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Abstract
Asteroids and comets are triggering interest due to the richness of precious materi-
als, their scientific value as well as for their potential hazardousness. Owing to their 
significant diversity, minor bodies do not exhibit uniform shapes: they can range 
from spherical to irregularly shaped objects with rocky, uneven, and cratered sur-
face. Nowadays, space probes rely more and more on optical navigation techniques, 
due to the increasing demand for autonomy. When dealing with minor bodies, the 
diversified range of shapes can significantly affect the performance of these tech-
niques. In order to enable deep space probes to confidently deal with uncertainties, 
the need for robust image processing methods arises. Commonly, few image process-
ing methods are designed and tested with limited shapes to meet mission require-
ments. In this work, we depart from this paradigm by developing a new framework, 
which includes extensive testing of the image processing algorithms with various 
shapes. The shapes are not randomly analyzed, yet they are arranged in a hierarchi-
cal structure called hyper-cube. The cube allows for a better understanding of the 
methods performance and to infer the way they shift from one shape to the other. 
The novelty of this approach lies both in the cube representation, which allows a bet-
ter understanding of the link between the image processing algorithms and shape of 
the object, but also in the extensive number of shapes that have been tested, which 
has never been done before. In this analysis, four methods are considered, namely: 
center of brightness, intensity weighted centroiding, correlation with Lambertian 
spheres, and least-squares-based ellipse fitting. Results from this test allow us corre-
lating the methods performances to the bodies shape, to suggest the best performing 
method for each shape family, and to assess their robustness.
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1 Introduction

Minor bodies exploration is becoming of growing interest due to resource exploita-
tion, scientific interest, and planetary defence reasons [1]. Firstly, they contain an 
abundance of valuable resources that can either be mined or used to refuel spacecraft 
and overcome the technological limits of deep space exploration [2]. Secondly, they 
can help to investigate the planets accretion process and the solar system evolution 
[3]. Lastly, we need to characterize near-Earth asteroids, posing a constant threat for 
the Earth (up until 2019, the NEOWISE space telescope estimated ∼ 4700 ± 1500 
Potentially Hazardous Asteroids (PHAs) larger than 140 m [4]).

Small bodies show a variety of shapes. Indeed, they span from spherical with no 
significant topological features to flat, bilobed, elongated and hemispherical ones 
[5]. The overall shape of about 3000 minor bodies is roughly estimated thanks to 
ground-based radar and light curve analysis, but it is precisely known for an handful 
amount of bodies through insitu observations.

Small-body rendezvous and fly-by missions demand a flight dynamic team on-
ground that study in detail the spacecraft trajectory accordingly to the analyzed 
body. These calculations require that the shape of the body is accurately known in 
order to properly select the best suited Image Processing (IP) technique to optically 
navigate it. This information is not always available from on-ground observations, 
especially for interplanetary missions [6]. Due to the wide variety of shapes these 
bodies can assume, it is mandatory that the spacecraft is able to return good naviga-
tion results whatever the shape is.

Optical Navigation (OpNav) refers to the set of techniques that are used to get an 
estimate of the spacecraft state from images. In this field, there is an increasing need 
for autonomy [7]. For small-body close proximity operations, autonomy can be ena-
bled exploiting images, as they can be easily available on-board spacecraft. The state 
estimation strongly depends on the IP method used to extract navigation observa-
bles from images [8]. These techniques provide information on the line-of-sight, but 
some of them can also return relative range estimations. The spacecraft state with 
respect to the minor body can be thus extracted exploiting filtering techniques.

The context of this work is the resolved regime, when the body’s shape is clearly 
visible in the camera view, as opposite to the unresolved and surface feature ones 
where the body occupies just few pixels or fills the entire FOV, so that the infor-
mation on the shape cannot be extracted. Current Image Processing algorithms are 
designed to work on spherical or ellipsoidal bodies [9–12] thus the need to test their 
robustness on different body’s shapes. The most important methods in the consid-
ered regime are Center of Brightness (CoB), Intensity Weighted Centroiding (IWC), 
Centroid Apparent Diameter (CAD), Correlation with Lambertian Spheres (CLS) 
and Centerfinding by Correlation (CbC).

