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Abstract— In this paper, a position-based visual-servoing
control approach is introduced for a robotic camera holder
to improve ergonomics and reduce mental stress during brain
surgery. The visual tracking system controls and moves the
robotic camera holder by following a selected surgical in-
strument without the need for artificial markers. The system
was validated using a 7 Degree-of-Freedoms (DoFs) redundant
robotic manipulator with an eye-in-hand stereo camera con-
figuration and compared with conventional control methods
using NASA TLX survey and four objective metrics, including
execution time, time out of field of view (FoV), target score,
and path length. Experimental results demonstrate that the
proposed system can reduce the surgeon’s workload during
brain surgery-related task execution, improve ergonomics and
achieve higher performance than traditional control methods.

I. INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) are crit-
ical issues among neurosurgeons, affecting their life quality
and career length [1]. These disorders are mainly caused by
non-neutral positions during surgical operations, especially
when using microscopes and keeping their eyes bound to
the oculars. The introduction of exoscopes allows surgeons
to maintain a neutral, upright spinal position, leading to
better ergonomics [2]. Generally, an exoscope system utilize
a scope placed outside the body cavity and projects high-
resolution view of the surgical field onto a two-dimensional
(2D) or three-dimensional (3D) monitor. This provides the
surgeon with improved ergonomics, a greater comfort rate,
and less fatigue, especially for long time surgical operational
procedures [3].

Although exoscope systems like VITOM-3D and ORB-
EYE have shown comparable results to conventional micro-
scopes [4], they suffer from limitations due to manual ad-
justments. Manual repositioning interrupts surgery, leading to
longer operation times and reduced efficiency [5]. Moreover,
switching between tasks increases cognitive load and error
likelihood for neurosurgeons [6].

To deal with these issues, several models attempt to
overcome the limitation by incorporating a foot control pedal,
but this difficult-to-manage control strategy add complexity,
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increasing the surgeon’s cognitive load [5]. Meanwhile, the
inconvenience of repositioning can detract from the benefits
of using the exoscope in the operating room, which un-
derscores the importance of hands-free camera movement.
Therefore, how to achieve hands-free control of the exoscope
system to allow the neurosurgeon to perform uninterrupted
bimanual surgery is a critical issue.

A. Related Work

In recent years, robot-assisted autonomous navigation
techniques have been integrated into brain surgery appli-
cations, offering superior spatial positioning, dexterity, and
non-fatigability. Various robotic camera control strategies,
including voice, joysticks, and gaze tracking-based control,
have been implemented [7]. Although the level of autonomy
(LoA) of robotic exoscope systems has improved, there
remains a steep learning curve for surgeons. To further
reduce the surgeon’s workload, minimizing the need for
direct intervention in camera control (LoA 2 [8]) is desirable.

Modus V (Synaptive Medical, Toronto, Canada) developed
a hands-free robotic camera system using fiducial markers
attached to the tracked surgical instruments [9]. But this
method has maneuverability limitations and may require
external tracking systems. Marker-based visual-servoing us-
ing ArUco codes has been proposed by [10] for da Vinci
endoscope movement. Instrument detection via Aruco codes
may be unreliable in real scenarios with blood, smoke, or
fluid present, and markers occlusion can cause interruptions
during brain surgery [11].

Instrument localization has been investigated with various
techniques, including robot kinematics-based [12][13] and
image-based tracking [14]. Markerless approach provides a
fast and accurate reconstruction of the surgical instrument’s
3D position from the intra-operative images and can be
integrated into the robotic control framework [15]. This ap-
proach has been applied to various camera systems, ensuring
smooth and controlled movements [16][17][18]. Overall, the
markerless-based visual-servoing approach holds great po-
tential for enhancing brain surgery procedures by eliminating
the need for external sensors or additional markers.

B. Contributions

This paper presents a robot-assisted autonomous exoscope
to reduce the workload of the surgeon during brain surgery.
The main contributions of this work are:

• A novel robot-assisted autonomous exoscope system



that employs markerless visual-servoing to reduce work-
load during brain surgery.

• Comprehensive experiments designed to compare the
system’s performance with traditional manual and foot
remote control methods.

• User study and perceived cognitive workload when
using four different exoscope system control modalities
in a simulated brain surgery task are explored.

