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THE SEMI-CLASSICAL LIMIT WITH A DELTA-PRIME POTENTIAL
CLAUDIO CACCIAPUOTI, DAVIDE FERMI, AND ANDREA POSILICANO

ABSTRACT. We consider the quantum evolution e*i%Hme of a Gaussian coherent state 11)2 €
L%(R) localized close to the classical state & = (q,p) € R?, where Hp denotes a self-adjoint realiza-
tion of the formal Hamiltonian —% % + B84, with 84 the derivative of Dirac’s delta distribution
at x = 0 and 3 a real parameter. We show that in the semi-classical limit such a quantum evolution
can be approximated (w.r.t. the L2(R)-norm, uniformly for any t € R away from the collision time)

i

by ex ettt oI where A = E—i:, E) = I])?(X) and Lg is a suitable self-adjoint extension of the

restriction to CZ(.4), Mo = {(q,p) €R?| q#£0}, of (—i times) the generator of the free classical
dynamics. While the operator Lg here utilized is similar to the one appearing in our previous work
[2] regarding the semi-classical limit with a delta potential, in the present case the approximation
gives a smaller error: it is of order R7/?27*, 0<A<1/2, whereas it turns out to be of order h3/*~*,
0<A<3/2, for the delta potential. We also provide similar approximation results for both the wave
and scattering operators.

Keywords: Semiclassical dynamics; delta prime interactions; coherent states; scattering theory.
MSC 2020: 81Q20; 81Q10; 47A40.

1. INTRODUCTION

The close relation between coherent states and semi-classical analysis is well known and it goes
back to the early days of Quantum Mechanics, see, e.g., [4] and references therein for a modern
mathematical treatment. By Fourier transform, the classical-quantum correspondence is exact in
the case of a free particle: defining, for any o € C, the Gaussian coherent wave packet ll)g"a ‘:R—C

centered at the classical phase space point & = (q,p) € R? by

1 1 i
1.1 n R e o x—aP 4 Sp(x—
(1) W)= i o (- o (- @ plx =)
and, for any x € R, the phase space function CPEL,X :R? = C by
(1.2) bo(8) =g (x),
one has the relation
(1.3) (e h 9l ) (x) = e (™00l () (&)
Here
R’ 42
Ho : H3(R) c L*(R) - L*(R), Hp:=—— —,
2m dx?

is the self-adjoint operator for a free quantum particle,

it pit

Ot = 0p +
2moy
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and e'tto is the realization in L*(R?) of the strongly continuous (in L*(R?)) group of evolution
generated by the self-adjoint operator

Li=—iXo:V,  Xola,p):=(2,0),

corresponding to the Hamiltonian vector field of a free classical particle, i.e.,

eof(q,p) = flq+ L t,p).
m
Such an exact quantum-classical correspondence still holds for quadratic Hamiltonians and, for
more general regular (at least C?) potentials, an approximate relation, up to an error of order
R/2A 0 < A < 1/2, is valid (see, e.g., [6]). In a previous paper, see [2], we considered the
semiclassical limit for a potential which is far from being a regular function, i.e. the case of the
Dirac delta distribution. Here we consider a still more singular case, that is we consider the case
where the potential is given by the (distributional) derivative 8} of Dirac’s delta. Similarly to
the case with a delta potential, the self-adjoint realization Hg, f € (R\{0}) U oo, of the formal
Hamiltonian —% éi—;z + B3} is described as a self-adjoint extension of the symmetric operator given
by the restriction of the free Hamiltonian Hy to the set CS°(R\{0}) (see, e.g., [I, Ch. I.4] and
Section [ below for more details). This fact, together with the free case relation (L3]), suggest (as

in the case examined in [2]) how to proceede: since Hg is a self-adjoint extension of the symmetric
operator Hg := Ho[ CS° (R\{0}), one could try to approximate e inHe 11)2‘0)(S by replacing Ly with Lg,
a suitable self-adjoint extension of Ly := Lol C°(.4), Mo = R2\{(0,p) |p €R}, and transforming
c[)f;t)x using the realization in L°°(R?), if any, of e''8. Following the same reasonings as in [2], Sec.
2], in Section [2] we provide the construction of Lg. In this introduction we content ourselves with
giving the corresponding unitary group of evolution: for any f € L?(R?) one has

9(—tqp)9(% —Iql)

1 —sgn(t) —nfgal))

(1.4) (e"5f)(q,p) = (e''f)(q,p) — (e"foad) (g, P);
here 0 denotes the Heaviside function (namely, 6(x) = 1 for x > 0 and 6(x) = 0 for x < 0),
B(p) = bp?%, b € (R\{0}) U{oo}, and foqq(&) := f(&) — f(—&). This shows that e''® is a group of
evolution in L*°(R2). Notice that the case b = oo corresponds to complete reflection due to the
infinite barrier at the origin, while the case b € R\{0} allows transmission (b = 0 gives the free
generator Ly) thus introducing “extra” classical paths going beyond the singularity.

In Subsection 1] we prove the following

Theorem 1.1. Let B(p) := — (ZB/hg)pz. Then, there exists a constant C > 0 such that, for any
€ (0,1), for any t € R and for any & = (q,p) € R? with qp # 0, there holds

it i i
He g, e — et (e dg, () (E)

12(R)
2
(1.5) <C [% <m?[§p|> be I e g Lk
+ <1:2(§2>1/4 ei—ﬁ (e_cg;z + e%> +e_4hqi2] .
Thus, whenever t is not too close to the collision time teon (&) := —mTq, & =(q,p) (look at the

last term in the above estimate), our approximation provides the following result (see Subsection

1.2):
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Corollary 1.2. Let B(p) := —(2[3/?13)1)2. Then, for any 0 < A < 1/2 there exit constants
0<hy <1 andC,,co>0 such that
hof h h
h := max 0 } < h,
- { q* ’ ofp?’ (mlpp)'/3
implies
it i i Z_A
et e (el el < ConE?
for any t € R, &= (q,p) € R? with qp # 0, such that
7
(L6) h—tmdﬁ\Z%ﬁmu@N¢<z—A>MmhL

Moreover, the constraint t # t.oy does not affect the semi-classical approximation for large times.
Indeed, see Theorem [I.3] below, we can handle the approximation of the wave operators: denoting
with Q%E the wave operators defined, as usual, by the limits in L?(IR?)