Artificial Intelligence (AI) techniques can also be exploited to provide IP solu-
tions or position estimates [13–16] completely bypassing traditional approaches. 
In doing so, however, they rely on large amount of data for training and they lack 
full explainability when compared to traditional methods. These could be dis-
couraging factors when facing undefined shapes and consequently lack of data. 
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For this reason, due to their simplicity and adaptability, only traditional methods 
will be analyzed in this work. CoB and IWC are the simplest to implement [17] 
and they are used in the unresolved regime as well. CAD methods exploit conics 
such as circle and ellipse to be fit with the detected limb of the small-body [10, 
11, 18] while CLS and CbC techniques correlate the image with a template image 
of a Lambertian sphere [19, 20] and of the 3D model of the body at hand [8] 
respectively. From CAD, CLS and CbC methods it is possible to obtain an esti-
mation of the overall size, and thus of the range. Only CLS and CbC directly take 
into account the lighting conditions. For the analysis in this work, CbC is dis-
carded as it requires the knowledge of body shape, which is considered unknown. 
Moreover, least squares based Ellipse Fitting (EF) is considered as CAD tech-
nique. Even though other implementations are expected to be more accurate with 
tri-axial ellipsoid regular shapes [21, 22], the method considered in this work is 
the simplest to implement and can be considered as a good representative of all 
ellipse fitting methods. These four image processing methods (CoB, IWC, CLS, 
EF) are tested on synthetic images of artificially generated objects. The images 
are generated starting from the three-dimensional model of the known bodies, 
refining them introducing surface roughness, craters, boulders, and environmental 
conditions.

Existing work in literature has provided a comparison of image processing tech-
niques for close proximity operations, but no work has been performed this analysis 
with a large number of small-body shapes and with a set of IP methods. Most rel-
evantly, [8] performs comparison of IP methods for two different shapes while [23] 
assesses the performances of two IP techniques on planets. In short, these compari-
son are made with a limited variety of small-body’s shapes or with a limited set of 
IP methods.

This work, differently from the previously mentioned ones, aims to assess the 
robustness of a set of traditional image processing algorithms in front of a wide vari-
ety of minor body shapes. The analysis is performed in an innovative way, arranging 
the bodies in a shape hierarchical structure, named shape-cube. The cube is designed 
to contain representative minor body shapes and to take care, at the time being, of 
the existing extreme cases in terms of elongation and irregularity. The selected real 
bodies are the starting point for the construction of the hyper-cube, as they are lin-
early interpolated between them to realize a progressive transition from one shape to 
another, and thus, better understand how the performance of the algorithms shifts as 
they move in the space of the cube. The novelty of this approach is twofold. In the 
first place, the cube allows for a better visualization and understanding of the rela-
tion between IP algorithm and minor body shape. An intuitive representation of the 
algorithms performance shift can be visualized as it has never been done before. In 
addition, this is the first time that a set of algorithms are tested on an extensive num-
ber of shapes. Thereby, the robustness of such algorithms can be reliably assessed.

As a result, the selected algorithms are tested on a large amount of minor body’s 
shapes to determine their performance and robustness, and to understand what 
trends the error follows for each method based on the shape. This result can be 
exploited by the mission designer to choose the best technique accordingly to the 
body at hand. It is also possible to integrate this shape map on-board the spacecraft 
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in order to let it autonomously select the best performing method once information 
on the shape are available.

The paper is structured as follows. Section 2 reports a brief explanation of the 
considered IP techniques, with focus on the construction of the shape-cube and the 
generation of the synthetic images. In Sect. 3, the performances of each method on 
the analyzed shapes will be shown and the comparison among the different tech-
niques will be made. Some considerations and future works are discussed in Sect. 4.

2  Methodology

The aim of this work is to evaluate the performances of the aforementioned image 
processing techniques in presence of a wide variety of shapes. It must be pointed out 
that these algorithms can be used on-board spacecraft to retrieve information about 
the center of mass and the range of the minor body from the acquired pictures for 
use by the filter.

To evaluate the robustness of these algorithms, 15 different minor body models 
are chosen1,2 as the bases of a shape space. They span from near spherical to highly 
irregular shapes, they are arranged in a virtual cube, and they are the starting point 
for the generation of synthetic intermediate models whose characteristics embed the 
most significant features of the shapes they are generated from. In this way, it is 
possible to obtain a continuous transition from the shape of a model to another and 
visualize the error trend in the centroiding estimation. Each model is then visually 
improved introducing morphological features and placing it in a space environment 
with the aim of generate synthetic images on which the IP techniques are tested on.

