the base model

In this section, we explain how the model in Section 3 is derived
from the model in Section 2.1, In particular, we justify the replacement
of constraints (12)–(14) by constraints (30)–(62) and show that the new
model is tighter. For ease of reading, we repeat constraints (12)–(14)
here:

𝑄ℎ ≥ 𝑄ℎ + 𝑞ℎ − (1 − 𝑥 ) (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)}, ℎ ∈ 𝐻 (A.1)
𝑗 𝑖 𝑗 𝑖𝑗
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𝑄ℎ
𝑗 ≤ 𝑄ℎ

𝑖 + 𝑞ℎ𝑗 + (1 − 𝑥𝑖𝑗 ) (𝑖, 𝑗) ∈ 𝐴 ⧵ {(0, 𝑑)}, ℎ ∈ 𝐻 (A.2)

0 ≤
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁 ⧵ {0, 𝑑} (A.3)

First, we lift constraints (A.3) by improving the upper or lower
bound on the number of skips on the vehicle by considering two cases.
If node 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 , there must be at least one skip on the vehicle since
𝑄𝑖

𝑖 = 1, i.e. we have that the lower bound of 1. If 𝑖 ∈ 𝑁𝐷, the upper
bound is 1 because after unloading a skip at 𝑖 ∈ 𝑁𝐷, the vehicle can
carry at most one. Thereby, (A.3) can be replaced by the combination
of the following tighter constraints:

1 ≤
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁𝑃 ∪𝑁𝑇 (A.4)

0 ≤
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 1 𝑖 ∈ 𝑁𝐷 (A.5)

Second, in (A.6)–(A.17), we present valid inequalities for model in
Section 2 that arise from how the maximum value of the sum of the
𝑄ℎ

𝑖 variables must be adapted to the capacity of the vehicle in cases
when 𝑥𝑖𝑗 equals 1. For example, in (A.9) we consider an arc from a
delivery node to the dummy depot. If 𝑥2𝑛+𝑖,𝑑 = 1 the vehicle must be
empty when it leaves node 2𝑛 + 𝑖, i.e. ∑ℎ∈𝐻 𝑄ℎ

2𝑛+𝑖 = 0. On the other
hand, if 𝑥2𝑛+𝑖,𝑑 = 0, it follows directly from (A.5) that ∑ℎ∈𝐻 𝑄ℎ

2𝑛+𝑖 can
be at most 1, and constraints (A.9) thus follows. The validity of the
remaining of constraints (A.6)–(A.17) can be argued similarly.

∑

2𝑛+𝑖∈𝑁𝐷 ,𝑖≠𝑗
𝑥2𝑛+𝑖,𝑛+𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑗 ≤ 2 𝑛 + 𝑗 ∈ 𝑁𝑇 (A.6)

∑

2𝑛+𝑖∈𝑁𝐷 ,𝑖≠𝑗
𝑥2𝑛+𝑖,2𝑛+𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

2𝑛+𝑗 ≤ 1 2𝑛 + 𝑗 ∈ 𝑁𝐷 (A.7)

∑

𝑗∈𝑁𝑃 ,𝑗≠𝑖
𝑥𝑖,𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁𝑃 (A.8)

𝑥2𝑛+𝑖,𝑑 +
∑

ℎ∈𝐻
𝑄ℎ

2𝑛+𝑖 ≤ 1 2𝑛 + 𝑖 ∈ 𝑁𝐷 (A.9)

𝑥0,𝑖 +
∑

ℎ∈𝐻
𝑄ℎ

𝑖 ≤ 2 𝑖 ∈ 𝑁𝑃 (A.10)

∑

𝑗∈𝑁𝑃 ,𝑗≠𝑖
𝑥𝑛+𝑖,𝑗 +

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑖 ≤ 2 𝑛 + 𝑖 ∈ 𝑁𝑇 (A.11)

1 +
∑

𝑖∈𝑁𝑃 ,𝑖≠𝑗
𝑥𝑖,𝑗 +

∑

𝑛+𝑖∈𝑁𝑇 ,𝑖≠𝑗
𝑥𝑛+𝑖,𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

𝑗 𝑗 ∈ 𝑁𝑃 (A.12)

