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A B S T R A C T   

This paper addresses the issue of seeking sub-10-min patterns in fast rms voltage variations from time-limited 
measurement data at multiple locations worldwide. This is a rarely considered time scale in studies that could 
be important for the incorrect operation of end-user equipment. Moreover, measurements from multiple loca
tions could be significant from the view of seeking pattern methods. To learn more about this time scale, we 
propose an unsupervised learning method that employs a Kernel Principal Component Analysis (KPCA) with a 
Cosine kernel to extract principal features from 10-min time series of voltage variations with a 1-s resolution 
followed by a k-means clustering to group the features. The scheme is applied to measurements from 57 low- 
voltage locations in 19 countries from 2009 to 2018. Fifteen initial clusters/patterns are then extracted and 
converted to ten new (general) patterns using a clusters’ merging strategy with highly similar patterns employed 
in a new post-processing approach useful for multiple locations. Utilizing data from multiple locations in mul
tiple countries ensures a level of generality of the patterns. It also allows comparing the locations. Next to the ten 
general patterns, some typical patterns are extracted separately for every location. A statistical indices analysis 
confirms that a complete picture of sub-10-min oscillations needs both statistical indices (quantifying level and 
variations) and the proposed framework (quantifying patterns). The extracted patterns could be used as a 
reference for testing/putting requirements on the grid-connected equipment and quantifying the grid’s hosting 
capacity for different types of new distributed generations connected to the grid. The framework is scalable and 
computationally cheap, making it appropriate for seeking typical patterns in the big data domain. Applying the 
framework to the much less understood phenomenon will result in providing general knowledge in the field of 
power quality.   

1. Introduction 

The voltage magnitude’s (rms value) deviation from its nominal 
voltage varies over a range of time scales. Standards and regulations on 
voltage magnitude variations consider two distinctly different time 
scales: longer than several minutes and up to a few seconds. Slow 
voltage variations (also known as “supply voltage variations” or “voltage 
regulation”) take place at time scales of minutes and longer. The IEC 
61000–4-30 standard on power-quality monitoring prescribes that the 
rms voltage is calculated over a 10-min window [1,2]. Moreover, the 
overview of voltage-quality regulation in Europe [3] also shows that 10 
min is the most common value. Fast voltage variations (also known as 
“voltage flicker”, “voltage fluctuations”, and “continuous rapid voltage 
changes”) take place at time scales up to a few seconds. Voltage-quality 

indicators used in this time scale are short-term flicker severity (Pst) and 
long-term flicker severity (Plt), as defined in IEC 61000–4-15 [4] and 
IEEE 1453 [5]. 

However, there is a lack of performance indicators for voltage quality 
and knowledge about voltage magnitude variations with a time scale 
between a few seconds (in our study, 1 s) and several minutes (in our 
study, 10 min), referred to as sub-10-min values in [6], and power- 
quality monitoring programs seldom include it. However, this time 
scale should not be neglected because equipment may be susceptible to 
sub-10-min variations. Moreover, tripping of PV installations due to 
overvoltages is seen for the values belonging to the 10-min time scale. 
Many reported adverse consequences of fast voltage variations, next to 
light flicker, are also due to variations in this time scale [7–9]. Besides 
this, many different new types of equipment (generation or load) [10] 

* Corresponding author. 
E-mail address: Younes.mohammadi@ltu.se (Y. Mohammadi).  

Contents lists available at ScienceDirect 

International Journal of Electrical Power and Energy Systems 

journal homepage: www.elsevier.com/locate/ijepes 

https://doi.org/10.1016/j.ijepes.2022.108516 
Received 29 March 2022; Received in revised form 28 June 2022; Accepted 20 July 2022   

i An update to this article is included at the end

mailto:Younes.mohammadi@ltu.se
www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2022.108516
https://doi.org/10.1016/j.ijepes.2022.108516
https://doi.org/10.1016/j.ijepes.2022.108516
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2022.108516&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Electrical Power and Energy Systems 143 (2022) 108516

2

are the known sources of voltage variations in this time scale: PV power 
installations [9,11,12], wind power installations [13,14], EV charging 
[15] and electric heat pumps [16]. 

1.1. State of the art 

The measurement-based definition of individual rapid voltage 
changes (voltage steps), as standardized by IEC 61000–4-30, resulted in 
a number of publications discussing this voltage-quality event [11,17]. 
However, voltage steps represent only one aspect of the sub-10-min 
variations. Later, some research has been done in regard to statistical 
indices and actual levels for sub-10-min values of rms voltage [9,18] and 
harmonic voltage [6] in a sub-10-min scale. Such statistics are defined, 
for example, as the 99th percentile of the 1-s values of the rms or har
monic voltage over the 10-min window minus a 10-min rms value. As 
single-window or single-site, these statistical indices are appropriate for 
quantifying some voltage variations, but they do not result in the typical 
patterns of variations versus a 10-min time window. A complete picture 
of the sub-10-min time range needs to quantify not only the range of 
variations but also the patterns themselves. 

Power-quality monitoring can result in large amounts of data, 
especially where it concerns measurements at multiple locations over a 
long period. Automatic analysis methods enable a continuous assess
ment of the power quality and other operational aspects without time- 
consuming human intervention. Recent developments in machine 
learning could automatically identify such patterns. In general, two sets 
of methods can be implemented for training supervised and unsuper
vised learning [19,20]. The initial approaches, as supervised ones, 
needed a pre-labeled dataset. Artificial intelligent-based methods used 
expert classifiers like support vector machines [21–23], ensemble 
learnings [24,57] and neural networks [25,26]. Automatic extraction of 
input features has been done one step before the supervised classifiers in 
the literature [27,28]. Seeking patterns from signals, the so-called time 
series clustering, is part of unsupervised problems since labeling/ 
assigning cluster numbers to the input dataset (e. g., time series of signal 
variations) is not possible/too time-consuming along with the errors. As 
observed in [27,28], the automatic extraction of principal features has a 
normally better role than the manually extracted ones (e.g., statistical 
indices) [1,29,30] to group a dataset. 

There are many works previously done on time series clustering, e. 
g., clustering on the areas of big data in [31], clustering by utilizing 
various tools than k-means, and the Euclidean distance measurement 
criterion addressed in [32] as shape-based clustering and in [33] as 
fuzzy-based one by using Distance Time Wrapping (DTW) as the simi
larity measure criteria. However, a limited number of applications in 
power quality data measurement analysis have been found, such as a 
time series clustering methodology for knowledge extraction in energy 
consumption data in [34], a clustering method for the probabilistic 
evaluation of harmonic load flow in [35], and a k-means clustering for 
identification of distributed generation contribution in [36]. A deep 
autoencoder followed by a k-means clustering was applied in voltage 
harmonics with a 1-day time window by a 10-min resolution to seek the 
daily patterns for measurement from one location [37], multiple loca
tions [38], and the use of a post-processing method [39]. The refs. 
[37–39] are concerned with a rather well-understood phenomenon 
(daily variation in harmonic voltage), so their method did not create any 
new general knowledge. Among the few unsupervised machine learning 
schemas applicable for power quality measurement analysis, none of 
them have been yet applied to seek patterns for rms/harmonic voltage 
fast variations in the sub-10-min scale, which is a not-yet-well discov
ered phenomenon and different from daily variational patterns. More
over, no framework applicable for time-limited (about one day and a few 
hours) measurements from multiple locations has been designed. 

1.2. Contribution and applicability 

Refs. [6,9,18] shows that quantifying voltage magnitude variations 
in the sub-10-min time scale is not trivial. To learn more about this 
phenomenon/disturbance type, this paper aims to seek patterns in rms 
voltage variations at the time scale. Measurements from multiple loca
tions worldwide (with possibly different behaviors) will be used to 
identify those patterns. Using data (which is short-limited time) from 
multiple locations in multiple countries ensures a level of the generality 
of the patterns. It also allows comparing locations. In this way, a com
plete picture of the time scale is obtained as a part of the long-term aim 
of power quality studies. Hence, a framework is proposed; it includes (a) 
unsupervised learning methodology (Kernel Principal Component 
Analysis (KPCA) with Cosine kernel) and (b) a pattern’s post-processing 
approach necessary for the multiple location measurements (to avoid 
occurring highly similar patterns with only a difference in voltage 
magnitude). In this paper, it was decided to go for unsupervised instead 
of supervised learning to obtain information on the kind of patterns that 
could be expected in this time scale. Such patterns can be used as a 
reference when designing equipment connected to the grid to reduce the 
probability of interference (i.e., equipment not connecting the way they 
should behave). Next to that, the authors of this paper have a general 
interest in the kind of patterns that can be expected in this time scale. 
The typical patterns per location, as found from this study, increase the 
overall power quality knowledge. A very important finding of this paper 
is that a complete picture of fast voltage variations in the sub-10-min 
scale needs both statistical indices and an expert framework to extract 
the possible patterns. 

The main contributions/novelties of this paper are:  

(a) Considering fast voltage variations in a time window of 1 s-10 
min. This unknown phenomenon is still largely unexplored, and 
there is very limited information/ knowledge on what it looks 
like.  

(b) Proposing a comprehensive framework applicable for short- 
limited measurement in multiple locations, to seek possible pat
terns for the very first time in the “sub-10-min” rms voltage 
variations (solving this problem is a challenge by the manual 
analysis of the measurement from several locations).  

(c) Obtaining 10 patterns (Fig. 9) generally for multiple locations 
(because of time limitations in measurements, expertly, all loca
tions are considered together) and some new typical patterns 
(Fig. 18) per single location (taking an average of the samples 
with specific cluster number per location).  