2.1  Image Processing Algorithms

Center of brightness, intensity weighted centroiding, correlation with Lambertian 
spheres and ellipse fitting have been selected as representative methods of tradi-
tional IP methods. They are mature, well-known and robust methods already used 
in various missions. In this section the theory behind them will be briefly reviewed.

Center of Brightness This algorithm is the simplest to implement as it computes 
the barycenter of the pixel intensity of the image. The center of brightness algorithm 
accordingly to [24–26] is:

where Iij is the intensity of the generic pixel (i,  j) whose coordinates are (xi,j, yi,j) , 
and xcb and ycb are the Center of Brightness (CoB) coordinates.

(1)xcb =
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i=1
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j=1
Iijxij

∑N

i=1

∑N

j=1
Iij

, ycb =
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j=1
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∑N

i=1
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j=1
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1 https:// astro. troja. mff. cuni. cz/ proje cts/ damit/ aster oids/ browse, Last access: March 22, 2021.
2 https:// sbn. psi. edu/ pds/ shape- models/, Last access: March 22, 2021.

https://astro.troja.mff.cuni.cz/projects/damit/asteroids/browse
https://sbn.psi.edu/pds/shape-models/


1 3

The Journal of the Astronautical Sciences 

Unlike asteroids, comets’ CoB are highly affected by outgassing. For instance, 
Halley’s images showed multiple, large bright jets emanating from the comet and 
a dark nucleus barely visible [24]. The effect of these type of phenomena are not 
investigated in this work, which includes comets only for what concerns their char-
acteristic shapes.

Intensity Weighted Centroiding In intensity weighted centroiding [27] the weight-
ing function is the intensity distribution of the spot pattern Iij . The center of bright-
ness position is estimated as:

This algorithm is exploited under low light level conditions and low background 
noise [27].

IWC and CoB are highly affected by the Sun phase angle resulting in an offset of 
the center of brightness from the Center of Mass (CoM). Scattering models can be 
used to correct for this shift. For regular bodies the most common ones are analyti-
cal corrections such as the Lambertian and Lommel–Seeliger [8], which are appli-
cable both for spherical bodies but are also derived for ellipsoidal ones in [28]. On 
the other hand, data-driven methods could be best suited for highly irregular shapes, 
as it is illustrated in [29, 30]. These models are not taken into account in this work.

Correlation with Lambertian Spheres The CLS method exploits the spherical 
approximation of the minor body. A Lambertian sphere is an object that reflects light 
in all directions, regardless of the angle of incidence obeying Lambertian’s cosine 
law. The basic idea of this method, used in the Hera mission [19], is to compare the 
image of the minor body with a template image of a Lambertian sphere. The tem-
plates are images generated in Matlab rendering a family of spheres with various 
radius while applying Lambert’s cosine law. These are generated around an initial 
guess which is provided by the body radius in pixel Rpx , computed as an approxima-
tion from the number of illuminated pixels npx and the portion of the visible sphere 
� as:

The normalized cross-correlation consists in placing a template image at all possible 
positions (x, y) of the input image f and measure the similarity between the template 
t and a window W(x, y) out of f. It can be computed as:

where t̄ is the mean of the template, f̄u,v is the mean of the image in the window 
W(x, y) under the template, and (u, v) is the coordinate of a feature. The best match-
ing Lambertian sphere is obtained and so the best estimate of the object centroid 
and range. In Fig. 1 the entire procedure from the synthetic image to the centroid 
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√
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∑
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estimation is depicted. The detailed algorithm steps are reported in [19] and [20]. 
It is important to state that in this work it is assumed that the Sun phase angle is 
always known for rendering the Lambertian sphere on-board.

Ellipse Fitting Ellipse fitting is a technique used when the target object can be 
approximated to an ellipsoid. This method exploits the object perspective projec-
tion onto the image plane. If the body is assumed to be a triaxial ellipsoid, then its 
projection is an ellipse. Thus, the final goal is to fit the boundary points of the minor 
body in the image with this conic. This approach is used in the LUMIO mission, but 
in that case, it only works for regularly shaped objects [9, 31]. Moreover, it must be 
taken into account that this method returns better results when wide portions of the 
minor body are visible. The summary of the algorithm steps are in Fig. 2.