Qif — lim etwHBe inHof
t—+oo

and by W]:3IE the corresponding classical objects (compare with [11, Def. 3.4.4], see also [2] Rem.
2.7])

Wy fi= lim e'toe ef
t—=+oo

(here the limits hold both pointwise in R? and, if f = ll)fy"a is a coherent state of the form (IL1]), in
L%(R, dx), see Proposition below), one has the following (see Subsection [5.1] for the proof)

Theorem 1.3. Let B(p) := — (2B/R%)p%. Then, for any Yo £ € L%(R) of the form (@4) with
qp # 0 and for anyn € (0,1), there exists a constant C > 0 such that

2

3 2,2 q o2p2
<c |10 (h )—I—e”ZH fe M3 e,
12(R) (1—m) \m|Bp|

Similarly, for the scattering operators Sg = (Qg)* - and S‘:l (W5 )*Wy there holds

(1.7) HQill)ooa (Wgbgy, () (€)

2
L 02p2

3 zz
<C n ( R >+e_n 2h +e 4?10'0_,’_6T
12(R) (1—m)

) ||Sewi,e — (S8R, )(&)

m[Bpl

1/4 52 2
RO o2 e odp? q
0 v — 4mo2
+ (—2 5 emBs e h +e 0

Corollary 1.4. For any 0 < A < 1/2 there exit constants 0 < h, <1 and C, > 0 such that

|oF whe - (Wil )@

Hsﬁwdoi (S d)O"o, )( )

< C, W/
2(R) — ’

< C, W/,
L2(R) — -

Remark 1.5. Theorems [T and [[3] (and the relative Corollaries) parallel the analogous ones in [2]
(see Theorems 1.1 and 1.3 therein) which provide semi-classical approximations for the quantum
evolutions, wave and scattering operators for the operator Hy providing a self-adjoint realization

2
of the formal Hamiltonian —%n =

£ 4+ ady (see, e.g., [I, Ch. 1.3]). The classical approximating
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self-adjoint operator Lg used there (see [2, Sec. 2]) is not too much different form the operator Lg
used here: the group of evolution generated by Lg is given by (compare with (I.4]))

6(~tqp) 0 (2! q!)
1 —sgn(t) 2l

mp

where (see [2, Prop. 2.4]) fey(&) := f(&) + f(—&). However, the mentioned results in [2] give an
error of different order: ]':13/ 2 for 0<A<3/2, where

(" *F)(a,p) = (e"1F) (a,p) - (e"fev) (a,p),

ho? h h
g::max{ % }

q*  ogp?’ (mledop)?/?

By techniques similar to the ones used here and in [2], analogous semiclassical estimates can also
be obtained for the case of a quantum evolution on graphs, see [3].

2. SINGULAR PERTURBATIONS OF THE FREE CLASSICAL DYNAMICS

By the same kind of reasonings as in [2, Sec. 2], in this section we introduce a suitable self-adjoint
extension of the restriction to functions vanishing on the line {(q,p) € R? : q = 0} of the self-adjoint
operator —i% 04. At variance with the self-adjoint operator Lg = Ly g provided in [2], the operator
Lg = L/ here defined corresponds to different choices of both the extension parameters: in [2]
IT is the projector onto the subspace of (p-dependent) even functions and the operator {3 identifies
with the multiplication by the constant f € (R\{0}) U{co}, while here we use the projection TT’/
onto the subspace of odd functions and the operator B identifies with the multiplication by the
function B(p) := bp?, b € (R\{0}) U{co}. Notwithstanding such differences, the proofs of the results
presented in this section follow almost verbatim the ones of the corresponding results in [2, Sec. 2]
and therefore are not reproduced here.

Let Xo(q,p) = (p/m,0) be the Hamiltonian vector field of a classical free particle in R and let

Lo : dom(Ly) C L*(R?) — L2(R?), Lof = —iXo- VT,

defined on the maximal domain dom(Ly) := {f € L*(R?) | Xo-Vf € L*(R?)}, be the corresponding
self-adjoint operator in L?(R?); one has o(Ly) = 0qc(Lo) = R.

The linear map (yf)(p) := f(0,p) extends to a bounded operator y : dom(Ly) — L2(R,|p|dp)
(here dom(Ly) C L*(R) is endowed with the graph norm) such that ker(y) is dense in L?(R?) (see
[2, Lem. 2.1]).

Denoting by RY := (Ly —z)~' for z € C\R the resolvent of Ly, one gets

(R2f)(a,p) = Jqu’ g:(a —q',p)f(q',p),
where |
9z(q>P) = 9(qumz) sgn(Im z) % eimza/p

(recall that 0 indicates the Heaviside step function). For any z € C\R, we define the bounded
linear map

G.: LA(R,[p["'dp) = L*(R?),  (G:)(q,p) = ((vRD)*®)(q,P) = 9:(q,p) d(p);

here L*(R, [p|~'dp) and L*(R,[p|dp) are considered as a dual couple with respect to the duality
induced by the scalar product in L(R).
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For any b € (R\{0}) U{co} we define the function

bp? b € R\{0}

(2.1) B:R — RU{o0}, B(p) := {oo b= o

and then, for any z € C\R, we define the bounded linear map

B0 —sgn(Imz) 7]

(here we set % :=0). Finally, we introduce the projector on odd functions (here either p(p) = |p|
or p(p) =1Ipl™")

(f(p) — f(—p))

N —

' : L*(R,pdp) — L*(R,pdp),  (IT'f)(p) =
and notice that
MAS =ABTT.

Then, by [10, Thm 2.1] here employed with T := TT"y, we obtain the following (compare with [2]
Thm. 2.2])

Theorem 2.1. For any b € (R\{0}) U{oo}, and B defined as in (21]), the linear bounded operator
(2.2) RE:=RO+ G, MABTI'G;  with z € C\R,

is the resolvent of a self-adjoint extension Ly of the demsely defined, closed symmetric operator
Lo [ker(y). It acts on its domain

dom(Lg) := {f € LX(R?) | f=f, + G, ABTT'vf, | . € dom(Lo) },
by
(Lg — z)f = (Lo — 2)f;.

Remark 2.2. Notice that the functions f = f, + G,¢, ¢ € ran(TT’), belonging to dom(Lg) fulfill
the boundary condition

d(p) =BE)TT'Y ) (p).

where ¥ is the extension of the trace map y defined as

(5 1)(p) 1= 1 (0,,p) +F(0,p).

Moreover, on account of the basic identity (—1Xo-V—2z)G,$ = ¢ 85, where s, is the distribution
supported on the line £y = {(q,p) €ER?| q = 0} defined by

(65z,) (@) = L dp b(p) 0(0,p), for any @ € CX(R),

from Theorem 2.1l one can readily infer that
LBf = —iXo -Vf— d)620 = —iXo -V — (B”/?f) 5):0 .

By functional calculus and by (Z2), the action of the unitary group e '® (t € R) describing
the dynamics induced by Lg can be explicitly characterized (the proof coincides with the one for
[2, Prop. 2.4] by noticing that all the integrals appearing there regard the g-variable only):
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Proposition 2.3. Let Ly be as in Theorem 21l and f € L2(R?). Then

Iptl
0(tqp) 0(% —1al) (e-itlog

7
14 sgn(t) 1‘&1)

(2.3) (e 1) (q,p) = (e ) (q,p) —

odd)(q>p) )

where foqa(q,p) :=f(q,p) — f(—q, —p) and e o denotes the free unitary group

i t
(e lﬂ_of)(q)p) = f<q - %,P) .
Remark 2.4. Formula (Z3) shows that e 8 defines a group of evolution in L*(R?).

Remark 2.5. Notice that while the free operator e "t maps real-valued functions into real-valued
functions, the same is not true for e '8 unless b = oo, which corresponds to a complete reflection.
In this particular case, Eq. (2.3) reduces to

(e )(q,p)

®=>V11 _g(tqp) 6 h;l' ql (q——t )+9( qp) 6 h:ﬂ' ql < +%>—P>-
| (% ) (5 )

Defining the classical wave operators by

(2.4) Wifi= lim e'thoe thef

t—doo
one then has the following (compare with [2, Prop. 2.8])

Proposition 2.6. The limits in (Z4) exist pointwise for any & = (q,p) € R? with qp # 0 and in
L%(R?) for any f € L*(R?):

(25) (WE)(a,p) = (4,p) = 25 foaa(a, ).

mB(p)

Furthermore, the classical scattering operator SCl (W+) Wy is given by

(2.6) (S§)(q,p) = f(q,p) — %

mB(p)
Remark 2.7. On account of Eq. (2.5), it is easy to check that
Wy Wi f =Wy Wi T.
Moreover, from the identity

1 1 2

n __ .
2ip| _ 2ilp] 2ilp|l |2
T+36 1~ mer |1+ meb)

and a straightforward calculation it follows that
Wy (Wg)*f = (Wg ) Wef=f.
Hence, in particular, S°B1W§ f=W;gf.

