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The approximated analytical approach of Quasi-Static Theory (QST) is widely used in modelling
the optical response of plasmonic nanoparticles. It is well known that its accuracy is remarkable
provided that the particle is much smaller than the wavelength of the interacting radiation and that
the field induced inside the structure is approximately uniform. Here, we investigate the limits of
QST range of validity for gold nanostructures freestanding in air. First, we compare QST predictions
of scattering spectra of nanospheres and cylindrical nanowires of various sizes with the exact results
provided by Mie scattering theory. We observe a non-monotonic behaviour of the error of QST as
a function of the characteristic length of the nanostructures, revealing a non-trivial scaling of its
accuracy with the scatterer size. Second, we study nanowires with elliptical section upon di↵erent
excitation conditions by performing finite element numerical analysis. Comparing simulation results
with QST estimates of the extinction cross-section, we find that QST accuracy is strongly dependent
on the excitation conditions, yielding good results even if the field is highly inhomogeneous inside
the structure.

INTRODUCTION

Plasmonic nanoparticles (NPs) are currently employed
in a vast range of applications, including chemical and bi-
ological sensing [1–4], photocatalysis [5–9], and surface-
enhanced Raman spectroscopy [10, 11]. Plasmonic
nanostructures also represent the building blocks for the
development of unprecedented ultracompact photonic de-
vices, from nanolasers [12], to gradient birefringent mir-
rors [13] and ultrafast optical modulators [14, 15], just to
mention a few (see also Refs. 16–20 for an overview).

Accurate modelling of the optical response of these
structures is essential to the design and fabrication of
e↵ective devices. In this context, classical electromag-
netism is commonly adopted as a suitable theoretical
framework. The numerical solution of Maxwell’s equa-
tions provides detailed predictions on the optical prop-
erties of plasmonic systems. However, electromagnetic
simulations are often computationally demanding. Ex-
act analytical solutions, on the other hand, exist only
for selected geometries of the scatterer; for example, Mie
theory [21] is widely used to model the optical response of
spherical nanoparticles or nanowires with circular cross-
section.

In contrast, the approximated analytical approach of
Quasi-Static Theory (QST) does not require computa-
tional resources and can grant remarkably accurate es-
timates provided that the two following conditions are
satisfied [22]: the particle must be much smaller than
the wavelength of the interacting light; the induced elec-
tromagnetic field must be approximately uniform inside
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the nanostructure. These requirements are believed to
be necessary and su�cient conditions for the QST ap-
proach to be valid. Quantitatively, a smallness parame-
ter x is commonly defined to be proportional to the ratio
between a characteristic size of the scatterer and the in-
cident wavelength. The characteristic size is usually the
maximum distance between two points inside the nanos-
tructure.
The two requirements translate into inequalities in-

volving both the smallness parameter and the ratio m

between the refractive indexes of the metal and the en-
vironment:

x ⌧ 1, (1)

|m|x ⌧ 1. (2)

These inequalities are often used as rules of thumb in
framing the limits of the QST approach, and comparisons
with full-wave numerical results have been reported by
many authors (see, e.g. [23]). Also, QST predictions (es-
pecially in terms of the quality factor, being a universal
function of materials permittivity [24]) have been widely
used as benchmarks for the performance of plasmonic
nanoresonators of di↵erent shapes [25–27].
However, more specific, quantitative assessments of

the general limits stated by Eqs. (1)-(2) have not been
thoroughly performed in literature, with the exception
of a recent study specifically focused on gold and silver
nanospheres [28].
In this paper, we investigate the limits of the range

of QST validity for free-standing Au nanospheres and
nanowires. Our general results can be extended to other
kinds of metallic media such as Ag or Al.
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We first compare quasi-static predictions for the scat-
tering spectra of nanospheres and cylindrical nanowires
with the exact results provided by Mie theory. This anal-
ysis shows that, in a specific spectral region, the relative
error of QST scales non-monotonically with the smallness
parameter.

Second, we perform finite element numerical simula-
tions to study nanowires of elliptical sections upon dif-
ferent electromagnetic excitation conditions, by vary-
ing the polarisation of the incident plane wave. Thus,
we compare the resulting extinction spectra with the
QST estimates. Our results show that QST accuracy
is strongly dependent on the excitation conditions; fur-
thermore, good agreement between simulated and quasi-
static spectra is found even when the field induced inside
the structures is highly inhomogeneous. We argue that
this implies that conditions (1), (2) are only su�cient
for the determination of the accuracy of QST. In fact, a
more proper definition of the smallness parameter should
take into account the excitation conditions, which have
a heavy influence on the reliability of QST.