The most important step is the fitting one as it must determine the model 
parameters that approximate the available data at best. The fitting reliabil-
ity depends on its robustness to outliers and noise. Furthermore, an optimiza-
tion method is required to overcome local minima and determine the most suit-
able parameters. One of the most commonly used techniques is the least squares 
method [32].

Fig. 1  Correlation with Lambertian spheres algorithm steps. a Generation of a Lambertian sphere char-
acterized by the real lighting conditions represented as a template image on the bottom left. b Binariza-
tion of both images and comparison with different sphere sizes reported on the bottom. c Normalized 
cross-correlation result. d Final result with the estimated centroid’s position depicted as a red dot and the 
real position as a green ×
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Once the boundary points have been determined it is possible to fit them with 
an ellipse, with the objective to minimize the difference among the points of the 
curve and of the boundary E, namely

where � are the coordinates of the boundary points in the image, � are the ones of 
the ellipse, � is the angular coordinate and N is the number of boundary samples.

Methods Comparison The performances of the analyzed methods can be outlined 
highlighting how they behave at different distances and Sun phase angles. In gen-
eral, Correlation with Lambertian spheres and ellipse fitting work better when the 
target object is clearly visible in the camera sensor while center of brightness and 
intensity weighted centroiding show their best in the unresolved regime, when the 
body spans only few pixels in the image. Clearly, the four methods return different 
outputs. CoB and IWC can only provide an information about the CoM position 
while CLS and EF can also return an estimation of the body radius, and thus it is 
possible to compute the range from it.

(5)E =

N∑

j=1

||�(�j) − �(�j)||

Fig. 2  Steps required for the ellipse fitting technique. a Conversion to binarized image. b Extraction of 
the boundary points. c Rotation of the points in order to have the light vector parallel to the vertical axis. 
d Fit of an ellipse to the boundary points and rotate them back. The estimated centroid’s position is rep-
resented as a red dot, the real position as a green ×
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Concerning the Sun phase angle all methods return the smallest errors when the 
body is clearly visible. Regarding the CoB and IWC the problem arise when the 
Sun phase angle is different from 0, as the CoB shifts toward the illuminated region 
of the minor body. In this situation the light scattering methods can be exploited in 
order to reduce the offset.

For what concerns the EF method it must be remarked that the fitting algorithm 
works well when the Sun phase angle is close to 0 deg , that is when the body is 
completely visible. However, for high phase angles it is unable to approximate the 
minor body shape as it does not take into account the terminator, and for this reason 
its performances deteriorate. Lastly, the CLS technique is not affected by the phase 
angle of the Sun, since it takes into account the lighting conditions.

A summary of the most important features of the examined methods is reported 
in Table 1. Resolved and unresolved regimes are abbreviated as “res” and “unres”, 
respectively.

2.2  Shape‑Cube Construction

The shape-cube is a virtual cubic structure made of small bodies that are part of the 
shape space. First, shape bases are selected from already visited asteroids in order to 
test centroiding algorithms to existing shapes. Thereby, geometrically implausible 
synthetically generated objects are avoided. Then, they are linearly interpolated to 
generate new models, which are arranged in the cube. This is done by following a 
logic based on their elongation and irregularity levels so that it is possible to extract 
trends from the errors of each method. It is important to remark that in nature there 
are a multitude of other shapes that are not included in the shape-cube and that, in 
this work, are considered as outliers. In the case of a body external to the shape 
space, an extrapolation would be required, not considered in this work. In this sec-
tion the logic behind the construction of the shape-cube is described.

The Starting Cube Fifteen minor body models have been chosen as the bases of 
the shape space. Their selection is driven by the fact that they are well known minor 
bodies. This choice allows, in presence of an unknown body, to move around the 
space defined by these models to get an interpolated model whose shape is simi-
lar to the examined one. These initial shapes are the starting point to construct the 

Table 1  Summary of the examined image processing techniques

Name Regime PROs CONs Output

CoB Unres,
Res

Easy to implement Shape of the spot not
considered

CoM

IWC Unres,
Res

Easy to implement Low background noise
required

CoM

CLS Res Considers lighting
conditions

Spherical approximation CoM,
Radius

EF Res Flexible Ellipsoidal approximation CoM,
Radius
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hyper-cube of shapes, made up of three layers, ordered from regular to irregular 
shapes: 

1. The first layer is made of near-spherical bodies.
2. The second layer consists of bodies that can be approximated to ellipsoids.
3. The third layer is made of elongated and irregular bodies.