Remark 2.8. By arguments similar to those used in the proof of Proposition 2.6] one gets that
the limits

Wif:= lim eltteeitlof
t—doo
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exist in L2(R?) for any f € L?(R?) and

{ 6
(W5 f)(p,q) = f(q,p) — ]71];) foaa(d,p)-
mB(p)

Therefore, by [7, Ch. X, Thm. 3.5], both Wéﬁ and Wéﬁ are complete, and the absolutely continuous
part of Lg is unitarily equivalent to the absolutely continuous part of Ly, i.e., to Ly itself; thus
Gac(LB) = Gac(LO) =R

and Lg is unitarily equivalent to L.

3. THE QUANTUM HAMILTONIAN WITH A DELTA-PRIME POTENTIAL

Here we recall the definition and main properties of the operator Hg, B € R U oo, defined as a
self-adjoint extension of the symmetric operator given by the restriction of the free Hamiltonian
n? d?
C2m dx2’
to the set { € H?*(R) : P(0) = 0}, where H?(R) denotes the usual Sobolev space of order two,
namely H?(R) := {{ € L?(R) |[\” € L?(R)}. In more detail, one has (see [I, Thms. 4.2 and 4.3))

dom(Hy) = {1 € HRAON | '(0%) = w/(07) = W'(0), $(0%) —(07) = T w0},

Ho: H2(R) C L2(R) — L2(R), Hp:=

hz
Hph = — 51"+ BY’(0) 8-

Moreover,
GaC(HB) = [O)+OO)) GSC(Hﬁ) =g,
& if>0o0rp =00,
6
Gp(Hﬁ) = _ h .
The normalized eigenfunction associated to the negative eigenvalue for 3 < 0 reads
h __n2
pp(x) = sgn(x)e mIBl L

m|p|

Remark 3.1. The possible eigenvalue approaches the absolutely continuous spectrum from below
in the semiclassical limit, i.e., Ag — 0~ for h — 0; correspondingly, the associated eigenfunction
vanishes almost everywhere, namely |@gl[ieor) — 0. This marks a noteworthy difference with
respect to the case of a delta potential discussed in [2], where the possible eigenvalue moves away
from the absolutely continuous part of the spectrum and the associated eigenfunction becomes
sharply peaked at one point for h — 0'. As a consequence, many of the arguments employed in
[2] cannot be implemented in the present setting.

A complete set of generalized eigenfunctions associated to the absolutely continuous part of the
spectrum is given by (compare with [I, Eq. (4.23)])

£(x) e R (k) sgn( er i (k € R\{0})
3.1 X) = + X € ,
(3:1) P NGz ) sgn(x) V2n \
impk K
(3.2) Ri(k)i=m — M =g =
1 mEM g
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Notice that
(3.3) Ry (k) — R_(k) = 2 sgn(k) [Ry(k)I*.

For any 3 € R, taking into account the above spectral decomposition of Hg, let us consider the
bounded operators

a .12 2 2 =
F:LHR) = LX(R),  (F¥)(K) -—JRdX o

(3.4) ZFs:2(R) = L*(R), (FL)(k) :

Il
B

o
=
©
~H
5
<
ka3

Correspondingly, we introduce the orthogonal projectors
(3.5) Pac : L*(R) = LX(R),  (Pach)(x) := Jde oy (%) (F4P)(K),

(3.6) Pp:LP(R) = L*(R),  (Ppw)(x) :=0(—B) @p(x) JRdU ep(y) y);

these are such that
(3.7) Poc +Pg =1.

Egs. (33) and (B.6) reduce to
Pac:]-) PBZO fOTB)O.

st
IEHB

For any B €R the time evolution of any state 1\ € L?(R) induced by the unitary group e~
can be characterized as
t n2k2

(3.8) (e trHs ) (x) = Jde eI @f (x) (T ) (k) + e A (Pap) (x).

In the definition of Py, and in Eq. (B.8), one could equivalently use the generalized eigenfunctions
@, and the bounded operator .%_, respectively in place of (plf and Z,.

Since (Hg —2)7' —(Ho—z)7", z € C\R, is a rank-one operator (see [I, Thm. 4.1]) existence and
completeness of the wave operators

it it
QF .= slim elnMeeinto
B t—+oo

follows from [7, p. 550, Thm. 4.12]; in particular, (Qg)*Qg = Pgc. The corresponding scattering
operator is defined, as usual, by

Sp = (QE)*QE.
Moreover, one has
(3.9) Qp = F17 .

Relation (39]) is well known in the case of perturbations by regular potentials and can also be
proved, by essentially the same kind of proof, in the case of a singular perturbation (see the proof
of [8, Thm. 5.5]).
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4. CONVERGENCE OF THE DYNAMICS

We focus our attention on coherent states of the form

1
(4.1) P(x) = Mo, 6, q,p;x) = W “ane O HER-A) (€ R),

where (q,p) € R? and 0,6 € C are such that
(4.2) Reo >0, Reo >0, Re[co] =1.
The Fourier transform with respect to x of any state 1™ of the form (@I]) reads

(4.3) (FYM) (k) = v"(0, 6, q,p; k) = 1 <z—h>1/4 e 5 (k-p/M)*—ikq
) ) ) ) \/g T
From now on we fix oy >0, ¢ = O'o and define, for any o € C with Reo = 0y, & = (q,p) € R?,
the state 1.|)(=Fj‘)a as in Eq. (II); notice that 11)2’5 = 1|)h(0', oy ,q,p).

In the sequel we analyze the time evolution, generated by the unitary group e—inHe (t € R), of
an initial state of the form

(4’4) ll);f)'lo,a(x) Zﬂ)h(00>05]>q>P;X) (E,: (q>p)) .
Proposition 4.1. For any ™ € L2(R) of the form @&I) with qp # 0, there holds
(e mMepR) (x) = (e rHop™) (x) + 8(qp) sgn(x) FL (— sen(q)lx]) + 8(—aqp) sgn(x) F* , (— sgn(q)Ix|)

(4.5) HEN () +ER(x) + ER(x),
where we set

1 o . -
(4.6) FLL(x) = mJdee e R (k) GR(K)

EM(x) = %{ Jde e iIm (sgn(x) e IR IR (k)2 — eikx R_(k)> X

(4.7 | ay (sen(y) e —sgnlq) etsnla1k) gy,

(48)  Eh(x) = %Jﬁke 2 (@Y 0 ( san(p)k) [R_(k) — R (k)] DMK,

and

ERc(x) = e M (Pru™)(x).