I. RESULTS AND DISCUSSION

Mie theory provides the exact solution to the prob-
lem of plane wave scattering by a sphere of arbitrary
radius and refractive index [21]. Specifically, scattering
and extinction cross-sections can be written as series of
the so-called Mie scattering coe�cients an, bn [22]:

�sca =
2⇡

k2

1X

n=1

(2n+ 1)
�
|an|2 + |bn|2

�
, (3)

�ext =
2⇡

k2

1X

n=1

(2n+ 1)Re (an + bn) , (4)

with k = nek0 the incident light wave vector propagating
in a homogeneous medium of refractive index ne, k0 = 2⇡

�
being the light wave vector in vacuum. In turn, the scat-
tering coe�cients are defined as functions of the small-
ness parameter x = kr, with r the radius of the sphere,
and of the ratio m = nm/ne between the refractive in-
dexes of the metal and environment, respectively. Scat-
tering and extinction e�ciencies Qsca, Qext are obtained
by normalising the corresponding cross-sections to the ge-
ometrical cross-section of the particle, A = ⇡r

2. Energy
conservation allows to derive the absorption e�ciency as
Qabs = Qext �Qsca.

Mie theory has been extended to other problems with
suitable symmetry, including two-dimensional configura-
tions, and, notably, to infinite wires of circular cross-
section. For plane wave excitation with electric field
orthogonal to the wire axis (the so called in-plane p-
polarisation), the cross-sections read as follows:

�sca =
4

k

"
|c0|2 + 2

1X

n=1

|cn|2
#
, (5)

�ext =
4

k
Re

 
c0 + 2

1X

n=1

cn

!
. (6)

Again, the coe�cients cn are functions of the smallness
parameter x, defined in terms of the cylinder radius, and
of the m ratio.
On the other hand, the approximate analytic approach

of QST consists in reducing the scattering problem of a
plane monochromatic wave impinging on a nanoobject
with small cross-section to an electrostatic problem. The
procedure is well developed for highly symmetric con-
figurations, including nanospheres, nanoellipsoids, cylin-
drical nanowires and elliptical nanowires (see methods
section for the computation of the QST cross-sections of
cylindrical and elliptical nanowires).
This approach implies two fundamental assumptions.

The first is related to the scatterer characteristic size, r:
if it is much smaller than the incident wavelength, the
NP experiences an approximately spatially uniform field.
This translates into the inequality (1) [22].
The second assumption is on the timescale ⌧ of the

variation of the incident wave; indeed, the field can be
considered as quasi-static if the time required for wave
propagation inside the particle is much smaller than ⌧ .
This is assured if n0

mx/ne ⌧ 1, where n0
m is the real part

of the refractive index of the nanoparticle [22].
Usually, a third condition is deemed necessary to the

reliability of the QST approach: the field inside the par-
ticle is required to be approximately uniform, as in the
electrostatic case. This is enforced by the inequality
n
00
mx/ne ⌧ 1, where n

00
m is the imaginary part of the

refractive index of the nanoparticle. Therefore, the con-
straint (2) summarises the conditions on the real and
imaginary part of the refractive index of the NP.
For a sphere of radius r, the QST cross-sections read

[22]:

�
QST
sca =

8

3
⇡r

2
x
4

����
m

2 � 1

m2 + 2

����
2

, (7)

�
QST
ext = 4⇡r2x Im

✓
m

2 � 1

m2 + 2

◆
+ �

QST
sca . (8)

For an infinite circular cylinder of radius r, illuminated
at normal incidence with respect to the cylinder’s axis
and for in-plane polarisation defined as before, the cross-
sections are

�
QST
sca =

⇡
2

2
rx

3

����
m

2 � 1

m2 + 1

����
2

, (9)

�
QST
ext = 2⇡rx Im

✓
m

2 � 1

m2 + 1

◆
+ �

QST
sca . (10)

In the limit x ! 0, |m|x ! 0, the QST cross-sections
(7) – (10) are recovered by Taylor-expanding Mie expres-
sions.
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FIG. 1. Error estimation in QST. (a) Spectrum of the metric of the error estimation in the scattering cross-section ⌘sca,
quantifying the error introduced by the QST approximation when compared to exact results from Mie theory for a 3D spherical
Au NP of radius r (ranging from 10 to 50 nm, refer to panel legend) embedded in a homogeneous environment (air, refractive
index ne = 1). (b), (c) Section of panel (a) at �1 = 450 nm and �2 = 700 nm for di↵erent values of r. (d) Same as (a) for a
cylindrical wire, modelled as a 2D structure with radius r. (e), (f) Section of panel (d) at �1 = 450 nm and �2 = 700 nm for
di↵erent values of r. (g)-(l) Same as (a)-(f), as a function of the smallness parameter x. Note that at a given value of x the
evaluation of ⌘sca for di↵erent values of radius r is performed at di↵erent wavelengths.