In order to identify the position of a body in the cube, three coordinates are required. 
For this reason the l, r, and c axes have been defined as follows. The three layers 
are stacked together such that the bodies elongation increases moving towards the 
positive l axis. Whereas, moving towards the positive r axis there is the transition 
from uniform to irregular bodies, while c is an ausiliar parameter that allows us to 
arrange the bodies in a three-dimensional structure achieving a better visualization. 
It must be noted that the bodies at the top of the cube are at the time being a limit 
case scenario for small-body elongation and irregularity, but more irregular objects 
could already exist or be discovered in the future leading to an update of the cube. 
An intuitive representation of the starting-cube is depicted in Fig. 3.

The Shape-Cube Since the starting cube models are the bases of the shape 
space, every element of the shape space may be written in a unique way as a 
finite linear combination of elements of the bases. Thus, synthetic intermediate 
models are generated as a linear interpolation of bases pair following the crite-
rion described below for visualization purposes. Once the starting cube is con-
structed, the “Shape Keys” Blender3 functionality has been exploited to merge 
the three-dimensional models. The software guarantees the preservation of the 

Fig. 3  Cube of known minor 
bodies’ models. The first layer 
is made of near-spherical bodies 
that are Bennu, Pallas, Juno, 
Iris and Flora. The second layer 
consists of bodies that can be 
approximated to ellipsoids: 
Astrea, Lutetia, Gaspra, Ida and 
Parthenope. The third layer is 
made of elongated and irregular 
bodies, namely Eros, Toutatis, 
Mithra, Itokawa and comet 67P. 
Along the drawn lines interme-
diate models are generated

3 https:// www. blend er. org/, Last access: March 22, 2021.

https://www.blender.org/
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most important features of the starting models generating highly realistic minor 
bodies. A high number of intermediate models are generated starting from the 
known ones. The interpolation procedure in Blender consists of two steps: firstly, 
the mesh of the starting model is projected onto the shape of the final one, and 
secondly the corresponding vertices of the initial and projected models are lin-
early interpolated. This operator is indicated as ⊕ , and it is realized as:

where S1 and S2 represent the set of mesh vertices of the initial and final bodies, Sw 
is the mesh of the interpolated model, while w is a weighting parameter. The set of 
weights used for the intermediate shapes are (0.25,0.5,0.75). Thus, for each pair of 
bodies, three additional intermediate shapes are generated. The importance of the 
intermediate models arises from the fact that it can be seen how the IP algorithms 
performances progressively shift from one shape to the other. The transitions were 
realized by following the cube edges and the internal lines drawn in Fig. 3. In addi-
tion, the models at the vertices of the second layer were fused with the central model 
of the first layer. The models at the vertices of the last layer were merged with the 
central body of the second one.

(6)Sw = wS1 ⊕ (1 − w)S2

Fig. 4  Hyper-Cube of minor bodies’ shapes. The drawn lines are the edges of the cube where the transi-
tion between two models happen
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The final hyper-cube of shapes, shown in Fig. 4, is made of 129 models and guar-
antees a large sample of small-body shapes to be investigated.

In order to identify the position of a small-body in the hyper-cube, each model 
coordinates are expressed as (l, r, c) triplets. These represent respectively the layer, 
the row and the column position in a defined layer. A graphical representation of the 
nine layers along with an example of the models arrangement in a generic layer, is 
depicted in Fig. 5.