Proof. Firstly recall the definitions (3.1]) for (piE and ([B.2]) for Ry (k). Besides, notice that Ry (k) =
— R+ (k). Taking as well into account the results of Section [3] (see, in particular, Eq. (3.8))), for any
PM € L2(R) of the form @I) with qp # 0, we obtain

(e B M) 0] = (190 M) ) — o [ ke R (k) [ dy sniy) ™)

" sgn(x) J dk e— 2ﬁnt1 kZ —i|KIx| R+(k)J dy efiky ll)h(y)
(4.9) o §
sgn(x) Rt

+ J dk e tam ¥
27'[ R

+e e (P ™) (x).

e MR ()P | dy senly) € 97y
R
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Using the elementary identity

J dy sen(y) el h(y)
R

= Sgn(q)J dy etsenlq)lkly wh(y) _,_J dy (Sgn(y) ekl _ sgn(q) eisgn(q)\kly) wh(y) ,
R R

Eq. ([A.9) can be reformulated as follows:

(e ) 0 = (o5 00— 2 | @k R0 8 (s

V2n
(] g o
+ Sgn_(zjz‘) Jde e I e IR, (K2 B (—sgn(q)Ikl) + EF(x) + ER () -

Noting that Ry (sk) = sR4 (k) for s € {1}, by elementary changes of the integration variables we
obtain the following identities:

Sgn(Q)J ™ SR
N dee e"* R_(k) )" (—sgn(q)lkl)

_ _senlad) J dk e t2m e MR (k) M (—sgn(q)[Kl) ;
R

R ~

JR‘“‘ et e N R, (1) § (k)

s h

__ sgnlqx) J dk e 1Rk ik Ry (k)b (—sgn(q)k);
R

A [ gic o132 e UMM R, (k) " (—sgnlq) k)

V2 Jr
2 sgn(qx) [ ht

= J dk e 13 < e R ()P G (—sgn(q)k) -
0

From the above relations we infer

—itHg R _ (p—itHo R sgn(qgx) —i K2 ikl TR
(e HH0 ) 0) = (&40 ) )+ 2T Jdee e MM R_ (k) H" (—sgn(q)Ik])

_ sgn(qx) J SRR k] Ry
o dee e Ry (k)" (—sgn(q)k)

2 0 . . -
" % L dic e 2 e MR, (1) P D (—sgnlq)k) + ERy ) + ER ().
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Hence, taking into account the basic Identity ([B.3]) we obtain

0 Rt 1.2 s ~
(e—iﬁHB ll)h) (x) = (e_iﬁHO wh) (x) + Sg\f;(zinx) J dk e tzm K e—lklx\ R_(k) ll)h(—Sgn(q)lkl)

0
—ng(ziﬂ")J dik e 12m < e KN R (1) B (—sgn(q)k) + E(x) + Ef ()
— (ei%Holph)(x)—Sg\“/(ziﬂx) L dk e 12w ¥ e R (1) P (—sgn(q)k)
sgn(qx) (*°

= JO dk e t2m ¥ e MR, (k) " (sgn(q)k) + Bl (x) + Efy(x).

Recalling once more that R4 (sk) = s R4 (k) for s € {1} and using the basic identity

0( +sgn(q)k) = 6(£q) Fsgn(q) 6(—k) = 0(+qp) F sgn(qp) 6(—sgn(p)k),

by a few elementary manipulations we obtain

SiEHg 1Y (x)  (emitHo Ry 580(dX) oI ikix Sh(_
(74P () = (e o) ) — EE Jde 0(k) R_ (k) ™ (—sgn(q)k)

+ BB ke e 01 R ()" (sgn()) + ER )+ E )
= (e MO P (x) + S%/nz(—X) || ket emtsmianlg (g R-(k) B (k)
T JR

sgn(x : Rt : -~
! 32(7[) Jde e a1 et @R 0 (sgn(q)k) Ry () (k) + EF (x) + ER 4 (x)

= (e*i%Ho wh) (x) + 0(qp) sgn(x)

J dk e*lm kz e isgn(q)k\xl R+(k) @h(k)
R

V21
+ e(_qz)z_:[gn(x) Jde 67127“ k2 flsgn(q)klx\ R_(k) {\I)T'l(k)
 sanlqpy)

dk e 12m < e tomn(@k g (— son(p)k) [Ry (k) — R_(k)] BT (k

| (— sgnp)K) [R 1) — R_(10] $(K)
+ E?t(x) + Eg,t(x) .

The proof is concluded noting that the latter identity is equivalent to Eq. (£5]). O

Lemma 4.2. There exists a constant C > 0 such that, for any p"™ € L*(R) of the form @I) with
qp # 0, for all t € R and for allm € (0,1), there holds

-t h3 2 p?
(4.10) [FL = Re(p/h) el o < € [(1 En) (musm) e —Z] '

Proof. We essentially retrace the same arguments described in [2, Proof of Lem. 3.3]. Firstly,
notice that by unitarity of the Fourier transform we have

. R 12
P2~ Ratp/m) e #9000 = (| ak [Re0) —Rutp/mP [0 )
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Recalling the definition of Ry (k) given in Eq. (8.:2]), by explicit computations we obtain
2
i ( (k—p/m)*+ (28) (klpl/h— |k|p/h)2>
Ra(k) = Re(p/m)|* = .
(1 + hz * (/)2 > < + (‘;‘—f) k2>
2 5 2
(58" (mrp =1+ (1= semlep)* (282 (i)

(1 + (mh—f?f) (1 + <mh—fip>2 (hk/p)2>

Starting from here, one obtains the following for any n € (0, 1)

(4.11) Re(k) — Re(p/M)[* <5,  forall keR;
4.12 RL(K) — Re(p/R)[? < — hgzhk 1)2 for [Rk/p — 1| <
(112)  [Rell0 = Relp/M[ < s (s ) (/P =107, for [nk/p =Tl

So, let us fix n € (0,1) and note that

1/2
|F% —Re(p/R) e trto ﬂ)hHLZ(R) < <J dk [Ry. (k) — Ri(p/h)‘z Njh(k)‘z)
{Ik/p—Tl<n}

1/2
+ <J dk R (k) — R (p/R)[* @“(k)!z) :
{Ink/p—=T[=n}

Taking into account the inequalities (4.11]) and (4I2]), we infer respectively

2h _2n o2
J dk |Rx(k) — R P/h‘ b (k ‘ = > _J dk e o2 P/
{Ik/p—11>n} 161V 7 ) wiesp—112m)
2 2
< — >, /2n _nzF‘p‘“’ZJ’ dk e_ﬁ(k_p/mzzﬁ/z e_nzhiﬂz)
5] R

J dk |Re(k) — Re(p/R)[* [ 97 (K)|* < 17(h—3>2J dk (Rk/p — 1) [Gr(K) [
{Ink/p—11<n} (-2 \mBp/ Sy imisp—11<n)

2 3 R 2 3
<y (rr?rsp>2Jde [P0 = (n?BP)Z'

Summing up, the above arguments and the basic relation v/aZ +b% < a+b for a,b > 0 yield the

bound (£10). O
!On one hand notice that, for all b € R, there holds
bZ 1 Z+ 1— ZbZ 2 2 _1\2 2¢2 2 _1)2 2 -2
sup ((E=1)*+(1—sgn&) E,)S b sup (E-1)7  4v’e ) _, b maXEER(a 12, P20+b?)
fcR (T4+b2) (14 b2&2) 14+b2 gcp \ 14b2E2  1+b2E2 1402 14+b2§2 1402
On the other hand, for any given b € R, n € (0,1) and for all | — 1| <1 (which ensures & > 0) we have
b ((E—1)+ (1 —sgn&)’b%e?) (£—1)? _E=1? (517