In order to quantify the error of QST for a given con-
figuration over a large spectral range, we defined the fol-
lowing metric:

⌘sca =
�sca � �

QST
sca

�
QST
sca

, (11)

determined from Eqs. (3) and (7) for a sphere, Eqs. (5)
and (9) for a cylindrical wire.

We studied Au structures freestanding in air (nm taken
from [29], while ne = 1) with radii ranging from 10 to 50
nm. Results are shown in Fig. 1. The spectra of the
metric ⌘sca reveals a non-trivial scaling with the radius
r. Precisely, ⌘sca grows monotonically with r, (i.e. with
the radius r) (that is, proportional to the smallness pa-
rameter x at a fixed wavelength), in the long-wavelength
range; conversely, for shorter wavelengths, ⌘sca initially
grows with r for small radii, but at a definite value of the
radius r, which is specific for each structure, this trend is
reversed and ⌘sca drops with increasing r, changing sign
and eventually growing again in modulus (refer to panels
(b), (c) and (e), (f) in Fig. 1). QST thus switches from
underestimating to overestimating the scattering cross-
section in the spectral region between 400 and 500 nm.
Such a counterintuitive trend can be further highlighted
when ⌘sca is evaluated as a function of the x parameter,

as shown in Figs. 1g and 1h. Note that for any of the
radii under consideration, ⌘sca does not exhibit a mono-
tonic increase with x, rather it starts increasing, reaches
a peak value and then decreases and changes sign, for
both spherical NPs and nanowires. Figures 1i, 1k and 1j,
1l further detail how the trend of ⌘sca with r is not mono-
tonic even when evaluated at a given value of x (here 0.2
or 0.5).
To gain an insight on these features we analysed the

series in (3) and (5). By Taylor expanding the Mie co-
e�cients around x = 0, |m|x = 0, and considering their
square modulus, one can find higher order corrections to
the leading order term, i.e. to QST. For the sphere, cor-
rections up to the third order can all be found by expand-
ing the a1 coe�cient, which corresponds to the dipolar
coe�cient in the multipolar decomposition of the fields
[30]. The expansion reads

|a1|2 =
4

9

����
m

2 � 1

m2 + 2

����
2

x
6 + (12a)

+
8

15

����
m

2 � 1

m2 + 2

����
2

Re

✓
m

2 � 2

m2 + 2

◆
x
8 + (12b)

� 16

27

����
m

2 � 1

m2 + 2

����
2

Im

✓
m

2 � 1

m2 + 2

◆
x
9 + o(x9).(12c)
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Also for the cylindrical wire, corrections up to the second
order can be found by expanding the c1 term:

|c1|2 =
⇡
2

16

����
m

2 � 1

m2 + 1

����
2

x
4 + (13a)

+
⇡
2

16

����
m

2 � 1

m2 + 1

����
2

Re

✓
m

2 � 1

m2 + 1

◆
x
6 lnx+ (13b)

+ o(x6 lnx). (13c)

FIG. 2. Mie coe�cient expansion and QST error at
resonance. (a) The modulus squared of the leading (dipo-
lar) order a1 of the Mie coe�cients for a Au spherical NP
of radius r = 50 nm (black curve, left hand side of Eq. 12a)
is compared to the its Taylor expansion. Spectra of the first,
i.e. QST, term (blue curve, right hand side of Eq. 12a), second
(red, Eq. 12b) and third (green, Eq. 12c) term are displayed.
Note the short-wavelength regime (highest smallness param-
eter), where the QST term is greater than, i.e. overestimates,
the full Mie dipolar contribution. (b) Modulus squared of
the c1 coe�cient (black curve, left hand side of Eq. 13a) for a
cylindrical wire, modeled as a 2D structure with radius r = 30
nm. First (QST, blue curve, right hand side of Eq. 13a) and
second (red curve, Eq. 13b) terms of the expansion are shown.
(c-d) Error of QST evalutated at the plasmonic resonance for
(c) spherical NPs and for (d) cylindrical wires. The metric
provided by Eq. (11) was employed with �sca and �QST

sca eval-
uated either at their respective peak wavelengths (stars) or
at the same wavelength, corresponding to the QST scattering
peak (dots).