The remainder of this paper is organized as follows. Section
II describes materials and methods of the proposed sys-
tem. Section III depicts the experimental setup for system
characterisation and system usability validation. Afterwards,
experimental results are illustrated and discussed in Section
IV. Finally, conclusions are reported in Section V.

II. MATERIALS AND METHODS

In this section, the markerless visual-servoing and robot-
assisted system for autonomous exoscope is proposed. Sec-
tion II.A. presents the instrument detection and localisation
method. Section II.B. describes the robot position and orien-
tation control strategies. Fig. 1 illustrates the generic diagram
of the overall system.

Fig. 1. Architecture of the proposed system. Firstly, image acquired by the
camera during brain surgery is send to a CNN which detects the surgical
tool. Then, the 3D position of the surgical tool is extracted and feed to a
visual-servoing-based robotic controller for autonomous navigation.

A. Surgical Tool Detection

A pre-trained CNN YoloV5 [19] was employed to detect
the target in the proposed system. Fine-tuning was conducted
to identify a specific surgical instrument. The CNN received
downsampled images of size 640x640 and provided the
position of the instrument’s tip through a bounding box and
prediction confidence. The center of the bounding box was
considered to be the position of the instrument, (xR,yR).
Only the right images from the stereo camera were used
for inference and epipolar geometry was used to determine
the position of the instrument in the left image [20]. The
fundamental matrix, F , was used to find the epipolar line,
l
′
= Fx

′
associated with the point, x

′
, in the left image.

To locate the corresponding point, a sliding window of the
same size as the bounding box was moved along the epipolar
line until achieving maximum cross-correlation, as shown in
Fig. 2. After detecting the instrument’s 2D image coordinates
in both images, the 3D position of the tip was computed
by triangulation with respect to the right camera reference
frame, PC

tool.

Fig. 2. The right camera image was fed into the neural network which
predicted the position of the instrument,(xR,yR). The epipolar line l

′

(red line) was then found and a window was slid along it to find the
corresponding point in the left image,(xL,yL).

B. Robot Control System Design

The coordinate transformations between robot, camera,
and surgical instrument are illustrated in Fig. 3.

Fig. 3. Frames of interest. TB
EE , transformation between the robot base

{B} and the robot end effector {EE}, TEE
C , position of the camera {C}

relative to {EE}, used to determine the position of the camera in {B},
TB

C . PC
tool and P

Cdes
tool , actual and desired position of the tracked object

in the camera space, respectively. PB
tool, position of the tool in the robot’s

base reference frame.

In this work, a position-based visual servoing (PBVS)
control architecture was exploited. Since surgical exoscope
movements can be divided into translational and rotational,
we employed two control strategies to control the 6-DoFs of
the robot end-effector(EE) in Cartesian space. The first strat-
egy controlled the position of the EE, while the orientation
remained fixed. On the contrary, the second controlled the
orientation while the position remained fixed.

1) Position Control: position control error was given as:

epos = PB
Cdes

− PB
C (1)

where PB
C = PC

EE∗P
EE
C is the actual position of the camera

and PB
Cdes

is the desired position of the camera in {B}.
Starting from the target position, the desired position of the
camera could be obtained as:

PB
Cdes

= PB
tool ∗ (P

Cdes

tool )
−1

(2)

where PCdes

tool =
[
0 0 d 1

]
as the goal to keep the

instrument near the center of the camera image with a
distance d. This error, epos, was then fed into a Cartesian
PD (Proportional Derivative) controller which calculates the
desired joint velocities:

q̇d = J+(q)(kpepos + kdėpos) (3)



where kp and kd are the controller gains found empirically
and J+(q) is the pseudoinverse of the Jacobian matrix.

2) Orientation Control: in orientation control, the posi-
tion of the target object, PB

tool, was used to compute the
desired orientation of the EE, which rotated around a fixed
point, P t, located in the middle of the tool [21] in Fig. 4.

Fig. 4. Position constraint representation. The robot rotates around P t by
an angle θ calculated as the angle between the initial position PB

toolinit

and the desired position PB
tool.

