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Abstract. In this paper, we study a special one-dimensional quaternion
short-time Fourier transform (QSTFT). Its construction is based on the
slice hyperholomorphic Segal–Bargmann transform. We discuss some
basic properties and prove different results on the QSTFT such as Moyal
formula, reconstruction formula and Lieb’s uncertainty principle. We
provide also the reproducing kernel associated with the Gabor space
considered in this setting.
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1. Introduction

Recently there has been an increased interest in the generalization of inte-
gral transforms to the quaternionic and Clifford settings. Such kind of trans-
forms are widely studied, since they help in the analysis of vector-valued
signals and images. In the survey [7] it is explained that some hypercomplex
signals are useful tools for extracting intrinsically 1D-features from images.
The reader can find other motivations for studying the extension of time
frequency-analysis to quaternions in [7] and the references therein. In the
survey [15] the author states that this research topic is based on three main
approaches: the eigenfunction approach, the generalized roots of −1 approach
and the spin group approach.

Using the second one a quaternionic short-time Fourier transform in
dimension 2 is studied in [5]. In the paper [16] the same transform is defined
in a Clifford setting for even dimension more than two. In this paper, we
introduce an extension of the short-time Fourier transform in a quaternionic
setting in dimension one.
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To this end, we fix a property that relates the complex short-time
Fourier transform and the complex Segal–Bargmann transform:

Vϕf(x, ω) = e−πixωGf(z̄)e
−π|z|2

2 , (1.1)

where Vϕ is the complex short-time Fourier transform with respect to the
Gaussian window ϕ (see [21, Def. 3.1]) and Gf(z) denotes the complex version
of the Segal–Bargmann transform according to [21]. To achieve our aim we
use the quaternionc analogue of the Segal–Bargmann transform studied in
[17]. This integral transform is used also in [18] to study some quaternionic
Hilbert spaces of Cauchy–Fueter regular functions. In [13] and [24] the authors
introduce some special modules of monogenic functions of Bargmann-type in
Clifford analysis.

To present our results, we adopt the following structure: in Sect. 2 we
collect some basic definitions and preliminaries. In Sect. 3, we prove some
new properties of the quaternionic Segal–Bargmann transform. In particular,
we deal with an unitary property and give a characterization of the range of
the Schwartz space. Moreover, we provide some calculations related to the
position and the momentum operators.

In Sect. 4, we give a brief overview of the 1D Fourier transform [19] and
show a Plancherel theorem in this framework.

In Sect. 5, we define the 1D QSTFT in the following way

Vϕf(x, ω) = e−IπxωBS
H
(f)

(
q̄√
2

)
e− |q|2π

2

where BS
H

is the quaternionic Segal–Bargmann transform.
Using some properties of BS

H
we prove an isometric relation for the 1D

QSTFT and a Moyal formula. These implies the following reconstruction
formula

f(y) = 2− 1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)2dxdω,∀y ∈ R.

From this follows that the adjoint operator defines a left inverse. Furthermore,
it gives the possibility to write the 1D QSTFT using the reproducing kernel
associated with the Gabor space

Gϕ
H

:=
{Vϕf, f ∈ L2(R,H)

}
.

Finally, we show that the 1D QSTFT follows a Lieb’s uncertainty princi-
ple, some classical uncertainty principles for quaternionic linear operators in
quaternionic Hilbert spaces were considered in [27].

2. Preliminaries

In 2006 a new approach to quaternionic regular functions was introduced and
then extensively studied in several directions, and it is nowadays widely devel-
oped [3,11,12,20]. This new theory contains polynomials and power series
with quaternionic coefficients in the right, contrary to the Fueter theory of
regular functions defined by means of the Cauchy-Riemann Fueter differential
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operator. The meeting point between the two function theories comes from
an idea of Fueter in the thirties and next developed later by Sce [26] and by
Qian [25]. This connection holds in any odd dimension (and in quaternionic
case) and has been explained in [9] in the language of slice regular functions
with values in the quaternions and slice monogenic functions with values in
a Clifford algebra. The inverse map has been studied in [10] and still holds
in any odd dimension. Moreover, the theory of slice regular functions have
several applications in operator theory and in Mathematical Physics. The
spectral theory of the S-spectrum is a natural tool for the formulation of
quaternionic quantum mechanics and for the study of new classes of frac-
tional diffusion problems, see [8,14], and the references therein. To make the
paper self-contained, we briefly revise here the basics of the slice regular func-
tions. Let H denote the quaternion algebra with its standard basis {1, i, j, k}
satisfying the multiplication i2 = j2 = k2 = ijk = −1, ij = −ji = k,
jk = −kj = i and ki = −ik = j. For q ∈ H, we write q = x0+x1i+x2j +x3k
with x0, x1, x2, x3 ∈ R. With respect to the quaternionic conjugate defined to
be q̄ = x0−x1i−x2j−x3k = Re(q)−Im(q), we have pq = q̄p̄ for p, q ∈ H. The
modulus of q is defined to be |q| =

√
qq̄ =

√
x2
0 + x2

1 + x2
2 + x2

3. In particular
we have |Imq| =

√
x2
1 + x2

2 + x2
3. Let S = {q ∈ H; q2 = −1} be the unit

sphere of imaginary units in H. Note that any q ∈ H\R can be written in a
unique way as q = x + Iy for some real numbers x and y > 0, and imaginary
unit I ∈ S. For every given I ∈ S we define CI = R + RI. It is isomorphic
to the complex plane C so that it can be considered as a complex plane in H

passing through 0,1 and I. Their union is the whole space of quaternions

H =
⋃
I∈S

CI =
⋃
I∈S

R + RI

Definition 2.1. A real differentiable function f : Ω → H, on a given domain
Ω ⊂ H, is said to be a (left) slice regular function if, for every I ∈ S, the
restriction fI to CI , with variable q = x+Iy, is holomorphic on ΩI := Ω∩CI ,
that is, it has continuous partial derivatives with respect to x and y and the
function ∂If : ΩI → H defined by

∂If(x + Iy) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI)

vanishes identically on ΩI . The set of slice regular functions will be denoted
by SR(Ω).