(d) The aim of the paper is pursuing a novel application of the well- 
known existing unsupervised methods (KPCA with different 
kernels followed by k-means) and adding a post-processing term 
to bring new knowledge to this field of study that has not yet been 
explored (a supplement for part (a)).  

(e) The necessary post-processing approach for multiple locations 
and the approach to extract patterns for every separate (single) 
location; simple mathematic relations are used, and the frame
work is not made complex.  

(f) A statistical analysis using power-quality indices is done on the 
obtained clusters and patterns to validate them. A power-quality 
look is also applied to the obtained different patterns. The results 
(Fig. 19) show the following real variations by the pattern-based 
variations for the locations. 

The applications of the proposed framework are:  

(a) Our proposed framework is applied to a much less understood 
phenomenon/disturbance type, which refers variations in rms 
voltage in a 10 min window with 1 s resolution, so the work will 
result in providing general knowledge beyond the specific case 
study. Moreover, each 10-min window may follow a pattern 
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among ten obtained patterns. Meanwhile refs. [37–39] have 
studied the rather well-understood phenomena, i.e., daily varia
tion in harmonic voltage (a 24-h window with 10 min resolu
tions). Furthermore, each 24-h window follows a pattern between 
only two concluded straightforward patterns. In our proposed 
framework, solving the problem of extracting patterns from the 
fast voltage variations (including lots of variations) is much 
harder than seeking patterns from slow voltage variations in 
[37–39].  

(b) The manufacturers of grid-connected equipment could use the 
extracted patterns as a reference for every single location to see 
the obtained patterns and design equipment, including testing/ 
protective/control requirements in relation to the location con
nected to special equipment like PVs, EVs, electric pumps and 
wind power installations.  

(c) The results obtained from this study regarding the 10 patterns can 
develop future standards/classification methods by labeling 
patterns through the sources causing the patterns (if the infor
mation about the connected loads exists).  

(d) The obtained patterns can also be used to quantify the grid’s 
hosting capacity for different types of new equipment connected 
to the grid, such as PVs. A study in [9] showed that PVs mainly 
impacted the patterns of variations. Using the high-resolution 
patterns can help to calculate the capacity of PVs in the grid 
more precise, as compared to the values recorded only for one 
hour or more.  

(e) By keeping track of the obtained patterns, as updated variations 
in a day, month and even long-term periods, trends can be 
identified easily for the network operators.  

(f) Even if there are yet not many impacts of the time scale on 
equipment, it is not a good idea to wait for such impacts to occur. 
Hence, this work, by quantifying patterns next to the existing 
quantifying variations, will operate as a preventive work. 

The method is applied to 10-min time series with a 1-s time resolu
tion obtained from 57 different locations in 19 countries. The mea
surements, which were from 2009 to 2018, were performed at a wall 
outlet, 220 V or 230 V, 50-Hz low voltage networks. A statistical power- 
quality analysis of the obtained results shows that the proposed frame
work is effective in pattern extraction and confirms that a full repre
sentation of voltage variations at the sub-10-min scale needs both results 
of the statistical indices and extracted patterns. 

1.3. Paper organization 

Section 2 of this paper describes the proposed framework in six sub- 
sections. Section 3 presents the measurement dataset and shows some 
examples of variations on the sub-10-min time scale. The proposed 
framework results, correlation analysis of obtained final patterns, and a 
statistical analysis on the obtained clusters’ samples and patterns are 
given in Section 4. Section 5 discusses the application of the proposed 
methodology using multiple location measurements for each location, 
the importance of the obtained patterns and the reason why the pro
posed framework has not been run separately for each location. Section 
6 discusses the paper and suggests future works; finally, Section 7 con
cludes the paper. 

2. The proposed framework 

This section proposes a framework to seek patterns in the time scale 
between 1 s and 10 min. The upper limit of the window (10 min) is 
defined in the power-quality monitoring standard, IEC61000-4–30; it is 
commonly used in power quality monitoring. The lower limit of the 
window (1 s) is not part of any standard; it is not commonly used either. 
The 1-s period is partly set by the available measurement data; also, it is 
partly set by the computation effort needed and by the fact that stan
dards and regulations exist for time scales up to a few seconds. The 
process of the proposed framework consists of six modules as shown in 
Fig. 1: (a) pre-processing measurement dataset, (b) applying KPCA with 
different kernels on the feature vectors (normalized high-dimensional) 
xi, which results in the vectors hi with principal features, (c) using k- 
means clustering to group the principal features hi, (d) reconstructing 
cluster centers using an inverse KPCA, (e) applying a new post- 
processing approach to the reconstructed cluster centers, and (f) visu
alizing the original features, size reduced principal features, clustered 
features and new-labeled clustered features in the 2D space using t-SNE. 

2.1. Pre-processing the measurement dataset 

The first part of the proposed framework is pre-processing of the 
dataset. First, the 1-s rms voltages are shaped within 10-min windows. 
Therefore, an input dataset matrix Xm×n (1) concludes, in which each 
row xi includes a 10 min feature vector with 1 s resolutions including n 
= 600 dimensions (600 × 1 s = 600 s/10 min). 

Fig. 1. Process of the proposed framework for seeking patterns in sub-10-min rms voltage variations from measurements at multiple locations.  
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Xm×n = [x1, x2, ..., xm]
T
, xi = [xi1, xi2, ..., xin], i = 1, 2, ...,m, n = 600 (1) 

m is the number of samples (time series as 10-min windows). Second, 
the windows including missing data (NaN values), are removed. Later 
on, from several possible approaches, a Min-Max normalization (2) is 
applied to matrix X,including × elements. In this way, each of the 600 
features is considered an independent coordinate which means that 
those samples with very high (low) 1 s rms voltages will have values 
close to 1 (0). Each time series is scaled within [0,1] at the end of this 
operation and will have an equal contribution to the matrix X. 

x[0,1] =
x − min(x)

max(x) − min(x)
(2) 

where x[0,1] is the normalized value of each x element of X, and max 
(x) and min(x) are the minimum and maximum of each column of X, 
respectively. 

2.2. Feature extraction using KPCA 

Principal Component Analysis (PCA) is one of the most powerful 
algorithms in data pre-processing for dimensionality reduction in many 
applications. PCA is a linear algorithm that transforms the original data 
into a linear combination of the new uncorrelated features. The new 
features aid in bringing non-obvious patterns in the data to the forefront 
and can improve the performance of the ML methods [40,41]. However, 
in our work, a KPCA algorithm was chosen and employed to extract 
principal features after using and testing PCA on the dataset. KPCA is a 
nonlinear PCA that uses kernel methods to deal with the nonlinearity of 
the input data. KPCA captures more complex data patterns, which would 
not be present under typical linear PCA transformations. The main idea 
underlying KPCA is similar to the support vector machine, which (in our 
case) takes high-dimensional data sequences (x600D

i ) from Xm×600 and 
maps the data space xi(i = 1, 2, ...,m) to a higher dimension space Φ(xi)

in which the data is linearly separatable. KPCA then makes a non-linear 
function using the kernel matrix K (3). The kernel methods in KPCA 
compute the distance between each sample, which makes this method 
computationally expensive when compared to PCA [42]. The detailed 
mathematical analysis, proof and comparison of KPCA with different 
kernels can be found in [43–45], which is beyond the scope of this paper. 

After checking several kernels as Linear, Polynomial, RBF, Sigmoid 
and Cosine (4), a Cosine kernel is chosen (d is the polynomial degree, 
γ = 1/2δ2, andθ ≥ 0). The reason for this selection has been based on 
amount of help the kernel provides to K-means clustering to find pat
terns with a wider/clearer range in voltage magnitude variations (i.e., 
patterns as a representative of the clusters will include the oscillations 
clearer). In the next step, PCA in this high-dimensional feature space is 
calculated to reduce the dimension linearly. Hence, KPCA, like PCA, 
does an eigen analysis and projects the feature vectors on the first p (in 
our case 10) dominant eigenvectors (principal components). Finally, the 
output of KPCA is determined to map the input to low-dimensional 
principal feature vectors (hpD

i = ffor(xi)) into Hm×p(5). 

Km×m =

⎡

⎣
[Φ(x1),Φ(x1)], ⋯ [Φ(x1),Φ(xm)]

⋮ ⋱ ⋮
[Φ(xm),Φ(x1)] ⋯ [Φ(xm),Φ(xm)]

⎤

⎦ (3)    

Hm×p = [h1, h2, ..., hm]
T
, hi = [hi1, hi2, ..., hip], i = 1, 2, ...,m (5) 

In addition to the size feature reduction, this step may help to better 
initialize centroids for k-means clustering [46]. 

2.3. Clustering using k-means 

Principal feature vectors (hpD
i ) concluded from KPCA are inputted to 

the k-means clustering block. The k-means++ initialization scheme [47] 
finds out K initial centroids (cluster centers)μj in an effective way. K- 
means clustering aims to group the vectors hi into K clusters (in our case, 
initial K = 15). Each feature vector is assigned to the cluster with the 
shortest ’distance’ to one of the cluster centers. Centroids are then 
updated once all feature vectors are assigned. The k-means minimizes 
(6) the sum of the Euclidian distances of each hi to its cluster centroid. 
This inertia is then trained by alternatively applying the following steps 
(7) until convergence: 

min
∑K

j=1

∑m

i=1
ωij‖hi − μj‖

2 (6)  

ωij =

{
1, ifj = argmin

j
‖hi − μj‖

2

0, otherwise
, μj =

∑m
i=1ωijhi

∑m
i=1ωij

, j = 1, 2, ...,K (7)  

where the first part of (7) assigns each feature vector hi to its closest μj, 
and the second part updates the μj by averaging all feature vectors 
within the jth cluster. 