(1+b2)(14+b2&2) O (1+1/b2)(14+b282) = 282 = (1—m)2b2°
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Lemma 4.3. Let Py and Pg be defined, respectively, as in Eqs. (3.5) and [B6). Then, there exists
a constant C > 0 such that, for any Y™ € L2(R) of the form @&I) with qp # 0, there holds

HPﬁq)hHLZ(R) = HPacwh _ll)hHLZ(R)
2

1/4
5 12 5|02 Cp2 g2 2 sgn(qp) IplIm[s5]\ _R2[o2 (1 1 __q?
<C m m2p2 # neZ  mIB] (\qH 1512 ) m2p2 (1 \05\2) ahlolZ
= 2 BZ e m e +e .
00

In particular, for any V™ =P . of the form ([@&4) with qp # O there holds

00,&

1/4 5 2 2
TL5 2 h2 o o2p2 _q
B A TR o I O

Proof. Recalling that @g is a normalized eigenfunction such that |[@gl|2g) = 1, from Eq. (3.6) it
readily follows

P | 2 = URd" Pp(x) W ()|

By direct computations we obtain

h
2mh)1/4y/m|Blo
sgn(q) h

2 -
= J dy sgn(y) e miE Y o ais (y—lah 2+
R

(24 /m Bl o

sgn(q) h U dy e Y e ais(u-lal?H E (yq)
R

(2mh)1/4/mBlo

J dx () Y x) =
R

_LZH & 2.:p
J dx sgn(x) e mBl M e ane ) Hig(x—d)
R

y—lql)

sgn(q)P(
R

2 2 o -
+J dy <Sgn(y) e win vl _ e_ﬂ?fiy> eﬁwlqw%(yqq .
R

On the one hand, keeping in mind our assumptions about the covariance parameters o, and
evaluating explicitly the Gaussian integral we get

sgn(q) h J dy e WY e (y-la) i 222 (g jq)
R

(2mh)1/4/mBlo

1/4

5 p? h2 2 sgn(qp) Ip| Im[5G] ®d

= 87[711 e niglZ  mipl <|q|+ 512 >+m2[52\6\2 .
m2 32|52

On the other hand we have

2 2 o S
v J ay <sgn(y)en?—ﬁ'v—e$_“> e s (yla i 2R )
R

(2rh) V4 /m Bl o

h 0 ( n? — 2\ (gl
< dy [ em®Y £ e ml U) e 4nlol2
(27h) V4 /m Bl o] J_oo i
1/4
2 2 51 2 2 552
< 2h eﬁﬁj ay {WUH%U _ 128 Th’|0] 6’450‘2*12‘[5‘2 .
~(2r)1/4/mBl o] R m? 32

The above arguments suffice to infer the thesis. O



14 CLAUDIO CACCIAPUOTI, DAVIDE FERMI, AND ANDREA POSILICANO

Remark 4.4. If p =0, recalling the definition of error function and the asymptotic expansions of
the latter (see, e.g., [9, Ch. 7]), it can be shown by explicit computations that in the semiclassical
limit there holds

h°03 \1/4
Pt = [Pt 47y =0 (2555 ").

Lemma 4.5. There exists a constant C > 0 such that, for any V™ € L2(R) of the form (@I with
qp # 0, and for all t € R, there holds

2

" 4’
HELtHLZ(R) < Ce dnlel®,
Proof. Firstly, let us remark that the definition (1)) of Eq+ can be reformulated as follows, recalling

that Ry (sk) =sRy(k) for s € {1} and using the basic Identity (B.3]):

ER () = — O | aice (e R, (02 + e VR (1)) x
R

x JRdy (sgn(y) el 4 e M) 1 (— sgn(q)y)

__ssn(qx) J dk e tmm ¥ (e*“""‘ 2[Ry (k) + (e M — gtkixly R,(k)) X
21 0

X J:ody (e“‘y + e’“‘y) 11)“(— sgn(q)y)

=— @ JO dk e tam K (e—ik"“ R (k) — e R_(k)> L dy cos(ky) ™ (—sgn(q)y) .

To proceed, notice that
kZ (eik\xl + e—iklx\) i TLZ k (eik\xl o e—iklx\)
TR ()2 mB 2 ()2

mp mp

for k>0,

e MR, (k) — e R_(k)

and that the latter expression is an even function of k, for k € R. Notice also that the integral
w.r.t. y gives an even function of k as well. Thus, by symmetry arguments we obtain

Sgn(qx) J " e*izhﬁ 2 K2 (eiklx\ + e—ik\xl) B ﬁ k (eiklx\ _ e—ik\xl)
h? \2 h2 \2
E K+ (5p) Bk ()

X J:Ody cos(ky) V™ (—sgn(q) y)

sgn(qx) A e L
=——J dk e i e*"‘ﬁj dy cos(ky) H™(— sgn(q)y)
T R k2+(m_[3) 0

_ in?
mp

_ sgn(qx) J dk e imEIE ikl
i R

Wn%)z L dy sin(ky) oyb™(—sgn(q)y) .

where the last identity is easily derived integrating by parts w.r.t. y and noting that the boundary
terms vanish.
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Then, by the elementary inequality [[U(] - ) ||%2 ® <2 ||1|)||%2(R) and by the unitarity of the Fourier
transform it follows that

2

2 1 &0 .
IR ey <21/ 2~ J dy sin(ky) 3y (—sgn(q) y)
Tk + 2 Jo
mp L2(R,dk)
2

1 00 00 , , , ;
= ;Jde () Ldy Ldy (cos (kly—y")) — cos(kly+y")) 3™ (— sen(q) y) 3y 0™ (— sgn(a) y) -

From here and from the identity (see [B, p. 424, Eq. 3.723.2])

ROKH(DY R

mp

2
Jdk cos(kf)  mmfp e_%ﬁ“il,

it follows
(4.14) [Er @ < I8+ T

where we put

2mp [ oo _RZ
0= TZBJO dy JO dy’e m ¥V (= sen(q)y) 9y (— sen(q)y’)

2mp [ o _ a2 !
I= - Tzﬁ L dy L dy’e me VY0, p" (— san(q)y) Oy bR (—sen(a)y’) -

Via repeated integration by parts and a few elementary manipulations, the latter definitions can
be rephrased as follows:

2mp [ 2 Y n2
7= 250 | "y 0,0 (— senta) [e ¢ | ay’e R o, (= senlaly)

n2 0 r2
+emB”J dy’e ms? ay/lbh(—sgn(q)y’)}
y

- R n2 Y n
— _ZJO dy 3, p" (— sgn(qly) [n;_f e mBYHR(0) +e‘mﬁ”JO dy’ems ¥ Ph(—sgu(q)y’)
et [Tay e B sl
Yy
2 o0
- %2‘3 W™ (0)P+ 4 Ly " (—sen(q)y)[*

-2 aye 5 Y [0) W™ (— sem(q)y) + " (0) BF(— sgn(a)y)|
(

h T LY R
dy Y™ (—sgn(q)y) e P de eme Y PN (—sgn(q)y’)

0

00 w2 0o w2
——L dy tl)“(—sgn(q)y)emﬁyj dy’e meY PpM(—sgn(qly’);

Yy
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g = _21:_2[5 UOOdy e wEYa Y™ (—sgn(q)y)
— _21:_25 ‘_qﬁm) + n?—éj:ody e ™Y (—sgn(q)y) 2
__2::_2f3|1|, ( )|2+2J°°dye w5 Y (w’ﬁ(o)q)h(—sgn( Jy) + " )wh(—sgn(q)y)>
I Ty [Tyt 9 (@) @)

Noting that cancellations occur, from the above relations and from Eq. ([4.14]) we infer
[Ef e < U+ V1 + W,

where we put

Ul = 4L dy [ W™ (— sgn(q)y) [,

U1 S S LR R, n /
V) ;:__J dyL dy’e ™ P (—sgn(q)y) v (—sgn(qly’),

R 2n* [ * /fﬁ—z(ery') R R ’
Wi :=——J vaO dy’e” s I (= sgn(q)y) M (= senlqly’) -

Now, keeping in mind the basic identity (cf. Eq. (41]) and the related comments)

1 _ (y+lan?