Characterization of slice regular functions on a ball B = B(0, R) centred
at the origin is given in [20]. Namely we have

Lemma 2.2. A given H- valued functionf is slice regular on B(0, R) ⊂ H if
and only if it has a series expansion of the form

f(q) =
∞∑

n=0

qn

n!
∂nf

∂xn
(0),

converging on B(0, R) = {q ∈ H; |q| < R}.
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Definition 2.3. Let f : Ω → H be a regular function. For each I ∈ S, the
I-derivative of f is defined as

∂If(x + Iy) :=
1
2

(
∂

∂x
− I

∂

∂y

)
fI(x + yI),

on ΩI . The slice derivative of f is the function ∂Sf : Ω → H defined by ∂If
on ΩI , for all I ∈ S.

In all the paper we will make use of the Hilbert space L2(R,dx) =
L2(R,H), consisting of all the square integrable H-valued functions with
respect to

〈ψ, φ〉 =
∫
R

φ(t)ψ(t)dt.

In [2] the authors introduce the slice hyperholomorphic quaternionic Fock
space F2,ν

Slice(H), defined for a given I ∈ S to be

F2,ν
Slice(H) :=

{
f ∈ SR(H);

∫
CI

|fI(p)|2e−ν|p|2dλI(p) < ∞
}

,

where ν > 0, fI = f |CI
and dλI(p) = dxdy for p = x+yI. The right H-vector

space F2,ν
Slice(H) is endowed with the inner product

〈f, g〉F2,ν
Slice(H) =

∫
CI

gI(q)fI(q)e−ν|q|2dλI(q), ∀f, g ∈ F2,ν
Slice(H). (2.1)

The associated norm is given by

‖f‖2F2,ν
Slice(H)

=
∫
CI

|fI(q)|2e−ν|q|2dλI(q).

This quaternionic Hilbert space does not depend on the choice of the imag-
inary unit I. An associated Segal–Bargmann transform was studied in [17]
by considering the kernel function obtained by means of generating function
related to the normalized weighted Hermite functions

AS
H
(q, x) :=

∞∑
k=0

fν
k (q)ψν

k(x) =
(ν

π

) 3
4

e− ν
2 (q

2+x2)+ν
√
2qx, ∀(q, x) ∈ H × R

where ψν
k denote the normalized weighted Hermite functions:

ψν
k(x) :=

hν
k(x)

‖hν
k(x)‖L2(R,H)

=
(−1)ke

ν
2 x2 dk

dxk

(
e−νx2)

2k/2νk/2(k!)1/2π1/4ν−1/4
,

and

fν
k (q) :=

ek(q)
‖ek(q)‖F2,ν

Slice(H)

=
qk

||qk||F2,ν
Slice(H)

=

√
νk+1

πk!
qk, ∀k ≥ 0,

are the normalized quaternionic monomials which constitute an orthonormal
basis of F2,ν

Slice(H). Then, for any quaternionic valued function ϕ in L2(R,H)
the slice hyperholomorphic Segal–Bargmann transform is defined by

BS
H
(ϕ)(q) =

∫
R

AS
H
(q, x)ϕ(x)dx. (2.2)
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In particular, most of our calculations later will be with a fixed parameter
even ν = 1 or ν = 2π.

3. Further Properties of the Quaternionic Segal–Bargmann
Transform

In this section, we prove some new properties of the quaternionic Segal–
Bargmann transform. We start from an unitary property which is not found
in literature in the following explicit form.

Proposition 3.1. Let f, g ∈ L2(R,H). Then, we have

〈BS
H
(f),BS

H
(g)〉F2,ν

Slice(H) = 〈f, g〉L2(R,H). (3.1)

Proof. Any f, g ∈ L2(R,H) can be expanded as

f(x) =
∑
k≥0

hν
k(x)αk,

g(x) =
∑
k≥0

hν
k(x)βk,

where (αk)k∈N, (βk)k∈N ⊂ H.

〈f, g〉L2(R,H) =
∫
R

g(x)f(x) dx =
∑
k≥0

∫
R

hν
k(x)βkhν

k(x)αk dx

=
∑
k≥0

βk

(∫
R

hν
k(x)hν

k(x) dx

)
αk

=
∑
k≥0

‖hν
k(x)‖2L2(R,H)βkαk. (3.2)

On the other way, since

〈f, hν
k〉L2(R,H) =

∑
j≥0

(∫
R

hν
k(x)hν

j (x) dx

)
αj = ‖hν

k(x)‖2L2(R,H)αk.

We have by [17]

BS
H
(f)(q) =

∑
k≥0

ek(q)
〈f, hν

k〉L2(R,H)

‖hν
k(x)‖L2(R,H)‖ek(q)‖F2,ν

Slice

=
∑
k≥0

ek(q)
‖hν

k(x)‖22
‖hν

k(x)‖L2(R,H)‖ek(q)‖F2,ν
Slice

αk

=
∑
k≥0

ek(q)
‖hν

k(x)‖L2(R,H)

‖ek(q)‖F2,ν
Slice

αk. (3.3)

Using the same calculus we obtain

BS
H
(g)(q) =

∑
k≥0

‖hν
k(x)‖L2(R,H)

‖ek(q)‖F2,ν
Slice

ek(q)βk. (3.4)
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By putting together (3.3) and (3.4) we obtain

〈BS
H
(f),BS

H
(g)〉F2,ν

Slice(H) =
∑
k≥0

∫
CI

‖hν
k(x)‖2L2(R,H)βk

ek(q)
‖ek(q)‖F2,ν

Slice

·

· ek(q)
‖ek(q)‖F2,ν

Slice

αke−ν|q|2 dλI(q)

=
∑
k≥0

‖hν
k(x)‖2L2(R,H)βk

(∫
CI

ek(q)
‖ek(q)‖F2,ν

Slice

·

· ek(q)
‖ek(q)‖F2,ν

Slice

e−ν|q|2 dλI(q)
)