2.4. Reconstruction of cluster centers 

To further analyze the properties of clustered feature vectors, espe
cially the representative data from each cluster, feature vectors from the 
centroids are fed to the inverse KPCA function to reconstruct the 
representative data sequence of each cluster (8). xrec

j is the reconstructed 
data sequence (600 dimensions) for the feature vector μj (the jth cluster 
center with the dimension p). As normalized, these reconstructed data 
sequences represent data patterns for the individual clusters. 

xrec
j = finv(μj), j = 1, 2, ...,K (8) 

To de-normalize (8) as xR
j , each element of xrec

j is de-normalized using 
(9) as follows: 

xR
j = xrec

j (max(x) − min(x))+min(x) (9) 

Finally, P1, ...,PK as the sub-10-min patterns are concluded. 

2.5. A new post-processing approach to the reconstructed cluster centers 
(patterns) 

The dataset used in this paper is related to a number of different 
locations worldwide with possibly different behaviors in voltage 
magnitude variations (depending on the type of the connected equip
ment). The variations deviate over the nominal voltages, 220 V and 230 
V. However, the obtained patterns from the proposed framework at 
multiple locations may have similar variation shapes despite having 
different ranges of voltage magnitude. This is because k-means inher
ently have checked the Euclidian distance (6) between each low 

[Φ(xi),Φ(xj)] = Φ(xi)Φ(xj)
T

⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
Linear

|(1 + Φ(xi)Φ(xj)
T
)

d

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Polynomial

|exp
(
− γΦ(xi) − Φ(xj)

2
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
RBF

|tanh(Φ(xi)Φ(xj)
T
+θ)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Sigmoid

|
Φ(xi)Φ(xj)

T

Φ(xi)Φ(xj)
⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟

Cosine

(4)   
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dimensional normalized sample (10D) and one centroid. This result may 
not be an issue for a single location with deviations over its defined 
nominal voltage. This is since the patterns with only different ranges of 
voltage magnitude can be considered distinct patterns. 

However, for the used case study, regarding multiple locations, 
manual post-processing with a different distance measurement criterion 
on the K reconstructed high dimensional patterns (600D) P1, ..., PK, 
which could be representative of their own samples in each K cluster, is 
necessary to avoid the problem of having patterns with similar variation 
shapes. In this way, the Pearson Correlation Coefficients (PCCs) between 
the K initial patterns, which is an adjusted Cosine similarity between 
centered patterns, are first calculated (10). Then, the PCCs between 
patterns (Pj) and the (K-j) other ones (Pi) (i > j) are compared, and a 
maximum value (if any, with a Thr. > + 0.9)1 is chosen, and the related 
pair patterns (Pi,Pj) are extracted (11). Eq. (12) is then applied to the 
obtained pair patterns (Pi, Pj) from (11) to ensure that one pattern is 
selected only once with the others. 

where P̄i(P̄j) refers to the mean values of patterns Pi(Pj). The next 
step is merging the pair clusters related to the pair patterns (with 
maximum PCC showing similar shapes of variations) obtained from 
(12). The rest of the clusters and the related patterns, with the cross PCCs 
between − 1 and + 0.9, are kept. The maximum used in (11) and (12) is 
based on the fact that the number of K initial clusters should not be 
reduced much, so that the basis of initial k-means clustering is kept. 

The time series within the created new clusters (with new label 
numbers) are then averaged, and the new patterns P1, ...,PKnew are ob
tained (in our case, Knew = 10). These new patterns are concluded from 
both Euclidian distance and centered Cosine similarity. Thus, they are 
highly different and separated in terms of both parameters, the range of 
voltage values and their variation shape. 

PCC(Pi,Pj) =
(Pi − P̄i).(Pj − P̄j)

‖Pi − P̄i‖
2
‖Pj − P̄j‖

2,Pi,Pj ∈ xR
j , i, j = 1, 2, ...,K(i > j)

(10)  

(Pi,Pj) = arg{ max
i>j

1 ≤ i ≤ K

1 ≤ j ≤ K

PCC(Pi,Pj) > +0.9|j = const.} (11)  

(Pi,Pj) =

{
arg{maxPCC(Pi,Pj)} i = i’

(Pi,Pj) else (12)  

2.6. Visualization of features by t-SNE 

To visualize the original feature vectors (xnD
i ) (no label) from Xm×n, 

principal feature vectors (hpD
i ) (no label) from Hm×p, the clustered 

principal vectors (clustered hi) from the output of k-means, and the new- 
labeled features, a t-SNE method [48], is used. In a t-SNE, first, the 
similarity between two feature vectors, i and j, are modeled by pij and qij 

in the input (pD) and output (in our case, 2D) of t-SNE, respectively. The 
mapping is then obtained by minimizing the KL divergence between 
those two distributions: 

KL(P||Q) =
∑

i∕=j

pijlog
pij

qij
(13) 

In our case, t-SNE is only for 2D visualization of feature vectors to see 
how the proposed methodology extracts initial patterns (K) and sec
ondary patterns (Knew). 

The best results from the unsupervised part of the proposed frame
work are obtained with the criteria of the good separation of clusters and 
identification of patterns with a wider/clearer range in voltage magni
tude variations (i.e., patterns as a representative of the clusters will 
include the oscillations more clearly). Finally, the new post-processing 
approach will find the most district patterns. 

3. Measurement dataset 

Time series of the 1-s rms voltage were obtained from recorded 
measurements at 57 locations in 19 countries worldwide, as given in 
Table 1. The measurements were non-continuous from 2009 to 2018; 
they were performed at a wall outlet, 220 V or 230 V, 50-Hz low voltage 
networks. The Metrum PQsmart portable and Dranetz PX5 monitors 
were used for the measurements. All measurements were following IEC 
61000–4-30 Class A. As can be seen in Table 1, most measurements were 

Table 1 
Measurement dataset from multiple locations per country and type of customer.  

Country No. of measurement locations No. of 1-s rms voltage values Measurement hours No. of 10-min windows 

Other* Hotel Total 

Sweden 16 6 22 3,348,600 930.2 5581 
China  6 6 601,800 167.2 1003 
Bosnia and Herzegovina  1 1 100,200 27.8 167 
Austria  3 3 301,200 83.7 502 
Italy  2 2 200,400 55.7 334 
Turkey  2 2 201,000 55.8 335 
Hong Kong  2 2 200,400 55.7 334 
India 1 2 3 288,000 80.0 480 
Spain  1 1 100,200 27.8 167 
Switzerland  2 2 200,400 55.7 334 
Romania  1 1 100,200 27.8 167 
Netherland  3 3 295,800 82.2 493 
Singapore  1 1 100,200 27.8 167 
Portugal  2 2 200,400 55.7 334 
Scotland  1 1 100,200 27.8 167 
United Kingdom  1 1 100,200 27.8 167 
Ireland  2 2 200,400 55.7 334 
Slovenia 1  1 100,200 27.8 167 
Zambia 1  1 100,200 27.8 167 
Total (19 countries) 19 38 57 6,840,000 1900 11,400  

* Apartment, restaurant, and office, detached homes. 

1 After checking the pair patterns and the related PCCs, this number was 
selected as a criterion showing highly similar patterns. 
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performed in hotel rooms, which was the easiest place to connect the 
monitors. 53 out of 57 locations had time-limited measurement intervals 
(about 28-h, 168 10-min windows). In total, 6,840,000 1-s rms voltage 
values were recorded during 1900 h, corresponding to a total dataset 
consisting of 11,400 10-min windows. By pre-processing the dataset, m 
= 11237 input feature vectors xi (10-min sequences, containing 600 1-s 
samples each) could be obtained, concluding a time series matrix 
X11237×600. 

As four different examples of the variations in the rms voltage within 
a 10-min window from the input dataset, Samples 107 (recorded in an 
apartment in Skellefteå, Sweden), 264 and 271 (a hotel in Shanghai, 
China), and 10,756 (an apartment in Ljubljana, Slovenia) are shown in 
Fig. 2. The variations can belong to a similar pattern or some different 
patterns. Therefore, it is worth discovering the underlying patterns from 

the dataset, including time-limited measurements, where one may find 
good interpretations of each location’s physical reality. Moreover, this 
can obtain a comprehensive picture of voltage magnitude variations 
(oscillations) at the time scales below ten minutes. 

4. Results and analysis 

4.1. Results of the proposed methodology 

The results of a combination of KPCA with different kernels (4) and 
k-means have been investigated (sub-Section 6.3.2). None of the used 
kernels as Linear, RBF, Polynomial, and Sigmoid could change the 
original data distribution in a way to help k-means clustering, like the 
Cosine kernel. Moreover, the Cosine kernel has concluded patterns with 
a wider/clearer range in voltage magnitude variations. Hence, KPCA 

Fig. 2. Four examples of variations in rms voltage within a 10-minute window. (a) Location 1; (b) and (c) Location 2; (d) Location 54.  

Fig. 3. Singular values corresponding to each singular mode index for KPCA 
with Cosine kernel. 

Fig. 4. The inertia (6) of k-means vs. a different number of clusters.  
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with Cosine kernel is chosen; after many runs of the function of Ker
nelPCA by the “cosine” kernel on the input dataset, the singular values 
(2-norms of the principal components’ variables in the lower- 
dimensional space) corresponding to each singular mode index are 
shown in Fig. 3. The singular values are related to every one of the first 
50 principal components. We have considered only the first p = 10 
principal components (saving 88.9% information) during the training 
process of KPCA since almost the same results were obtained, as 
compared to 50 components, which could save 96.8% information. 
Although the choice of K in k-means is up to the user, in this work, 
firstly, this selection has been obtained using the elbow point analysis. 
Hence, according to Fig. 4, the interval to choose the optimal number of 
clusters is marked by a rectangular showing a number from 13 to 17 
(selected according to the knee of the curve). Fig. 4 states different 
inertia (6) (within-cluster sum of squares criterion) versus a different 
number of clusters. After checking the results of all the six numbers of K, 
K = 15 was chosen as the elbow point [49] (see sub-Section 6.2). In this 

way, some good interpretations coupled with physical reality were 
achieved. 