1 +
∑

𝑖∈𝑁𝑃 ,𝑖≠𝑗
𝑥𝑖,𝑛+𝑗 +

∑

𝑛+𝑖∈𝑁𝑇 ,𝑖≠𝑗
𝑥𝑛+𝑖,𝑛+𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑗 𝑛 + 𝑗 ∈ 𝑁𝑇 (A.13)

∑

𝑖∈𝑁𝑃 ,𝑖≠𝑗
𝑥𝑖,2𝑛+𝑗 +

∑

𝑛+𝑖∈𝑁𝑇 ,𝑖≠𝑗
𝑥𝑛+𝑖,2𝑛+𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

2𝑛+𝑗 2𝑛 + 𝑗 ∈ 𝑁𝐷 (A.14)

1 +
∑

𝑛+𝑗∈𝑁𝑇 ,𝑗≠𝑖
𝑥𝑖,𝑛+𝑗 +

∑

2𝑛+𝑗∈𝑁𝐷 ,𝑗≠𝑖
𝑥𝑖,2𝑛+𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

𝑖 𝑖 ∈ 𝑁𝑃 (A.15)

1 +
∑

𝑛+𝑗∈𝑁𝑇 ,𝑗≠𝑖
𝑥𝑛+𝑖,𝑛+𝑗 +

∑

2𝑛+𝑗∈𝑁𝐷 ,𝑗≠𝑖
𝑥𝑛+𝑖,2𝑛+𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

𝑛+𝑖 𝑛 + 𝑖 ∈ 𝑁𝑇 (A.16)

∑

𝑛+𝑗∈𝑁𝑇 ,𝑖≠𝑗
𝑥2𝑛+𝑖,𝑛+𝑗 +

∑

2𝑛+𝑗∈𝑁𝐷 ,𝑖≠𝑗
𝑥2𝑛+𝑖,2𝑛+𝑗 ≤

∑

ℎ∈𝐻
𝑄ℎ

2𝑛+𝑖 2𝑛 + 𝑖 ∈ 𝑁𝐷(A.17)

Note that constraints (A.6)–(A.8) jointly dominate (A.4)–(A.5), and
thereby (A.3).

Third, we perform a case analysis on constraints (A.1) and (A.2),
where we consider all combinations of 𝑖 and 𝑗 in terms of the sets
{0}, 𝑁𝑃 , 𝑁𝑇 , 𝑁𝐷, and {𝑑} and in terms of five situations for the value
of ℎ ∶ 𝑖, 𝑗, 𝑛 + 𝑖, 𝑛 + 𝑗, and ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗}. In each case,
we consider what happens when 𝑥𝑖𝑗 = 1, which is the situation when
the constraints are relevant. Based on the values of the 𝑞ℎ𝑖 -parameters
in each case, and based on the bounds on the 𝑄ℎ

𝑖 -variables, it can be
shown that either (A.1) or (A.2) (or both) are trivially satisfied in many
cases. Furthermore, some cases are not relevant because 𝑥𝑖𝑗 is fixed at
zero. Thereby constraints (A.1)–(A.2) can be replaced by constraints
((A.18))–((A.30)), which constitute fewer constraints in total. For sake
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of compactness, we define the following notation: For any 𝑖, 𝑗 ∈ 𝑁𝑃 ∪
𝑁𝑇 , we define 𝐻−
𝑖𝑗 = 𝐻 ⧵ {𝑖, 𝑛 + 𝑖, 𝑗, 𝑛 + 𝑗}.

𝑥0𝑗 +𝑄ℎ
𝑗 ≤ 1 𝑗 ∈ 𝑁𝑃 , ℎ ∈ 𝐻 ⧵ {𝑗, 𝑛 + 𝑗} (A.18a)

𝑥𝑖,𝑛+𝑖 − 1 ≤ 𝑄ℎ
𝑛+𝑖 −𝑄ℎ

𝑖 ≤ 1 − 𝑥𝑖,𝑛+𝑖𝑖 ∈ 𝑁𝑃 , ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖} (A.19a)

𝑥𝑖𝑗 +𝑄𝑗
𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.20a)

𝑥𝑖𝑗 ≤ 𝑄𝑖
𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.20b)