αk

=
∑
k≥0

‖hν
k(x)‖2L2(R,H)βk

1
‖ek(q)‖2F2,ν

Slice

·

·
(∫

CI

ek(q)ek(q)e−ν|q|2 dλI(q)
)

αk

=
∑
k≥0

‖hν
k(x)‖2L2(R,H)βk

1
‖ek(q)‖2F2,ν

Slice

‖ek(q)‖2F2,ν
Slice

αk

=
∑
k≥0

‖hν
k(x)‖2L2(R,H)βkαk (3.5)

Finally, since (3.2) and (3.5) are equal we obtain the thesis. �

Remark 3.2. If f = g in (3.1) we have that the quaternionic Segal–Bargmann
transform realizes an isometry from L2(R,H) onto the slice hyperholomorphic
Bargmann-Fock space F2,ν

Slice(H), as proved in a different way in [17, Thm.
4.6]

3.1. Range of the Schwartz Space and Some Operators

We characterize the range of the Schwartz space under the Segal–Bargmann
transform with parameter ν = 1 in the slice hyperholomorphic setting of
quaternions. We consider also some equivalence relations related to the posi-
tion and momentum operators in this setting. The quaternionic Schwartz
space on the real line that we are considering in this framework is defined by

SH(R) :=
{

ψ : R −→ H : sup
x∈R

∣∣∣∣xα dβ

dxβ
(ψ)(x)

∣∣∣∣ < ∞, ∀α, β ∈ N

}
.

For I ∈ S, the classical Schwartz space is given by

SCI
(R) :=

{
ϕ : R −→ CI ; : sup

x∈R

∣∣∣∣xα dβ

dxβ
(ϕ)(x)

∣∣∣∣ < ∞, ∀α, β ∈ N

}
.

Clearly, we have that

SCI
(R) ⊂ SH(R) ⊂ L2

H
(R).

Moreover, we prove the following
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Lemma 3.3. Let ψ : x −→ ψ(x) be a quaternionic valued function. Let I, J ∈
S be such that I ⊥ J . Then, ψ ∈ SH(R) if and only if there exist ϕ1, ϕ2 ∈
SCI

(R) such that we have

ψ(x) = ϕ1(x) + ϕ2(x)J, ∀x ∈ R.

Proof. Let ψ ∈ SH(R). Then, we can write

ψ(x) = ϕ1(x) + ϕ2(x)J,

where ϕ1 and ϕ2 are CI−valued functions. Note that for all α, β ∈ N we
have ∣∣∣∣∣xα dβ

dxβ
(ψ)(x)

∣∣∣∣∣
2

=

∣∣∣∣∣xα dβ

dxβ
(ϕ1)(x)

∣∣∣∣∣
2

+

∣∣∣∣∣xα dβ

dxβ
(ϕ2)(x)

∣∣∣∣∣
2

.

In particular, this implies that ψ ∈ SH(R) if and only if ϕ1, ϕ2 ∈ SCI
(R). �

Let us now denote by SF(H) the range of SH(R) under the quaternionic
Segal–Bargmann transform BS

H
. Therefore, we have the following characteri-

zation of SF(H):

Theorem 3.4. A function f(q) =
∑∞

k=0 qkck belongs to SF(H) if and only if

sup
k∈N

|ck|kp
√

k! < ∞,∀p > 0.

i.e,

SF(H) =

{ ∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√

k! < ∞,∀p > 0

}
.

Proof. Let f ∈ SF(H), then by definition f = BS
H
ψ where ψ ∈ SH(R). Let

I, J ∈ S, be such that I ⊥ J . Thus, Lemma 3.3 implies that

ψ(x) = ϕ1(x) + ϕ2(x)J,

where ϕ1, ϕ2 ∈ SCI
(R). Therefore, we have

BS
H
(ψ)(q) = BS

H
(ϕ1)(q) + BS

H
(ϕ2)(q)J.

Then, we take the restriction to the complex plane CI and get:

BS
H
(ψ)(z) = BCI

(ϕ1)(z) + BCI
(ϕ2)(z)J, ∀z ∈ CI ,

where the complex Bargmann transform (see [6]) is given by

BCI
(ϕl)(z) =

1
π

3
4

∫
R

e− 1
2 (z

2+x2)+
√
2zxϕl(x)dx, l = 1, 2.

In particular, we set fI := BS
H
(ψ), f1 := BCI

(ϕ1) and f2 := BCI
(ϕ2). Then,

we have f1, f2 ∈ SF(CI). Thus, by applying the classical result in complex
analysis, see [23] we have

f1(z) =
∞∑

n=0

anzn and f2(z) =
∞∑

n=0

bnzn, ∀z ∈ CI .

Moreover, for all p > 0 the following conditions hold

sup
n∈N

|an|np
√

n! < ∞ and sup
n∈N

|bn|np
√

n! < ∞.
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In particular, we have then

fI(z) =
∞∑

n=0

anzn + (
∞∑

n=0

anzn)J, ∀z ∈ CI .

Therefore,

fI(z) =
∞∑

n=0

zncn with cn = an + bnJ, for all z ∈ CI .

Thus, by taking the slice hyperholomorphic extension we get

f(q) =
∞∑

n=0

qncn, ∀q ∈ H.

Moreover, note that cn = an + bnJ, n ∈ N. Then, |cn| ≤ |an| + |bn|, ∀n ∈ N.
Thus, for all p > 0, we have

sup
n∈N

|cn|np
√

n! ≤ sup
n∈N

|an|np
√

n! + sup
n∈N

|bn|np
√

n! < ∞.

Finally, we conclude that

SF(H) =

{
f(q) =

∞∑
k=0

qkck, ck ∈ H and sup
k∈N

|ck|kp
√

k! < ∞,∀p > 0

}
.

�

Now, let us consider on L2(R,H) = L2
H
(R) the position and momentum

operators defined by

X : ϕ → Xϕ(x) = xϕ(x) and D : ϕ → Dϕ(x) =
d
dx

ϕ(x).