2.3  Synthetic Image Generation

In order to test the image processing algorithms of different small-body shapes, it 
is important to have the capability to render a large set of images. These images 
are generated in Blender as it is an open source, simple to use rendering engine.4 
Blender’s default reflectance model, named Principled BSDF (Bidirectional Scatter-
ing Distribution Function), is exploited to model the minor body surface reflectiv-
ity properties. A constant albedo value is also assumed. The typical characteristics 
of a CubeSat optical instrument are chosen. The camera, that generates gray-scale 
images, has a 1024 × 1024 pixels CCD (Charge–Coupled Device), 10 deg FOV, an 
8-bit analog-to-digital converter and a 15% compression that reduces the image final 
size. Since the main focus of this work is related to shape robustness assessment, the 
following assumptions are made for the renderings:

– Ideal camera pointing: the camera points at the model center of mass. In this way 
it is possible to say that the location of the model CoM shall be projected to the 
image center.

– No blur: the target is completely in focus.

Fig. 5  Left: representation of the layers of the hyper-cube. Right: representation of one layer, where the 
squares indicate the presence of a model at that coordinate. Layers 1, 5 and 9 are highlighted as they are 
the ones with the shapes from the starting cube

4 https:// www. blend er. org/.

https://www.blender.org/
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– No noise: the sensor and the environment are not generating noise in the images.
– No background: the background is completely dark so that there are no distur-

bances arising from stars or other celestial bodies.
– Known lighting conditions: the illumination vector acting on the small-body is 

assumed to be known on-board and all images are rendered with a 0 deg phase 
angle with respect to the Sun.

For better handling all models were scaled to the same overall size and it must be 
remarked that the performances are not affected by this choice. A sample image is 
depicted in Fig. 6.

Since from certain points of view, even a highly irregular body may look like a 
regular one, three distinct renderings are generated for each small-body shape by 
taking pictures from the three principal axes perspective: x, y and z. As a result the 
IP techniques were tested on 387 different synthetic images representing 129 differ-
ent shapes.

From the x viewpoint all the models seem to be near-spherical that is a conse-
quence of having the elongated side oriented as l axis, while from y and z, it is pos-
sible to appreciate their shape.

An example is given by the intermediate model of asteroid Mithra and Toutatis, 
in position (9, 9, 5) as can be seen in Fig. 6.

3  Results

In this section the four IP methods previously described are applied to all the 
hyper-cube models’ images. As previously discussed, for each minor body, three 
different images are available. Their robustness is assessed and they are com-
pared in order to understand what is the best method for a given small-body 
shape. It is necessary to introduce a metric to evaluate the methods robustness. 

Fig. 6  Synthetic images of the model in position (9, 9, 5), that is the half-way point model of asteroids 
Toutatis and Mithra. a Image from the x point of view where the body seems to be spherical. In b and c 
there are model’s images from the y and z axes perspective respectively
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In this analysis, the error metric considered is the centroid position in the image, 
because not all the techniques considered produce range estimate to be com-
pared. The estimated centroid is computed for each image, along with the Cen-
troid Estimation Error [27] defined as:

where (xreal, yreal) is the model CoM position, that is known to be in pixel (512, 512) 
thanks to ideal pointing conditions, and (xc, yc) is the estimated centroid. As a result, 
for each technique there are three hyper-cubes of errors, referred to as error-cubes. 
The errors are depicted as colored points and the higher the error the bigger the 
marker. For each technique the maximum and minimum color values are chosen 
considering 0 as lower bound and the global maximum error of the given technique 
as the upper bound. The complete tables with the numeric value of the CEE of each 
body is reported in the supplementary information. In the following, there will be 
a discussion on the performances of each technique based on the error-cube, then 
a global cube which assesses the best technique for a given shape is generated as a 
tool for mission design.

3.1  Center of Brightness

The center of brightness results are shown in Fig. 7, where it is possible to point 
out the CEEs by looking each body from the x, y, and z perspective. It is clear 
how the algorithm allows to obtain good results with every shape. Indeed, a 
maximum error of 31 pxl is achieved with asteroid Juno, that is in coordinates 
(1, 9, 9). This asteroid, shown in Fig. 8, is very peculiar as its shape appears to 
be intermediate between that of lumpy irregular bodies and near-spherical ones. 
From Fig. 7 it can be noted as the first layer (spherical minor bodies), a part from 
Juno, has very small errors in all three cubes. The error, as expected, increases on 
average by moving from the spherical objects to the irregular ones.

(7)CEE =

√
(xreal − xc)

2 + (yreal − yc)
2

Fig. 7  Center of brightness method results. From a to c error-cube of the x,y and z axes is represented
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3.2  Intensity Weighted Centroiding

In this section the results achieved with the IWC algorithm will be discussed. The 
resulting hyper-cubes of errors are depicted in Fig. 9.