Note that the reliability of the expansion in estimating
the exact Mie coe�cient (and therefore the exact cross-
sections) is limited to the parameter space regions where
x and |m|x are smaller than 1 (for the sphere) or than
1/e (for the cylindrical wire). Such di↵erence stems from
the specific form of the dipolar coe�cient (either a1 or c1,

respectively), which depends on the particular geometry
of the scatterer. As a result, di↵erent structures entail
di↵erent levels of strictness on the conditions on x and
|m|x. If x, |m|x are not within the prescribed limits, it is
not granted that the sum of the first terms on the right
hand side of Eq. (12) and (13) is a good approximation
of the respective quantities on the left hand side.
Moreover, for the parameters here analysed, the only

relevant contribution to the cross-sections comes from
the dipolar coe�cient. Therefore, QST error must arise
from a quantitative failure in predicting the dipole mo-
ment of structures which essentially behave as dipoles.
Consequently, features of the discrepancy between QST
and Mie theory illustrated in Fig. 1 should be retrieved
by examining the full dipolar contribution (either |a1|2
or |c1|2) against the first term in its Taylor expansion,
i.e. the QST term.
In Fig. 2 this comparison is displayed for a sphere with

radius r = 50 nm and a cylindrical wire of radius r = 30
nm. For these radii, |m|x ⇠ 1 over the entire spectrum,
making the expansion unreliable. Indeed, in the short-
wavelength region of the spectrum, the QST term overes-
timates the exact dipolar contribution. This is consistent
with and explains the change of sign in ⌘sca in Fig. 1.
Moreover, note that the mismatch between the spectral
peak of the Mie dipolar term (black trace in Figs. 2a-b)
and that of the QST prediction (blue trace in Figs. 2a-
b) already well captures the characteristic redshift of the
plasmonic resonance with increasing size.
We also evaluated the QST error at the plasmonic res-

onance wavelength. The results are reported in Fig. 2c
and 2d, respectively for spherical NPs and cylindrical
nanowires, as a function of their radius r. Note that ⌘sca
exhibits very di↵erent behaviors for the two geometries:
for spheres, ⌘sca essentially increases with r, even though
not always monotonically (depending on the way the ⌘sca
is evaluated, see caption of Fig. 2), whereas for wires the
error starts increasing, then reaches a peak value and
decreases with a change in sign for larger radii.
Importantly, the accuracy of QST does not only de-

pend on the geometry of the scatterer, but also on the
conditions of interaction with electromagnetic radiation.
Anisotropic structures such as wires with elliptical sec-
tion are among the simplest geometries suitable to inves-
tigate QST limits in relation to excitation conditions. We
thus analysed the optical response of Au elliptical wires
with semi-axis a and b, aligned (with major axis) along x

or y directions, freestanding in air (nm from [29], ne = 1).
Plane wave illumination with in-plane polarisation has
been considered, with the electric field either parallel or
perpendicular to the NP major axis, in order to excite
the Longitudinal or the Transverse Plasmon Resonance
(LPR/TPR), respectively. Numerical results (obtained
via FEM analysis, implemented using the commercial
software COMSOL Multiphysics 5.6) are compared with
the QST predictions.
For the considered geometry, the corresponding QST

cross-sections read as follow (details on formulae here



5

FIG. 3. Numerical and QST extinction e�ciencies for anisotropic wires. (a-d) Comparison between extinction
e�ciency spectra obtained either from numerical FEM simulations (blue curves) or QST analytical formulae (red curves) for a
Au cylindrical wire embedded in a homogeneous dielectric medium (refractive index nm = 1) with radius equal to 5 nm (a), 10
nm (b), 50 nm (c), 100 nm (d) upon excitation of a linearly polarised plane wave with electric field along the y-direction. (e-g)
Same as (b-c) for an elliptical wire with semi-axis along the x-direction fixed and equal to 5 nm, semi-axis along the y-direction
equal to 10 nm (e), 50 nm (f), 100 nm (g). (h-j) Same as (a-c) for an elliptical wire with semi-axis along the y-direction fixed
and equal to 5 nm, semi-axis along the x-direction equal to 10 nm (h), 50 nm (i), 100 nm (j). Note that (a) shows the case for
a degenerate elliptical wire of equal semi-axes. (k-p) Same as (e-j) for a dielectric wire consisting of fused-silica (permittivity
2.10).

below are provided in the Methods):

�
QST
sca =

k
3

8
⇡
2
a
2
b
2(a+ b)2

����
m

2 � 1

am2 + b

����
2

, (14)

�
QST
ext = k⇡ab(a+ b) Im

✓
m

2 � 1

am2 + b

◆
+ �

QST
sca . (15)

E�ciencies are then defined as the ratio between cross-
sections and the cross-sectional area of the structure. The
smallness parameter x is commonly defined as for the
cylindrical wire, substituting r with the major semi-axis
of the elliptical section. The results for wires with vary-
ing aspect ratios are shown in Fig. 3. For comparison,

spectra obtained for cylindrical wires in the same range
of the smallness parameter (i.e. with radius equal to the
ellipse major semi-axis) are displayed, starting from the
degenerate case a = b (Fig. 3a).