Their domains are given respectively by

D(X) :=
{
ϕ ∈ L2

H
(R); Xϕ ∈ L2

H
(R)

}
and D(D) :=

{
ϕ ∈ L2

H
(R); Dϕ ∈ L2

H
(R)

}
.

First, let us prove the following

Lemma 3.5. For all (q, x) ∈ H × R, we have

∂SAS
H
(q, x) = (−q +

√
2x)AS

H
(q, x).

Proof. Let (q, x) ∈ H × R. Then, by definition of the quaternionic Segal–
Bargmann kernel we can write

AS
H
(q, x) := π− 3

4 e− x2
2 e− q2

2 e
√
2qx.

In this case, we can apply the Leibnitz rule with respect to the slice derivative
and get

∂SAS
H
(q, x) = π− 3

4 e− x2
2

(
e− q2

2 ∂S(e
√
2xq) + ∂S(e− q2

2 )e
√
2xq

)
.

However, using the series expansion of the exponential function and applying
the slice derivative we know that

∂S(e− q2
2 ) = −qe− q2

2 and ∂S(e
√
2xq) =

√
2xe

√
2xq.
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Therefore, we obtain

∂SAS
H
(q, x) = (−q +

√
2x)AS

H
(q, x).

�
Theorem 3.6. Let ϕ ∈ D(X). Then, we have

(∂S + q) BS
H
(ϕ)(q) =

√
2BS

H
(xϕ)(q), ∀q ∈ H.

Proof. Let ϕ ∈ D(X) and q ∈ H. Then, we have

∂SBS
H
(ϕ)(q) =

∫
R

∂SAS
H
(q, x)ϕ(x)dx.

Therefore, using Lemma 3.5 we obtain

∂SBS
H
(ϕ)(q) =

√
2BS

H
(xϕ)(q) − qBS

H
(ϕ)(q).

Finally, we get

(∂S + q)BS
H
(ϕ)(q) =

√
2BS

H
(xϕ)(q), ∀q ∈ H.

�
As a quick consequence, we have

Corollary 3.7. The position operator X on L2
H
(R) is equivalent to the opera-

tor 1√
2
(∂S + q) on the space F2,1

Slice(H) via the quaternionic Segal–Bargmann
transform BS

H
. In other words, for all ϕ ∈ D(X) we have

X(ϕ) = (BS
H
)−1 (∂S + q)√

2
BS
H
(ϕ).

On the other hand, we have also the following

Theorem 3.8. We denote by Mq : ϕ −→ Mqϕ(q) = qϕ(q) the creation opera-
tor on F2,1

Slice(H). Then, we have

(BS
H
)−1MqBS

H
=

1√
2
(X − D) on D(X) ∩ D(D).

Proof. Let ϕ ∈ D(X) ∩ D(D). Then, we have

BS
H
(Dϕ)(q) =

∫
R

AS
H
(q, x)

d
dx

ϕ(x)dx

= −
∫
R

d
dx

AS
H
(q, x)ϕ(x)dx.

However, note that for all (q, x) ∈ H × R, we have
d
dx

AS
H
(q, x) = (−x +

√
2q)AS

H
(q, x).

Therefore,

BS
H
(Dϕ)(q) = BS

H
(xϕ)(q) −

√
2qBS

H
(ϕ)(q).

Thus, we obtain

MqBS
H
(ϕ) = BS

H

(
1√
2
(X − D)

)
(ϕ).

Finally, we just need to apply (BS
H
)−1 to complete the proof. �
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4. 1D Quaternion Fourier Transform

In this section, we study the one-dimensional quaternion Fourier transforms
(QFT). Namely, we are considering here the 1D left sided QFT studied in
chapter 3 of the book [19]. To have less problems with computations we add
−2π to the exponential.

Definition 4.1. The left sided 1D quaternionic Fourier transform of a quater-
nion valued signal ψ : R −→ H is defined on L1(R; dx) = L1(R;H) by

FI(ψ)(ω) =
∫
R

e−2πIωtψ(t)dt

for a given I ∈ S. Its inverse is defined by
∼
FI(φ)(t) =

∫
R

e2πIωtφ(ω)dω.

Let J ∈ S be such that J ⊥ I. We can split the signal ψ via symplectic
decomposition into simplex and perplex parts with respect to I such that we
have:

ψ(t) = ψ1(t) + ψ2(t)J

where ψ1(t), ψ2(t) ∈ CI . The left sided 1D QFT of ψ becomes

FI(ψ)(ω) =
∫
R

e−2πIωtψ1(t)dt +
∫
R

e−2πIωtψ2(t)dtJ

so that

FI(ψ)(ω) = FI(ψ1)(ω) + FI(ψ2)(ω)J.

According to [19], most of the properties may be inherited from the classical
complex case thanks to the equivalence between CI and the standard complex
plane and the fact that QFT can be decomposed into a sum of complex
subfield functions.

Now, we define two fundamental operators for time-frequency analysis.
Translation

τxψ(t) := ψ(t − x) x ∈ R.

Modulation

Mωψ(t) = e2πIωtψ(t), ω ∈ R.

As in the classical case, we have a commutative relation between the two
operators.

Lemma 4.2. Let ψ be a function in L2(R,H) then we have

τxMωψ(t) = e−2πIωxMωτxψ(t), ω, x ∈ R. (4.1)

Proof. It is just a matter of computations

τxMωψ(t) = Mωψ(t − x) = e2πIω(t−x)ψ(t − x)

= e2πIωte−2πIωxψ(t − x)



MJOM On the Quaternionic Short-Time Fourier and Segal–Bargmann Page 11 of 22 110

= e−2πIωxe2πIωtψ(t − x)

= e−2πIωxMωτxψ(t).

�
From [19, Table 3.2] we have the following properties

FI(τxψ) = M−xFI(ψ), (4.2)
FI(Mωψ) = τωFI(ψ). (4.3)

From (4.2) and (4.3) follow easily that

FI(Mωτxψ) = τωM−xFI(ψ). (4.4)

Then, we prove a version of the Plancherel theorem for 1D QFT.