A function 2D t-SNE was then used to visualize the no-labeled 
principal feature vectors (10 dimensions) and the clustered principal 
features (10 dimensional), as shown in Fig. 5a and b, respectively. The 
parameters of t-SNE (input:10D, output:2D) were set as Barnes-Hut al
gorithm, Euclidean distance metrics and perplexity = 30. The best 2D 
embedding space for visualization was chosen by selecting the minimum 
loss values from running t-SNE 100 times. Fifteen clusters, colored in 
Fig. 5b, express 15 possible patterns whose few overlap, as seen among 
some clusters, could show a need to plot more dimensions (principal 
components more than three). However, each time series belongs to only 
one cluster (hard clustering). 

The 15 cluster centers, which are 10D time series of rms voltages, are 
an average of all 10D time series belonging to the 15 clusters. All 15 
cluster centers are reconstructed as 600D time series using an inverse 
function of KPCA. Then, the initial reconstructed data sequences 

Fig. 5. Visualization of principal feature vectors (10D) by 2D t-SNE. (a) After KPCA with Cosine kernel, before k-means; (b) Clustered, after k-means with initial K =
15 without post-processing). 

Fig. 6. Pearson correlation coefficients between the 15 initial patterns.  
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(representative patterns for the 15 individual clusters) are concluded as 
P1, ..., P15. The correlation matrix between the obtained patterns (10) 
calculates the cross PCCs, as shown in Fig. 6. The pair patterns with a 
highly similar shape of voltage variations were calculated (using (11) 
and (12)) and indicated in this figure as (P8, P3), (P9, P4), (P10, P5), (P14, 
P6), and (P15, P13). Fig. 7 also shows a plot of the similar patterns, in 
which the similarity between each pair pattern can be observed. These 
10 patterns are plotted in six subplots just to get less space in the paper. 
In this way, patterns 3 and 14 (Fig. 7b), 4, 5 and 13 (Fig. 7d), and 6, and 
10 (Fig. 7e) are plotted in the same subplot because they have a similar 
magnitude range of voltage. 

Comparing Fig. 8b with the clusters from the proposed framework 
with post-processing patterns (Fig. 8a) shows a better distinction of the 
clusters in the proposed framework. 

See, for example, cluster 1 in Fig. 8a, a mix of clusters 5 and 10 as 
non-clear in Fig. 8b. Moreover, there is no clear separation in clusters 2, 
4, 9 and 7 in Fig. 8b. Besides this, checking the similarities between 

patterns concluded from Fig. 8b shows the highly similar shape of var
iations in patterns 1, 4, 7 and 9, which means that four clusters have 
been separated for no reason. 

According to Fig. 9, the following observations can be made:  

(i) Cluster 8 with 5376 samples (Fig. 9g and blue circles in Fig. 8a) 
and cluster 10 with 3052 samples (Fig. 9i and gray circles in 
Fig. 8a) are the biggest, respectively.  

(ii) The differences between the patterns are in the range of the rms 
voltage magnitude, the shape of variations/oscillation (growth 
pattern), and variations times. Cluster 9 (Fig. 9h) has a maximum 
range of variations.  

(iii) The patterns realized in Fig. 9 are smoother than the real samples 
(Fig. 2) because of the intrinsic characteristic of averaging in k- 
means. 

In order to show that the patterns are a good representation of all 

Fig. 7. Patterns with similar shape of variations, concluded from Fig. 6. (a) and (b) (P8, P3); (c) and (d) (P9, P4); (e) and (d) (P10, P5); (b) and (e) (P14, P6); (f) and (d) 
(P15, P13). 

Fig. 8. Visualization of feature vectors (10D) by 2D t-SNE. (a) Clustered as new labeled with Knew = 10 after post-processing; (b) Clustered with initial K = 10 
without post-processing). 
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samples, some samples, along with the patterns surrounded by a 99% 
confidential interval (CI)2, are shown in Fig. 10 for clusters 1, 7, 9 and 
10. The high and low values of the highlighted area for CI are calculated 
from x̄ ∓ 2.58σ/

̅̅̅̅
N

√
, where each cluster is considered as a matrix with N 

row samples and 600 columns, ̄x is a mean value of each column, and σ is 
the standard deviation for each column. A 600D sequence of x̄ makes a 
pattern. As can be seen in Fig. 10, the samples in each cluster show some 
differences depending on the intra-class variance (associated with 
within-class spread). However, the overall patterns of the samples would 
remain largely the same. 

Another observation from Fig. 10 is that a number of samples show 
some steps in voltage variations, but the pattern does not. This obser
vation is clearer for cluster 8 (Fig. 10c). A criterion is used in [12] as a 
single-window index for quantifying the number of steps in voltage 
variations. An analysis of the ten patterns and their samples is explained 
in the next sections to show: 1) the good separation of the ten clusters 
and 2) the necessity of the obtained patterns beside statistical indices 
introduced in literature [6,18] over a sub-10-min time scale. 

4.2. Analysis of the correlation between ten-new obtained patterns 

In order to show there is a good separation between ten-new 

obtained patterns, the Pearson Correlation Coefficients (PCCs) are 
calculated, as shown in Fig. 11, as a correlation matrix. The coefficients 
are less than + 0.9, which means a low similarity between the growth 
patterns obtained from the proposed framework. The only correlation 
more than + 0.9 is + 0.92 for (P3, P8), the same as the pair pattern (P3, 
P11) seen in Fig. 6. (P3, P11) was not merged into one because there was 
already a higher correlation of + 0.96 for (P3, P8), as seen in Fig. 6 
(according to our post-processing strategy (11)). Moreover, the 
Euclidian distance between (P3, P8) in Fig. 11 is 101.51, and P3 is totally 
below P8 in terms of voltage magnitude, which shows another difference 
between these two patterns. Additionally, t-SNE in Fig. 8 shows the 
separation of the two related clusters. A maximum negative correlation 
of − 0.94 is obtained for (P4, P10), (P8, P10) and (P8, P9), which shows 
that there is an inverse behavior between the pair patterns, as seen in 
Fig. 9. This inverse behavior can also be seen in Fig. 8a since each pair 
pattern is somewhere in the 2D t-SNE plot with an angle difference of 
about 160◦. 

4.3. Analysis of applied statistics 

4.3.1. Single-window indices on the whole dataset 
Previous research has introduced statistical indices quantifying the 

voltage levels [6,18]. By employing the fourteen single-window indices 
(Table A.1), obtained over all 10-min windows of the whole dataset, the 
general situation of the dataset looks as follows: Voltage typically is 
varied by 0.5 V-5 V within a 10-min window, where a range exceeding 

Fig. 9. Reconstructed patterns (cluster centers) including the number of samples belonging to each cluster. (a) Cluster 1; (b) Cluster 2; (c) Clusters 3 and 6; (d) – (i) 
Clusters 4 – 10, respectively. 

2 CI shows that the patterns fall into the highlighted part with 99% confi
dence. It also confirms that the most samples (cluster members) would be 
around the CI area. 
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1–2 V is common. The differences between higher-order statistics, 
compared to lower-order statistics for the indices quantifying the range 
in values (R100, R98, R90, R80), overdeviations (P100, P99, P95, PP0) 
and (VSV, Std.) indices, are higher. They quantify variations within a 10- 
min window. An opposite behavior is seen for underdeviation indices. 
The probability distribution functions for (R100, R98, R90, R80) and 
(P100, P99, P95, PP0) have a similar pattern (only a factor of two is the 

difference). VSV is slightly higher than Std., but somehow similar to a 
distribution function. Fig. 12 shows a cross-correlation between all 
indices mentioned. A low/high negative/positive value of the coefficient 
between two indices shows a strong correlation, and they vary together 
in the opposite/same direction. R98-R100 and P99-P100 have the 
highest positive correlations (99%). By taking an average over the cor
relation between each index and other ones, the most suitable indices 
(strongest correlation) are calculated as R90 (from the range indices), 
P95 (from the overdeviation indices), and P5 (from the underdeviation 
indices). As a conclusion derived from this section, the most suitable 
indices, along with Std. (which is somehow similar to VSV, with a 93% 
correlation), will be used for the 10-min windows within each cluster to 
show how well the 10-min time series are grouped into ten clusters, 
displaying some homogeneity between the time series within each 
cluster. 

4.3.2. Selected single-window indices on the cluster’s samples 
The selected indices of R90, P95, P5 and Std. are employed (Section 

4.3.1), and a probability distribution function (PDF) for each cluster, 
including their samples, is shown in Figs. 13-16, respectively. It is seen 
from all four indices that the probability distribution function for clus
ters 8 and 10 shows a softer curve because the clusters are the most 
dominant ones with the highest number of samples. There is also a clear 
separation of values for classical indices between different clusters in 
terms of the probability distribution. These results come from the well- 
separation of 10-min samples as grouped into ten clusters, displaying 
some homogeneity between the samples within each cluster. 

The selected indices, which show an almost similar result for pair 

Fig. 10. Four clusters including patterns, 99% CI, and their samples. (a) Cluster 1 with four random samples; (b) Cluster 7 with all 13 samples (c) Cluster 9 with all 23 
samples (d) Cluster 10 with four random samples. 

Fig. 11. The similarity/dissimilarity between ten new patterns.  
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Fig. 12. Correlation coefficients between various single-window indices.  