𝑥𝑖𝑗 +𝑄𝑛+𝑗
𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.20c)

𝑥𝑖𝑗 +𝑄𝑛+𝑖
𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.20d)

𝑥𝑖𝑗 − 1 ≤ 𝑄ℎ
𝑗 −𝑄ℎ

𝑖 ≤ 1 − 𝑥𝑖𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−
𝑖𝑗 (A.20e)

𝑥𝑖,𝑛+𝑗 ≤ 𝑄𝑖
𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.21a)

𝑥𝑖,𝑛+𝑗 ≤ 𝑄𝑗
𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.21b)

𝑥𝑖,𝑛+𝑗 +𝑄𝑛+𝑖
𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.21c)

𝑥𝑖,𝑛+𝑗 +𝑄𝑛+𝑗
𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.21d)

𝑥𝑖,𝑛+𝑗 − 1 ≤ 𝑄ℎ
𝑛+𝑗 −𝑄ℎ

𝑖 ≤ 1 − 𝑥𝑖,𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−
𝑖𝑗 (A.21e)

𝑥𝑖,2𝑛+𝑗 ≤ 𝑄𝑖
2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.22a)

𝑥𝑖,2𝑛+𝑗 +𝑄𝑗
𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.22b)

𝑥𝑖,2𝑛+𝑗 +𝑄𝑛+𝑖
2𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.22c)

𝑥𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗
𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.22d)

𝑥𝑖,2𝑛+𝑗 − 1 ≤ 𝑄ℎ
2𝑛+𝑗 −𝑄ℎ

𝑖 ≤ 1 − 𝑥𝑖,2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−
𝑖𝑗 (A.22e)

𝑥𝑛+𝑖,2𝑛+𝑖−1 ≤ +𝑄ℎ
2𝑛+𝑖−𝑄

ℎ
𝑛+𝑖 ≤ 1−𝑥𝑛+𝑖,2𝑛+𝑖𝑖 ∈ 𝑁𝑃 , ℎ ∈ 𝐻⧵{𝑖, 𝑛+𝑖} (A.23a)

𝑥𝑛+𝑖,𝑗 +𝑄𝑖
𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.24a)

𝑥𝑛+𝑖,𝑗 +𝑄𝑗
𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.24b)

𝑥𝑛+𝑖,𝑗 ≤ 𝑄𝑛+𝑖
𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.24c)

𝑥𝑛+𝑖,𝑗 +𝑄𝑛+𝑗
𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.24d)

𝑥𝑛+𝑖,𝑗 − 1 ≤ 𝑄ℎ
𝑗 −𝑄ℎ

𝑛+𝑖 ≤ 1 − 𝑥𝑛+𝑖,𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−
𝑖𝑗 (A.24e)

𝑥𝑛+𝑖,𝑛+𝑗 +𝑄𝑖
𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.25a)
𝑥𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑗

𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.25b)
𝑥𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑛+𝑖

𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.25c)
𝑥𝑛+𝑖,𝑛+𝑗 +𝑄𝑛+𝑗

𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.25d)
𝑥𝑛+𝑖,𝑛+𝑗 − 1 ≤ 𝑄ℎ

𝑛+𝑗 −𝑄ℎ
𝑛+𝑖 ≤ 1 − 𝑥𝑛+𝑖,𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−

𝑖𝑗

(A.25e)

𝑥𝑛+𝑖,2𝑛+𝑗 +𝑄𝑖
2𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗
(A.26a)
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𝑥𝑛+𝑖,2𝑛+𝑗 +𝑄𝑗
𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.26b)
𝑥𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑖

2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.26c)
𝑥𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗

𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.26d)
𝑥𝑛+𝑖,2𝑛+𝑗 − 1 ≤ 𝑄ℎ

2𝑛+𝑗 −𝑄ℎ
𝑛+𝑖 ≤ 1 − 𝑥𝑛+𝑖,2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−

𝑖𝑗

(A.26e)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑖
𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.27a)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑗
2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.27b)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑛+𝑖
𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.27c)

𝑥2𝑛+𝑖,𝑗 +𝑄𝑛+𝑗
2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗 (A.27d)

𝑥2𝑛+𝑖,𝑗 − 1 ≤ 𝑄ℎ
𝑗 −𝑄ℎ

2𝑛+𝑖 ≤ 1 − 𝑥2𝑛+𝑖,𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−
𝑖𝑗 (A.27e)

𝑥2𝑛+𝑖,𝑛+𝑗 +𝑄𝑖
𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.28a)
𝑥2𝑛+𝑖,𝑛+𝑗 ≤ 𝑄𝑗

2𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.28b)
𝑥2𝑛+𝑖,𝑛+𝑗 +𝑄𝑛+𝑖

𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.28c)
𝑥2𝑛+𝑖,𝑛+𝑗 +𝑄𝑛+𝑗

2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.28d)
𝑥2𝑛+𝑖,𝑛+𝑗 − 1 ≤ 𝑄ℎ

𝑛+𝑗 −𝑄ℎ
2𝑛+𝑖 ≤ 1 − 𝑥2𝑛+𝑖,𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−

𝑖𝑗

(A.28e)

𝑥2𝑛+𝑖,2𝑛+𝑗 +𝑄𝑖
2𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.29a)
𝑥2𝑛+𝑖,2𝑛+𝑗 +𝑄𝑗

2𝑛+𝑖 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.29b)
𝑥2𝑛+𝑖,2𝑛+𝑗 +𝑄𝑛+𝑖

2𝑛+𝑗 ≤ 1 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.29c)
𝑥2𝑛+𝑖,2𝑛+𝑗 ≤ 𝑄𝑛+𝑗

2𝑛+𝑖 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗

(A.29d)
𝑥2𝑛+𝑖,2𝑛+𝑗 − 1 ≤ 𝑄ℎ

2𝑛+𝑗 −𝑄ℎ
2𝑛+𝑖 ≤ 1 − 𝑥2𝑛+𝑖,2𝑛+𝑗 𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, ℎ ∈ 𝐻−

𝑖𝑗

(A.29e)

𝑥2𝑛+𝑖,𝑑 +𝑄ℎ
2𝑛+𝑖 ≤ 1 𝑖 ∈ 𝑁𝑃 , ℎ ∈ 𝐻 ⧵ {𝑖, 𝑛 + 𝑖} (A.30a)

At this point, constraints (A.1)–(A.3) are replaced by (A.6)–(A.8)
and ((A.18))–((A.30)), while constraints (A.9)–(A.17) serve as valid
inequalities.

Fourth, we can show that some of the constraints ((A.18))–((A.30))
are trivially satisfied under the condition that certain others of these
constraints are preserved in the model. We find that

• Constraints (A.20d) are satisfied if constraints (A.20b) are in the
model.

• Constraints (A.21c) are satisfied if constraints (A.21a) are in the
model.

• Constraints (A.21d) are satisfied if constraints (A.21b) are in the
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model.
• Constraints (A.22b) are satisfied if constraints (A.22d) are in the
model.

• Constraints (A.22c) are satisfied if constraints (A.22a) are in the
model.

• Constraints (A.24a) are satisfied if constraints (A.24c) are in the
model.

• Constraints (A.25a) are satisfied if constraints (A.25c) are in the
model.

• Constraints (A.25d) are satisfied if constraints (A.25b) are in the
model.

• Constraints (A.26a) are satisfied if constraints (A.26c) are in the
model.

• Constraints (A.26b) are satisfied if constraints (A.26d) are in the
model.

• Constraints (A.28d) are satisfied if constraints (A.28b) are in the
model.

• Constraints (A.29b) are satisfied if constraints (A.29d) are in the
model.

We can therefore remove the first-mentioned constraints from the
model provided that we keep the last-mentioned constraints.

Fifth, we investigate which of the constraints ((A.18))–((A.30)) are
dominated by some of the constraints (A.6)–(A.8) or (A.9)–(A.17), and
can thus be discarded. We find that

• Constraints (A.18a) are dominated by constraints (A.10).
• Constraints (A.20a) are dominated by constraints (A.8).
• Constraints (A.20c) are dominated by constraints (A.8).
• Constraints (A.24b) are dominated by constraints (A.11).
• Constraints (A.24d) are dominated by constraints (A.11).
• Constraints (A.28a) are dominated by constraints (A.6).
• Constraints (A.28c) are dominated by constraints (A.6).
• Constraints (A.29a) are dominated by constraints (A.7).
• Constraints (A.29c) are dominated by constraints (A.7).
• Constraints (A.30a) are dominated by constraints (A.9).