Theorem 4.3. Let φ, ψ ∈ L2(R,H). Then, we have

〈FI(φ),FI(ψ)〉L2(R,H) = 〈φ, ψ〉L2(R,H) .

In particular, for any φ ∈ L2(R,H) we have

||FI(φ)||L2(R,H) = ||φ||L2(R,H).

Proof. Let φ, ψ ∈ L2(R,H). By inversion formula for the 1D QFT, see [19],
we have

φ(ω) =
∼
FI(FI(φ))(ω), ∀ω ∈ R.

Thus, direct computations using Fubini’s theorem lead to

〈φ, ψ〉L2(R,H) =
∫
R

ψ(ω)
(∫

R

e2πIωtFI(φ)(t)dt

)
dω

=
∫
R

(∫
R

e−2πIωtψ(ω)dω

)
FI(φ)(t)dt

=
∫
R

FI(ψ)(t)FI(φ)(t)dt

= 〈FI(φ),FI(ψ)〉L2(R,H) .

As a direct consequence, we have for any φ ∈ L2(R,H)

||FI(φ)||2L2(R,H) = 〈FI(φ),FI(φ)〉L2(R,H)

= 〈φ, φ〉L2(R,H)

= ||φ||2L2(R,H).

�
The following remark may be of interest in some other contexts.

Remark 4.4. The formal convolution of two given signals φ, ψ : R −→ H

when it exists is defined by

(φ ∗ ψ)(t) :=
∫
R

φ(τ)ψ(t − τ)dτ.

In particular, if the window function φ is real valued the 1D QFT satisfies
the classical property

FI(φ ∗ ψ) = FI(φ)FI(ψ).
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5. Quaternion Short-Time Fourier Transform with a Gaussian
Window

The idea of the short-time Fourier transform is to obtain information about
local properties of the signal f . In order to achieve this aim the signal f is
restricted to an interval and after its Fourier transform is evaluated. However,
since a sharp cut-off can introduce artificial discontinuities and can create
problems, it is usually chosen a smooth cut-off function ϕ called “window
function”.

The aim of this section is to propose a quaternionic analogue of the
short-time Fourier transform in dimension one with a Gaussian window func-
tion ϕ(t) = 21/4e−πt2 . For this, we consider the following formula [21, Prop.
3.4.1]

Vϕf(x, ω) = e−πixωGf(z̄)e
−π|z|2

2 , (5.1)

where the variables (x, ω) ∈ R
2 have been converted into a complex vector z =

x + iω, and Gf(z) is the complex version of the Segal–Bargmann transform
according to [21]. Therefore, we want to extend (5.1) to the quaternionic
setting. To this end, we use the quaternionic analogue of the Segal–Bargmann
transform [17] and the slicing representation of the quaternions q = x + Iω,
where I ∈ S.

If the signal is complex we denote the short-time Fourier transform as
Vϕ, while if the signal is H-valued we identify the short-time Fourier transform
as Vϕ.

Definition 5.1. Let f : R → H be a function in L2(R,H). We define the 1D
quaternion short time Fourier transform of f with respect to ϕ(t) = 21/4e−πt2

as

Vϕf(x, ω) = e−IπxωBS
H
(f)

(
q̄√
2

)
e− |q|2π

2 , (5.2)

where q = x+Iω and BS
H
(f)(q) is the quaternionic Segal–Bargmann transform

defined in (2.2).

Using (2.2) with ν = 2π, we can write (5.2) in the following way

Vϕf(x, ω) = 2
3
4

∫
R

e−π
(

q̄2
2 +t2

)
+2πq̄t−Iπxω− |q|2π

2 f(t) dt. (5.3)

From this formula we are able to put in relation the 1D quaternion short-time
Fourier transform and the 1D quaternion Fourier transform defined in Sect.
3.

Lemma 5.2. Let f be a function in L2(R,H) and ϕ(t) = 21/4e−πt2 , recalling
the 1D quaternion Fourier transform we have

Vϕf(x, ω) =
√

2FI(f · τxϕ)(ω). (5.4)
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Proof. By putting q = x + Iω in (5.3) we have

Vϕf(x, ω) = 2
3
4 e−Iπxωe− x2π

2 e− ω2π
2

∫
R

e−πt2e− π
2

(
x2−ω2−2xωI

)
·

·e2π(x−Iω)tf(t) dt

= 2
3
4

∫
R

e−πt2−πx2+2πxte−2πIωtf(t) dt

=
√

2
∫
R

e−2πIωtf(t)2
1
4 e−π(t−x)2 dt

=
√

2
∫
R

e−2πIωtf(t)ϕ(t − x) dt =
√

2FI(f · τxϕ)(ω).

�

Now, we prove a formula which relates the 1D quaternion Fourier trans-
form and its signal through the 1D short-time Fourier transform.

Proposition 5.3. If ϕ is a Gaussian function ϕ(t) = 21/4e−πt2 and f ∈
L2(R,H) then

Vϕf(x, ω) =
√

2e−2πIωxVϕFI(f)(ω,−x). (5.5)

Proof. Recalling the definition of modulation and of inner product on
L2(R,H), by Lemma 5.2 we have

Vϕf(x, ω) =
√

2
∫
R

e2πIωtϕ(t − x)f(t) dt

=
√

2
∫
R

Mωτxϕ(t)f(t) dt =
√

2 〈f,Mωτxϕ〉 . (5.6)

Using the Plancherel theorem for the 1D quaternion Fourier transform, the
property (4.4) and the fact that FI(ϕ) = ϕ we have

Vϕf(x, ω) =
√

2 〈FI(f),FI(Mωτxϕ)〉
=

√
2 〈FI(f), τωM−xFI(ϕ)〉

=
√

2 〈FI(f), τωM−xϕ〉
Finally, from (4.1) and (5.6) we get

Vϕf(x, ω) =
√

2e−2πIωx 〈FI(f),M−xτωϕ〉 =
√

2e−2πIωxVϕFI(f)(ω,−x).