Fig. 13. PDF of R90 for the group of time series within each cluster.  

Fig. 14. PDF of P95 for the group of time series within each cluster.  

Fig. 15. PDF of P5 for the group of time series within each cluster.  

Fig. 16. PDF of Std. for the group of time series within each cluster.  
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clusters, are explained here:  

- R90 and Std.: Clusters {1,10} (marked in Figs. 13 and 16)  
- P95: Clusters {1,10} and clusters {3,6} (marked in Fig. 14) 

However, for the cluster centers {1,10}, the shape of variations of 
rms voltage is different (Fig. 9a and i), and there is only a + 0.21% 
correlation between those cluster centers (Fig. 11). Also, the shape of 
variations for the cluster centers {3,6} is dissimilar (Fig. 9c), and a + 9% 
correlation is seen in Fig. 11. 

4.3.3. Selected single-window indices on the ten-new patterns 
In the following, the selected indices are applied to the ten patterns, 

and the results in terms of range and a percentage of nominal voltage are 
given in Table 2. The indices showing an almost similar result between a 
pair of clusters are as follows:  

- R90: {P2, P4}  
- P95: {P2, P9} and {P3, P7}  
- Std.: {P7, P10} 

However, Fig. 9 (the patterns) and Fig. 11 (PCCs) show that the pair 
patterns have different patterns despite a similar range of variations seen 
in the statistical indices. 

It can be concluded from Section 4.3 that the patterns obtained from 

the proposed framework are correctly separated, and their related time 
series have mostly similar behavior. Moreover, the statistical indices 
applied to cluster centers or samples may consider some clusters in the 
same category and cannot distinguish between clusters. The PCCs be
tween cluster centers are a good measure to show the separation of the 
clusters. It can also be concluded that the statistical indices may not be 
enough to show a full picture of the sub-10 min real variations. Hence, 
beside the statistics, seeking 10-min window patterns from the proposed 
framework in this paper is essential. 

5. Patterns for each single location 

The post-processing part of the proposed framework makes it 
applicable for seeking sub-10-min patterns from multiple locations with 
time-limited measurements. Let’s consider the location 47 out of the 
total 57 ones. This place is a detached house in Dalsland, southern 
Sweden, with a measurement period of 35 h (210 10-min windows). 
Fig. 17a shows the 1-s rms voltages, and Fig. 17b represents the selected 
single-window indices over the 35-h period. The maximum of each index 
is also shown as a dashed horizontal line. The lower values of the indices 
(Fig. 17b) indicate that the 1-s rms values are closer to the 10-min ones 
(Fig. 17a). Although the indices quantify voltage levels and the varia
tions, the typical patterns need also to be found. Once again, given the 
necessity of our proposed framework, there can be two ways to assign 
the patterns for the samples of this location, as explained in sub-Sections 

Table 2 
Selected single-window statistics for each pattern.  

Fig. 17. A 35-h expression of measurements at location 47. (a) rms voltage (b) selected single-window indices.  
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Fig. 18. Patterns extracted for location 47. (a) Patterns 3, 5 and 6; (b) Pattern 1; (c) Patterns 4 and 10; (d) Pattern 8.  

Fig. 19. Real and pattern-based rms voltage for 1st, 2nd, and 3rd 5 h of the 35 h measurements at location 47.  
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5.1 and 5.2. 

5.1. Seeking patterns for each single location using the data from multiple 
locations – The first way 

The first way is that after obtaining the labels (clusters 1–10) for each 
10-min time series from the proposed framework, the patterns belonging 
to each separate measurement location are accessible. The clusters’ la
bels and their number of samples per location 47 are as follows: Cluster 1 
(2 samples), Cluster 2 (no samples), Cluster 3 (42 samples), Cluster 4 (12 
samples), Cluster 5 (34 samples), Cluster 6 (37 samples), Cluster 7 (no 
samples), Cluster 8 (48 samples), Cluster 9 (no samples), and Cluster 10 
(35 samples). Therefore, this location includes seven patterns (P1, P3, P4, 
P5, P6, P8, P10) out of 10 existing ones. Other locations may include 
more/fewer patterns (Fig. 21a). 

5.2. Seeking patterns for each single location using the data from multiple 
locations – The second way 

Another way to obtain some patterns per location 47 is to take an 
average within each cluster obtained in sub-Section 5.1. In this way, 
more meaningful patterns are obtained for the location. Fig. 18 shows 
seven local patterns obtained specifically for the location in this manner. 
The extracted patterns were taken out from a number of time-limited 
samples for only location 47; therefore, voltage oscillations could be 
shown more clearly, when compared to the main patterns in Fig. 9. 

Fig. 19 shows the first, second and third 5 h of the 35-h rms voltage 

measurement (Fig. 17a) for real and pattern-based values versus time. 
This figure shows that the voltage steps could not be detected by the 
different 5-hour-time series obtained from the seven patterns. However, 
the pattern-based voltages follow the real values. 

5.3. Triangle of cluster/pattern-sample-location 

This section shows the importance of the clusters/patterns obtained 
from the proposed framework. The number of samples within each of 
the 10 clusters as grouped per each of the 57 locations is obtained and 
shown in Fig. 20. Clusters 8 and 10 are the two biggest clusters, and 
cluster 7 is the smallest one, as seen before in Fig. 9. Moreover, cluster 8 
has a maximum sample number of 461/location 48. Then, cluster 10 
includes values 400/location 48 and 363/location 46, as marked in 
Fig. 20a. Locations 46 and 48 are two detached houses at Kristinehamn 

Fig. 20. Boxplot for samples of 10 clusters at 57 locations. (a) Full picture showing the importance of clusters 8 and 10, maximum values are indicated (b) Showing 
the contribution of clusters 1 – 7 and 9, maximum values (highest outliers are indicated). 

Fig. 21. Analysis of “pattern-location”. (a) The pattern distribution into the location (b) The summation of the pattern’s contribution to the location.  

Table 3 
Information of three sample locations.  

Location 
no. 

Place Date of 
measurement 

Patterns obtained in 
the location 

2 Hotel/Shanghai/China 2009–07-25 All 10 patterns, max. 
cont. (P3, P10) 

12 University campus/ 
New Delhi/India 

2014–02-21 All except P7, max. 
cont. (P5, P8) 

53 University campus/ 
Gothenburg/Sweden 

2018–03-21 P3,P5,P6,P8,P10 

patterns, max. cont. 
(P8, P10)  
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and Ludvika in southern Sweden with the longest measurement periods 
of about 182 (1091 10-min windows) and 202 h (1213 10-min windows) 
in the dataset (Table 1), respectively. These two locations include eight 
patterns (P1 - P6, P8, and P10) out of 10 existing ones. Fig. 20b shows the 
contribution of other clusters. The highest outliers display a maximum 
number of samples per a defined location, while not considering location 
48 in cluster 8, and 46 and 48 in cluster 10. Clusters 1, 7 and 9 have 
shown their own maximum contribution in the hotels placed at locations 
26 (Vienna/Austria), 23 (Istanbul/Turkey) and 22 (Shanghai/China), 
respectively. The patterns in clusters 2 – 6 are seen more in location 46. 

The distribution of 10 patterns in the 57 locations is shown in 
Fig. 21a. Pattern 10 is the only one seen in all locations (Fig. 21b). 
Patterns 3, 6, 8 and 10 are common, while patterns 4 and 5 are less 
common. This conclusion is also seen from the number of cluster 
memberships, as seen in Fig. 9. Other patterns are seen in a few loca
tions. The locations including all the ten patterns are hotel rooms at 
locations 2 (Shanghai/China) and also, 8 and 23 (both in Istanbul/ 
Turkey). 

5.4. Seeking patterns for each single location using each location data 
separately 

In this paper, clustering has been based on the whole locations in the 
dataset X7356×600. Sub-sections 5.1, 5.2 and 5.3 also show the proposed 
framework’s applicability for each location. This section shows why the 
proposed framework has not been run for each location separately. The 
answer is that the measurement periods for each location are not good 
enough to seek the real patterns for each location separately. The pro
posed framework is run for each single location distinctly to confirm 

this. Table 3 gives the information regarding three sample locations for a 
period of about 27 h (167 10-min windows for locations 2 and 53, and 
168 windows for the location 12). After many empirical tests, the 
number of clusters was chosen as K = 2 for all these locations. Fig. 22 
shows the two reconstructed patterns and the related t-SNE (10D-2D). In 
this manner, clustering is based on each location separately. The pat
terns are different per location. However, they can still be seen in Fig. 9 
(all locations were considered). For example, the patterns in Fig. 21a and 
b for location 2 are close to the patterns 10 and 3/4 in Fig. 9. This shows 
the effectiveness of our proposed framework and the feasibility of the 
obtained patterns for each location, which mixed all locations and was 
run once (for instance, Fig. 18 for location 47). 

Nevertheless, the two obtained patterns per location are for a period 
of 27 h, which cannot represent the total behavior of the locations. The 
scheme (choosing two clusters for each location separately) cannot 
obtain real patterns, and some abnormal patterns may occur, as seen in 
Fig. 22e, in which cluster 2 has only one sample. 