R(_gon - 41|02
[W™(—sgn(q)y)| 2 e e amoiZ

by arguments similar to those described in the proof of [2 Lem. 3.5], we infer the following
inequalities:

lal?

" ‘ J'oo _(y+\q\;z 4 ¢ 2nloZ [0 s \q\zz
1 _ y e 2h|o] S - J dy e Zh\o'\ — 2 e Z’h\o—\ .
v 2mh|o]| v 2mh|o]

th 00 w2 Y w2
V| < m—[SJo dy [H"(— sgn(a)y))| [e " Jo dy'ems ¥ [ (= sgn(a)y’)|

W2 oo W2
+emByJ’ dy/e—my/
Yy

(—sgn(q)y’)@

M2 e e J’°° h [_ﬁ_z Y B T P G
P — —sen e mﬁde/emBy+emﬁde/e mﬁy}
B e el Jo Y (W™ (—sgn(q)y)| K o
_ la? lal?
4 ¢ anlolZ e 2hio2 JOO y2 la1?

(2714 /Tol 4nlolZ =2 m'
S(ZWH)W IGJ Ay [ (= senla H_\/—IGI dy e e =22 e 20
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2RZ (. _n2 SPA I % 2
Wh:—J dye ™ Y™ (—sgn(q) g—(J dye mﬁy)(J dy [W™(—sgn(q) >
W =s ), (—senlq)y)| < (] dy | Qb7 (= san(a)y)]

__la?

e 2hfolZ [ __y? 1 __la?

< 7J dye 2nlol2 — _ g 2RlolZ |
V2rh|ol Jo 2
Summing up, the above relations imply the thesis. O

Lemma 4.6. There exists a constant C > 0 such that, for any V™ € L2(R) of the form (@I with
qp # 0 and for all t € R, there holds

2
BBl oy < C e 7o

Proof. Recalling the definition of Ez,t (see Eq. (4.8))), by the elementary inequality ||\ (] - |) ||%2(R) <

2 HII)H%Z(R) and by unitarity of the Fourier transform, we have

2
dk o TELAZ Jisgn(qp)kx e(k){ (k) — R+(k)]$h(—sgn(19)k)

1
IR lIf2 gy < 2 Hﬁ
= zL dk |R_ (k) — Ry (K)[* [0 (— sen(p)k)|*.

Moreover, from Egs. (3:2]) and [B.3)) it follows

L2(R)

) i A 3
R_(k) = R.(K)|* = 4[R, (k)" = Wﬁiﬁ)z)zé‘*gﬂgm:“

Thus, taking into account Identity (4.3]) for @h we infer

00 h(ktlpl/h)2 2 2p2
2 8 J2h dk e A Zh —ame dk ¢ T — 8 ¢ e
® =16V 7 Jo - |G| ’

which yields the thesis. O

In the next lemma we collect all the results of the previous lemmata.

Lemma 4.7. There exists a constant C > 0 such that for any " € L2(R) of the form @I) with
qp # 0, for all t € R, and for allm € (0,1), there holds
(4.15)

Heii%HB‘l’h - YPHU(R)

3 p2 2 2
gc[m . )< . >+€7”22ﬁ‘6‘2 4o el e o

m|Bp
h5|0‘|2 1/4 n3|ol? 1 _p2 w2 <‘ Hzsgn(qp)\pum[&a>7h5\c\2 (17 1 ) g2
+ [ —— e m2p2 — e nlgZ miBl q |52 m2p2 lo &2 +e 4h|o|2
m? 32 V106 )

THx) = (e 'iMop™) (x) + 6(qp) Ry (p/1) sgn(x) (e TwHop™) (— sgn(q)lxl)
+0(—qp) R_(p/h) sgn(x) (e wMop™) (= sgn(q)lx]) .

where

(4.16)
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Proof. The claim ([dI3]) follows immediately from Eq. ([d3]), together with the expansions of the
terms Fi’t in Lemma [4.2] and the bounds on the remainders EE‘)t, E?’t, EZt in Lemmata [4.3] 5]
4.0l U

Lemma 4.8. For any Pp" € 12(R) of the form @) with qp # 0, there holds
(4.17)

2

__4a _
Hsgn(-)ll)h((r, 6—)q>p;sgn(q)|’ |) —SgIl(C])(‘l])h((Y, 6',‘:],]9; ')—ﬂ)h((ﬂ 6',—(],—]9; )) LZ(R)S € 4ﬁ\0\2,
2
q
"o & d. D — . < e TR
(4.18) [¥" (o6, pi—santa) - D, o < P

Proof. Taking into account that p" (o, &, —q, —p;x) = V™(0, 5, q,p;—x) = V™ (—x), using the ele-
mentary identities sgn(q) x| = sgn(qgx)x, 1 = 0(qx) + 6(—qx) and sgn(qx) = 0(qx) — 6(—qx), by
direct computations we get

2
[sen() 9™ (0,5, a,pisenla) |-1) — senla) (" (0,5, d,p; -) = $"(0, 6,~a, ~p; - )

L2(R)
2
= JRdX ‘IPH(G) 6) q)p;sgn(qx) X) - sgn(qx) (q)h((y) 6) q,p;x) - ﬂ)h((ﬂ 6—) q,P; _X)> ‘
2

- JRdx 0ax) (036, 4, 1) + (4 x) " (0, 6, ,pi )

Ry x 2 oo nL 2
= ZJRdX e(q X) ‘ll) (G> 0, q,p;—x)| = ZJO dy ‘11) (G) 0, q,p;—sgn(q)y) ‘
From here, noting the identity Re(&/0) = 0|72 (see Eq. (@2)) and using the inequality e—(a+)? <
e % for a,b > 0, we infer

2
[sen() ™ (0,6,q, pisen(a) |- 1) — sen(a) (¥"(0, 6, d,p; ) = (0, 6,—q, —p; -))

L2(R)
2
2 Foo (il e ame2 fteo | y? .
- = dye 2nlol Sij due 2nlol2 = ¢ 2nlol
V2mh |o] Jo Y V2mh o] Jo Y ’
which proves Eq. ([@I7). Eq. (£I8) can be derived by similar arguments (cf. [2| Lem. 3.8]). O

4.1. Proof of Theorem [I.1] At first, in the following proposition we give an explicit formula for
the semiclassical limit evolution of a coherent state.