�

5.1. Moyal Formula

Now, we prove the Moyal formula and an isometric relation for the 1D quater-
nion short-time Fourier transform in two ways. In the first way we use the
properties of the quaternionic Segal- Bargmann transform, whereas in the
second way we use Lemma 5.2 and some basic properties of 1D quaternion
Fourier transform.

Proposition 5.4. For any f ∈ L2(R,H)

‖Vϕf‖L2(R2,H) =
√

2‖f‖L2(R,H). (5.7)
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Proof. We use the slicing representation of the quaternions q = x + Iω and
formula (5.2) to get

‖Vϕf‖2L2(R,H) =
∫
R2

|Vϕf(x, ω)|2 dω dx

=
∫
R

|e−Iπxω|2
∣∣∣∣BS

H
(f)

(
q̄√
2

)∣∣∣∣
2

e−|q|2π dω dx

=
∫
R

∣∣∣∣BS
H
(f)

(
q̄√
2

)∣∣∣∣
2

e−|q|2π dω dx.

Now, using the change of variable p = q̄√
2

we have that dA(p) = 1
2 dω dx,

hence by [17, Thm. 4.6]

‖Vϕf‖2L2(R,H) = 2
∫
R2

|BS
H
(f)(p)|2e−2π|q|2 dA(p)

= 2‖BS
H
(f)‖2F2,2π

Slice

= 2‖f‖2L2(R,H).

Therefore

‖Vϕf‖L2(R,H) =
√

2‖f‖L2(R,H).

�
Thus, the 1D quaternionic short-time Fourier transform is an isometry

from L2(R,H) into L2(R2,H).

Proposition 5.5. (Moyal formula) Let f, g be functions in L2(R,H). Then we
have

〈Vϕf,Vϕg〉L2(R2,H) = 2〈f, g〉L2(R,H). (5.8)

Proof. From (5.2) we get

〈Vϕf,Vϕg〉L2(R2,H) =
∫
R2

Vϕg(x, ω)Vϕf(x, ω) dω dx

=
∫
R2

e−IπxωBS
H
(g)

(
q̄√
2

)
e− |q|2π

2 e−Iπxω ·

·BS
H
(f)

(
q̄√
2

)
e− |q|2π

2 dω dx

=
∫
R2

BS
H
(g)

(
q̄√
2

)
eIπxωe−Iπxω ·

·BS
H
(f)

(
q̄√
2

)
e−|q|2π dω dx

=
∫
R2

BS
H
(g)

(
q̄√
2

)
BS
H
(f)

(
q̄√
2

)
e−|q|2π dω dx.

Using the same change of variables as before p = q̄√
2

and from (3.1) we
obtain

〈Vϕf,Vϕg〉L2(R2,H) = 2
∫
R2

BS
H
(g)(p)BS

H
(f)(p)e−2|q|2π dω dx

= 2〈BS
H
(f),BS

H
(g)〉F2,2π

Slice(H) = 2〈f, g〉L2(R,H). �
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Remark 5.6. If we put f = h2π
k (t)

‖h2π
k (t)‖2

2
in (5.2) by [17, Lemma 4.4] we get

Vϕf(x, ω) = e−Iπxωe− π
2 |q|2 23/4

2kk!
q̄k.

Remark 5.7. From (5.4) we can prove (5.8) in another way. This proof may
be of interest in some other contexts.

Let us assume f, g ∈ L2(R,H) and recall ϕ(t) = 21/4e−πt2 , by Lemma
5.2 and Plancherel theorem for the 1D quaternion Fourier transform we have

〈Vϕf,Vϕg〉L2(R2,H) =
∫
R2

Vϕg(x, ω)Vϕf(x, ω) dω dx

= 2
∫
R2

FI(g · τxϕ)(ω)FI(f · τxϕ)(ω) dω dx

= 2
∫
R2

g(ω) · τxϕ(ω)f(ω) · τxϕ(ω) dω dx.

Now, by Fubini’s theorem and the fact that ‖ϕ‖22 = 1 we get

〈Vϕf,Vϕg〉L2(R2,H) = 2
∫
R

(∫
R

g(ω) · τxϕ(ω)f(ω) · τxϕ(ω) dx

)
dω

= 2
∫
R

(∫
R

g(ω)f(ω)ϕ2(x − ω) dx

)
dω

= 2
∫
R

g(ω)f(ω)
(∫

R

ϕ2(x − ω) dx

)
dω

= 2
∫
R

g(ω)f(ω)‖ϕ‖22 dω = 2
∫
R

g(ω)f(ω) dω

= 2〈f, g〉L2(R,H).

Hence

〈Vϕf,Vϕg〉L2(R2;H) = 2〈f, g〉L2(R,H). (5.9)

If we put f = g in (5.9) we obtain (5.7).

5.2. Inversion Formula and Adjoint of QSTFT

The 1D QSTFT with Gaussian window ϕ satisfies a reconstruction formula
that we prove in the following.

Theorem 5.8. Let f ∈ L2(R,H). Then, we have

f(y) = 2− 1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)2dxdω, ∀y ∈ R.

Proof. For all y ∈ R, we set

g(y) = 2− 1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)2dxdω.
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Let h ∈ L2(R,H). Fubini’s theorem combined with Moyal formula for QSTFT
leads to

〈g, h〉L2(R,H) =
∫
R

h(y)g(y)dy

= 2− 1
4

∫
R3

h(y)e2πIωyVϕf(x, ω)e−π(y−x)2dxdωdy

= 2−1
√

2
∫
R2

(∫
R

e−2πIωy2
1
4 e−π(y−x)2h(y)dy

)
Vϕf(x, ω)dxdω

= 2−1

∫
R2

Vϕh(x, ω)Vϕf(x, ω)dxdω

= 2−1 〈Vϕf,Vϕh〉L2(R2)

= 〈f, h〉L2(R,H) .

Hence, we have

f(y) = g(y) = 2− 1
4

∫
R2

e2πIωyVϕf(x, ω)e−π(y−x)2dxdω.