Hence, although the time-limited measurements used in this work 
are enough to quantify the variations in the sub-10-min scale [18], a 
recommendation for running the proposed framework at each location is 
recording measurements as weekly, monthly, seasonally or yearly per 
location. This can be different for each location with different behavior; 
this is because the patterns per location are sometimes repeated daily/ 
week; hence, the daily/weekly measurements might be enough. Then, 
by choosing K = 10 (or maybe another value), the real patterns/loca
tions can be obtained. Since each location is investigated separately, 
there may be no need for the post-processing part in Fig. 1, because the 
patterns with almost similar shapes of variations and different voltage 
magnitude ranges can be considered two distinct patterns at the location 

Fig. 22. Two patterns and visualization of feature vectors by t-SNE (10D-2D). (a) - (c) Location 2; (d) - (f) Location 12; (g) - (i) Location 53.  
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[50]. For example, the voltage magnitude range for the location 47 is 
somewhat between 230 V and 240 V, as shown in Fig. 17a, 18 and 19. 
Hence, a different range out of the period in patterns with similar 
variation shapes must be considered an individual pattern. 

6. Discussion and future works 

6.1. Other applications of the proposed methodology 

The work presented in this paper uses time series of 1-s rms voltages 
over a 10-min window. As one way to show the oscillations observed in 
the sub-10 min period, this work sought the sub-10 min patterns of rms 
voltage using an unsupervised learning method followed by a new post- 
processing approach. In that way, some important patterns in the large 
data of low voltage variational measurements from multiple locations 

were indicated. Compressing a huge amount of data from power-quality 
monitoring was also done in this study since the input data size was 
reduced from 600 to 10 by a factor of 60. The proposed scheme, beside 
the statistics, is the first step before studying the potential impacts of the 
sub-10-min variations on equipment. The proposed scheme is scalable 
and computationally cheap, which makes it appropriate for seeking the 
typical patterns in the big data domain. 

In comparison with some previous research [51–55,58] that uses pre- 
defined scalar features in a labeled dataset to locate the source of voltage 
dips which are some kind of steps in voltage magnitude, one important 
application of our proposed method can be solving that two-classes 
problem in an unsupervised intelligent scheme by using measurements 
from multiple power-quality monitors. In this way, the input of KPCA is 
the rms voltages and currents (merged as one signal or into two separate 
signals) with a high time resolution over a selected window, including 

Fig 23. Number of samples for K: 13–17. (a) Clusters 1–5; (b) Clusters 6–17. The number of samples per cluster is sorted.  

Fig. 24. Visualization of original feature vectors (600D) by 2D t-SNE without KPCA. (a) Before k-means; (b) Clustered, after k-means with initial K = 15 without 
post-processing. 
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pre and after dip cycles. The output of k-means will show two groups, by 
which an expert can label the group’s members as downstream and 
upstream as the source location of voltage dips. 

6.2. The number of initial clusters in the proposed framework 

The k-means clustering requires the user to select the number of 
clusters in advance. In our study, the interval to select an optimum K 
number was from 13 to 17 (Fig. 4). Fig. 23 compares the five numbers 
and their samples to group the m = 11237 samples. As can be seen, 
somewhat 3 to 8 main clusters are seen for all different ranges of K. 
Choosing K = 14, 16 and 17 splits the clusters for no reason. Also, their 
last cluster has only 5, 4 and 4 samples, respectively. Between K = 13 
and 15, through multiple checking of patterns showing different values 

and variation shapes, K = 15 was chosen, so that some good in
terpretations coupled with physical reality were found. 

6.3. Some other feature-size reduction tools, distance measurements and 
clustering methods 

During the preparation of the proposed framework, different sce
narios have been investigated as follows: 

6.3.1. Clustering without KPCA 
The results without using KPCA and only k-means were investigated. 

Fig. 24 shows a 2D visualization of the input data for 15 initial clusters. 
As can be seen, there is no good separation between clusters when 
compared to Fig. 5b (KPCA + k-means). A selection of three clusters 

Fig. 25. Visualization of clustered principal feature vectors (10D) by 2D t-SNE using KPCA-different kernels, after k-means with initial K = 15 without post- 
processing. (a) Linear; (b) Polynomial; (c) RBF; (d) Sigmoid. 

Table 4 
A comparison of our proposed framework and ref. [37].  

Method Case study Input 
samples 

Window 
length 

Time 
resolution 

Measurement 
locations 

Principal 
components 

Clusters Used workstation 

Proposed 
framework 

rms voltage 11,237 600 (10 
min) 

1 s 57 10 10 Intel-i7 8700 K-3.7 GHz × 12 CPU, 16 GB 
RAM, NVIDIA GeForce RTX 2080, Ubuntu 
20.04.3 LTS-OS 

[37] Voltage 
harmonics* 

365 144 (24 h) 10 min 1 16 2 Intel-i7 3.4 GHz × 12 CPU, 48 GB RAM, 
NVIDIA Titan Xp 12 GB GPU.  

* V2, V3, V4,…. 
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would be effective for Fig. 14 (only k-means), which cannot show the 
real patterns of our dataset with 11,237 input samples. Hence, using 
KPCA is essential in the proposed framework. 

6.3.2. Clustering by considering different kernels of KPCA 
The clustering results for different kernels of KPCA using optimal 

parameters are also shown in Fig. 25 (the results of the Cosine kernel 
have been already discussed in Fig. 5b). The Linear kernel (Fig. 25a) 
does not change the distribution of points in the original dataset much 
(Fig. 24a). There are also not so many changes while using the Sigmoid 
kernel, as shown in Fig. 25d. The Polynomial (Fig. 25b) and RBF 
(Fig. 25c) kernels have changed the original data distribution’s shape 
almost similarly. However, none of the used kernels could change the 
original data distribution like the Cosine kernel shown in Fig. 5b, in 
which the dataset in the 2D plan is opened and distributed so that it can 
help the k-means to group the clusters more easily. Hence, only the 
Cosine kernel assisted k-means clustering in finding the initial centroids 
in a better data-distributed space. The Cosine kernel could map mapped 
the original data space xi (11237 10-min windows with 600D obtained 
from the measurements) to the higher dimension space Φ(xi) and apply a 
non-linear combination as cosines of the vectors (4). Then, an eigen 
analysis was done, and the feature vectors were projected on the first 10 
dominant eigenvectors/principal components. Another observation of 
KPCA is that it can compress the Euclidean distance of intra-cluster pairs 
while preserving the Euclidean distance of inter-cluster pairs. That type 
of compressibility, due to the Cosine kernel in KPCA, could considerably 
help k-means. Beside all these reasons, the selection of Cosine kernel has 
been based on the concluded patterns with a wider/clearer range in 
voltage magnitude variations. 

6.3.3. Different feature size reduction tools and required time analysis 
As shown before, KPCA with Cosine kernel was chosen as a simple 

tool to reduce the feature size from 600 to 10. However, other feature 
size reduction tools like a deep autoencoder (DAE) can be considered in 
future works instead of KPCA to see how the clustering results would be 
for high-resolution time series (i.e., 600D). Nevertheless, using a DAE 
would not be as simple as the used KPCA. Table 4 shows a structured- 
based comparison of our proposed framework (KPCA + k-means +
post-processing) and (DAE + k-means) [37]. As shown, the proposed 
framework/ref. [37] reached 10/2 clusters/patterns, while having a 
higher/fewer number of input samples, longer/shorter window lengths, 
higher/lower time resolutions, less/more principal components and 
somehow, the slower/faster workstations. The findings, as can be seen 
from Table 4, confirm the much simpler schema of our proposed 
methodology. 

Although the proposed methodology is intended for off-line use and 
aimed initially at obtaining general knowledge about a new phenome
non (10-min rms voltage variations), Table 5 shows the detailed time 
required for running the proposed methodology and the method in [37]. 
The total running time of the proposed framework is about 24% of the 
total running of [37]. Note that the post-processing part of the proposed 
framework checks the patterns using a number of mathematics 

calculations/rules, emulating a human expert; hence, that takes only a 
few milliseconds. 

6.3.4. Different distant measurements in k-mean 
Replacing the Euclidian distance used in k-means by distance time 

warping DTW [33] can be another future work. This way, the time shift 
between the extracted patterns will not be considered a distance or 
different criteria. Concerning the ten obtained patterns, the minimum 
DTW and Euclidian distances are calculated for (P3, P6) (Fig. 9c) as 176 
and 26, respectively. In contrast, centered Cosine distance concluded a 
(1 – 0.09 = 0.01), which is the second-largest distance between pair 
patterns. Being close patterns (P3, P6) by the DTW and Euclidian shows 
close voltage ranges and far shape of variations, despite an observed 
time shift between them. 

6.4. Sub-10-min variations from both views of power-quality and ML 

6.4.1. ML view 
The ten clusters’ samples (time series with 10-min windows) show 

some differences, depending on the intra-class variance. However, the 
overall pattern of the samples remains largely the same. Since each 
pattern is an average of its own samples, the fewer the number of 
samples within a cluster, the more similar those samples to the cluster 
center (pattern). Hence, all clusters (for example, clusters 7 (Fig. 10b) 
and 9 (Fig. 10c)), except 3, 6, 8 and 10, look very similar to their own 
samples. 

Each pattern is representative of a number of 10-min windows, 
which can be considered “ten patterns” according to the actual re
cordings. According to Figs. 9 and 21a, patterns 3, 6, 8 and 10 are the 
common patterns, while patterns 4 and 5 are less common. Other pat
terns belong to clusters with fewer samples and are seen in few locations. 
Patterns 3 and 6 show a single triangle form superimposed on a very 
small variation in the rms voltage among the four common patterns. 
Pattern 8 shows small random variations, and pattern 10 indicates a 
positive ramp form of variations. 