First, the rotation angle between the initial tool direction
û = PB

toolinit
− P t and the desired tool direction ûd =

PB
tool − P t was defined as:

θ = atan−1 ||ûd × û||
ûd ∗ û

(4)

The vector describing the rotation from û to ûd in Fig. 4
was computed as:

u =
ûd × û

||ûd × û||
(5)

Finally, the desired orientation was calculated as:

RB
Cdes

= (I+Λsin(θ) + 2Λ2sin2(
θ

2
))RB

C (6)

where Λ is the rotation matrix given by u and RB
C is the

actual orientation of the EE computed from the kinematic
chain of the robot. From RB

Cdes
, the orientation error was

computed using quaternion notation as:

erot = qrotC ∗ qrot
−1
Cdes

(7)

where qrotC and qrot
−1
Cdes

are the current and desired quater-
nions. This error, erot was then sent to the inverse kinematics
controller to calculate desired joint velocities in Eq.(3).

III. EXPERIMENTAL SETUP

To simulate the exoscope system and validate the proposed
autonomous framework, a 7-DoFs redundant robotic manip-
ulator (LWR 4+ lightweight robot, KUKA, Germany) with
an eye-in-hand stereo camera configuration (JVC GS-TD1
Full HD 3D Camcorder) were implemented.

A. Surgical Instrument Detection

A total of 5900 images were involved for constructing the
training dataset, 4100 of which were manually recorded and
annotated, while the others were extracted from the 2017
EndoVis challenge [22]. Approximately 90% of the dataset
was used for training, with the remaining 10% was used
for validation testing. The model was trained on a 40GB

GPU (Nvidia A100) for 100 epochs with a batch size of 16.
The learning rate was set to 0.01 based on the results from
the Stochastic Gradient Descent (SGD) network’s optimizer.
An intersection over union (IoU) ≥ 45 %, representing
how much the predicted bounding box overlapped with the
ground truth, was considered as a true positive (TP). An
IoU value below this threshold represented a false positive
(FP). The accuracy of the detection was assessed with the
average precision (AP), determined by calculating the area
under the precision-recall curve p(r) : AP =

∫ 1

0
p(r). A

higher value for the area under the curve indicates that
the classifier is providing accurate results with both high
recall and high precision. As for the detection time, we
considered the total amount of time for the model to detect
and estimate the position of the target object. Moreover,
since the movements being analysed are relatively small,
the inference was performed every two frames providing a
reasonable compromise between accuracy and time.

B. Surgical Instrument Tracking

The performance of the visual control was investigated
as a function of the velocity of the target, i.e., the surgical
instrument. To get a realistic estimate of the speed of
the instrument in neurosurgery, the velocity was extracted
from the neurosurgeon’s demonstrations. The neurosurgeon
was asked to move the surgical instrument along a 7 cm
circular path at two different speeds, one slow and one fast,
corresponding to the typical speed used in brain surgery.
Three repetitions were recorded for each speed. The velocity
was extracted by tracking the position of the instrument over
time, and the average value of the repetitions was taken as
the reference value, which turned out to be 0.02 m/s for the
slow velocity and 0.048 m/s for the fast movement.

The position error, Epos defined as the error between the
camera and the target, was used to quantify the performance
of the tracking module for the position controller:

Epos = ||PB
C − PB

tool|| (8)

The tracking error tolerance was set as 0.005m. As for the
orientation controller, the orientation error was considered to
be the distance between the two sets of Euler angles:

Eor = d(ϕCdes
,ϕC) (9)

where ϕCdes
and ϕC denote respectively the desired and the

actual Euler angles of the camera obtained from RB
Cdes

and
RB

C and d denotes the normalised difference between the
two angles so that 0 ≤ d ≤ π:

d(a, b) = min{|a− b|, 2π − |a− b|} (10)

C. Wire Chaser Task

The proposed system was tested on the ”wire chaser”
task. The task requires precise instrument control and hand-
eye coordination, critical skills for performing neurosurgical
procedures. Our hypothesis was that the use of the proposed
autonomous camera system could lead to improved perfor-
mance and reduced cognitive load compared to traditional



Fig. 5. Overall experimental setup. Left, the task scene: users perform the task while viewing images from the exoscope on an external monitor. A second
camera was added to give the user a sense of depth. Right, the task description: users have to grasp the ring with the surgical instrument at a start point
(A), move it along the wire (B) and (C) and return to the start position(D).