This ends the proof. �

We note that the QSTFT admits a left side inverse that we can compute
as follows

Theorem 5.9. Let ϕ denote the Gaussian window ϕ(t) = 21/4e−πt2 and let
us consider the operator Aϕ : L2(R2,H) −→ L2(R,H) defined for any F ∈
L2(R2,H) by

Aϕ(F )(y) = 2
3
4

∫
R2

e2πIωyF (x, ω)e−π(y−x)2dxdω, ∀y ∈ R.

Then, Aϕ is the adjoint of Vϕ. Moreover, the following identity holds

V∗
ϕVϕ = 2Id. (5.10)

Proof. Let F ∈ L2(R2,H) and h ∈ L2(R,H). We use some calculations similar
to the previous result and get

〈Aϕ(F ), h〉L2(R,H) =
∫
R

h(y)Aϕ(F )(y)dy

= 2
3
4

∫
R3

h(y)e2πIωyF (x, ω)e−π(y−x)2dxdωdy

=
∫
R2

√
2

(∫
R

e−2πIωy2
1
4 e−π(y−x)2h(y)dy

)
F (x, ω)dxdω

=
∫
R2

Vϕh(x, ω)F (x, ω)dxdω

= 〈F,Vϕh〉L2(R2,H) .

In particular, this shows that

A(ϕ)(F ) = V∗
ϕ(F ), ∀F ∈ L2(R2,H).

From reconstruction formula we obtain (5.10). �
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Remark 5.10. We note that the identity V∗
ϕVϕ = 2Id provides another proof

for the fact that QSTFT is an isometric operator and the adjoint V∗
ϕ defines

a left inverse.

5.3. The Eigenfunctions of the 1D Quaternion Fourier Transform

Through the 1D QSTFT we can prove in another way that the eigenfunctions
of the 1D quaternion Fourier transform are given by the Hermite functions.

Proposition 5.11. The Hermite functions h2π
k (t) are eigenfunctions of the 1D

quaternion Fourier transform :

FI(h2π
k )(t) = 2−1/2(−I)kh2π

k (t), t ∈ R.

Proof. By identity (5.2) and [17, Lemma 4.4] we have

Vϕ(h2π
k )(x,−ω) = eIπxωBS

H
(h2π

k )
( q√

2

)
e− π|q|2

2

= eIπxω21/42k/2(2π)k2−k/2qke− π|q|2
2

= eIπxω21/4(2π)kqke− π|q|2
2 . (5.11)

Recalling that q = x + Iω and using (5.5) we obtain

VϕFI(h2π
k )(x,−ω) = 2−1/2e2πIωxVϕh2π

k (ω, x)

= 2−1/2e2πIωxe−IπωxBS
H
(h2π

k )
(

ω − Ix√
2

)
e− |q|2π

2

= 2−1/2eπIωxBS
H
(h2π

k )
(−Iq√

2

)
e− |q|2π

2

= 2−1/2eπIωx21/42k/2(2π)k(−I)k2−k/2qke− |q|2π
2

= 2−1/2(−I)keIπωx21/4(2π)kqke− |q|2π
2 .

Combining with (5.11)

VϕFI(h2π
k )(x,−ω) = 2−1/2(−I)kVϕh2π

k (x,−ω).

From (5.10) we know that Vϕ is injective, hence we have the thesis. �
5.4. Reproducing Kernel Property

The inversion formula gives us the possibility to write the 1D QSTFT using
the reproducing kernel associated to the quaternion Gabor space, introduced
in [1], with a Gaussian window that is defined by

Gϕ
H

:=
{Vϕf, f ∈ L2(R,H)

}
.

Theorem 5.12. Let f be in L2(R,H) and ϕ(t) = 21/4e−πt2 . If

Kϕ(ω, x;ω′, x′) =
∫
R

e−2πIω′tϕ(t − x′)e−2πIωtϕ(t − x) dt,

then Kϕ(ω, x;ω′, x′) is the reproducing kernel i.e.

Vϕf(x′, ω′) =
∫
R2

Kϕ(ω, x;ω′, x′)Vϕf(x, ω) dxdω.
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Proof. By Lemma 5.2 and the reconstruction formula we have

Vϕf(x′, ω′) = 23/4

∫
R

e−2πIω′tf(t)e−π(t−x′)2 dt

= 23/4

∫
R

e−2πIω′te−π(t−x′)22− 1
4 ·

·
(∫

R2
e2πIωte−π(t−x)2Vϕf(x, ω) dx dω

)
dt

=
√

2
∫
R3

e−2πI(ω′−ω)te−π(t−x′)2e−π(t−x)2 ·
·Vϕf(x, ω) dx dω dt.

Using Fubini’s theorem we have

Vϕf(x′, ω′) =
√

2
∫
R2

(∫
R

e−2πI(ω′−ω)te−π(t−x′)2e−π(t−x)2 dt

)
·

·Vϕf(x, ω) dx dω

=
∫
R2

(∫
R

e−2πIω′t21/4e−π(t−x′)221/4e−2πIωte−π(t−x)2 dt

)
·

·Vϕf(x, ω) dx dω

=
∫
R2

(∫
R

e−2πIω′tϕ(t − x′)e−2πIωtϕ(t − x) dt

)
·

·Vϕf(x, ω) dx dω

=
∫
R2

Kϕ(ω, x;ω′, x′)Vϕf(x, ω) dxdω.

�

5.5. Lieb’s Uncertainty Principle for QSTFT

The QSTFT follows the Lieb’s uncertainty principle with some weak differ-
ences comparing to the classical complex case. Indeed, we first study the weak
uncertainty principle which is the subject of this result

Theorem 5.13. (Weak uncertainty principle) Let f ∈ L2(R,H) be a unit vec-
tor (i.e ||f || = 1), U an open set of R2 and ε ≥ 0 such that∫

U

|Vϕf(x, ω)|2dxdω ≥ 1 − ε.

Then, we have

|U | ≥ 1 − ε

2
,

where |U | denotes the Lebesgue measure of U .