From the output of the proposed framework, the samples 107, 264, 
271 and 10756, as shown in Fig. 2, belong to the patterns 8, 3, 6 and 5, 
respectively. The three real samples of 264, 271 and 10,756 are more 
following the patterns of 3, 6 and 5 than the sample 107 in cluster 8. 
Because cluster 8 is the biggest, even though the overall pattern of the 
5376 samples is similar, averaging many samples within the cluster to 
generate the cluster center (pattern 8) may make some differences in 
oscillation values between the patterns and real samples. However, by 
considering the patterns for every single location and extracting new 
patterns per location (like the patterns per location 47, Fig. 18), “some 
typical patterns” per every single location can be determined. In that 
way, the patterns per location can be much more similar to the real 
recorded samples. For the locations with longer time measurements 
series, such as locations 46 (about 7.5 days) and 48 (about 8.5 days), 
finding the medoids [56] within each obtained cluster per location is 
recommended. This way, the most center sample within the cluster will 
be selected as the cluster pattern, which may show more real patterns 
than the averaging method discussed in Section 5. 

6.4.2. Power-quality view 
There are some reasons or physical phenomena behind the 10 gen

eral obtained patterns, depending on the upstream grid (how weak or 
strong it is and the loose connections) and the type of connected loads 
close to the power-quality monitors at the 57 different locations studied 
in this paper. Equipment that exhibit continuous, rapid load current 
variations (mainly in reactive component) can cause fast voltage vari
ations at a sub-10-min scale. Examples of such loads are starting water 
boilers, microwaves under non-nominal power conditions, air condi
tioners, elevators and printers. Variations in the generation capacity of 
PVs and wind power installations, as well as the EV charging and 
starting electric heat pumps, and transformer tap changer operation (see 

Table 5 
Time required for different parts of the proposed framework to seek patterns.  

Name Time (s) 

Proposed 
framework 

[37] 

Training KPCA/DAE and feature 
extraction (1000 runs)  

12.5  142.88 

Clustering (100 runs)  0.19  0.15 
Reconstruction from cluster centers  0.23  0.29 
t-SNE  40.25 (100 runs)  78.86 (50 runs) 
Total  53.17  222.18  
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steps in Fig. 18b), are other sources of fast voltage variations. In order to 
have a closer look into the patterns-sources in different locations, a 
reverse check from some of the patterns/locations is done to see which 
locations have similar patterns. This will somehow show that the places 
in the locations may have used similar loads or similar equipment exist 
nearby. For example, as can be seen in Fig. 21, locations 2, 28 and 23 
have the similar patterns P1 to P10. These locations are hotels in 
Shanghai/China and Istanbul/Turkey, respectively. The hotels in loca
tions 3 (Prague/Czech) and 20 (Skelleftea/Sweden) include the similar 
patterns P8 and P10. The hotels in locations 4 (Sarajevo/Bosnia and 
Herzegovina), 35 (Turin/Italy), 39 (Kiruna/Sweden) and 51 (Indian 
restaurant in Gutenberg/Sweden) have the similar patterns P3, P4, P6, P8 
and P10. The hotel in locations 6 (Milan/Italy) and the detached houses 
in 46 (Kristinehamn/Sweden) and 48 (Ludvika/Sweden) consist of 
similar patterns as all others, except P7 and P9. 

The observations, thus, show that the mentioned hotels or the de
tached houses in different countries may have used similar loads, or 
similar equipment exist nearby. Moreover, comparing locations 3 and 20 
with locations 6, 46 and 49 can show that first, the locations 6, 46, and 
48 have more connected loads. Secondly, the patterns P8 and P10 are 
seen in all five locations, thus showing that they may have similarly 
connected loads. Note that there is no detailed information about the 
connected loads in the 57 locations; some of the loads may have multiple 
patterns, and two different loads may have similar patterns. However, 
by having information about the connected loads, the results obtained 
from this study in regard to the 10 patterns can help to understand the 
sources behind the patterns. In this way, using the 10 patterns can 
develop future standards/classification methods (labeling patterns 
through the sources causing the patterns) and also methods for testing/ 
putting requirements (according to the shape and voltage level of pat
terns) on the connected equipment. 

Another observation is that there is a clear separation of clusters for 
the statistical power-quality indices, which showed the well choosing of 
the samples within clusters by the proposed framework. Moreover, the 
patterns are a good representative of the clusters. For example, patterns 
3 and 6 have the value of R90 as 2.02 and 1.89, respectively (Table 2), 
which is somewhat close to the median value of the index for the clusters 
3 (2.56) and 6 (2.28), as can be seen in Fig. 13. 

Another point about the ten patterns is that they cannot detect 
multiple steps in rms voltage variations, but they show the single steps in 
patterns 2 and 9. Although the 10 min period selected for our study is 
according to standard IEC 61000–4-30, considering some other windows 
like 5 min may generate some patterns showing the multiple steps of 
variations. 

6.5. Supplementary works 

As mentioned in Section 5, another way to find more actual patterns 
for each location is weekly, monthly, seasonally or yearly measure
ments. On the other side, the authors of this paper tried to consider 
feature engineering. They inputted all the 14 statistical indices (Section 
4.3.1) beside the 10-min windows as the input features to the proposed 
framework. However, the high correlation between some indices did not 
positively affect the clustering results. Despite this, using only the four 
selected indices as the input features added to each 10-min window for 
clustering may make more complete patterns (or maybe similar). 
Quantifying the current variations and then voltage variations, due to 
the presence of solar powers, electric vehicle charging, wind powers, 
electric heat pumps, and railway stations, is needed by installing a 
PQsmart monitor close to the equipment for future works. Measure
ments at higher voltage levels like the medium voltage at industrial 
installations and the impact of the variations on the connected equip
ment are also needed for extra investigations. Another future study will 
be seeking the patterns for variations in frequency and harmonic volt
ages recorded from multiple power-quality monitors in a sub-10 min 
period, which is an ongoing work pursued by the authors. 

7. Conclusion 

A comprehensive framework for short-term measurements was pro
posed to seek the sub-10-min patterns in rms voltage variations from the 
data at multiple locations. The framework used an unsupervised learning 
term as the kernel principal component analysis followed by principal 
feature clustering and a term as a suggested post-processing approach to 
the initial patterns. The proposed framework was applied to measure
ments from 57 low-voltage locations worldwide through the years 2009 to 
2018. Fifteen initial clusters/patterns were converted into ten new clus
ters/patterns using the clusters’ merging strategy with highly similar 
patterns used in the suggested post-processing approach. Since there was 
a time limitation in the measurements, all locations were considered 
together expertly. This ensured a level of the generality of the patterns and 
also allowed the comparison of locations. The ten extracted patterns, 2D 
embedded space (t-SNE) plots, and single-window statistical indices 
showed that the proposed framework effectively extracted patterns. A 
statistical analysis also confirmed that a complete picture of sub-10-min 
oscillations needed both single-window indices (quantifying levels and 
variations) and the proposed framework (quantifying patterns). 

The results also showed the contribution of the ten general patterns 
in 5% to 100% of the 57 locations, of which four patterns were seen as 
the most common. Three hotel rooms in Shanghai/China (one) and 
Turkey/Istanbul (two) included all the ten patterns. The feasibility of the 
obtained patterns from multiple locations was also confirmed for the 
single locations (separately) as the typical patterns. However, running 
the proposed framework for every single location with short measure
ments led only to two patterns per location, which were not matched to 
the real samples and had some abnormalities when compared to the 
patterns extracted for each location from running the proposed frame
work for multiple locations with the presented post-processing. 

It is also worth mentioning that the proposed framework can be applied 
to any kind of signals like sub-10-min harmonic voltage/current, power 
consumption and frequency. The proposed framework is scalable and 
computationally cheap, which makes it appropriate for seeking typical 
patterns in the big data domain. The necessary post-processing approach for 
multiple locations and the approach to extract patterns for each single 
location use simple mathematic relations and do not make the framework 
complex. The framework was applied on the low voltage measurements, but 
it could equally be applied at medium/high voltage levels. This paper could 
provid general knowledge beyond a specific case study on the much less 
understood phenomena (sub-10-min rms voltage fast variations). The pat
terns can be used as a reference for the manufacturers to design the equip
ment. The obtained patterns are a compromise between storing large 
amounts of raw data with high time resolution, resulting in different big-data 
challenges, and completely neglecting the time scale. The authors realize 
that the data used for this work is one of the initial reviews of the time scale. 
For example, the 35 h variations (real and pattern-based), as shown in 
Fig. 19, could be studied for a longer period and in more locations. Future 
work must study the potential impacts on the equipment after quantifying 
the rapid voltage variation levels and patterns. 
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Appendix A. Single-window existing statistical indices 

Table A1 explains the single-window indices [6,18] used in this 
paper. The indices quantify the range of 1-s values within a 10-min 
window. 1-s very short variations are a difference between 1-s rms 
voltages and the 10-min rms one. A 10-min rms voltage is the rms of 1-s 
values within the 10-min window. 
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[9] Lennerhag O, Bollen M, Ackeby S, Rönnberg S. Very short variations in voltage 
(timescale less than 10 minutes) due to variations in wind and solar power. Int Conf 
Exhib Electr Distrib 15/06/2015 - 18/06/2015 2015. 
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Table A1 
Existing single-window statistics used in this research.  

Indices Symbol Explanation 

Quantifying the range in value R100 Highest 1-s value minus lowest 
value 

R98 99th percentile minus 1st 
percentile 

R90 95th percentile minus 5th 
percentile 

R80 90th percentile minus 10th 
percentile 

Quantifying deviations from the 
rms (overdeviation) 

P100 Highest value minus 10-min rms 
value 

P99 99th percentile minus 10-min rms 
value 

P95 95th percentile minus 10-min rms 
value 

P90 90th percentile minus 10-min rms 
value 

Quantifying deviations from the 
rms (underdeviation) 

P0 Lowest value minus 10-min rms 
value 

P1 1st percentile minus 10-min rms 
value 

P5 5th percentile minus 10-min rms 
value 

P10 10th percentile minus 10-min rms 
value 

10-min very short variations 
Standard deviations 

VSV 
Std. 