A first comparison between cylindrical and elliptical
wires in the LPR configuration (panels a – g in Fig. 3)
shows that structures with the same smallness param-
eter have remarkably di↵erent features with respect to
the QST accuracy: QST fails much sooner (that is, at
lower values of x) for the elliptical LPR configuration
than for the corresponding cylindrical case. Specifically,
QST is not able to quantitatively capture the scaling of
the resonance spectral position with the aspect ratio of
the structure, which is known to be caused by depolar-
ization e↵ects [31], and consistently overestimates the ex-
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tinction e�ciency. Moreover, as illustrated by panels e –
j in Fig. 3, elliptical wires with the same smallness pa-
rameter, but orthogonal orientations with respect to the
polarisation of the incident field, exhibit very di↵erent
behaviour. Contrary to the LPR (panels e – g in Fig. 3),
under TPR excitation (panels h – j in Fig. 3), the e�-
ciency predicted by QST remains remarkably accurate as
the major semi-axis is increased from 10 to 100 nm. It
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FIG. 4. Di↵raction pattern from anisotropic wires.
Far-field scattering intensity pattern evaluated via full-wave
simulations at the scattering resonance �sca of a Au elliptical
wire in air with semi-axis along x equal to 5 nm, semi-axis
along y equal either to 50 nm (red curve, �sca = 640 nm)
or to 100 nm (black curve, �sca = 840 nm). Quantities are
normalised to the intensity scattered at 0� for the geometry
with the highest aspect ratio marked by black diamond on
the horizontal axis. (b) Same as (a) for an elliptical wire with
semi-axis along y fixed and equal to 5 nm, semi-axis along x
equal either to 50 nm (red curve) or to 100 nm (black). The
scattering resonance spectral position is the same for the two
structures (�sca = 510 nm).

is interesting to compare the results of Figs. 3e-3g and
Figs. 3h-3j with those retrieved for dielectric nanowires
(fused silica), under same excitation conditions and size
of structures. The results are reported in Figs. 3k-3m and
3n-3p. Note that in this case, where the structure can-
not exhibit any resonant feature due to a relatively low
optical density (preventing the onset of Mie resonances),
the accuracy of QST prediction again depends on the
orientation of cylindrical cross-section with respect to in-
coming wave. However, the situation is now reversed
compared to the case of plasmonic nanostructures: the
QST starts departing from full-wave calculations when
the major axis is parallel to the wave-vector and not to
the electric field of the background wave. The peculiar
trend observed for the plasmonic configuration was fur-
ther investigated by examining the angular patterns of
scattered intensity at resonance in the LPR vs TPR cases
for the two wires of highest aspect ratio, with minor semi-
axis equal to 5 nm and major semi-axis equal to 50 and

100 nm, respectively. Results are shown in Fig. 4.

Analysis of the far-field intensity patterns confirms
the physical intuition that radiation in the LPR case
is mostly of dipolar nature (Fig. 4a). Viceversa, in the
TPR configuration, forward-scattering is enhanced with
respect to back-scattering (Fig. 4b), and the resulting an-
gular spectrum proves the relevance of other multipolar
contributions to the scattered intensity, which indicates
the onset of retardation e↵ects. Despite this fact, QST
remains accurate for the TPR configuration up to larger
values of the smallness parameter, meaning that, inci-
dentally, retardation e↵ects have very limited impact on
the estimation of the total scattered power.

Thus, it is confirmed that the error of the QST ap-
proximation resides in its failure to accurately predict
the induced dipolar moment. The commonly accepted
definition of the smallness parameter does not capture
this feature, which depends on the polarisation of the in-
cident light. This concept should be reframed: the small-
ness parameter can’t be viewed as an a priori property
of the scatterer, instead it should be defined according
to the excitation conditions. For plasmonic nanoparti-
cles, this can be done by replacing the characteristic size
(i.e. the maximum distance between two points inside
the nanostructure) with the size of the projection of the
nanoobject along the direction of the background field.