Proposition 4.9. Let B(p) == — (ZB/hg)pz. Then, under the assumptions of Theorem [I1] there
holds

en? (ﬂLBd)Ut,X) ( - HOII)GO,E) X)
~ sgn(q)0(— qp)e<t+Tq> /) (&R ) () — (e, ) ()

~ senlq ( P9 Rutp/m) (e 50D, 0) (0 — (O ()
Proof. Recall that & = (q,p). We start by noticing that, by Eq. (2Z.3)),
0(—tqp) 0(2 —

2i|p| |q|) <(eitL0¢Ut’X) (d,p)— (eiﬂ_od)ﬁt»x) (—q, —P)) )

1 —sgn(t )—mB(p)

(el (&) = (el ) (q,p)—
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hence, on account of Identity (3], we infer

WM (el ) (E) = (el () ()
_ 8(—tqp) 0(% —la) (et

2
1= sen(t) gty

We note that
{iHg iR LA R ity pt
N it _ pt it
= erMp" (o + Tmon %0 at B pi—x) = (e, o) (),
whence,

(1tLBd)Ut,X)( ):( o Holl)o'o,ﬁ)( )

Ip t|
(00— (et )
To conclude the proof we observe that
6(~tqp) (2! —lal)  6(t)0(—qp) (2t —ql) S p) 0 (2t —|ql)
1 —sgn(t) gy 1— 2 1+ o

- 6(—qp)6(t— L) , Olap) o(—t— i)
1~ oph) 1+

_ 0(—qp) G(t + %1) .\ 6(qp) 9(—t - %1)
1= ey 1+ st

Notably, setting B(p) := — (28/R>) p? and recalling the definition B2) of Ry (k) we obtain

CIE=
DEEIPL _ o(qp) (+ sgulp) Re(p/R) = sgulq) 8(=ap) Re(p/h).
T4 55m
Summing up, the arguments described above imply the thesis. O

We are now ready to prove Theorem [Tl

Proof of Theorem [11. First, we use Lemma [£.7] to approximate the state e—tnHp 11)2‘0’a with YE‘O £t
defined according to Eq. (4.16]) by

Vit (x) = (e WHOUT 1) (x) +0(qp) Ry (p/R) sgn(x) (e m0wf o) (—sgn(q) )
+0(—qp) R-(p/M) sgu(x) (e np] ) (—sgn(q)Ix]) -

Next, we compare YG it with the expression for ewAt gitls oy oux (&) from Proposition .9l Retracing
the arguments described in [2, Proof of Thm. 1.1)], we infer
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Vhealx) = (100G, )00+ 8¢+ 1) 0(ap) Ry (p/h) sgn(x) (e Ko, o) (— sania) )

—|-9<t—|—m?q> 8(—qp) R_(p/h) sgn(x) (e wHopl ) (sgn(qy) Ix))
<_ _ m?q> 8(qp) R+ (p/R) sgn(x) (e wHop! ;) (sen(qy) Ix|)
+9<_ _mTq>9 ~(p/h) sgu(x) (e w0pg ) (— senlar) ) -

Recall that )
( “in HO 1‘I)O'o E)( ) = eﬁAt 1‘I)ﬁ((y‘w Ga]) qt,P;X) )

with oy = oy + 27300 and gy = q + % Hence, by Lemma (48], we deduce:
2
it st st _ ¢
Hsgn(-) (e7wFopR ) (sgn(qe)l - ) —sgn(qt)<(e o )(x) — (e ‘hHOII)E‘O,g)(—X)) v S € o2 ;
" __af
H( “wHopd o) (—senlqo)l - ) 12(R) <e Amod?

Noting that
mg _ mq _ mq
e(iti?)ewqp) sgn(qn) =0 (+t =+ : ) 0(ap) sgn(p) = —0(+t=+ ; ) 8(xap) sgn(a),

the previous bounds, together with Proposition [£.9] imply
2
q

n LA (,itlg g1 ST
HY"O)é,t(X)_e“ (e (-))(a)HLZ(R) < de mal

2
__ %
Besides the exponential e Mot | the remaining terms on the r.h.s. of Eq. (LF) are a consequence
of the fact that we approximated e inHe 1])2;‘0’5 with Yrrlo,&,t and of Lemma [4.7] (here employed with
_ 2l
0 = 0p, 6 = 1/0p, and using as well the basic inequality e ™Bl < 1). O
4.2. Proof of Corollary
Proof. Fix 1 = h'/?™ in Theorem LIl Then, for 0 < A < 1/2 and fixed (q,p) € R with qp # 0,
the time-independent part on the r.h.s. of inequality (L5 is bounded b

h7/2 A 1 1 1 1 1
Cl—F—— e BT e mtek +h3/2(e‘ﬂ_x + e‘@) < C, h7/2A
1_h'/2 & =l )
for some C, > 0 and for all h < h, with h, small enough.

2Especially, let us mention that we used the upper bound descending from the following chain of inequalities:
2

5 2\1/4 w542 212 g2 3/2 2. 2\1/4 6oZp? 02p2 q
R’ 0% el I L anel | _ h OoP ((m‘ﬁh”l/B) 0 -ZeP inol
em-p e +e o | = e P e +e 0
m?p? (miBp))'/3 h

2 2N\1/4 2.2 a2 1089 6) ogp? 4.2
0, _(1_n6) %0P" - - h 16 40 _ 1
§h3/2<—?§ ) [e 0=h") =%~ 4 ¢ 4"3"2( a? )% ] S?max{h—;zp }}_13/2(6 i fe '62)»

4_2
where the last inequality follows noting that min{] —h® 1 — 40%]16} > 1/2 for h small enough, and that
SUP(¢ 0} (571/4 efu/a) <g A 67“/5’5:H = (4/e) ! for any u > 0.
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On the other hand, to take into account the time-dependent term on the r.h.s. of inequality

(LEH) it is enough to show that if [t — teon (&)l > colteon (&)l \/(7/2 —A)h|Inh| (for some ¢y > 0),
then qF/(4Rjof) > (7/2 — N)|lnhl. Setting y = 1 t/teou(€), a = 298 (7/2 — A)|Inh) and
b= #]‘92 (7/2 —A)|Inh|, the latter relation can be rephrased as y?/(a +b (1 —1y)?) > 1; a simple
calculation shows that this inequality is fulfilled if

b++aTb—db
(4.19) abe(0,1) and |yl > - fjb a

Taking into account that a+b—ab < a+b, a < 4(7/2—A) h|lnh| and b < (7/2 —A)h|Inh/,
it is easy to convince oneself that when h is small enough Eq. (@I9]) holds true as soon as |y| >
Co \/(7/2 —A)h|InhJ for some ¢y > /5, which proves Eq. (L6). O

5. CONVERGENCE OF THE WAVE AND SCATTERING OPERATORS
Lemma 5.1. For any Pp" € 12(R) of the form @) with qp # 0, there holds
(5.1)
(QF W) () = ") +sen(x) [8(ap) F o (F sgn() [x]) + 0(—qp) F2 o (& sgn(q) xl) | + ER 4 (x),

where FTJ:,O = Fi)tzo, see Eq. ([44), and

Ny . 4 senlgx) isgn(qp) kil _ —isgn(qp) kN Sh(_
B3 (x) =+ o Jde (e e >G(k) Ry (k)™ (—sgn(p) k).