The behaviour is similar to that of the center of brightness method, but with 
slightly higher errors. It can be noted that the maximum error is achieved with 
Juno and it is equal to 34.5 pxl as for the CoB method.

As for the center of brightness algorithm, good results are attained, indeed 
errors lower than 5 pxl are achieved.

It is questionable that if a minor body is not symmetrical, the centroid offset 
is large. An example is given by asteroid Eros, that is at coordinates (9, 5, 5). As 
shown in Fig.10, the asteroid is highly irregular but the method accurately finds 
the centroid position with an error close to zero. This finding, however, strongly 
depends on the rendering scene.

Fig. 8  Center of brightness algorithm applied to the asteroid at coordinates (1, 9, 9). The red dot is the 
estimated centroid while the green × is the real centroid position. From a to c; images taken from the x, y 
and z axis, respectively

Fig. 9  Intensity weighted centroiding method results. From a to c error-cube of the x,y and z axes is rep-
resented
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3.3  Correlation with Lambertian Spheres

It is already known how the correlation with Lambertian spheres method per-
forms well for bodies that can be approximated to a sphere. The resulting errors 
on the hyper-cube can be seen in Fig.11.

From the image it is clear that the robustness of this algorithm is very poor, 
and good results are reached just for near-spherical models. Indeed, when all 
the bodies seem to be spherical, from the x point of view, the algorithm returns 
excellent results, with the highest error given by asteroid Juno. However, from 
the y and z axes perspectives the targets are no more circular and the error pro-
gressively increases moving from the spherical models to the irregular ones. The 
maximum error is achieved with the irregular asteroid Eros and it is equal to 100 
pxl.

Fig. 10  Intensity weighted 
centroiding algorithm applied to 
the y perspective of the asteroid 
in position (9, 5, 5). The red dot 
is the estimated centroid while 
the green × is the real centroid 
position

Fig. 11  Correlation with Lambertian spheres method results. From a to c error-cube of the x,y and z axes 
is represented
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From the asteroids in the first layer, the high accuracy of the algorithm with near-
spherical objects can be appreciated. For instance the errors associated to the aster-
oid in position (1, 8, 2) reach a maximum of 3 pxl as can be seen in Fig.12.

An example of an irregular minor body, is the model with coordinates (9, 5, 9). It 
is the intermediate model of comet 67P and asteroid Mithra. As depicted in Fig. 13, 
it is clear from the z point of view that the model is made of two lobes. This algo-
rithm finds the maximum correlation in correspondence of the bigger lobe. Evi-
dently the body is not well approximated. This demonstrate how the irregular shape 
bodies cannot be approximated to a sphere.

3.4  Ellipse Fitting

Lastly, the results obtained with the fitting algorithm are shown in Fig. 14.
The ellipse fitting method, results to be more flexible than the correlation one, in 

fact the maximum error achieved is about 30 pxl. As can be seen in Fig. 14, apart 

Fig. 12  Correlation with Lambertian spheres algorithm applied to the asteroid in position (1, 8, 2). The 
red dot is the estimated centroid while the green × is the real centroid position. From a to c images taken 
from the x, y and z axis, respectively

Fig. 13  Correlation with Lambertian spheres algorithm applied to the asteroid in position (9, 5, 9). The 
red dot is the estimated centroid while the green × is the real centroid position. From a to c images taken 
from the x, y and z axis, respectively
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from Juno, the highest errors are in the irregular bodies’ layer. In Fig.15 there are the 
results obtained with the elongated body Toutatis in position (9, 9, 1).

The model is characterized by a shape that is very different from that of an ellip-
soid. However the fitting algorithm shows good performances obtaining errors up to 
15 pxl in the z perspective.

3.5  Methods Comparison

After the performances of each method have been discussed separately, in this sec-
tion the best performing methods are evaluated over the different shape models. 
Each method is characterized by three error-cubes, along the three axes. To make 
a comparison more realistic, it was decided to have just one error-cube per method. 
Since, one perspective is not more important than the others, a simple arithmetic 
mean of the error-cubes of each technique is made. Eventually, four error-cubes, one 
per method, are obtained.