We can therefore remove these constraints provided that we add
(A.9)–(A.11) to the model. Note that (A.6)–(A.8) are already in the
model.

Sixth, we reverse the analysis, and investigate which of the con-
straints (A.6)–(A.17) are redundant in the presence of some of the
remaining constraints from ((A.18))–((A.30)). To illustrate this, note
that by adding constraints (A.20b) for all 𝑖 ∈ 𝑁𝑃 and (A.24c) for all
𝑛 + 𝑖 ∈ 𝑁𝑇 , and by noting that 𝑄𝑗

𝑗 = 1 and 𝑄𝑛+𝑗
𝑗 = 0, we obtain

constraints (A.12). Therefore, constraints (A.12) are redundant in the
presence of (A.20b) and (A.24c). Using this procedure, we find that

• Constraints (A.12) are redundant in the presence of (A.20b) and
(A.24c).

• Constraints (A.13) are redundant in the presence of (A.21a) and
(A.25c).

• Constraints (A.14) are redundant in the presence of (A.22a) and
(A.26c).

• Constraints (A.15) are redundant in the presence of (A.21b) and
(A.22d).

• Constraints (A.16) are redundant in the presence of (A.25b) and
(A.26d).

• Constraints (A.17) are redundant in the presence of (A.28b) and
(A.29d).

To conclude, constraints (A.1)–(A.3), which corresponds to con-
straints (12)–(14) in the model in Section 2.1 can be substituted by
the following stronger constraints:

• (A.6)–(A.8)
• (A.9)–(A.11)
• (A.19a), (A.20b), (A.20e), (A.21a), (A.21b), and (A.21e)

• (A.22a), (A.22d), (A.22e), and (A.23a)
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• (A.24c), (A.24e), (A.25b), (A.25c), and (A.25e)
• (A.26c), (A.26d), (A.26e), and (A.27a)–(A.27e)
• (A.28b), (A.28e), (A.29d) and (A.29e)

These constraints constitute constraints (30)–(62) in the model in
ection 3.

ppendix B. Proof that some constraints are redundant

For completeness, we state in this appendix two classes of valid
nequalities previously proposed for this problem, which we conjecture
o be redundant with our improved model, and we prove redundancy
or one of the inequalities.

The following class of inequalities are proposed by Wøhlk and
aporte (2022) for the original model. They are based on the possible
ctions of a vehicle before and after visiting a given node 𝑖 ∈ 𝑁 . For

example, the first family states that it is only possible to pick-up two
skips in a sequence, considering that the capacity of the vehicles is two
skips, as well as the fact that it is not possible to deliver an empty
skip immediately after picking up two skips. The remaining families
of inequalities follow the a similar logic considering the cases in which
𝑖 ∈ 𝑁𝑇 and 𝑖 ∈ 𝑁𝐷.
∑

𝑙∈𝑁𝑃 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝑃 ∪𝑁𝐷 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝑃
∑

𝑙∈𝑁𝑃 ∪𝑁𝑇 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝑃 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝑃
∑

𝑙∈𝑁𝑇 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝑃 ∪𝑁𝑇 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝑇
∑

𝑙∈𝑁𝑇 ∪𝑁𝐷 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝑇 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝑇
∑

𝑙∈𝑁𝐷 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝑇 ∪𝑁𝐷 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝐷
∑

𝑙∈𝑁𝐷∪𝑁𝑃 ,𝑙≠𝑖 𝑥𝑙𝑖 +
∑

𝑗∈𝑁𝐷 ,𝑗≠𝑖 𝑥𝑖𝑗 ≤ 1 𝑖 ∈ 𝑁𝐷.