10-min sliding-window rms on 1-s 
very short variations 
10-min non-sliding-window rms on 
1-s very short variations  
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Corrigendum 

Corrigendum to “Seeking patterns in rms voltage variations at the 
sub-10-minute scale from multiple locations via unsupervised learning and 
patterns’ post-processing” [Int. J. Electr. Power Energy Syst. 143 
(2022) 108516] 

Younes Mohammadi a,*, Seyed Mahdi Miraftabzadeh b, Math H.J. Bollen a, Michela Longo b 

a Department of Engineering Sciences and Mathematics, Luleå University of Technology, Skellefteå campus, Forskargatan 1, 93187 Skellefteå, Sweden 
b Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy 

The authors regret, to inform you that some parts of the text have 
been unintentionally included from our previous draft during the 
preparation of the 2nd revision of the paper; hence, the following cor
rections are made to the main version of the paper to make the text 
clearer and simpler for the readers and show the originality of the text 
purer. The corrections delete some unnecessary sentences, modify some 
sentences, cite some missing references from the already existing ref
erences, and don’t affect the main parts of the paper; idea, contribution, 
and results. Abbreviations used are as: Page (P), Column (C), Section (S), 
and Line (L). References refer to the initial version of the paper.  

Location in the PDF of initial paper Corrections 

P1, C1&2, S1, Paragraph 1: Is rephrased by: “There are two time- 
scales on the voltage deviations 
according to standards: more than some 
minutes and up to a few seconds. Slow 
variations are related to scales as 
minutes and more. A 10-min window 
was used to calculate the rms voltages as 
defined in IEC 61000–4-30 [1, 2], and 
used as the most common value shown 
in [3]. Fast variations take place at 
scales up to a few seconds as defined in 
IEC 61000–4-5 [4] and IEEE 1564 [5].” 

P1, C2, S1, Paragraph 2, L7-10, 
“Moreover, tripping of…this time scale 
[7–9]…”: 

Is replaced by: “Moreover, some stated 
undesirable outcomes of fast voltage 
variations, besides tripping PVs and 
light flicker, come from variations in 
this time scale [7–9]”. 

P2, C1, S1.1, Paragraph 1, L1&2, 
…“individual rapid voltage changes 
(voltage steps) as”…: 

Is replaced by “voltage steps, as only one 
of the sub-10-min variations’ 
characteristics)” 

P2, C1, S1.1, Paragraph 1, L4&5, … 
“However, voltage steps… 
variations”…: 

Is deleted. 

Is replaced by “, while a” 

(continued on next column)  

(continued ) 

Location in the PDF of initial paper Corrections 

P2, C1, S1.1, Paragraph 1, L11&12, … 
“but do not result…time window. A”…: 

P2, C1, S1.1, Paragraph 2: Is rephrased as: “Machine learning 
methods as supervised and 
unsupervised learning [19,20], could 
extract such patterns. The supervised 
methods used classifiers like support 
vector machines [21–23], ensemble 
learnings [24,57], and neural networks 
[25,26]. Automatic feature extraction 
was done in the input of the supervised 
classifiers [27,28] which showed a 
better role than the manually extracted 
ones [1,29,30].” 

P2, C1, S1.1, Paragraph 3: Is rephrased as: “Time series clustering 
in unsupervised problems was done to 
extract patterns from signals. The works 
on big data in [31], clustering by 
different methods than k-means, and the 
Euclidean distance as shape-based [32], 
and fuzzy-based by using Distance Time 
Wrapping (DTW) distance [33]. 
However, a few applications in power 
quality studies have been done; 
clustering to extract knowledge in 
energy consumption data [34], data 
clustering to evaluate harmonic load 
flow [35], and a k-means method to find 
out the contribution of distributed 
generations [36]. A deep autoencoder 
along with a k-means clustering 
extracted daily voltage harmonic 
patterns, 10-min measurement 
resolution, from one location [37] and 
ten locations [38]. Since, [37, 38] are 
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Location in the PDF of initial paper Corrections 

concerned with a well-understood 
phenomenon (daily variation in 
harmonic voltage), it might be said that 
their method did not create new general 
knowledge. The same authors of [37, 
38] used a post-processing method using 
both harmonic and inter-harmonic data 
[39]. Among the few unsupervised 
learning schemas applied to power 
quality data, none of them have been yet 
applied to seek patterns for rms voltage 
fast variations (for multiple locations), 
and for harmonic voltage variations (for 
one/multiple locations) in 10-min scales 
which is a different phenomenon from 
daily variational patterns. Moreover, no 
framework for time-limited (about one 
day and a few hours) measurements 
from multiple locations is designed.”. 

P2, C2, S1.2, The applications of the 
proposed framework are: Part (a): 

“Similar to our previous work [50]” is 
added to the beginning of part (a) and 
[37-39] are replaced by [37,38]. 

P3, C2, S2, Paragraph 1, L2-8, …“The 
upper …a few second.”…: 

Is replaced by “The selection of 10-min 
and 1-s values are explained in [6, 18].”. 

P3, C2, S2.1, beginning of paragraph 1: “Similar to our previous work [50]” is 
added. 

P4, C1, S2.1, Paragraph 1, L5: x is 
misprinted as ×: 

× is replaced by “x”. 

P4, C2, S2.3, Paragraph 1, L5-7, …“Each 
feature vector … vectors are 
assigned”…: 

Is replaced by “The k-means as an 
unsupervised learning is widely used in 
literature like [37, 38, 47]”. 

P4, C2, S2.3, Paragraph 1, L9, 
…“following steps”…and last 
paragraph, “where the…jth cluster”: 

are deleted. 

P4, C2, S2.4, Paragraph 1, L1-3, …“To 
further analyze the …are fed”: 

Is replaced as: “The features vectors 
from centroids are inputted” 

P4, C2, S2.4, end of the section: “Since transformation back to the 
original sub-space by any reconstruction 
method is associated with a 
reconstruction error of modelling, this 
study ignored (8) and (9) as follows: by 
having the labels within clusters in the 
output of k-means, an average was made 
on the samples in the original input 
space so that no reconstruction error 
was included on the K initial centroids.” 
is added. 

P5, C2, S2.6, Paragraph 1, L4-8, …“In a t- 
SNE…(13)”: 

Is deleted. 

P5, C2, S3, Paragraph 1, L6, after …“for 
the measurements”: 

“The dataset is based on the dataset 
presented in [18]” is added. 

P7, C1, S4.1, Paragraph 1, L7, after 
…“chosen;”: 

“like our previous work [50], ” is added. 

P7, C2, S4.1, Paragraph 2, L1-7, …“A 
function…t-SNE 100 times”: 

Is replaced by …“A 2D t-SNE with the 
same setting used in [50] is employed 
and the visualization results are shown 
in Fig. 5.” 

P9, C1, S4.1, Last paragraph, L7, 
…“beside”…: 

Is replaced by “besides”. 

P9, C2, S4.3.1, L4, after…“as follows”…: 

(continued on next column)  
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Location in the PDF of initial paper Corrections 

“(a summary of work done by our 3rd co- 
author in [18])” is added. 

P10, C2, S4.3.1, Paragraph 1, L18-22, 
after …“By taking…indices).”: 

Is replaced by …“The most proper 
indices are selected as R90, P95, and P5 
[50].” 

P12, C1, S4.3.3, L11, Beginning of line: “As a confirmation of findings in [50], ” 
is added. 

P12, C2, S5, Paragraph 1, L1: A 
misprinted sign as “\” at the beginning 
line during the proof stage: 

Is deleted. 

P16, C1, S6.1, Paragraph 1: Is replaced by: “In comparison with our 
previous work [50], this work extracts 
the sub-10-min patterns using a learning 
schema attached to a post-processing 
approach. So, some general and typical 
low voltage patterns from multiple 
locations were indicated. The schema is 
scalable, computationally cheap, and is 
the first step to start potential impacts of 
the variations on equipment, next to [6, 
50].” 

P17, C2, S6.3.1, L1-4, “The results…(only 
k-means),”…: 

Is replaced by: “The clustering results 
with using only k-means were also 
investigated and shown in Fig. 25 in a 
2D plot for 15 initial clusters. No clear 
separation is seen and seems choosing 3 
clusters is enough,” 

P18, C1, S6.3.3, Paragraph 1: Is replaced by “As shown earlier and in 
[50], KPCA with the Cosine kernel was 
chosen as a simple tool to reduce the 
feature size from 600 to 10. However, 
other tools such as a deep autoencoder 
(DAE) might be useful instead of KPCA 
for high-resolution time series (i.e., 
600D). Nevertheless, using a DAE would 
not be as simple as the used KPCA. 
Table 4 shows a simple structured-based 
comparison of our framework (KPCA +
k-means + post-processing) and (DAE +
k-means) [37]. The findings, as can be 
seen in Table 4, confirm the simpler 
schema of our schema.” 

P18, C1, S6.3.3, Paragraph 2, L1-4: Is replaced by “A simple running time 
comparison between our proposed 
schema and [37] is shown in Table 5 
(although they are aimed to be used as 
off-line).” 

P20, C1, S Acknowledgments: “The authors would like to acknowledge 
Aurora Gil de Castro [6, 18], for statistic 
studies in the sub-10-min time scale and 
Chenjie Ge [37], for applying machine 
learning in other scales.” is added at the 
beginning of the paragraph. 

P21, Appendix A, Paragraph 1: Is shortened as “Table A1 summaries the 
existing single-window indices 
introduced in [6, 18] and used in this 
paper.”  

The authors would like to apologize for any inconvenience caused to the 
journal and its Editors. 
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