To understand which is the method that best works on a given shape, the tech-
nique characterized by the minimum centroiding estimation error is chosen. The end 
results is what is called the final-cube, which highlight the expected best performing 

Fig. 14  Ellipse fitting method results. From a to c error-cube of the x,y and z axes is represented

Fig. 15  Ellipse fitting algorithm applied to the asteroid in position (9, 9, 1). The red dot is the estimated 
centroid while the green × is the real centroid’s position. From a to c images taken from the x, y and z 
axis, respectively
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method based on the shape seen from different view-points. For this cube it is pos-
sible to know what is the technique that best performs on a given body. The overall 
final-cube is depicted in Fig. 16, while in Fig. 17 the final-cube has been cut in slices 
so that each layer is individually reported. From the final-cube it is clear that the 
center of brightness method is the most versatile. It allows to get good results for 
every body type.

The intensity weighted centroiding accuracy is slightly worse than the center of 
brightness one. From Figs.  16 and 17 it can be noted that it returns the smallest 
errors for regular elongated bodies, like Toutatis and Itokawa. At the moment there 
is not a precise explanation for this result that could depend on the rendering scenes.

The correlation with Lambertian spheres method allows to obtain excellent 
results for near-spherical bodies, but very poor ones increasing the irregularity level 
of the target. This method is recommended when it is certain that the minor body 
can be approximated to a sphere.

Finally, the ellipse fitting method does not excel for a particular body type, but 
it seems to be the best choice for some specific shapes that span the shape-cube. 
Indeed it has a spread behaviour and it is more flexible with respect to the Lam-
bertian spheres. The minima errors are achieved both for spherical and ellipsoidal 
bodies.

The results achieved were expected and reflect the weaknesses and strengths of 
the analyzed methods discussed in Sect.  2.1. The only peculiarity is given by the 
IWC technique previously discussed.

The wide amount of shapes is of vital importance as they help to investigate the 
trends of the analyzed methods shifting from one shape to the other. If only few 

Fig. 16  The Final-Cube. Each marker represents the best technique for a given shape



1 3

The Journal of the Astronautical Sciences 

bodies were tested it would not be possible to extract patterns from the available 
data, and thus suggest the best performing algorithm for a given shape.

From the analysis of these results it is clear that if the body’s shape to study is 
not priorly known, the CoB method is the best one, both for simplicity and accuracy. 
It can also be used as initial guessed method to navigate the body, and once infor-
mation on the shape are available the spacecraft’s on-board computer can autono-
mously select the best method to use.

4  Conclusions

Four traditional and well known image processing algorithms, namely center of 
brightness, intensity weighted centroiding, least square based ellipse fitting and cor-
relation with Lambertian spheres are implemented in this work and tested over 129 
artificially generated bodies arranged in a cubic structure based on their irregularity 

Fig. 17  Final-Cube cut in nine slices. From layer 1 (a) to layer 9 (i)
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and elongation. Synthetic images in the resolved regime and in a fully lighting con-
dition, are realized to test the performance and robustness of the aforementioned 
techniques. The final-cube is constructed by taking for each body in the cube, the 
technique with the minimum average centroiding estimation error. Finally, there 
is the possibility to tell the mission designer what is the best performing method 
accordingly to the shape of the analyzed body. This selection map could also be inte-
grated on-board the spacecraft so that it can autonomously select the best method 
after the shape is classified.

As a result, a shape space has been defined starting from fifteen well known 
minor bodies, considered as the bases of the space. They have been linearly interpo-
lated in order to get the hyper-cube on which the IP methods are tested. It is impor-
tant to highlight that the shapes considered in this work are not exhaustive at all. 
Indeed, extremely elongated and irregual bodies might exist, which are considered 
as outliers. The outcome is that the correlation with Lambertian spheres algorithm 
is the less versatile, but can achieve the best accuracy when the target body can be 
approximated to a sphere. The ellipse fitting method yields to get good results for 
spherical and ellipsoidal bodies, but it does not excel in any of the categories. The 
intensity weighted centroiding shows that it is the best method when there are elon-
gated bodies without particular irregularities. Lastly, the center of brightness tech-
nique does provide good rough estimates that are computationally cheap, and it is 
the most versatile as small offsets are obtained for all body types.
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