Proof. We note that using Definition of QSTFT and [17, Prop. 4.3] we obtain

|Vϕf(x, ω)| = |BS
H
f(q̄/

√
2)|e− |q|2

2 π

= |BS
H
f(p)|e−π|p|2 ; p = q̄/

√
2

≤
√

2||f ||L2(R).
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Thus, by hypothesis we get

1 − ε ≤
∫

U

|Vϕf(x, ω)|2dxdω ≤ ||Vϕf ||2∞|U | ≤ 2|U |.

Hence, we have

|U | ≥ 1 − ε

2
.

�

Theorem 5.14. (Lieb’s inequality) Let f ∈ L2(R,H) and 2 ≤ p < ∞. Then,
we have ∫

R2
|Vϕf(x, ω)|pdxdω ≤ 2p+1

p
||f ||pL2(R,H)

Proof. Let I, J ∈ S be such that I is orthogonal to J . Then, for f ∈ L2(R,H),
there exist f1, f2 ∈ L2(R,CI) such that

f(t) = f1(t) + f2(t)J, ∀t ∈ R

and for which the classical Lieb’s inequality [22] holds , i.e:∫
R2

|Vϕfl(x, ω)|pdxdω ≤ 2
p
||fl||pL2(R,CI)

; l = 1, 2.

In particular, by definition of QSTFT we have
Vϕf(x, ω) = Vϕf1(x, ω) + Vϕf2(x, ω)J, ∀(x, ω) ∈ R

2.

Thus,
|Vϕf(x, ω)|p ≤ (|Vϕf1(x, ω)| + |Vϕf2(x, ω)|)p

≤ 2p−1 (|Vϕf1(x, ω)|p + |Vϕf2(x, ω)|p) .

We use the classical Lieb’s inequality on each component combined with the
fact that ||fl||p ≤ ||f ||p for l = 1, 2 and get∫

R2
|Vϕf(x, ω)|pdxdω ≤ 2p

p

(
||f1||pL2(R) + ||f2||pL2(R)

)

≤ 2p+1

p
||f ||pL2(R,H).

This ends the proof. �

The next result improves the weak uncertainty principle in the sense
that it gives a best sharper estimate for |U |.
Theorem 5.15. Let f ∈ L2(R,H) be a unit vector, U an open set of R2 and
ε ≥ 0 such that ∫

U

|Vϕf(x, ω)|2dxdω ≥ 1 − ε.

Then, we have
|U | ≥ cp(1 − ε)

p
p−2 ,

where |U | denotes the Lebesgue measure of U and cp =
(

2p+1

p

)− 2
p−2

.
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Proof. Let f ∈ L2(R,H) be such that ||f ||L2(R,H) = 1. We first apply Holder
inequality with exponents q = p

2 and q′ = p
p−2 . Then, using Lieb’s inequality

for QSTFT we get∫
U

|Vϕf(x, ω)|2dxdω =
∫
R2

|Vϕf(x, ω)|2χ
U
(x, ω)dxdω

≤
(∫

R2
|Vϕf(x, ω)|pdxdω

) 2
p

|U | p−2
p

≤
(

2p+1

p

) 2
p

|U | p−2
p .

Hence, by hypothesis we obtain

|U | ≥ cp(1 − ε)
p

p−2

where cp =
(

2p+1

p

)− 2
p−2

. �

6. Concluding Remarks

In this paper, we studied a quaternion short-time Fourier transform (QSTFT)
with a Gaussian window. This window function corresponds to the first nor-
malized Hermite function given by ψ0(t) = ϕ(t) = 21/4e−πt2 . Based on the
quternionic Segal–Bargmann transform we proved several results including
different versions of Moyal formula, reconstruction formula, Lieb’s principle,
etc. A more general problem in this framework is to consider a QSTFT asso-
ciated to some generic quaternion valued window ψ. For a given quaternion
q = x+ Iω we plan to investigate in our future research works the properties
of the QSTFT defined for any f ∈ L2(R,H) by

Vψf(x, ω) =
∫
R

e−2πItωψ(t − x)f(t)dt.

In particular, studying such transforms with normalized Hermite functions
{ψn(t)}n≥0 that are real valued windows will be related to the theory of slice
poly-analytic functions on quaternions considered in [4].
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(EMS), Zürich, pp. xii+559 (2011)

[24] Pena, D., Sabadini, I., Sommen, F.: Segal–Bargmann–Fock modules of mono-
genic functions. J. Math. Phys. 58, 103507 (2017)

[25] Qian, T.: Generalization of Fueters result to R
n+1. Rend. Mat. Acc. Lincei 9,

111–117 (1997)

[26] Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad.
Naz. Lincei. Rend. CI. Sci. Fis. Mat. Nat. 23, 220–225 (1957)

[27] Xu, Z., Ren, G.: Sharper uncertainty principles in quaternionic Hilbert spaces.
Math. Methods Appl. Sci. 43, 1608–1630 (2020)

Antonino De Martino and Kamal Diki
Dipartimento di Matematica
Politecnico di Milano
Via Bonardi n. 9
20133 Milan
Italy
e-mail: antonino.demartino@polimi.it

Kamal Diki
e-mail: kamal.diki@polimi.it

Received: May 22, 2020.

Revised: August 12, 2020.

Accepted: March 29, 2021.


	On the Quaternionic Short-Time Fourier and Segal–Bargmann Transforms
	Abstract
	1. Introduction
	2. Preliminaries
	3. Further Properties of the Quaternionic Segal–Bargmann Transform
	3.1. Range of the Schwartz Space and Some Operators

	4. 1D Quaternion Fourier Transform
	5. Quaternion Short-Time Fourier Transform with a Gaussian Window
	5.1. Moyal Formula
	5.2. Inversion Formula and Adjoint of QSTFT
	5.3. The Eigenfunctions of the 1D Quaternion Fourier Transform
	5.4. Reproducing Kernel Property
	5.5. Lieb's Uncertainty Principle for QSTFT

	6. Concluding Remarks
	Acknowledgements
	References