(B.1)

The following class of inequalities are proposed by Cubillos (2022)
for the original model. They are referred to as Precedence and successor
inequalities and are based on investigating which arcs can be used to
leave a node 𝑗 given that a specific arc is used to enter node 𝑗, i.e., they
answer the question: given that 𝑥𝑖𝑗 = 1, which other variables 𝑥𝑗𝑘 must
hen necessarily also be 1? In (B.2)–(B.10) we present the arcs that can
ccur after the arc on the left hand side of the inequality if the left
and side is equals 1 in the solution. For instance, in (B.2) we consider
he case in which the variable 𝑥0𝑗 = 1, 𝑗 ∈ 𝑁𝑃 , which corresponds to a
irst pick-up in a route. Right after a first pick-up, a vehicle can either
ravel to its treatment location at 𝑛 + 𝑗, or travel to any other pick-up
∈ 𝑁𝑃 ∖{𝑗}. The same logic follows for the remaining inequalities.

However, in some cases, the constraints can be tightened by replac-
ng the 𝑥𝑖𝑗 -variable on the left hand side by 𝑄𝑖

𝑗 . Consider for instance
a version of constraints (B.3) with the left hand side replaced by 𝑥𝑖𝑗 .

hat constraint states that if a vehicle picks up skip 𝑖 and immediately
fter picks up skip 𝑗 (after which the two full skips are on the vehicle),
hen the only possible next action is to empty one of them, which is
xpressed in the right hand side of the constraint. By replacing 𝑥𝑖𝑗 by
𝑖
𝑗 as in (B.3), the constraint states that if a vehicle is in the pick-up
ode for skip 𝑗 and carries the full skip 𝑖, then these are the next two
ossible actions. However, the vehicle can reach this state by coming
irectly from node 𝑖 as above or by having performed other tasks while
arrying 𝑖, and eventually arrive at node 𝑗. Therefore the constraint
ecomes stronger.

0,𝑗 ≤ 𝑥𝑗,𝑛+𝑗 +
∑

𝑘∈𝑁𝑃 ∖{𝑗}
𝑥𝑗,𝑘 ∀𝑗 ∈ 𝑁𝑃 , (B.2)

𝑖
𝑗 ≤ 𝑥𝑗,𝑛+𝑖 + 𝑥𝑗,𝑛+𝑗 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, (B.3)
𝑖
𝑛+𝑗 ≤ 𝑥𝑛+𝑗,𝑛+𝑖 + 𝑥𝑛+𝑗,2𝑛+𝑗 ∀𝑖 ∈ 𝑁𝑃 ,∀𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,

(B.4)
𝑖
2𝑛+𝑗 ≤ 𝑥2𝑛+𝑗,𝑛+𝑖 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑗,𝑘 ∀𝑖 ∈ 𝑁𝑃 ,∀2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗,

(B.5)
𝑄𝑛+𝑖

𝑗 ≤ 𝑥𝑗,2𝑛+𝑖 + 𝑥𝑗,𝑛+𝑗 ∀𝑗 ∈ 𝑁𝑃 ,∀𝑛 + 𝑖 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,
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(B.6)
𝑄𝑛+𝑖
𝑛+𝑗 ≤ 𝑥𝑛+𝑗,2𝑛+𝑖 + 𝑥𝑛+𝑗,2𝑛+𝑗 ∀𝑛 + 𝑖, 𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗, (B.7)

𝑄𝑛+𝑖
2𝑛+𝑗 ≤ 𝑥2𝑛+𝑗,2𝑛+𝑖 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑗,𝑘 ∀𝑛 + 𝑖 ∈ 𝑁𝑇 ,∀2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗,

(B.8)
𝑥2𝑛+𝑖,𝑛+𝑗 ≤ 𝑥𝑛+𝑗,2𝑛+𝑗 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥𝑛+𝑗,𝑘 ∀2𝑛 + 𝑖 ∈ 𝑁𝐷,∀𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,

(B.9)
𝑥2𝑛+𝑖,2𝑛+𝑗 ≤ 𝑥2𝑛+𝑗,𝑑 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑗,𝑘 ∀2𝑛 + 𝑖, 2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗.