Another misconception about QST is related to the ho-
mogeneity of the phase and modulus of the electric field
across the structure, which is commonly considered to be
a key aspect in QST applicability limits, as summarised
in the condition of Eq. (2). To investigate this issue, we
examined the pattern of the norm and direction of the
electric field inside two-dimensional nanostructures for
the following pivotal configurations: a cylindrical wire
with r = 5 nm; an elliptical wire with minor semi-axis
equal to 5 nm and major semi-axis equal to 100 nm, both
in the LPR and the TPR excitation conditions. The re-
sults are displayed in Fig. 5. The field inside the small
cylindrical wire has an almost constant phase through-
out the structure, and can be considered homogeneous
in modulus up to a 10% variation between the left and
right hand of the scatterer (Fig. 5a). Here QST predic-
tions are in excellent agreement with full-wave numerical
calculations. However, the field is comparably uniform
also in elliptic wire for the LPR case (Fig. 5b), where
viceversa QST is no longer reliable, as discussed above.
Most interestingly, the elliptic wire in the TPR configu-
ration, that have been demonstrated to be well described
by QST calculations, exhibits significant spatial inhomo-
geneity of the resonant field, undergoing 180� phase shift
from the left to the right side of the structure (Fig. 5c).
On the basis of these results, it can be stated that the
condition on the uniformity of the fields inside plasmonic
nanoscatterers is not necessary to guarantee that QST
approximation holds its reliability.
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FIG. 5. Electric field spatial distribution. (a) 2D map of the spatial distribution of the electric field (time average) norm
across a Au cylindrical wire in air of radius r = 5 nm evaluated at resonance (� = 492 nm). Red arrows show the instantaneous
polarisation direction of the electric field. (b) Same as (a) for an elliptical wire with semi-axis along the x-direction fixed and
equal to 5 nm, semi-axis along the y-direction equal to 100 nm, evaluated at the LPR (� = 845 nm). (c) Same as (b) for an
elliptical wire with semi-axis along the y-direction fixed and equal to 5 nm, semi-axis along the x-direction equal to 100 nm,
evaluated at the TPR (� = 492 nm). Note the change in the phase of the electric field across the nano-ellipse.

II. METHODS

A. Mie theory implementation

To derive Mie expressions for the scattering cross-
sections in Eqs.(3),(5), we developed MATLAB code im-
plementing the following formulas for the Mie coe�cients
[22]:

an =
m n(mx) 0

n(x)�  n(x) 0
n(mx)

m n(mx)⇠0n(x)� ⇠n(x) 0
n(mx)

, (16)

bn =
 n(mx) 0

n(x)�m n(x) 0
n(mx)

 n(mx)⇠0n(x)�m⇠n(x) 0
n(mx)

, (17)

cn =
mJn(mx)J 0

n(x)� Jn(x)J 0
n(mx)

mJn(mx)H 0(1)
n (x)�H

(1)
n (x)J 0

n(mx)
. (18)

Here m is the ratio of the metal and environment re-
fractive indexes,  n(x) = xjn(x) and ⇠n(x) = xh

(1)
n (x)

are the Riccati-Bessel functions, and Jn and H
(1)
n are the

Bessel and Hankel functions of the first kind, respectively.

B. QST for plasmonic nanowires with elliptical
cross-section

We derived the polarizability of an infinite wire with el-
liptical cross-section by considering a standard 2D carte-
sian frame of reference, centered on the elliptical section
of the nanowire, with major semi-axis a along the hori-
zontal (x) axis and minor semi-axis b, excited by a plane
wave propagating along x and linearly polarised along
the y-axis.

The electromagnetic problem can be formulated in el-
liptic coordinates (µ, ⌫), which are linked to the cartesian
-ones (x, y) via the following relations:

x = f coshµ cos ⌫, (19)

y = f sinhµ sin ⌫. (20)

Here f is the x-coordinate of one of the foci, and is defined
such that f

2 = a
2 � b

2; µ ranges from 0 to 1 and ⌫

from 0 to 2⇡. Lines of constant µ are concentric ellipses,
lines of constant ⌫ are branches of hyperbola with foci
on the horizontal axis. The edge of the elliptical section
is described by the equation µ = tanh�1(b/a) =: µ̄.
QST approach consists in solving the problem de-

scribed by the Laplace equation for the electrostatic po-
tential �, i.e. r2� = 0. Any solution of this equation can
be written as a linear combination of elliptical harmonics
{�n}n=0,1,... defined as follows:

�n =

8
<

:

A+Bµ if n = 0,
(An sinhnµ+Bn coshnµ) sinn⌫+

+ (A0
n sinhnµ+B

0
n coshnµ) cosn⌫

otherwise.