methods, as a good visualization of the scene is crucial to
the task. During the experiment, participants were instructed
to move a ring (ϕ = 14 mm) along a wire (23.5 cm long)
placed on a phantom (Level of Clinical Realism - LoCR 1
[23]), using a surgical instrument. The participants performed
the task while observing the scene through an external moni-
tor that displayed the image stream. Additionally, an external
camera and monitor were set up to provide the participants
with depth information. Fig. 5 shows the overall experimental
setup. The task was performed with four different modalities
and listed as follows:

1) Autonomous Movement - Translation AMT : the sys-
tem moved autonomously to keep the instrument in the
center of FoV. The activation and deactivation of the
motion were done by pressing a foot pedal.

2) Manual Movement MMT : the system was moved
manually. The user had to put down the instrument,
move the robotic holder and pick it up again to
continue the task.

3) Autonomous Movement - Rotation AMR: the system
rotated autonomously along a fixed point to keep the
instrument in the FoV. The activation and deactivation
of the motion were done by pressing a foot pedal.

4) Foot-remote Movement FMR: the user rotated the
system using a foot joystick.

where AMT and MMT refer to the position control strategy
and were compared together as well as AMR and FMR

that account for the orientation control. 10 non-medical
participants were included in the user study. All subjects gave
their informed consent. Three repetitions were performed
for each modality. Both quantitative and qualitative analyses
were conducted to assess users’ task load. To determine
the measurement tools, the relationship between workload,
procedure duration, and performance was considered [25].
Therefore, the following objective metrics were analysed:

• Execution Time [s]: The duration from grasping the ring
to placing it back in its original location.

• Time out FoV [s]: Total time the instrument was out of
camera’s view, and therefore not visible to the user.

• Target Scoring: Penalty of -1 assigned when the user

dropped the ring; 0 otherwise.
• Path Length [m]: Sum of distances covered by

the instrument between each sampling frame:∑length(x)
i=2 ||Ptool(i)− Ptool(i− 1)||

where P tool is the position of the instrument. Finally, the
workload perceived during the task was assessed using
NASA-TLX [26] survey. Users were asked to rank on a scale
from 0 to 100 the mental, physical, and temporal demand,
performance, effort, and frustration for each modality.

IV. RESULTS & DISCUSSION

A. Surgical Instrument Detection Results

Experimental results show that the AP of the instrument
detection model achieves 99.3 % for the chosen confidence
threshold, comparable to the results reported in the liter-
ature [19]. Besides, the average detection time per frame
is 0.066 ± 0.01 s resulting in a processing speed of 15
Hz. Furthermore, a compromise strategy was found by
making inferences every 2 frames. This strategy balances
detection accuracy and speed, avoiding unnecessary updates
and reducing computational loads. As a result, the system
can operate in real-time, capturing critical information at a
processing speed of 30 Hz.

B. Surgical Instrument Tracking Results

Both position and orientation tracking errors were calcu-
lated to evaluate the performance of the proposed control
strategy. Mean errors and standard deviations for all three
repetitions with different movement speeds are reported in
Table I. The mean position and orientation error remains

TABLE I
POSITION AND ORIENTATION ERROR

Position Error Epos[cm] Orientation Error Eor[deg]
Rep Fast Slow Fast Slow

1 2.31±1.71 1.45±0.71 9.55±9.02 6.34±5.76
2 2.48±0.74 1.47±0.56 9.9±7.39 8.13±6.18
3 2.51±1.38 1.57±0.62 9.34±7.75 8.12±6.11

relatively constant for each repetition under different speed
conditions (fast and slow), proving the repeatability and



robustness of the system. The reported tracking errors are
mainly caused by the response speed of the robot controller,
the setting of error tolerance (0.5 cm), and the surgical
tool detection time cost. The maximum position error for
slow and fast movement in all 3 repetitions are 2.51± 1.38
cm/s and 1.57±0.62 cm/s. Considering the surgeon demon-
strated surgical instrument movement velocity with 4.8 cm/s
and 2 cm/s for these two speeds level (Section III.B.),
the maximum position error may cause a time delay with
only 0.23-0.81 s and 0.47-1.09 s, respectively. Moreover,
compared to the time consumed for manually adjusting the
exoscope system (usually several seconds), the time delay of
the proposed robot-assisted autonomous exoscope system is
negligible, highlighting its efficiency.