(B.10)

There are three additional cases, namely 𝑥𝑖,𝑛+𝑖, 𝑥𝑛+𝑖,2𝑛+𝑖, and 𝑥2𝑛+𝑖,𝑗 .
However, in these cases, the flexibility of the problem means that we
cannot derive similar constraints. Using the same argument, we can
find valid inequalities for travels that can occur right before a specific
travel. (B.11)–(B.19) present valid inequalities for the possible travels
that can occur before the arc or state on the left hand side if the left
hand side of the inequality equals 1.

𝑥𝑖,𝑗 ≤ 𝑥0,𝑖 +
∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑘,𝑖 ∀𝑖, 𝑗 ∈ 𝑁𝑃 , 𝑖 ≠ 𝑗, (B.11)

𝑄𝑗
𝑖 ≤ 𝑥𝑗,𝑖 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑘,𝑖 ∀𝑖 ∈ 𝑁𝑃 ,∀𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,

(B.12)
𝑄𝑛+𝑗

𝑖 ≤ 𝑥𝑛+𝑗,𝑖 +
∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑘,𝑖 ∀𝑖 ∈ 𝑁𝑃 ,∀2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗,

(B.13)
𝑥𝑛+𝑖,𝑗 ≤ 𝑥𝑖,𝑛+𝑖 +

∑

𝑘∈𝑁𝑃 ∖{𝑖,𝑗}
𝑥2𝑛+𝑘,𝑛+𝑖 ∀𝑗 ∈ 𝑁𝑃 ,∀𝑛 + 𝑖 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,

(B.14)

𝑄𝑗
𝑛+𝑖 ≤ 𝑥𝑖,𝑛+𝑖 + 𝑥𝑗,𝑛+𝑖 ∀𝑛 + 𝑖, 𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗, (B.15)

𝑄𝑛+𝑗
𝑛+𝑖 ≤ 𝑥𝑖,𝑛+𝑖 + 𝑥𝑛+𝑗,𝑛+𝑖 ∀𝑛 + 𝑖 ∈ 𝑁𝑇 ,∀2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗,

(B.16)
𝑄𝑗

2𝑛+𝑖 ≤ 𝑥𝑛+𝑖,2𝑛+𝑖 + 𝑥𝑗,2𝑛+𝑖 ∀2𝑛 + 𝑖 ∈ 𝑁𝐷,∀𝑛 + 𝑗 ∈ 𝑁𝑇 , 𝑖 ≠ 𝑗,

(B.17)
𝑄𝑛+𝑗

2𝑛+𝑖 ≤ 𝑥𝑛+𝑖,2𝑛+𝑖 + 𝑥𝑛+𝑗,2𝑛+𝑖 ∀2𝑛 + 𝑖, 2𝑛 + 𝑗 ∈ 𝑁𝐷, 𝑖 ≠ 𝑗,

(B.18)

𝑥2𝑛+𝑖,𝑑 ≤ 𝑥𝑛+𝑖,2𝑛+𝑖 +
∑

𝑘∈𝑁𝑃 ∖{𝑖}
𝑥2𝑛+𝑘,2𝑛+𝑖 ∀2𝑛 + 𝑖 ∈ 𝑁𝐷. (B.19)

We conjecture that with the stronger BASE model presented in
Section 3, all above inequalities of this appendix are redundant. We
now prove that this is the case for constraints (B.2).

For 𝑖 ∈ 𝑁𝑃 , we have the following, which we aim to prove is ≤ zero:

𝑥0,𝑖 − 𝑥𝑖,𝑛+𝑖 −
∑

𝑗∈𝑁𝑃 ∖{𝑖}
𝑥𝑖,𝑗

≤ 2 −
∑

ℎ∈𝐻
𝑄ℎ

𝑖 − 𝑥𝑖,𝑛+𝑖 −
∑

𝑗∈𝑁𝑃 ∖{𝑖}
𝑥𝑖,𝑗 by (58)

= 2 −
∑

ℎ∈𝐻
𝑄ℎ

𝑖 +
∑

𝑛+𝑗∈𝑁𝑇 ∖{𝑛+𝑖}
𝑥𝑖,𝑛+𝑗 +

∑

2𝑛+𝑗∈𝑁𝐷∖{2𝑛+𝑖}
𝑥𝑖,2𝑛+𝑗 − 1 by (4)

≤ 0 by (A.15)

Thereby, we have shown that constraints (B.2) are redundant.
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