(21)
The background potential due to the incident field Eb =
E0ûy can be written as �b = �Ebf sinhµ sin ⌫. Then
the total potential is � = �b +�s, with �s the scattered
potential. For simplicity we seek for the fundamental
solution with n = 1, so that the total potential outside
and inside the scatterer can be written, respectively, as:

�ext= �b + Ce
�µ sin ⌫, (22a)

�int= D sinhµ sin ⌫. (22b)

Note that according to Eq. (22a), �int corresponds to a
uniform electric field inside the scatterer. In above equa-
tions, C and D are constants to be determined through
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the boundary conditions at the surface of the scatterer,
i.e. continuity of @�/@⌫ and of "@�/@µ in µ = µ̄. There-
fore, the scattered potential is:

�s = Ce
�µ sin ⌫ =

"m � "e

"ma+ "eb

ab

a� b
fEbe

�µ sin ⌫. (23)

At large distance from the origin, ⌫ corresponds to the
angular ✓ coordinate, and r ⇠ f

2 e
µ. As a result, in this

regime �s can be written as

�s =
r!1

p sin ✓

2⇡"e"0r
, (24)

where p is the modulus of the induced dipole moment,
expressed as

p = ⇡"0ab
"m � "e

"ma+ "eb
(a+ b)"eEb. (25)

Thus, the elliptic y-polarizability ↵y can be defined by
setting p = ↵y"eEb.

Having defined the absorption cross-section �abs as the
ratio between the absorbed power and the intensity of the
incident wave, it is easy to show, from Poynting theorem
[30], that

�
QST
abs =

k

"0
Im (↵y) . (26)

For the elliptical case, this expression corresponds to the
first term on the right hand side of Eq. (15). On the other
hand, the cylindrical wire expression can be evaluated as
the degenerate case, setting a = b = r. In this way, the
first term on the right hand side of Eq. (10) is recovered.

Since QST is at leading order an electrostatic theory,
it is necessary to account for higher order corrections
in order to compute the scattering cross-section. To
perform this task, it is possible to start from the de-
scription of a generic system of localized charges and
currents varying sinusoidally in time with the same fre-
quency of the incident plane wave, ⇢(r, t) = ⇢(r)e�i!t

and j(r, t) = j(r)e�i!t. The 2D vector potential in the
Lorentz gauge [30] can be recast as

A(r, t) = i
µ0

4
e
�i!t

Z
d2r0j(r0)H(1)

0 (k|r� r
0|), (27)

where H
(1)
0 is the 0-th order Hankel function of the first

kind and k = !ne/c = 2⇡ne/�. In the radiation zone,
where r is such that d ⌧ �⌧ r (with d the characteristic
dimension of the oscillating source), the Hankel function
can be expanded, and, noting that continuity equation
implies �i!

R
d2r0⇢(r0)r0 = �i!p, we get:

A(r, t) ' µ0e
�i⇡4

4

r
2

⇡
e
�i!t e

ikr

p
kr
!p. (28)

The far field expression of the magnetic and electric scat-
tered fields are then retrieved as:

Hs = Hûz =
1

µ0
@xAûz, (29a)

Es =
i

k

r
µ0

"0"e
(@yHûx � @xHûy) . (29b)

Then, the total scattered power is computed as:

Psca =

Z 2⇡

0
S · ûr rd✓ =

µ0

16
!
3|p|2, (30)

with S = (1/2)Re (Es ⇥H
⇤
s) the Poynting vector of

the scattered field. The scattering cross-section is ob-
tained by dividing Psca by the incident intensity I0 =
1
2"0nec|Eb|2 and using Eq. (25) to make |p|2 explicit:

�
QST
sca =

k
3

8"20
|↵y|2. (31)

This equation corresponds to Eq. (14), and its sum with
Eq. (26) gives Eq. (15). Again, the cylindrical wire case
can be recovered as the degenerate case.