Proof. First notice that, from (3.9]), (B.1) and (34 it follows

£ R\ (o) R sgn(x) ikl x| ~n
(@ WM 00 = 0" + B | ke MY R 19 970
From here and from the identities 9(:|: Sgn(q)k) + 9($ Sgn(q)k) =1and 6(:|: sgn(q)k) =0(xqp) F
sgn(qp) 9(— sgn(p)k), we obtain

(@) () =700+ 2 | e e MM o snlaq)k) + 0 (F snla)k)] Re (1 9 1)
—Pp(x) + S%;lz(_;) Jde [0 sgn(q)k) e (A 4 0 (% sgn(q)k) e = V| R (k) P (k)
— ) + % Jde [0(£qp) e 59 4 (qp) = VKN Ry, (k) G (k)
sgn(x) sgn(qp) —isgn(q)kld _ isen(qki ar_ i
¥ TJde <e gn(@)klxl _ gisen(q)k ) 0(— sgn(p)k) Re (k) 7 (k),

which, noting that Ry (— sgn(p)k) = —sgn(p) Ry (k) (see Eq. (B2)), is equivalent to Eq. (51)). O

Lemma 5.2. There exists a constant C > 0 such that, for any p"™ € L2(R) of the form @I) with
qp # 0, there holds

_ P
HE?,:I:H]_Z(R) <Ce nisIZ |
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Proof. By the elementary inequality |[\(]- DH%Z(R) + W (- - I)H%Z(R) <4 HII)H%Z(R), by unitarity of
the Fourier transform, and by the basic bound |R4+ (k)| < 1, we infer that

2
e ™ 8(k) R (k) ™ (— sen(p)k)

1
<4 H_ [ a
\/27'[ R LZ(R)

* 2= 2 R 2
:4J dk [Ry (k)| | ™ (—sgn(p)k)| §4J0 dk [V (—sen(p)k)|
1/2 (ktlpl/R)2 1/2 2 oo 2 2
4 <2h> Jdkezwgi<2_h> e_é';zjdke Z‘%—Ze Ff\]:ﬂz
|U| 0 o] \ 7 0

which yields the thesis. O

5.1. Proof of Theorem 1.3l We first prove claim (7).
Preliminarily we apply the classical wave operators W]:St, with B(p) := — (28/R3) p? to the state
cbz‘oy(.)(&), with & = (q,p). Recalling the definition ([B.2]) of Ry (k) and noting the basic identity

Fsgu(p)O(Fqp) = sgn(q) 6(Fqp), from Eq. (23] we infer:

(Wi (E) = 05.(6) ~ 2P (1 (6) — #.(-2)
mplp

[
= ¢} (&) Fsen(p) 0(Fqp) R (p/R) (b5 () — dh (—E))
= dp . (q,p) +sgn(q) 0 (:qu)Ri(p/m (b6 (&) — box(—E)).

On the other hand, recalling the Identity (5.]) established in Lemma[5.0] noting the basic inequality
‘Ri(k)‘ < 1 and using the estimates reported in Lemmata [£.2], 1.8 and [5.2] we obtain the following
for any n € (0,1):

Hﬂi%o,a |05, ¢ +s0(q) B(Fap) R (p/R) (Wh, ¢~ WE, ¢ |

L2(R)

o2

n h3 hS B zcépz S 70(2)]32
<C +(1+ e " TIm e M0 e TR |,
[(1 -n) <m|f310|> ( mIBPI>

Then, the proof is concluded recalling that tl)z‘o’a(x) = d)z"x(i,) (see Eq. ([I2)).

Next we prove claim (L.8). To begin with, we apply the classical scattering operator with
B(p) := —(2[3/1’13)1)2 to the state cbl;‘oy(.)(i). Recalling the definition ([3.2)) of Ry (k), from Eq. (2.0)
we obtain

(SCBL(I)EO’(.)) (&) = d)f,‘o,(.)(&) + sgu(p) R-(p/h) (4)20’(.)(&) - 4)20,(.)(_&))
(5.2) = Ug s +sgn(p) R(p/R) (W5« — 5 ).

On the other hand, recalling the basic Identity (3.7, by simple addition and subtraction arguments
and by the triangular inequality we get

10505 e~ (S50%0) Bl < [| 1957 (95 ¥hoe ~ (We0,0) )
—I—H Qg CLC(W];(I)O'(),('))( ) — aC(S ‘b ) HLZ(R)
+ Q) Pe (Wg 02 () (E)]]21m +HPﬁ(S Ba, ) ()] 12(g)
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Firstly, from Identity (5.2]) and Lemmal[4.3] (see, in particular, Eq. (4.13))), noting once more the
basic inequality |[Ry(p/R)| < 1 we infer

1P6 (5508, 0) (8) 208 < P68, & l2gmy + [R- /R ([1Pow 2gmy + IPo, [l 12¢x))
5 14 1542 o252 _ 42
(5.3) SC(E%J e%ﬁ<eﬂf+e£%>

Secondly, let us notice that Hlel)HLz(R) < | Wblr2(g), since QFg is the strong limit of operators with

unit norm; thus, the same holds true for the adjoint (QE)*. Hence, by arguments similar to those
described above, in view of Eq. (23] and of Lemma [£.3] we have

H(Qﬂ PB(W d)cfo, E’)HLZ( HPB(W ‘bcfo, ) E’)HLZ(R)
= HPB“I’Go,a 2R T 0(qp) [R-(p/N)] (“PBIbEO»&HLZ(R) + Hpﬁwzo,—auLZ(R))
o 1/4 1S o2 o2p? __d*
(5.4) <C <m2{52) em?p? <e_ note 4“"3) .

To say more, again from the bound on (Qg)*, we infer

H(QE)*<QEI|)EO,(£ (Wp d5,,) (& )) L2(R)

< (|05 aye = (Wa d,0) ()| 2z

which is bounded by Eq. (7)) (proven previously).
Finally, on account of the unitarity of Qg on ran(Pq), we obtain

1(QF) Pac (Wg dg, (1) (E) = Pac (S g, (1) (€[ 12m
= [[Pac(Wg b5, () (8) — Qf Pac (S§ gy ) (8)]| 2z
< || (W dg, () (E) — Qp (S b, ) Hu ++PMM/¢%, ()] 2z + 124 Ps (SE by ) (&)l 2

On the one hand, using once more arguments analogous to those described in the proof of the

bounds (B.3]) and (5.4]), we get

1/4
—Hh hso% / F‘526%2 _ogv? _42;
|Pe (W d’oo,(-))(a)HLZ(R) <C m2p2 emP e " +e "0

and

195 P5 (S5 50,00 E)ll12g) < [P (S5 bo0,0)) @)l 2y < C{ zgz | e (e~ +e ™).
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On the other hand, since Qgsg@m(.)(a) = SCBLQECPEO,(.)(Q (due to the fact that the operators QFg

and S¢ act on different variables), on account of Remark 7] we infer
(W g, 1) (&) — QF (S g, (1) (8] 2
= [[(Wg &3, () (&) — (S Qg () (E)]] 2 g
= [|(s (g —Wg) b, () (&) 2 gy
<C (H ((Qf = W) b5, () ] o) + (2 — Wg)‘b&,(v})(—a)uum))

2
q o2p?

R RPN ot
)e TSR 4 e M 4 e ™n ,

<= (Gape) + O+ e

where in the last two inequalities we used |(S§f)(q,p)l < C(If(q,p)| + [f(—q, —p)|) (see Eq. (28]

and note that |1 — n%iB‘EL) ‘71 < 1) and the bound in Eq. (7).

Summing up, the above estimates imply Eq. (LS).
The proof of Corollary [[.4] is similar to that of Corollary and we omit it for brevity.
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