C. Wire Chaser Task Results

The Wilcox signed-rank test was adopted to analyse the
performance metrics (Section III.C) of the subjects with
statistical significance set at p < 0.05.

For the execution time, a significant difference was found
among the three repetitions when comparing the camera
control modalities, AMT , MMT and AMR, FMR, as
shown in Fig. 6. A mean value of 46.97 ± 14.98 s and

Fig. 6. Execution time for the three repetitions and the mean total execution
time. Top: comparison between AMT and MMT ; Bottom: comparison
between AMR and FMR. ( ∗, p < 0.05; ∗∗, p < 0.01; ∗∗∗, p < 0.001)

98.62 ± 18.18 s of the total execution time was observed
for the autonomous and manual modality, respectively. For
the autonomous orientation controller and the foot remote
control a mean value of 53.47± 18.28 s and 93.10± 19.82
s was found respectively. The shorter execution time in
autonomous modes compared to manual and foot-operated
modes is due to users focusing only on the main task while
the robotic manipulator handles camera repositioning. Since
a long operation time is associated with a high workload,
the ability to shorten task duration leads to a lower mental
workload [27]. The time out FoV resulted significantly lower
(p-value < 0.01) in the autonomous modalities with a mean
value of 12.43 ± 22.83 s and 79.30 ± 138.28 s for AMT

and MMT and 31.32± 57.14 s and 121.15± 131.92 s for
AMR and FMR respectively. Again, the results were due

to perform a dual task when the manual and foot joystick
modes were used. Therefore, each time the position of the
robotic camera holder needed to be adjusted, the user’s focus
was diverted from the main task to the motion of the camera,
causing the instrument to leave the field of view. In a real
surgical scenario, the risk of complications may increase if
the instruments are not visible through the exoscope, as the
possibility of inadvertent contact between instruments and
delicate structures increases [28]. As for the path length,

Fig. 7. Comparison of the score obtained during task execution. Left:
autonomous and manual control modality comparison; Right: autonomous
and foot remote control modality comparison. The ”mean total score” item
represents the results from all three repetitions. (*, p < 0.05)

a significant difference was found (p − value < 0.001)
when comparing the AMT mode with the MMT mode.
In Fig. 7 bar plots related to the target scoring for each
compared modality are shown. Overall, the performance in
terms of targeting score and path length was higher with the
autonomous control modality. The drop in performance with
the MMT and FMR can be attributed to the high mental
and physical demands of the systems, as they negatively
affect performance due to high cognitive load [29]. Finally,

Fig. 8. NASA TLX score. Left: comparison between autonomous and
manual control modalities. Right: comparison between autonomous and foot
remote control modalities. (*, p < 0.05)



the qualitative analysis was conducted using the NASA-
TLX survey, with users rating perceived workload using six
subscales (Distraction, Mental Demand, Physical Demand,
Situational Stress) for all modalities (Fig. 8). A significant
difference can be observed between control modalities in all
subsections. Users reported lower workload with autonomous
control compared to manual and foot remote control, sug-
gesting the proposed system can reduce mental and physical
demands, leading to better performance. The lower scores
in all the subsections suggest that the system may lead
to better performance compared to the traditional control
modalities. This is because the high workload and stress
can negatively affect the users’ decision-making abilities
and motor skills, potentially leading to errors during the
surgical procedure. Therefore, by reducing the workload and
stress of the surgeon, the proposed system may improve
surgical outcomes by enabling more accurate and efficient
task execution.

V. CONCLUSION

In this work, we present an autonomous camera control
system for robot-assisted neurosurgery that uses an image-
analysis based method for instrument localisation. Experi-
mental results have verified that the system can detect and
track the moving surgical tool, ensuring convergence of the
error to zero. The results of the user study have shown that
the proposed framework improves the user experience by
providing lower execution time, higher performance, and
reduced workload. In future work, the proposed system
should be evaluated under more realistic conditions. A more
realistic dataset with real clinical images should be consid-
ered. Also, a task representative of the clinical scenario will
be investigated in the following work.
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