C. Full-wave numerical analysis

The full-vectorial 2D scattering problem upon excita-
tion with a monochromatic plane wave having in-plane
polarisation was implemented for the elliptical and cylin-
drical nanowires shown in Fig. 3.
The considered domain was a circle of radius rext = 900

nm with perfectly matched layers of 500 nm thickness.
We performed finite element methods analysis to solve
for the scattered electric and magnetic fields, employing
a commercial software, Comsol Multiphysics 5.6. The ab-
sorption cross-section is computed, according to Poynting
theorem, as follows [30]:

�abs =
1

2I0

Z

Au
Re (j ·E⇤) dA, (32)

where I0 is the incident intensity, j is the current density,
E is the total electric field (i.e. sum of the background and
scattered fields) and the integration

R
Au dA is performed

on the Au nanowire surface. Notice that, due to the fact
that our model is 2D, the cross-section is a length, not
an area.
The formula for the scattering cross-section is instead

�sca =
1

2I0

Z

�
Re (Es ⇥H

⇤
s) · ûrdl (33)

where Es andHs are the scattered fields, � is a circle sur-
rounding the nanowire, and ûr is the outward-pointing
vector in the radial direction, which is normal to the cir-
cle itself.
The extinction cross-section is then derived as the sum

�ext = �abs + �sca.
Far-field computations from near-fields have also been

performed in Comsol (implementing to the Stratton-Chu
formula [22]) to extract the radiation patterns shown in
Fig. 4.
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CONCLUSIONS

We investigated the limits of QST by studying gold
nanostructures freestanding in air.

In the first part of this work, we computed scatter-
ing spectra of spherical nanoparticles and cylindrical
nanowires of various radii using Mie scattering theory
and compared the results with the QST predictions. We
observed a non-trivial, non-monotonic behaviour of ⌘sca
as a function of the smallness parameter at short wave-
lengths. In order to investigate this trend, we compared
the dipolar contribution to the scattering cross-section
from Mie expansion with its leading order, correspond-
ing to the QST term. We find that the non-monotonic
trend of ⌘sca can be ascribed to the specific form of the
Mie dipolar coe�cient.

From a physical point of view, these facts can be inter-
preted as follows: QST fails quantitatively in estimat-
ing the dipole moment of the nanostructures as they
grow in size, even when the scatterers are still behav-
ing as dipoles. Furthermore, the conditions x ⌧ 1 and
|mx| ⌧ 1 are only su�cient conditions for the accuracy
of QST in predicting the optical response of a system;
even more, 3D geometries and 2D geometries with circu-
lar cross-sections having the same radius entail di↵erent
levels of strictness in these conditions.

In the second part of this work, we concentrated on
nanowires with elliptical cross-section. We performed
numerical simulations using finite elements methods and
compared the extracted extinction spectra with the QST
prediction, again for a broad range of sizes and two dif-
ferent polarisation conditions, exciting in turn TPR and
LPR in the same structures. Nanowires revealed opposite
behaviour with respect to QST accuracy upon excitation
of TPR versus LPR. In TPR configuration, indeed, QST
holds its validity for much larger values of the smallness
parameter x compared to the LPR case.

Angular patterns of the scattered intensity confirm
that nanowires with relatively high values of x still radi-
ate as electric dipoles in the LPR configuration, whereas
in the TPR case other multipolar contributions become
relevant, enhancing forward-scattering with respect to
back-scattering at resonance. Therefore, the goodness
of QST predictions in the TPR vs LPR case confirms

that the error of this approximation resides in the dis-
crepancy between the predicted (static) and the true in-
duced dipolar moment, which is due to retardation ef-
fects, completely disregarded in the quasi-static regime.
Moreover, in the TPR configuration, the reliability of
QST is not a↵ected by the non-uniformity of the field
inside the nanowire. For example, QST predictions are
still fairly accurate in the extreme case, corresponding
to a major semi-axis of 100 nm, where the field under-
goes a 180� phase shift from one side of the structure
to the other. Indeed, uniformity of phase and modulus
of the electric field is required to exactly reproduce the
configuration of the quasi-static field; it is not needed,
on the other hand, to grant accuracy in the computation
of integral properties such as the extinction e�ciency of
the scatterer. This dispels the misconception that a nec-
essary condition for the validity of QST approximation
is the uniformity of the field inside the structure, when
dealing with calculations of cross sections.
Interestingly, a detailed comparison with dielectric

nanocylinders indicate that the complex scenario above
detailed is peculiar to plasmonic configurations. In this
case, the characteristic length to be taken into account
when considering QST reliability is the one which is par-
allel to the polarization of incident radiation, and the
smallness parameter should be defined accordingly. This
provides a clear-cut support to the general idea that in-
teraction of light with plasmonic nanoparticles is largely
defined by the polarisation of light.
Finally, the generality of the assumptions under which

these results have been obtained, entails that these con-
clusions can be easily extended to other plasmonic sys-
tems such as Ag or Al nanospheres and nanowires.
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